rusefi-full/firmware/controllers/math/engine_math.cpp

445 lines
14 KiB
C++

/**
* @file engine_math.cpp
* @brief
*
* @date Jul 13, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "global.h"
#include "engine_math.h"
#include "engine_configuration.h"
#include "interpolation.h"
#include "allsensors.h"
#include "sensor.h"
#include "event_registry.h"
#include "efi_gpio.h"
#include "fuel_math.h"
#include "advance_map.h"
EXTERN_ENGINE;
#if EFI_UNIT_TEST
extern bool verboseMode;
#endif /* EFI_UNIT_TEST */
floatms_t getEngineCycleDuration(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) {
return getCrankshaftRevolutionTimeMs(rpm) * (engine->getOperationMode(PASS_ENGINE_PARAMETER_SIGNATURE) == TWO_STROKE ? 1 : 2);
}
/**
* @return number of milliseconds in one crank shaft revolution
*/
floatms_t getCrankshaftRevolutionTimeMs(int rpm) {
if (rpm == 0) {
return NAN;
}
return 360 * getOneDegreeTimeMs(rpm);
}
float getFuelingLoad(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
return ENGINE(engineState.fuelingLoad);
}
float getIgnitionLoad(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
return ENGINE(engineState.ignitionLoad);
}
/**
* @brief Returns engine load according to selected engine_load_mode
*
*/
float getEngineLoadT(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
efiAssert(CUSTOM_ERR_ASSERT, engine!=NULL, "engine 2NULL", NAN);
efiAssert(CUSTOM_ERR_ASSERT, engineConfiguration!=NULL, "engineConfiguration 2NULL", NAN);
switch (engineConfiguration->fuelAlgorithm) {
case LM_SPEED_DENSITY:
return Sensor::get(SensorType::Map).value_or(0);
case LM_ALPHA_N:
return Sensor::get(SensorType::Tps1).value_or(0);
case LM_REAL_MAF:
return getRealMaf(PASS_ENGINE_PARAMETER_SIGNATURE);
default:
firmwareError(CUSTOM_UNKNOWN_ALGORITHM, "Unexpected engine load parameter: %d", engineConfiguration->fuelAlgorithm);
return 0;
}
}
/**
* see also setConstantDwell
*/
void setSingleCoilDwell(DECLARE_CONFIG_PARAMETER_SIGNATURE) {
for (int i = 0; i < DWELL_CURVE_SIZE; i++) {
engineConfiguration->sparkDwellRpmBins[i] = i + 1;
engineConfiguration->sparkDwellValues[i] = 4;
}
engineConfiguration->sparkDwellRpmBins[5] = 10;
engineConfiguration->sparkDwellValues[5] = 4;
engineConfiguration->sparkDwellRpmBins[6] = 4500;
engineConfiguration->sparkDwellValues[6] = 4;
engineConfiguration->sparkDwellRpmBins[7] = 12500;
engineConfiguration->sparkDwellValues[7] = 0;
}
static floatms_t getCrankingSparkDwell(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
if (engineConfiguration->useConstantDwellDuringCranking) {
return engineConfiguration->ignitionDwellForCrankingMs;
} else {
// technically this could be implemented via interpolate2d
float angle = engineConfiguration->crankingChargeAngle;
return getOneDegreeTimeMs(GET_RPM()) * angle;
}
}
/**
* @return Spark dwell time, in milliseconds. 0 if tables are not ready.
*/
floatms_t getSparkDwell(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) {
#if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT
float dwellMs;
if (ENGINE(rpmCalculator).isCranking()) {
dwellMs = getCrankingSparkDwell(PASS_ENGINE_PARAMETER_SIGNATURE);
} else {
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(rpm), "invalid rpm", NAN);
dwellMs = interpolate2d("dwell", rpm, engineConfiguration->sparkDwellRpmBins, engineConfiguration->sparkDwellValues);
}
if (cisnan(dwellMs) || dwellMs <= 0) {
// this could happen during engine configuration reset
warning(CUSTOM_ERR_DWELL_DURATION, "invalid dwell: %.2f at rpm=%d", dwellMs, rpm);
return 0;
}
return dwellMs;
#else
return 0;
#endif
}
static const int order_1_2[] = {1, 2};
static const int order_1_2_3[] = {1, 2, 3};
static const int order_1_3_2[] = {1, 3, 2};
// 4 cylinder
static const int order_1_THEN_3_THEN_4_THEN2[] = { 1, 3, 4, 2 };
static const int order_1_THEN_2_THEN_4_THEN3[] = { 1, 2, 4, 3 };
static const int order_1_THEN_3_THEN_2_THEN4[] = { 1, 3, 2, 4 };
static const int order_1_THEN_4_THEN_3_THEN2[] = { 1, 4, 3, 2 };
// 5 cylinder
static const int order_1_2_4_5_3[] = {1, 2, 4, 5, 3};
// 6 cylinder
static const int order_1_THEN_5_THEN_3_THEN_6_THEN_2_THEN_4[] = { 1, 5, 3, 6, 2, 4 };
static const int order_1_THEN_4_THEN_2_THEN_5_THEN_3_THEN_6[] = { 1, 4, 2, 5, 3, 6 };
static const int order_1_THEN_2_THEN_3_THEN_4_THEN_5_THEN_6[] = { 1, 2, 3, 4, 5, 6 };
static const int order_1_6_3_2_5_4[] = {1, 6, 3, 2, 5, 4};
// 8 cylinder
static const int order_1_8_4_3_6_5_7_2[] = { 1, 8, 4, 3, 6, 5, 7, 2 };
static const int order_1_8_7_2_6_5_4_3[] = { 1, 8, 7, 2, 6, 5, 4, 3 };
static const int order_1_5_4_2_6_3_7_8[] = { 1, 5, 4, 2, 6, 3, 7, 8 };
static const int order_1_2_7_8_4_5_6_3[] = { 1, 2, 7, 8, 4, 5, 6, 3 };
static const int order_1_3_7_2_6_5_4_8[] = { 1, 3, 7, 2, 6, 5, 4, 8 };
// 9 cylinder
static const int order_1_2_3_4_5_6_7_8_9[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
// 10 cylinder
static const int order_1_10_9_4_3_6_5_8_7_2[] = {1, 10, 9, 4, 3, 6, 5, 8, 7, 2};
// 12 cyliner
static const int order_1_7_5_11_3_9_6_12_2_8_4_10[] = {1, 7, 5, 11, 3, 9, 6, 12, 2, 8, 4, 10};
static const int order_1_7_4_10_2_8_6_12_3_9_5_11[] = {1, 7, 4, 10, 2, 8, 6, 12, 3, 9, 5, 11};
static const int order_1_12_5_8_3_10_6_7_2_11_4_9[] = {1, 12, 5, 8, 3, 10, 6, 7, 2, 11, 4, 9};
static const int order_1_2_3_4_5_6_7_8_9_10_11_12[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
// no comments
static const int order_1_14_9_4_7_12_15_6_13_8_3_16_11_2_5_10[] = {1, 14, 9, 4, 7, 12, 15, 6, 13, 8, 3, 16, 11, 2, 5, 10};
static int getFiringOrderLength(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
switch (CONFIG(specs.firingOrder)) {
case FO_1:
return 1;
// 2 cylinder
case FO_1_2:
return 2;
// 3 cylinder
case FO_1_2_3:
case FO_1_3_2:
return 3;
// 4 cylinder
case FO_1_3_4_2:
case FO_1_2_4_3:
case FO_1_3_2_4:
case FO_1_4_3_2:
return 4;
// 5 cylinder
case FO_1_2_4_5_3:
return 5;
// 6 cylinder
case FO_1_5_3_6_2_4:
case FO_1_4_2_5_3_6:
case FO_1_2_3_4_5_6:
case FO_1_6_3_2_5_4:
return 6;
// 8 cylinder
case FO_1_8_4_3_6_5_7_2:
case FO_1_8_7_2_6_5_4_3:
case FO_1_5_4_2_6_3_7_8:
case FO_1_2_7_8_4_5_6_3:
case FO_1_3_7_2_6_5_4_8:
return 8;
// 9 cylinder radial
case FO_1_2_3_4_5_6_7_8_9:
return 9;
// 10 cylinder
case FO_1_10_9_4_3_6_5_8_7_2:
return 10;
// 12 cylinder
case FO_1_7_5_11_3_9_6_12_2_8_4_10:
case FO_1_7_4_10_2_8_6_12_3_9_5_11:
case FO_1_12_5_8_3_10_6_7_2_11_4_9:
case FO_1_2_3_4_5_6_7_8_9_10_11_12:
return 12;
case FO_1_14_9_4_7_12_15_6_13_8_3_16_11_2_5_10:
return 16;
default:
firmwareError(CUSTOM_OBD_UNKNOWN_FIRING_ORDER, "Invalid firing order: %d", CONFIG(specs.firingOrder));
}
return 1;
}
/**
* @param index from zero to cylindersCount - 1
* @return cylinderId from one to cylindersCount
*/
int getCylinderId(int index DECLARE_ENGINE_PARAMETER_SUFFIX) {
const int firingOrderLength = getFiringOrderLength(PASS_ENGINE_PARAMETER_SIGNATURE);
if (firingOrderLength < 1 || firingOrderLength > INJECTION_PIN_COUNT) {
firmwareError(CUSTOM_ERR_6687, "fol %d", firingOrderLength);
return 1;
}
if (engineConfiguration->specs.cylindersCount != firingOrderLength) {
// May 2020 this somehow still happens with functional tests, maybe race condition?
warning(CUSTOM_OBD_WRONG_FIRING_ORDER, "Wrong cyl count for firing order, expected %d cylinders", firingOrderLength);
return 1;
}
if (index < 0 || index >= firingOrderLength) {
// May 2020 this somehow still happens with functional tests, maybe race condition?
warning(CUSTOM_ERR_6686, "firing order index %d", index);
return 1;
}
switch (CONFIG(specs.firingOrder)) {
case FO_1:
return 1;
// 2 cylinder
case FO_1_2:
return order_1_2[index];
// 3 cylinder
case FO_1_2_3:
return order_1_2_3[index];
case FO_1_3_2:
return order_1_3_2[index];
// 4 cylinder
case FO_1_3_4_2:
return order_1_THEN_3_THEN_4_THEN2[index];
case FO_1_2_4_3:
return order_1_THEN_2_THEN_4_THEN3[index];
case FO_1_3_2_4:
return order_1_THEN_3_THEN_2_THEN4[index];
case FO_1_4_3_2:
return order_1_THEN_4_THEN_3_THEN2[index];
// 5 cylinder
case FO_1_2_4_5_3:
return order_1_2_4_5_3[index];
// 6 cylinder
case FO_1_5_3_6_2_4:
return order_1_THEN_5_THEN_3_THEN_6_THEN_2_THEN_4[index];
case FO_1_4_2_5_3_6:
return order_1_THEN_4_THEN_2_THEN_5_THEN_3_THEN_6[index];
case FO_1_2_3_4_5_6:
return order_1_THEN_2_THEN_3_THEN_4_THEN_5_THEN_6[index];
case FO_1_6_3_2_5_4:
return order_1_6_3_2_5_4[index];
// 8 cylinder
case FO_1_8_4_3_6_5_7_2:
return order_1_8_4_3_6_5_7_2[index];
case FO_1_8_7_2_6_5_4_3:
return order_1_8_7_2_6_5_4_3[index];
case FO_1_5_4_2_6_3_7_8:
return order_1_5_4_2_6_3_7_8[index];
case FO_1_2_7_8_4_5_6_3:
return order_1_2_7_8_4_5_6_3[index];
case FO_1_3_7_2_6_5_4_8:
return order_1_3_7_2_6_5_4_8[index];
case FO_1_2_3_4_5_6_7_8_9:
return order_1_2_3_4_5_6_7_8_9[index];
// 10 cylinder
case FO_1_10_9_4_3_6_5_8_7_2:
return order_1_10_9_4_3_6_5_8_7_2[index];
// 12 cylinder
case FO_1_7_5_11_3_9_6_12_2_8_4_10:
return order_1_7_5_11_3_9_6_12_2_8_4_10[index];
case FO_1_7_4_10_2_8_6_12_3_9_5_11:
return order_1_7_4_10_2_8_6_12_3_9_5_11[index];
case FO_1_12_5_8_3_10_6_7_2_11_4_9:
return order_1_12_5_8_3_10_6_7_2_11_4_9[index];
case FO_1_2_3_4_5_6_7_8_9_10_11_12:
return order_1_2_3_4_5_6_7_8_9_10_11_12[index];
// do not ask
case FO_1_14_9_4_7_12_15_6_13_8_3_16_11_2_5_10:
return order_1_14_9_4_7_12_15_6_13_8_3_16_11_2_5_10[index];
default:
firmwareError(CUSTOM_OBD_UNKNOWN_FIRING_ORDER, "Invalid firing order: %d", CONFIG(specs.firingOrder));
}
return 1;
}
/**
* @param cylinderIndex from 0 to cylinderCount, not cylinder number
*/
static int getIgnitionPinForIndex(int cylinderIndex DECLARE_ENGINE_PARAMETER_SUFFIX) {
switch (getCurrentIgnitionMode(PASS_ENGINE_PARAMETER_SIGNATURE)) {
case IM_ONE_COIL:
return 0;
case IM_WASTED_SPARK: {
if (CONFIG(specs.cylindersCount) == 1) {
// we do not want to divide by zero
return 0;
}
return cylinderIndex % (CONFIG(specs.cylindersCount) / 2);
}
case IM_INDIVIDUAL_COILS:
return cylinderIndex;
case IM_TWO_COILS:
return cylinderIndex % 2;
default:
firmwareError(CUSTOM_OBD_IGNITION_MODE, "Invalid ignition mode getIgnitionPinForIndex(): %d", engineConfiguration->ignitionMode);
return 0;
}
}
void prepareIgnitionPinIndices(ignition_mode_e ignitionMode DECLARE_ENGINE_PARAMETER_SUFFIX) {
(void)ignitionMode;
#if EFI_ENGINE_CONTROL
for (int cylinderIndex = 0; cylinderIndex < CONFIG(specs.cylindersCount); cylinderIndex++) {
ENGINE(ignitionPin[cylinderIndex]) = getIgnitionPinForIndex(cylinderIndex PASS_ENGINE_PARAMETER_SUFFIX);
}
#endif /* EFI_ENGINE_CONTROL */
}
/**
* @return IM_WASTED_SPARK if in SPINNING mode and IM_INDIVIDUAL_COILS setting
* @return CONFIG(ignitionMode) otherwise
*/
ignition_mode_e getCurrentIgnitionMode(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
ignition_mode_e ignitionMode = CONFIG(ignitionMode);
#if EFI_SHAFT_POSITION_INPUT
// In spin-up cranking mode we don't have full phase sync. info yet, so wasted spark mode is better
if (ignitionMode == IM_INDIVIDUAL_COILS && ENGINE(rpmCalculator.isSpinningUp()))
ignitionMode = IM_WASTED_SPARK;
#endif /* EFI_SHAFT_POSITION_INPUT */
return ignitionMode;
}
#if EFI_ENGINE_CONTROL
/**
* This heavy method is only invoked in case of a configuration change or initialization.
*/
void prepareOutputSignals(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
ENGINE(engineCycle) = getEngineCycle(engine->getOperationMode(PASS_ENGINE_PARAMETER_SIGNATURE));
angle_t maxTimingCorrMap = -720.0f;
angle_t maxTimingMap = -720.0f;
for (int rpmIndex = 0;rpmIndex<IGN_RPM_COUNT;rpmIndex++) {
for (int l = 0;l<IGN_LOAD_COUNT;l++) {
maxTimingCorrMap = maxF(maxTimingCorrMap, config->ignitionIatCorrTable[l][rpmIndex]);
maxTimingMap = maxF(maxTimingMap, config->ignitionTable[l][rpmIndex]);
}
}
#if EFI_UNIT_TEST
if (verboseMode) {
printf("prepareOutputSignals %d onlyEdge=%s %s\r\n", engineConfiguration->trigger.type, boolToString(engineConfiguration->useOnlyRisingEdgeForTrigger),
getIgnition_mode_e(engineConfiguration->ignitionMode));
}
#endif /* EFI_UNIT_TEST */
for (int i = 0; i < CONFIG(specs.cylindersCount); i++) {
ENGINE(ignitionPositionWithinEngineCycle[i]) = ENGINE(engineCycle) * i / CONFIG(specs.cylindersCount);
}
prepareIgnitionPinIndices(CONFIG(ignitionMode) PASS_ENGINE_PARAMETER_SUFFIX);
TRIGGER_WAVEFORM(prepareShape(&ENGINE(triggerCentral.triggerFormDetails) PASS_ENGINE_PARAMETER_SUFFIX));
// Fuel schedule may now be completely wrong, force a reset
ENGINE(injectionEvents).invalidate();
}
void setTimingRpmBin(float from, float to DECLARE_CONFIG_PARAMETER_SUFFIX) {
setRpmBin(config->ignitionRpmBins, IGN_RPM_COUNT, from, to);
}
void setTimingLoadBin(float from, float to DECLARE_CONFIG_PARAMETER_SUFFIX) {
setLinearCurve(config->ignitionLoadBins, from, to);
}
/**
* this method sets algorithm and ignition table scale
*/
void setAlgorithm(engine_load_mode_e algo DECLARE_CONFIG_PARAMETER_SUFFIX) {
engineConfiguration->fuelAlgorithm = algo;
if (algo == LM_SPEED_DENSITY) {
setLinearCurve(config->ignitionLoadBins, 20, 120, 3);
buildTimingMap(35 PASS_CONFIG_PARAMETER_SUFFIX);
}
}
void setFlatInjectorLag(float value DECLARE_CONFIG_PARAMETER_SUFFIX) {
setArrayValues(engineConfiguration->injector.battLagCorr, value);
}
#endif /* EFI_ENGINE_CONTROL */