rusefi/firmware/controllers/actuators/vvt.cpp

192 lines
4.9 KiB
C++

/*
* @file vvt.cpp
*
* @date Jun 26, 2016
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "pch.h"
#include "local_version_holder.h"
#include "vvt.h"
#define NO_PIN_PERIOD 500
#if defined(HAS_OS_ACCESS)
#error "Unexpected OS ACCESS HERE"
#endif /* HAS_OS_ACCESS */
using vvt_map_t = Map3D<SCRIPT_TABLE_8, SCRIPT_TABLE_8, int8_t, uint16_t, uint16_t>;
static vvt_map_t vvtTable1;
static vvt_map_t vvtTable2;
void VvtController::init(int index, int bankIndex, int camIndex, const ValueProvider3D* targetMap) {
this->index = index;
m_bank = bankIndex;
m_cam = camIndex;
// Use the same settings for the Nth cam in every bank (ie, all exhaust cams use the same PID)
m_pid.initPidClass(&engineConfiguration->auxPid[camIndex]);
m_targetMap = targetMap;
}
int VvtController::getPeriodMs() {
return isBrainPinValid(engineConfiguration->vvtPins[index]) ?
GET_PERIOD_LIMITED(&engineConfiguration->auxPid[index]) : NO_PIN_PERIOD;
}
void VvtController::PeriodicTask() {
if (engine->auxParametersVersion.isOld(engine->getGlobalConfigurationVersion())) {
m_pid.reset();
}
update();
}
expected<angle_t> VvtController::observePlant() const {
#if EFI_SHAFT_POSITION_INPUT
return engine->triggerCentral.getVVTPosition(m_bank, m_cam);
#else
return unexpected;
#endif // EFI_SHAFT_POSITION_INPUT
}
expected<angle_t> VvtController::getSetpoint() {
int rpm = Sensor::getOrZero(SensorType::Rpm);
float load = getFuelingLoad();
float target = m_targetMap->getValue(rpm, load);
#if EFI_TUNER_STUDIO
engine->outputChannels.vvtTargets[index] = target;
#endif
return target;
}
expected<percent_t> VvtController::getOpenLoop(angle_t target) {
// TODO: could we do VVT open loop?
UNUSED(target);
return 0;
}
static bool shouldInvertVvt(int camIndex) {
// grumble grumble, can't do an array of bits in c++
switch (camIndex) {
case 0: return engineConfiguration->invertVvtControlIntake;
case 1: return engineConfiguration->invertVvtControlExhaust;
}
return false;
}
expected<percent_t> VvtController::getClosedLoop(angle_t target, angle_t observation) {
// User labels say "advance" and "retard"
// "advance" means that additional solenoid duty makes indicated VVT position more positive
// "retard" means that additional solenoid duty makes indicated VVT position more negative
bool isInverted = shouldInvertVvt(m_cam);
m_pid.setErrorAmplification(isInverted ? -1.0f : 1.0f);
float retVal = m_pid.getOutput(target, observation);
if (engineConfiguration->isVerboseAuxPid1) {
efiPrintf("aux duty: %.2f/value=%.2f/p=%.2f/i=%.2f/d=%.2f int=%.2f", retVal, observation,
m_pid.getP(), m_pid.getI(), m_pid.getD(), m_pid.getIntegration());
}
#if EFI_TUNER_STUDIO
m_pid.postState(engine->outputChannels.vvtStatus[index]);
#endif /* EFI_TUNER_STUDIO */
return retVal;
}
void VvtController::setOutput(expected<percent_t> outputValue) {
float rpm = Sensor::getOrZero(SensorType::Rpm);
#if EFI_SHAFT_POSITION_INPUT
bool enabled = rpm > engineConfiguration->vvtControlMinRpm
&& engine->rpmCalculator.getSecondsSinceEngineStart(getTimeNowNt()) > engineConfiguration->vvtActivationDelayMs / MS_PER_SECOND
;
if (outputValue && enabled) {
m_pwm.setSimplePwmDutyCycle(PERCENT_TO_DUTY(outputValue.Value));
} else {
m_pwm.setSimplePwmDutyCycle(0);
// we need to avoid accumulating iTerm while engine is not running
m_pid.reset();
}
#endif // EFI_SHAFT_POSITION_INPUT
}
#if EFI_AUX_PID
static const char *vvtOutputNames[CAM_INPUTS_COUNT] = {
"Vvt Output#1",
#if CAM_INPUTS_COUNT > 1
"Vvt Output#2",
#endif
#if CAM_INPUTS_COUNT > 2
"Vvt Output#3",
#endif
#if CAM_INPUTS_COUNT > 3
"Vvt Output#4",
#endif
};
static VvtController instances[CAM_INPUTS_COUNT];
static void turnVvtPidOn(int index) {
if (!isBrainPinValid(engineConfiguration->vvtPins[index])) {
return;
}
startSimplePwmExt(&instances[index].m_pwm, vvtOutputNames[index],
&engine->executor,
engineConfiguration->vvtPins[index],
&instances[index].m_pin,
// todo: do we need two separate frequencies?
engineConfiguration->vvtOutputFrequency[0], 0.1);
}
void startVvtControlPins() {
for (int i = 0;i <CAM_INPUTS_COUNT;i++) {
turnVvtPidOn(i);
}
}
void stopVvtControlPins() {
for (int i = 0;i < CAM_INPUTS_COUNT;i++) {
instances[i].m_pin.deInit();
}
}
void initVvtActuators() {
if (engineConfiguration->vvtControlMinRpm < engineConfiguration->cranking.rpm) {
engineConfiguration->vvtControlMinRpm = engineConfiguration->cranking.rpm;
}
vvtTable1.init(config->vvtTable1, config->vvtTable1LoadBins,
config->vvtTable1RpmBins);
vvtTable2.init(config->vvtTable2, config->vvtTable2LoadBins,
config->vvtTable2RpmBins);
for (int i = 0;i < CAM_INPUTS_COUNT;i++) {
int camIndex = i % CAMS_PER_BANK;
int bankIndex = i / CAMS_PER_BANK;
auto targetMap = camIndex == 0 ? &vvtTable1 : &vvtTable2;
instances[i].init(i, bankIndex, camIndex, targetMap);
}
startVvtControlPins();
for (int i = 0;i < CAM_INPUTS_COUNT;i++) {
instances[i].start();
}
}
#endif