rusefi/simulator/simulator/rusEfiFunctionalTest.cpp

309 lines
7.5 KiB
C++

/**
* @file rusEfiFunctionalTest.cpp
*
* @date Mar 1, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "pch.h"
#include "boards.h"
#include "rusEfiFunctionalTest.h"
#include "console_io.h"
#include "eficonsole.h"
#include "trigger_central.h"
#include "datalogging.h"
#include "engine_sniffer.h"
#include "status_loop.h"
#include "trigger_emulator_algo.h"
#include "main_trigger_callback.h"
#include "sensor_chart.h"
#include "bench_test.h"
#include "tunerstudio.h"
#include "map_averaging.h"
#include "memstreams.h"
#include <chprintf.h>
#include "rusefi_lua.h"
#include "can_hw.h"
#include "flash_main.h"
#include "can_msg_tx.h"
#include "fifo_buffer.h"
#include <vector>
extern fifo_buffer<CANTxFrame, 1024> txCanBuffer;
#define DEFAULT_SIM_RPM 1200
#define DEFAULT_SNIFFER_THR 2500
#if EFI_ENGINE_SNIFFER
extern WaveChart waveChart;
#endif
int getRemainingStack(thread_t*) {
return 99999;
}
static void assertString(const char*actual, const char *expected) {
if (strcmp(actual, expected) != 0) {
printf("assertString FAILED\n");
criticalError("chprintf test: got %s while %s", actual, expected);
}
}
static void runChprintfTest() {
static MemoryStream ts;
static char testBuffer[200];
msObjectInit(&ts, (uint8_t *) testBuffer, sizeof(testBuffer), 0);
ts.eos = 0; // reset
chprintf((BaseSequentialStream*)&ts, "%.2f - %.2f", NAN, NAN);
ts.buffer[ts.eos] = 0;
assertString(testBuffer, "NaN - NaN");
// it's a very, very long and mostly forgotten story how this became our %.2f precision format
ts.eos = 0; // reset
chprintf((BaseSequentialStream*)&ts, "%.2f/%.4f/%.4f", 0.239f, 239.932, 0.1234);
ts.buffer[ts.eos] = 0;
assertString(testBuffer, "0.23/239.9320/0.1234");
{
LoggingWithStorage testLogging("test");
testLogging.appendFloat(1.23, 5);
testLogging.appendFloat(1.234, 2);
assertString(testLogging.buffer, "1.230001.23");
}
{
LoggingWithStorage testLogging("test");
testLogging.appendFloat(-1.23, 5);
assertString(testLogging.buffer, "-1.23000");
}
{
LoggingWithStorage testLogging("test");
testLogging.appendPrintf( "a%.2fb%fc", -1.2, -3.4);
assertString(testLogging.buffer, "a-1.20b-3.400000095c");
}
}
static void runCanGpioTest() {
}
// todo: reuse intFlashWrite method?
static void writeSimulatorTune() {
FILE *ptr = fopen(SIMULATOR_TUNE_BIN_FILE_NAME, "wb");
if (ptr == nullptr) {
printf("ERROR creating file: [%s]\n", SIMULATOR_TUNE_BIN_FILE_NAME);
printf("Please check folder exists and is writeable.");
return;
}
fwrite(&persistentState.persistentConfiguration, 1, sizeof(persistentState.persistentConfiguration), ptr);
fclose(ptr);
}
static void runToothLoggerTest() {
#if EFI_TOOTH_LOGGER
EnableToothLoggerIfNotEnabled();
{
// no data yet
CompositeBuffer * toothBuffer = GetToothLoggerBufferNonblocking();
if (toothBuffer != nullptr) {
criticalError("nullptr buffer expected");
}
}
getTriggerCentral()->isEngineSnifferEnabled = true;
for (int i = 0;i < 400;i++) {
efitick_t nowNt = getTimeNowNt();
LogTriggerTooth(SHAFT_SECONDARY_RISING, nowNt);
}
{
CompositeBuffer * toothBuffer = GetToothLoggerBufferNonblocking();
criticalAssertVoid(toothBuffer != nullptr, "filled buffer expected");
size_t size = toothBuffer->nextIdx * sizeof(composite_logger_s);
criticalAssertVoid(size != 0, "Positive payload size expected");
const uint8_t* ptr = reinterpret_cast<const uint8_t*>(toothBuffer->buffer);
criticalAssertVoid(ptr != nullptr, "Payload reference expected");
}
#endif // EFI_TOOTH_LOGGER
}
void rusEfiFunctionalTest(void) {
printToConsole("Running rusEFI simulator version:");
static char versionBuffer[20];
itoa10(versionBuffer, (int)getRusEfiVersion());
printToConsole(versionBuffer);
engine->setConfig();
startLoggingProcessor();
initDataStructures();
initializeConsole();
// todo: reduce code duplication with initRealHardwareEngineController
initFlash();
loadConfiguration();
commonInitEngineController();
commonEarlyInit();
#if EFI_EMULATE_POSITION_SENSORS
enableTriggerStimulator(false);
#endif
writeSimulatorTune();
/**
* !!!! TESTS !
*/
runChprintfTest();
runToothLoggerTest();
runCanGpioTest();
/**
* end of TESTS !
*/
#if EFI_EMULATE_POSITION_SENSORS
setTriggerEmulatorRPM(DEFAULT_SIM_RPM);
#endif
engineConfiguration->engineSnifferRpmThreshold = DEFAULT_SNIFFER_THR;
startSerialChannels();
engineConfiguration->enableVerboseCanTx = true;
initPeriodicEvents();
rememberCurrentConfiguration();
extern bool main_loop_started;
main_loop_started = true;
}
void printPendingMessages(void) {
updateDevConsoleState();
#if EFI_ENGINE_SNIFFER
waveChart.publishIfFull();
#endif
}
int isSerialOverTcpReady;
bool isCommandLineConsoleReady(void) {
return isSerialOverTcpReady;
}
void applyNewConfiguration(void) {
}
void onFatalError(const char *msg, const char * file, int line) {
printf("onFatalError %s %s%d", msg, file, line);
exit(-1);
}
void logMsg(const char *format, ...) {
// FILE * fp;
// fp = fopen ("simulator.log", "a");
//
// va_list(args);
// va_start(args, format);
// vfprintf(fp, format, args);
//
// fclose(fp);
}
#if HAL_USE_CAN
static bool didInitCan = false;
CANDriver* detectCanDevice(brain_pin_e pinRx, brain_pin_e pinTx) {
if (didInitCan) {
return nullptr;
}
didInitCan = true;
return &CAND1;
}
#endif // HAL_USE_CAN
static uint8_t wrapOutBuffer[BLOCKING_FACTOR + 2];
static uint8_t readInt8FromCan(char * & data, int & incomingPacketSize) {
incomingPacketSize--;
return (uint8_t)(*data++);
}
static int32_t readInt32FromCan(char * & data, int & incomingPacketSize) {
int32_t value = 0;
value |= ((*data++) & 0xff) << 24;
value |= ((*data++) & 0xff) << 16;
value |= ((*data++) & 0xff) << 8;
value |= (*data++) & 0xff;
incomingPacketSize -= 4;
return value;
}
void handleWrapCan(TsChannelBase* tsChannel, char *data, int incomingPacketSize) {
std::vector<int> responseEids;
// process incoming CAN packets (at least 2 bytes are expected to store the number of EIDs and packets)
if (incomingPacketSize >= 2) {
responseEids.resize(readInt8FromCan(data, incomingPacketSize));
for (int& eid : responseEids) {
eid = readInt32FromCan(data, incomingPacketSize);
}
int numPackets = readInt8FromCan(data, incomingPacketSize);
// if we received a packet, we treat it as a query, and then
// we want to see some packets as response to the query,
// so we need to clear the CAN buffer because it may be full already
if (numPackets > 0) {
txCanBuffer.clear();
}
for (int i = 0; i < numPackets && incomingPacketSize >= 16; i++) {
CANRxFrame rxFrame;
rxFrame.FMI = data[0];
rxFrame.TIME = (data[1] << 8) | data[2];
rxFrame.DLC = data[3] & 0xf;
rxFrame.RTR = (data[3] >> 4) & 1;
rxFrame.IDE = (data[3] >> 5) & 1;
rxFrame.EID = (data[7] << 24) | (data[6] << 16) | (data[5] << 8) | (data[4]);
memcpy(rxFrame.data8, data + 8, sizeof(rxFrame.data8));
processCanRxMessage(0, rxFrame, getTimeNowNt());
data += sizeof(rxFrame);
incomingPacketSize -= sizeof(rxFrame);
}
}
uint16_t numPackets = 0;
int outputSize = 2;
while (txCanBuffer.getCount() > 0 && (outputSize + sizeof(CANTxFrame)) <= BLOCKING_FACTOR) {
CANTxFrame f = txCanBuffer.get();
// filter out CAN packets
for (int eid : responseEids) {
if (f.EID == eid) {
void *frame = (void *)&f;
memcpy((void*)(wrapOutBuffer + outputSize), frame, sizeof(CANTxFrame));
outputSize += sizeof(CANTxFrame);
numPackets++;
break;
}
}
}
memcpy(wrapOutBuffer, &numPackets, 2);
tsChannel->sendResponse(TS_CRC, wrapOutBuffer, outputSize, true);
}