# Lua Scripting ## Introduction rusEFI strives to offer users as much flexibility as possible, to provide a completely user-defined control strategy for both primary and auxiliary actuators. ## Basics rusEFI provides a number of hooks to interface with the firmware and to manipulate its state and read/write the current configuration. - Hooks for CAN bus communications; see [CAN bus](#can-bus). - Inputs from sensors can be read directly; see [Input](#input). - ECU general purpose outputs see [Output](#output). - Aspects of the engine can be controlled directly; see [Engine Control](#engine-control). - ECU Configurations can be accessed via the [`getCalibration()`](#getcalibrationname) hook, and manipulated via the [`setCalibration()`](#setcalibrationname-value-needevent) hook. - Configuration names are dynamically updated to match the current firmware; see here for the current list: [https://github.com/rusefi/rusefi/blob/master/firmware/controllers/lua/generated/value_lookup_generated.md](https://github.com/rusefi/rusefi/blob/master/firmware/controllers/lua/generated/value_lookup_generated.md). - ECU internal state, i.e. logic outputs from the firmware can be read via the universal [`getOutput()`](#getoutputname) hook, and some can be altered via correspondingly named hooks i.e. `setOutputName()` where `OutputName` is name of the output, e.g. [`setClutchUpState()`](#setclutchupstatevalue). See also: [Output](#output). - Output names are dynamically updated to match the current firmware; see here for the current list: [https://github.com/rusefi/rusefi/blob/master/firmware/controllers/lua/generated/output_lookup_generated.cpp](https://github.com/rusefi/rusefi/blob/master/firmware/controllers/lua/generated/output_lookup_generated.cpp). - Hooks to read values from SENT sensors; see [SENT protocol](#sent-protocol). - A set of useful routines is provided; see [Utility](#utility). Some example uses are provided in [Examples](#examples). ## Conventions - The Lua interpreter will trigger an error if there is a mistake in the program, check the rusEFI console to see errors and script output. - Unless otherwise mentioned, all `index` parameters start with the first element at index at 0. ## Writing Your Script The entire Lua script is read at startup, then a script function called `onTick` is called periodically by rusEFI. Here is a simple script you can run to illustrate this behavior: ```LUA print('Hello Lua startup!') function onTick() print('Hello onTick()') end ``` ### Controlling the Tick Rate The function `setTickRate(hz)` can be used to configure how often rusEFI calls the `onTick` function. If your script does a lot of work in the `onTick()` function it may run slower than the desired rate. Since the Lua virtual machine runs at low priority compared to other functions of the ECU, it is impossible to swamp the ECU with too much Lua work, so set the tick rate to whatever is necessary. `onCanRx` runs at the same rate as `onTick` ```LUA n = 0 setTickRate(5) --set tick rate to 5hz function onTick() print('Hello Lua: ' ..n) n = n + 1 end ``` ### Editing Scripts To ease editing a LUA script an editor that supports Language Server Protocol (LSP) is highly recommended. For an option see [LuaLS/lua-language-server](https://github.com/LuaLS/lua-language-server#install) ## Hooks/Function Reference ### User Settings #### `getOutput(name)` For example ``getOutput("clutchUpState")`` ``getOutput("brakePedalState")`` See [https://github.com/rusefi/rusefi/blob/master/firmware/controllers/lua/generated/output_lookup_generated.cpp](https://github.com/rusefi/rusefi/blob/master/firmware/controllers/lua/generated/output_lookup_generated.cpp) for output names. #### `setClutchUpState(value)` #### `setBrakePedalState(value)` Use setBrakePedalState to tell rusEFI about CAN-based brake pedal. #### `setAcRequestState(value)` Use setAcRequestState to tell rusEFI about CAN-based A/C request. #### `setEtbDisabled(value)` #### `setIgnDisabled(value)` 'setIgnDisabled' function for all kinds of cranking safety systems #### `setAcDisabled(value)` Disable/suppress A/C functionality regardless of what and how enables it, an override kind of deal. #### `getTimeSinceAcToggleMs()` #### `getCalibration(name)` Gets current calibration value for specified scalar setting ``name``. For example ``getCalibration("cranking.rpm")`` For complete list of possible calibration names (valid parameter values) and descriptions see [https://github.com/rusefi/rusefi/blob/master/firmware/controllers/lua/generated/value_lookup_generated.md](https://github.com/rusefi/rusefi/blob/master/firmware/controllers/lua/generated/value_lookup_generated.md). #### `setCalibration(name, value, needEvent)` Sets specified calibration setting to specified value. Fires calibration change event depending on needEvent parameter. For example `setCalibration("cranking.rpm", 900, false)` #### `burnconfig` Schedule calibration write to flash once the engine is stopped. #### `findSetting(name, defaultValue)` Find User Setting with specified name and returns numeric value. Useful when script developer and script consumer are different people, also useful while Lua script editing is available only in TS. - Parameters - `name`: Variable name, as in corresponding 'name' field in configuration - `defaultValue`: value to use if specified setting not located by name ### Engine Control #### `stopEngine()` #### `setSparkSkipRatio(ratio)` setSparkSkipRatio(0) to skip 0% of the ignition events, i.e. no skipping setSparkSkipRatio(0.5) would skip half of ignition events. We never skip two consecutive ignitions. #torque #### `setSparkHardSkipRatio(ratio)` setSparkHardSkipRatio(0) to skip 0% of the ignition events, i.e. no skipping setSparkHardSkipRatio(0.75) would skip 75% of ignition events. #torque #### `setIdleAdd(percent)` Percent to add to idle (incl. open loop). #### `setFuelAdd(amount)` Sorry not finished :( Amount of fuel mass to add to injection, scaled by fuel multiplier ([`setFuelMult()`](#setfuelmultcoeff)); initially 0. #### `setFuelMult(coeff)` Sorry not finished :( Amount to scale added fuel mass by; initially 1.0; #### `setBoostTargetAdd(amount)` Additive for closed loop target boost pressure. #### `setBoostTargetMult(coeff)` Multiplier for closed loop target boost pressure. #### `setBoostDutyAdd(amount)` Additive for open loop target boost pressure. #### `setTimingAdd(angle)` Use negative values to retard timing. #### `setTimingMult(coeff)` todo add details but ready to test! #torque #### `setEtbAdd(percent)` Amount of ETB to add, as a percent of the wide-open value: e.g. `10` for +10%. The value is a static amount to add to the determined value, e.g. TPS of 5% w/ `10` results in 15% ETB. #torque ### Timer ``yourTimer = Timer.new();`` to have a new variable of Timer type #### reset ``yourTimer:reset();`` to reset timer #### getElapsedSeconds ``yourTimer:getElapsedSeconds();`` to get number of seconds since timer was reset ### CAN bus #### `enableCanTx(isEnabled)` enabled by default use enableCanTx(false) to suppress CAN TX #### `txCan(bus, ID, isExt, payload)` - Parameters - bus: hardware CAN bus index, only '1' on most rusEFI boards, '1' or '2' on Proteus - isExt: 0 for 11 bit mode #### `canRxAdd(id)` #### `canRxAdd(bus, id)` #### `canRxAdd(id, callback)` #### `canRxAdd(bus, id, callback)` #### `canRxAddMask(id, mask)` #### `canRxAddMask(bus, id, mask)` #### `canRxAddMask(id, mask, callback)` #### `canRxAddMask(bus, id, mask, callback)` - Parameters - id: CAN ID to listen to. - mask: Apply a mask to the received ID before comparing to the `id` parameter. For example, passing an id of `3` and mask of 0xFF will match any frame whose last 8 bits match `3`. If omitted, no masking is applied before comparison, so only a single CAN ID will be received. Use the mask to subscribe to multiple messages with similar IDs with a single call to `canRxAddMask`. - bus: Hardware CAN bus index, only '1' on most rusEFI boards, '1' or '2' on Proteus. If this parameter is omitted, messages will be received from any bus. - callback: A the callback function to call when the specified ID is received. If this parameter is not passed, the default function `onCanRx` will be used. Your CAN RX callback should look like this: ```lua function onCanRx(bus, id, dlc, data) -- Do things with CAN data! end ``` ### SENT protocol #### `getSentValue(index)` TODO: document parameters, response #### `getSentValues(index)` TODO: document parameters, response ### PID deltaTime is measured automatically between current and previous "pid:get" invocation. ```language=lua -- p, i, d, min, max pid = Pid.new(2, 0, 0, -100, 100) pid:setOffset(0.3) pid:get(target, input) pid:reset() -- p, i, d, min, max industrialPid = IndustrialPid.new(2, 0, 0, -100, 100) industrialPid:setOffset(0.3) industrialPid:setDerivativeFilterLoss(0.3) industrialPid:setAntiwindupFreq(0.3) industrialPid:get(target, input) industrialPid:reset() ``` ### Utility #### `print(msg)` Print a line of text to the ECU's log. - Parameters - `msg`: The message to print. Pass a string or number and it will be printed to the log. - Returns - none #### `vin(index)` Return VIN setting character at specified index - Parameters - index: zero-based index #### Usage example Program: ```lua n = 5.5 print('Hello Lua, number is: ' ..n) ``` Output: `Hello Lua, number is 5.5` #### `setTickRate(hz)` Sets the rate at which rusEFI calls your `onTick` and `onCanRx` functions, in hz. On reset default is 10hz. - Parameters - `hz`: Desired tick rate, in hz. Values passed will be clamped to a minimum of 1hz, and maximum of 100hz. - Returns - none #### `mcu_standby()` Stops MCU. #### `interpolate(x1, y1, x2, y2, x)` Interpolates `x` placing it on the line defined by (x1, y1) and (x2, y2) #### `findTableIndex(name)` Find table index by specified human-readable name. #### `table3d(tableIdx, x, y)` Looks up a value from the specified Script Table. - Parameters - `tableIdx`: Index of the table to use. Currently 4 tables are supported, so indices 1, 2, 3, and 4 are valid. - `x`: X-axis value to look up in the table (this is often RPM) - `y`: Y-axis value to look up in the table (this is often load) - Returns - A number representing the value looked up from the table. #### `findCurveIndex(name)` Finds curve index by specific curve name #### `curve(curveIdx, x)` Looks up a value from the specified Script Curve. - Parameters - `tableIdx`: Index of the script to use, starting from 1. - `x`: Axis value to look up in the table #### `setDebug(index, value)` Sets a debug channel to the specified value. Note: this only works when the ECU debug mode is set to `Lua`. - Parameters - `index`: the index of the debug channel to set, 1 thru 7 inclusive. - `value`: the value to set the channel to - Returns - none #### `mcu_standby` Puts MCU into standby low current consumption mode. ### Input #### `getSensor(name)` Reads the specified sensor. For instance ``getSensor("AcceleratorPedal")`` - Parameters - `name`: Name of the sensor to read. [A list of sensor names can be found here.](https://github.com/rusefi/rusefi/blob/master/firmware/controllers/sensors/sensor_type.h) - Returns - A reading from the sensor, or `nil` if the sensor has a problem or isn't configured. #### `getSensorByIndex(index)` Reads the specified sensor. - Parameters - `index`: Index of the sensor to read. [A list of sensor indices can be found here.](https://github.com/rusefi/rusefi/blob/master/firmware/controllers/sensors/sensor_type.h) - Returns - A reading from the sensor, or `nil` if the sensor has a problem or isn't configured. #### `getSensorRaw(index)` Reads the raw value from the specified sensor. For most sensors, this means the analog voltage on the relevant input pin. - Parameters - `index`: Index of the sensor to read. [A list of sensor indices can be found here.](https://github.com/rusefi/rusefi/blob/master/firmware/controllers/sensors/sensor_type.h) - Returns - The raw value that yielded the sensor reading, or 0 if the sensor doesn't support raw readings, isn't configured, or has failed. #### `getAuxAnalog(index)` More or less like getSensorRaw but always voltage of aux analog input. - Parameters - `index`: Index of aux analog sensor to read. From 0 to 3 - Returns - Voltage of sensor reading, or nil if sensor isn't configured. #### `hasSensor(index)` Checks whether a particular sensor is configured (whether it is currently valid or not). - Parameters - `index`: Index of the sensor to check. [A list of sensor indices can be found here.](https://github.com/rusefi/rusefi/blob/master/firmware/controllers/sensors/sensor_type.h) - Returns - A boolean value, `true` if the sensor is configured, and `false` if not. #### `getDigital(index)` Reads a digital input from the specified channel. - Parameters - `index`: The index of the digital channel to read. See table below for values. - Returns - A boolean value representing the state of the input pin. `true` = high voltage (above ~2 volts), `false` = low voltage (below ~3 volts) Valid `index` parameter values: | Index | Channel Name | | --- | ---:| | 0 | Clutch down switch | | 1 | Clutch up switch | | 2 | Brake switch | | 3 | AC switch | #### `getAuxDigital(index)` Reads a digital input from the configurable list. - Parameters - `index`: The index of the digital pin to read. Valid values are 0 through 7, one for each of the 8 user-defined digital pins. See "Lua Digital Aux Inputs" table under "Advanced" settings tab. - Returns - A boolean value representing the state of the input pin. `true` = high voltage (above ~2 volts), `false` = low voltage (below ~3 volts) #### `readPin(pinName)` Reads physical value of arbitrary MCU pin - Parameters - `pinName`: string name of MCU pin, for examples "PD15" ### Output Not to be confused with internal logic 'Live View'/Log data points/gauges 'outputs'. Not to be confused with GPPWM feature. #### `selfStimulateRPM(rpm)` Positive value would start clicking injectors at specified RPM, zero value would stop self-stimulation. #### `startPwm(index, frequency, duty)` Initializes PWM on the specified index, starting at the specified frequency and duty cycle. The index selects which config field pin to use, see "Lua PWM Outputs" page in TunerStudio. - Parameters - `index`: The index of the PWM channel to start. Valid values are 0 through 7, one for each of the 8 channels. - `frequency`: Initial frequency of the output, in hertz (cycles per second). Valid values are between 1 and 1000hz. - `duty`: Initial duty cycle of the output. `0.0` = fully off, and `1.0` = fully on. `0.25` = on 25% of the time, off 75% of the time. - Returns - none #### `setPwmDuty(index, duty)` Set the duty cycle of the specified PWM channel. - Parameters - `index`: The index of the PWM channel to set. Valid values are 0 through 7, one for each of the 8 channels. - `duty`: Desired duty cycle of the output. `0.0` = fully off, and `1.0` = fully on. `0.25` = on 25% of the time, off 75% of the time. - Returns - none #### `setPwmFreq(index, frequency)` - Parameters - `index`: The index of the PWM channel to set. - `frequency`: Initial frequency of the output, in hertz (cycles per second). Valid values are between 1 and 1000hz. - Returns - none #### `setLuaGauge(index, value)` In an ideal world one would be using Sensor.new("LuaGauge1") but looks like that's not the way at the moment :( - Parameters - `index`: The index of the Lua gauge to set. Valid indices are '1' and '2'. - `value`: Desired gauge value. - Returns - none #### `setDacVoltage(index, value)` Not enabled on most boards since most boards were not developer with DAC in mind! See https://github.com/rusefi/rusefi/blob/master/firmware/controllers/lua/examples/dac.txt for more info. ## Misc console commands ``luamemory`` ``luareset`` ## Examples Read VSS from CANbus for gear detection see [honda-bcm.txt](https://github.com/rusefi/rusefi/blob/master/firmware/controllers/lua/examples/honda-bcm.txt) ### timer ```lua t = Timer.new(); timingAdd = 0; function onTick() auxV = getAuxAnalog(0) tps = getSensor("TPS") -- todo: check for NIL value which is a sign of analog input not assigned in TS if auxV > 2 then t:reset(); end val = t:getElapsedSeconds(); if t:getElapsedSeconds() < 3 then timingAdd = 10; else timingAdd = 0; end setTimingAdd(timingAdd) print('Hello analog ' .. auxV .. " " .. val) end ``` ### PWM ```lua -- index 0, 100Hz, zero duty initially startPwm(0, 100, 0) function onTick() enable_pump = getSensor("RPM") > 700 and getSensor("BatteryVoltage") > 13 and getSensor("VehicleSpeed") <60 -- lua does not have ternary ? : operator, this here means "1 if enable_pump and 0 otherwise" setPwmDuty(0, enable_pump and 1 or 0) end ``` ### CAN transmit ```lua function onTick() tps = getSensor("CLT") print('TPS ' .. tps) voltage0 = getSensor("aux0") txPayload = {} // first byte: integer part, would be converted to int txPayload[1] = voltage0 // second byte: fractional part, would be converted to int, overflow would be ignored txPayload[2] = voltage0 * 256; txCan(1, 0x600, 1, txPayload) end ``` ### set sensor value [A list of sensor names can be found here.](https://github.com/rusefi/rusefi/blob/master/firmware/controllers/sensors/sensor_type.h) ```lua vssSensor = Sensor.new("VehicleSpeed") -- any value would be considered valid for three seconds vssSensor:setTimeout(3000) function onTick() injectedVssValue = 123.4; vssSensor : set(injectedVssValue) -- here we would read the value we have just injected into the sensor. valFromSensor = getSensor("VehicleSpeed") -- we expect output to be "VSS 123.4" print ("VSS " .. valFromSensor) end ``` ### CAN receive ```lua canRxAdd(0x500) canRxAdd(0x570) function onCanRx(bus, id, dlc, data) print('got CAN id=' ..id ..' dlc=' ..dlc) if id == 0x500 then -- Check can state of BCM canState = data[1] end if id == 0x570 then mcu_standby() end end ``` ```lua function decimalToHex(num) if num == 0 then return '0' end local hexstr = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "A", "B", "C", "D", "E", "F" } local result = "" while num > 0 do local n = num % 16 result = hexstr[n + 1] ..result num = math.floor(num / 16) end return result end function print_array(arr) local str = "" local index = 1 while arr[index] ~= nil do str = str.." "..decimalToHex(arr[index]) index = index + 1 end return str end ``` ### table ```lua tableIndex = findTableIndex("duty") TurbochargerSpeed = getSensor("TurbochargerSpeed") tps = getSensor("Tps1") dutyCycle = table3d(tableIndex, TurbochargerSpeed, tps) sparkCutCurve = findCurveIndex("sparkcut") sparkCutByTorque = curve(sparkCutCurve, torque) ``` ## See also ### BMW iDrive See More examples at See also a library for CAN data manipulation See also test driven development approach [Lua Ternary Operator](http://lua-users.org/wiki/TernaryOperator)