rusefi/firmware/controllers/engine_controller.cpp

781 lines
23 KiB
C++

/**
* @file engine_controller.cpp
* @brief Controllers package entry point code
*
*
*
* @date Feb 7, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "pch.h"
#include "os_access.h"
#include "trigger_central.h"
#include "fsio_core.h"
#include "fsio_impl.h"
#include "idle_thread.h"
#include "advance_map.h"
#include "main_trigger_callback.h"
#include "flash_main.h"
#include "bench_test.h"
#include "os_util.h"
#include "electronic_throttle.h"
#include "map_averaging.h"
#include "high_pressure_fuel_pump.h"
#include "malfunction_central.h"
#include "malfunction_indicator.h"
#include "speed_density.h"
#include "local_version_holder.h"
#include "alternator_controller.h"
#include "fuel_math.h"
#include "spark_logic.h"
#include "aux_valves.h"
#include "accelerometer.h"
#include "vvt.h"
#include "boost_control.h"
#include "launch_control.h"
#include "tachometer.h"
#include "gppwm.h"
#include "date_stamp.h"
#include "buttonshift.h"
#include "start_stop.h"
#include "dynoview.h"
#include "vr_pwm.h"
#if EFI_SENSOR_CHART
#include "sensor_chart.h"
#endif /* EFI_SENSOR_CHART */
#if EFI_TUNER_STUDIO
#include "tunerstudio.h"
#endif /* EFI_TUNER_STUDIO */
#if EFI_LOGIC_ANALYZER
#include "logic_analyzer.h"
#endif /* EFI_LOGIC_ANALYZER */
#if HAL_USE_ADC
#include "AdcConfiguration.h"
#endif /* HAL_USE_ADC */
#if defined(EFI_BOOTLOADER_INCLUDE_CODE)
#include "bootloader/bootloader.h"
#endif /* EFI_BOOTLOADER_INCLUDE_CODE */
#include "periodic_task.h"
#if ! EFI_UNIT_TEST
#include "init.h"
#endif /* EFI_UNIT_TEST */
#if EFI_PROD_CODE
#include "pwm_tester.h"
#include "lcd_controller.h"
#endif /* EFI_PROD_CODE */
#if EFI_CJ125
#include "cj125.h"
#endif /* EFI_CJ125 */
#if !EFI_UNIT_TEST
/**
* Would love to pass reference to configuration object into constructor but C++ does allow attributes after parenthesized initializer
*/
Engine ___engine CCM_OPTIONAL;
Engine * engine = &___engine;
#endif /* EFI_UNIT_TEST */
void initDataStructures(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
#if EFI_ENGINE_CONTROL
initFuelMap(PASS_ENGINE_PARAMETER_SIGNATURE);
initTimingMap(PASS_ENGINE_PARAMETER_SIGNATURE);
initSpeedDensity(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif // EFI_ENGINE_CONTROL
}
#if !EFI_UNIT_TEST
static void doPeriodicSlowCallback(DECLARE_ENGINE_PARAMETER_SIGNATURE);
class PeriodicFastController : public PeriodicTimerController {
void PeriodicTask() override {
engine->periodicFastCallback();
}
int getPeriodMs() override {
return FAST_CALLBACK_PERIOD_MS;
}
};
class PeriodicSlowController : public PeriodicTimerController {
void PeriodicTask() override {
doPeriodicSlowCallback(PASS_ENGINE_PARAMETER_SIGNATURE);
}
int getPeriodMs() override {
// no reason to have this configurable, looks like everyone is happy with 20Hz
return SLOW_CALLBACK_PERIOD_MS;
}
};
static PeriodicFastController fastController;
static PeriodicSlowController slowController;
class EngineStateBlinkingTask : public PeriodicTimerController {
int getPeriodMs() override {
return 50;
}
void PeriodicTask() override {
counter++;
#if EFI_SHAFT_POSITION_INPUT
bool is_running = ENGINE(rpmCalculator).isRunning();
#else
bool is_running = false;
#endif /* EFI_SHAFT_POSITION_INPUT */
if (is_running) {
// blink in running mode
enginePins.runningLedPin.setValue(counter % 2);
} else {
int is_cranking = ENGINE(rpmCalculator).isCranking();
enginePins.runningLedPin.setValue(is_cranking);
}
}
private:
int counter = 0;
};
static EngineStateBlinkingTask engineStateBlinkingTask;
/**
* number of SysClock ticks in one ms
*/
#define TICKS_IN_MS (CH_CFG_ST_FREQUENCY / 1000)
// todo: this overflows pretty fast!
efitimems_t currentTimeMillis(void) {
// todo: migrate to getTimeNowUs? or not?
return chVTGetSystemTimeX() / TICKS_IN_MS;
}
// todo: this overflows pretty fast!
efitimesec_t getTimeNowSeconds(void) {
return currentTimeMillis() / 1000;
}
static void resetAccel(void) {
engine->tpsAccelEnrichment.resetAE();
for (size_t i = 0; i < efi::size(engine->injectionEvents.elements); i++)
{
engine->injectionEvents.elements[i].wallFuel.resetWF();
}
}
static void doPeriodicSlowCallback(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
#if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT
efiAssertVoid(CUSTOM_ERR_6661, getCurrentRemainingStack() > 64, "lowStckOnEv");
slowStartStopButtonCallback(PASS_ENGINE_PARAMETER_SIGNATURE);
efitick_t nowNt = getTimeNowNt();
for (int bankIndex = 0; bankIndex < BANKS_COUNT; bankIndex++) {
for (int camIndex = 0; camIndex < CAMS_PER_BANK; camIndex++) {
if (nowNt - engine->triggerCentral.vvtSyncTimeNt[bankIndex][camIndex] >= NT_PER_SECOND) {
// loss of VVT sync
engine->triggerCentral.vvtSyncTimeNt[bankIndex][camIndex] = 0;
}
}
}
/**
* Update engine RPM state if needed (check timeouts).
*/
bool isSpinning = engine->rpmCalculator.checkIfSpinning(nowNt PASS_ENGINE_PARAMETER_SUFFIX);
if (!isSpinning) {
engine->rpmCalculator.setStopSpinning(PASS_ENGINE_PARAMETER_SIGNATURE);
}
if (ENGINE(directSelfStimulation) || engine->rpmCalculator.isStopped()) {
/**
* rusEfi usually runs on hardware which halts execution while writing to internal flash, so we
* postpone writes to until engine is stopped. Writes in case of self-stimulation are fine.
*
* todo: allow writing if 2nd bank of flash is used
*/
#if EFI_INTERNAL_FLASH
writeToFlashIfPending();
#endif /* EFI_INTERNAL_FLASH */
}
if (engine->rpmCalculator.isStopped()) {
resetAccel();
} else {
updatePrimeInjectionPulseState(PASS_ENGINE_PARAMETER_SIGNATURE);
}
if (engine->versionForConfigurationListeners.isOld(engine->getGlobalConfigurationVersion())) {
updateAccelParameters();
}
engine->periodicSlowCallback(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif /* if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT */
if (CONFIG(tcuEnabled)) {
engine->gearController->update();
}
}
void initPeriodicEvents(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
slowController.Start();
fastController.Start();
}
char * getPinNameByAdcChannel(const char *msg, adc_channel_e hwChannel, char *buffer) {
#if HAL_USE_ADC
if (!isAdcChannelValid(hwChannel)) {
strcpy(buffer, "NONE");
} else {
strcpy(buffer, portname(getAdcChannelPort(msg, hwChannel)));
itoa10(&buffer[2], getAdcChannelPin(hwChannel));
}
#else
strcpy(buffer, "NONE");
#endif /* HAL_USE_ADC */
return buffer;
}
static char pinNameBuffer[16];
#if HAL_USE_ADC
extern AdcDevice fastAdc;
#endif /* HAL_USE_ADC */
static void printAnalogChannelInfoExt(const char *name, adc_channel_e hwChannel, float adcVoltage,
float dividerCoeff) {
#if HAL_USE_ADC
if (!isAdcChannelValid(hwChannel)) {
efiPrintf("ADC is not assigned for %s", name);
return;
}
float voltage = adcVoltage * dividerCoeff;
efiPrintf("%s ADC%d %s %s adc=%.2f/input=%.2fv/divider=%.2f", name, hwChannel, getAdc_channel_mode_e(getAdcMode(hwChannel)),
getPinNameByAdcChannel(name, hwChannel, pinNameBuffer), adcVoltage, voltage, dividerCoeff);
#endif /* HAL_USE_ADC */
}
static void printAnalogChannelInfo(const char *name, adc_channel_e hwChannel) {
#if HAL_USE_ADC
printAnalogChannelInfoExt(name, hwChannel, getVoltage(name, hwChannel PASS_ENGINE_PARAMETER_SUFFIX), engineConfiguration->analogInputDividerCoefficient);
#endif /* HAL_USE_ADC */
}
static void printAnalogInfo(void) {
efiPrintf("analogInputDividerCoefficient: %.2f", engineConfiguration->analogInputDividerCoefficient);
printAnalogChannelInfo("hip9011", engineConfiguration->hipOutputChannel);
printAnalogChannelInfo("fuel gauge", engineConfiguration->fuelLevelSensor);
printAnalogChannelInfo("TPS1 Primary", engineConfiguration->tps1_1AdcChannel);
printAnalogChannelInfo("TPS1 Secondary", engineConfiguration->tps1_2AdcChannel);
printAnalogChannelInfo("TPS2 Primary", engineConfiguration->tps2_1AdcChannel);
printAnalogChannelInfo("TPS2 Secondary", engineConfiguration->tps2_2AdcChannel);
printAnalogChannelInfo("LPF", engineConfiguration->lowPressureFuel.hwChannel);
printAnalogChannelInfo("HPF", engineConfiguration->highPressureFuel.hwChannel);
printAnalogChannelInfo("pPS1", engineConfiguration->throttlePedalPositionAdcChannel);
printAnalogChannelInfo("pPS2", engineConfiguration->throttlePedalPositionSecondAdcChannel);
printAnalogChannelInfo("CLT", engineConfiguration->clt.adcChannel);
printAnalogChannelInfo("IAT", engineConfiguration->iat.adcChannel);
printAnalogChannelInfo("AuxT1", engineConfiguration->auxTempSensor1.adcChannel);
printAnalogChannelInfo("AuxT2", engineConfiguration->auxTempSensor2.adcChannel);
printAnalogChannelInfo("MAF", engineConfiguration->mafAdcChannel);
for (int i = 0; i < AUX_ANALOG_INPUT_COUNT ; i++) {
adc_channel_e ch = engineConfiguration->auxAnalogInputs[i];
printAnalogChannelInfo("Aux analog", ch);
}
printAnalogChannelInfo("AFR", engineConfiguration->afr.hwChannel);
printAnalogChannelInfo("MAP", engineConfiguration->map.sensor.hwChannel);
printAnalogChannelInfo("BARO", engineConfiguration->baroSensor.hwChannel);
printAnalogChannelInfo("OilP", engineConfiguration->oilPressure.hwChannel);
printAnalogChannelInfo("CJ UR", engineConfiguration->cj125ur);
printAnalogChannelInfo("CJ UA", engineConfiguration->cj125ua);
printAnalogChannelInfo("HIP9011", engineConfiguration->hipOutputChannel);
printAnalogChannelInfoExt("Vbatt", engineConfiguration->vbattAdcChannel, getVoltage("vbatt", engineConfiguration->vbattAdcChannel PASS_ENGINE_PARAMETER_SUFFIX),
engineConfiguration->vbattDividerCoeff);
}
#define isOutOfBounds(offset) ((offset<0) || (offset) >= (int) sizeof(engine_configuration_s))
static void getShort(int offset) {
if (isOutOfBounds(offset))
return;
uint16_t *ptr = (uint16_t *) (&((char *) engineConfiguration)[offset]);
uint16_t value = *ptr;
/**
* this response is part of rusEfi console API
*/
efiPrintf("short%s%d is %d", CONSOLE_DATA_PROTOCOL_TAG, offset, value);
}
static void getByte(int offset) {
if (isOutOfBounds(offset))
return;
uint8_t *ptr = (uint8_t *) (&((char *) engineConfiguration)[offset]);
uint8_t value = *ptr;
/**
* this response is part of rusEfi console API
*/
efiPrintf("byte%s%d is %d", CONSOLE_DATA_PROTOCOL_TAG, offset, value);
}
static void onConfigurationChanged() {
#if EFI_TUNER_STUDIO
// on start-up rusEfi would read from working copy of TS while
// we have a lot of console commands which write into real copy of configuration directly
// we have a bit of a mess here
syncTunerStudioCopy();
#endif /* EFI_TUNER_STUDIO */
incrementGlobalConfigurationVersion(PASS_ENGINE_PARAMETER_SIGNATURE);
}
static void setBit(const char *offsetStr, const char *bitStr, const char *valueStr) {
int offset = atoi(offsetStr);
if (absI(offset) == absI(ERROR_CODE)) {
efiPrintf("invalid offset [%s]", offsetStr);
return;
}
if (isOutOfBounds(offset)) {
return;
}
int bit = atoi(bitStr);
if (absI(bit) == absI(ERROR_CODE)) {
efiPrintf("invalid bit [%s]", bitStr);
return;
}
int value = atoi(valueStr);
if (absI(value) == absI(ERROR_CODE)) {
efiPrintf("invalid value [%s]", valueStr);
return;
}
int *ptr = (int *) (&((char *) engineConfiguration)[offset]);
*ptr ^= (-value ^ *ptr) & (1 << bit);
/**
* this response is part of rusEfi console API
*/
efiPrintf("bit%s%d/%d is %d", CONSOLE_DATA_PROTOCOL_TAG, offset, bit, value);
onConfigurationChanged();
}
static void setShort(const int offset, const int value) {
if (isOutOfBounds(offset))
return;
uint16_t *ptr = (uint16_t *) (&((char *) engineConfiguration)[offset]);
*ptr = (uint16_t) value;
getShort(offset);
onConfigurationChanged();
}
static void setByte(const int offset, const int value) {
if (isOutOfBounds(offset))
return;
uint8_t *ptr = (uint8_t *) (&((char *) engineConfiguration)[offset]);
*ptr = (uint8_t) value;
getByte(offset);
onConfigurationChanged();
}
static void getBit(int offset, int bit) {
if (isOutOfBounds(offset))
return;
int *ptr = (int *) (&((char *) engineConfiguration)[offset]);
int value = (*ptr >> bit) & 1;
/**
* this response is part of rusEfi console API
*/
efiPrintf("bit%s%d/%d is %d", CONSOLE_DATA_PROTOCOL_TAG, offset, bit, value);
}
static void getInt(int offset) {
if (isOutOfBounds(offset))
return;
int *ptr = (int *) (&((char *) engineConfiguration)[offset]);
int value = *ptr;
/**
* this response is part of rusEfi console API
*/
efiPrintf("int%s%d is %d", CONSOLE_DATA_PROTOCOL_TAG, offset, value);
}
static void setInt(const int offset, const int value) {
if (isOutOfBounds(offset))
return;
int *ptr = (int *) (&((char *) engineConfiguration)[offset]);
*ptr = value;
getInt(offset);
onConfigurationChanged();
}
static void getFloat(int offset) {
if (isOutOfBounds(offset))
return;
float *ptr = (float *) (&((char *) engineConfiguration)[offset]);
float value = *ptr;
/**
* this response is part of rusEfi console API
*/
efiPrintf("float%s%d is %.5f", CONSOLE_DATA_PROTOCOL_TAG, offset, value);
}
static void setFloat(const char *offsetStr, const char *valueStr) {
int offset = atoi(offsetStr);
if (absI(offset) == absI(ERROR_CODE)) {
efiPrintf("invalid offset [%s]", offsetStr);
return;
}
if (isOutOfBounds(offset))
return;
float value = atoff(valueStr);
if (cisnan(value)) {
efiPrintf("invalid value [%s]", valueStr);
return;
}
float *ptr = (float *) (&((char *) engineConfiguration)[offset]);
*ptr = value;
getFloat(offset);
onConfigurationChanged();
}
static void initConfigActions(void) {
addConsoleActionSS("set_float", (VoidCharPtrCharPtr) setFloat);
addConsoleActionII("set_int", (VoidIntInt) setInt);
addConsoleActionII("set_short", (VoidIntInt) setShort);
addConsoleActionII("set_byte", (VoidIntInt) setByte);
addConsoleActionSSS("set_bit", setBit);
addConsoleActionI("get_float", getFloat);
addConsoleActionI("get_int", getInt);
addConsoleActionI("get_short", getShort);
addConsoleActionI("get_byte", getByte);
addConsoleActionII("get_bit", getBit);
}
#endif /* EFI_UNIT_TEST */
// this method is used by real firmware and simulator and unit test
void commonInitEngineController(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
initInterpolation();
#if EFI_SIMULATOR
printf("commonInitEngineController\n");
#endif
#if !EFI_UNIT_TEST
initConfigActions();
#endif /* EFI_UNIT_TEST */
#if EFI_ENGINE_CONTROL
/**
* This has to go after 'enginePins.startPins()' in order to
* properly detect un-assigned output pins
*/
prepareShapes(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif /* EFI_PROD_CODE && EFI_ENGINE_CONTROL */
#if EFI_SENSOR_CHART
initSensorChart();
#endif /* EFI_SENSOR_CHART */
#if EFI_PROD_CODE || EFI_SIMULATOR
initSettings();
if (hasFirmwareError()) {
return;
}
#endif
#if !EFI_UNIT_TEST
// This is tested independently - don't configure sensors for tests.
// This lets us selectively mock them for each test.
initNewSensors();
#endif /* EFI_UNIT_TEST */
initSensors(PASS_ENGINE_PARAMETER_SIGNATURE);
initAccelEnrichment(PASS_ENGINE_PARAMETER_SIGNATURE);
#if EFI_FSIO
initFsioImpl(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif /* EFI_FSIO */
initGpPwm(PASS_ENGINE_PARAMETER_SIGNATURE);
#if EFI_IDLE_CONTROL
startIdleThread(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif /* EFI_IDLE_CONTROL */
initButtonShift(PASS_ENGINE_PARAMETER_SIGNATURE);
initButtonDebounce();
initStartStopButton(PASS_ENGINE_PARAMETER_SIGNATURE);
#if EFI_ELECTRONIC_THROTTLE_BODY
initElectronicThrottle(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif /* EFI_ELECTRONIC_THROTTLE_BODY */
#if EFI_MAP_AVERAGING
if (engineConfiguration->isMapAveragingEnabled) {
initMapAveraging(PASS_ENGINE_PARAMETER_SIGNATURE);
}
#endif /* EFI_MAP_AVERAGING */
#if EFI_BOOST_CONTROL
initBoostCtrl(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif /* EFI_BOOST_CONTROL */
#if EFI_LAUNCH_CONTROL
initLaunchControl(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif
#if EFI_SHAFT_POSITION_INPUT
/**
* there is an implicit dependency on the fact that 'tachometer' listener is the 1st listener - this case
* other listeners can access current RPM value
*/
initRpmCalculator(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif /* EFI_SHAFT_POSITION_INPUT */
#if (EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT) || EFI_SIMULATOR || EFI_UNIT_TEST
if (CONFIG(isEngineControlEnabled)) {
initAuxValves(PASS_ENGINE_PARAMETER_SIGNATURE);
/**
* This method adds trigger listener which actually schedules ignition
*/
initMainEventListener(PASS_ENGINE_PARAMETER_SIGNATURE);
#if EFI_HPFP
initHPFP(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif // EFI_HPFP
}
#endif /* EFI_ENGINE_CONTROL */
initTachometer(PASS_ENGINE_PARAMETER_SIGNATURE);
}
// Returns false if there's an obvious problem with the loaded configuration
bool validateConfig(DECLARE_CONFIG_PARAMETER_SIGNATURE) {
if (CONFIG(specs.cylindersCount) > MAX_CYLINDER_COUNT) {
firmwareError(OBD_PCM_Processor_Fault, "Invalid cylinder count: %d", CONFIG(specs.cylindersCount));
return false;
}
// Fueling
{
ensureArrayIsAscending("VE load", config->veLoadBins);
ensureArrayIsAscending("VE RPM", config->veRpmBins);
ensureArrayIsAscending("Lambda/AFR load", config->lambdaLoadBins);
ensureArrayIsAscending("Lambda/AFR RPM", config->lambdaRpmBins);
ensureArrayIsAscending("Fuel CLT mult", config->cltFuelCorrBins);
ensureArrayIsAscending("Fuel IAT mult", config->iatFuelCorrBins);
ensureArrayIsAscending("Injection phase load", config->injPhaseLoadBins);
ensureArrayIsAscending("Injection phase RPM", config->injPhaseRpmBins);
ensureArrayIsAscending("TPS/TPS AE from", config->tpsTpsAccelFromRpmBins);
ensureArrayIsAscending("TPS/TPS AE to", config->tpsTpsAccelToRpmBins);
}
// Ignition
{
ensureArrayIsAscending("Dwell RPM", engineConfiguration->sparkDwellRpmBins);
ensureArrayIsAscending("Ignition load", config->ignitionLoadBins);
ensureArrayIsAscending("Ignition RPM", config->ignitionRpmBins);
ensureArrayIsAscending("Ignition CLT corr", engineConfiguration->cltTimingBins);
ensureArrayIsAscending("Ignition IAT corr IAT", config->ignitionIatCorrLoadBins);
ensureArrayIsAscending("Ignition IAT corr RPM", config->ignitionIatCorrRpmBins);
}
if (config->mapEstimateTpsBins[1] != 0) { // only validate map if not all zeroes default
ensureArrayIsAscending("Map estimate TPS", config->mapEstimateTpsBins);
}
if (config->mapEstimateRpmBins[1] != 0) { // only validate map if not all zeroes default
ensureArrayIsAscending("Map estimate RPM", config->mapEstimateRpmBins);
}
ensureArrayIsAscending("MAF decoding", config->mafDecodingBins);
// Cranking tables
ensureArrayIsAscending("Cranking fuel mult", config->crankingFuelBins);
ensureArrayIsAscending("Cranking duration", config->crankingCycleBins);
ensureArrayIsAscending("Cranking TPS", engineConfiguration->crankingTpsBins);
// Idle tables
ensureArrayIsAscending("Idle target RPM", engineConfiguration->cltIdleRpmBins);
ensureArrayIsAscending("Idle warmup mult", config->cltIdleCorrBins);
if (engineConfiguration->iacCoastingBins[1] != 0) { // only validate map if not all zeroes default
ensureArrayIsAscending("Idle coasting position", engineConfiguration->iacCoastingBins);
}
if (config->idleVeBins[1] != 0) { // only validate map if not all zeroes default
ensureArrayIsAscending("Idle VE", config->idleVeBins);
}
if (config->idleAdvanceBins[1] != 0) { // only validate map if not all zeroes default
ensureArrayIsAscending("Idle timing", config->idleAdvanceBins);
}
for (size_t index = 0; index < efi::size(CONFIG(vrThreshold)); index++) {
auto& cfg = CONFIG(vrThreshold)[index];
if (cfg.pin == GPIO_UNASSIGNED) {
continue;
}
ensureArrayIsAscending("VR Bins", cfg.rpmBins);
ensureArrayIsAscending("VR values", cfg.values);
}
// Boost
ensureArrayIsAscending("Boost control TPS", config->boostTpsBins);
ensureArrayIsAscending("Boost control RPM", config->boostRpmBins);
// ETB
ensureArrayIsAscending("Pedal map pedal", config->pedalToTpsPedalBins);
ensureArrayIsAscending("Pedal map RPM", config->pedalToTpsRpmBins);
// VVT
if (CONFIG(camInputs[0]) != GPIO_UNASSIGNED) {
ensureArrayIsAscending("VVT intake load", config->vvtTable1LoadBins);
ensureArrayIsAscending("VVT intake RPM", config->vvtTable1RpmBins);
}
#if CAM_INPUTS_COUNT != 1
if (CONFIG(camInputs[1]) != GPIO_UNASSIGNED) {
ensureArrayIsAscending("VVT exhaust load", config->vvtTable2LoadBins);
ensureArrayIsAscending("VVT exhaust RPM", config->vvtTable2RpmBins);
}
#endif
return true;
}
#if !EFI_UNIT_TEST
void initEngineContoller(DECLARE_ENGINE_PARAMETER_SUFFIX) {
addConsoleAction("analoginfo", printAnalogInfo);
#if EFI_PROD_CODE && EFI_ENGINE_CONTROL
initBenchTest();
#endif /* EFI_PROD_CODE && EFI_ENGINE_CONTROL */
commonInitEngineController();
#if EFI_LOGIC_ANALYZER
if (engineConfiguration->isWaveAnalyzerEnabled) {
initWaveAnalyzer();
}
#endif /* EFI_LOGIC_ANALYZER */
#if EFI_CJ125
/**
* this uses SimplePwm which depends on scheduler, has to be initialized after scheduler
*/
initCJ125(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif /* EFI_CJ125 */
if (hasFirmwareError()) {
return;
}
engineStateBlinkingTask.Start();
initVrPwm(PASS_ENGINE_PARAMETER_SIGNATURE);
#if EFI_PWM_TESTER
initPwmTester();
#endif /* EFI_PWM_TESTER */
#if EFI_ALTERNATOR_CONTROL
initAlternatorCtrl(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif /* EFI_ALTERNATOR_CONTROL */
#if EFI_AUX_PID
initAuxPid();
#endif /* EFI_AUX_PID */
#if EFI_MALFUNCTION_INDICATOR
initMalfunctionIndicator();
#endif /* EFI_MALFUNCTION_INDICATOR */
initEgoAveraging(PASS_ENGINE_PARAMETER_SIGNATURE);
#if EFI_PROD_CODE
addConsoleAction("reset_accel", resetAccel);
#endif /* EFI_PROD_CODE */
#if EFI_HD44780_LCD
initLcdController();
#endif /* EFI_HD44780_LCD */
}
/**
* these two variables are here only to let us know how much RAM is available, also these
* help to notice when RAM usage goes up - if a code change adds to RAM usage these variables would fail
* linking process which is the way to raise the alarm
*
* You get "cannot move location counter backwards" linker error when you run out of RAM. When you run out of RAM you shall reduce these
* UNUSED_SIZE constants.
*/
#ifndef RAM_UNUSED_SIZE
#define RAM_UNUSED_SIZE 3500
#endif
#ifndef CCM_UNUSED_SIZE
#define CCM_UNUSED_SIZE 600
#endif
static char UNUSED_RAM_SIZE[RAM_UNUSED_SIZE];
static char UNUSED_CCM_SIZE[CCM_UNUSED_SIZE] CCM_OPTIONAL;
/**
* See also VCS_VERSION
*/
int getRusEfiVersion(void) {
if (UNUSED_RAM_SIZE[0] != 0)
return 123; // this is here to make the compiler happy about the unused array
if (UNUSED_CCM_SIZE[0] * 0 != 0)
return 3211; // this is here to make the compiler happy about the unused array
#if defined(EFI_BOOTLOADER_INCLUDE_CODE)
// make bootloader code happy too
if (initBootloader() != 0)
return 123;
#endif /* EFI_BOOTLOADER_INCLUDE_CODE */
return VCS_DATE;
}
#endif /* EFI_UNIT_TEST */