Faster responding boost PID

This commit is contained in:
Josh Stewart 2017-02-15 16:51:01 +11:00
parent a7d0a95611
commit f6818adecc
3 changed files with 80 additions and 65 deletions

View File

@ -17,10 +17,15 @@ volatile unsigned int boost_pwm_cur_value;
long boost_pwm_target_value;
long boost_cl_target_boost;
byte boostCounter;
//Boost control uses a scaling factor of 100 on the MAP reading and MAP target in order to have a reasonable response time
//These are the values that are passed to the PID controller
long MAPx100;
long boostTargetx100;
volatile bool vvt_pwm_state;
unsigned int vvt_pwm_max_count; //Used for variable PWM frequency
volatile unsigned int vvt_pwm_cur_value;
long vvt_pwm_target_value;
#endif

View File

@ -3,7 +3,8 @@ Speeduino - Simple engine management for the Arduino Mega 2560 platform
Copyright (C) Josh Stewart
A full copy of the license may be found in the projects root directory
*/
integerPID boostPID(&currentStatus.MAP, &boost_pwm_target_value, &boost_cl_target_boost, configPage3.boostKP, configPage3.boostKI, configPage3.boostKD, DIRECT); //This is the PID object if that algorithm is used. Needs to be global as it maintains state outside of each function call
//integerPID boostPID(&currentStatus.MAP, &boost_pwm_target_value, &boost_cl_target_boost, configPage3.boostKP, configPage3.boostKI, configPage3.boostKD, DIRECT); //This is the PID object if that algorithm is used. Needs to be global as it maintains state outside of each function call
integerPID boostPID(&MAPx100, &boost_pwm_target_value, &boostTargetx100, configPage3.boostKP, configPage3.boostKI, configPage3.boostKD, DIRECT); //This is the PID object if that algorithm is used. Needs to be global as it maintains state outside of each function call
/*
Fan control
@ -48,6 +49,7 @@ void initialiseAuxPWM()
TIMSK1 |= (1 << OCIE1B); //Turn on the B compare unit (ie turn on the interrupt)
boostPID.SetOutputLimits(0, boost_pwm_max_count);
boostPID.SetTunings(configPage3.boostKP, configPage3.boostKI, configPage3.boostKD);
boostPID.SetMode(AUTOMATIC); //Turn PID on
boostCounter = 0;
@ -58,10 +60,17 @@ void boostControl()
if(configPage3.boostEnabled)
{
if(currentStatus.MAP < 100) { TIMSK1 &= ~(1 << OCIE1A); digitalWrite(pinBoost, LOW); return; } //Set duty to 0 and turn off timer compare
MAPx100 = currentStatus.MAP * 100;
boost_cl_target_boost = get3DTableValue(&boostTable, currentStatus.TPS, currentStatus.RPM) * 2; //Boost target table is in kpa and divided by 2
boostTargetx100 = boost_cl_target_boost * 100;
currentStatus.boostTarget = boost_cl_target_boost >> 1; //Boost target is sent as a byte value to TS and so is divided by 2
if(currentStatus.boostTarget == 0) { TIMSK1 &= ~(1 << OCIE1A); digitalWrite(pinBoost, LOW); return; } //Set duty to 0 and turn off timer compare if the target is 0
if( (boostCounter & 31) == 1) { boostPID.SetTunings(configPage3.boostKP, configPage3.boostKI, configPage3.boostKD); } //This only needs to be run very infrequently, once every 32 calls to boostControl(). This is approx. once per second
boostPID.Compute();
TIMSK1 |= (1 << OCIE1A); //Turn on the compare unit (ie turn on the interrupt)
}
else { TIMSK1 &= ~(1 << OCIE1A); } // Disable timer channel

View File

@ -14,19 +14,19 @@
#include "PID_v1.h"
/*Constructor (...)*********************************************************
* The parameters specified here are those for for which we can't set up
* The parameters specified here are those for for which we can't set up
* reliable defaults, so we need to have the user set them.
***************************************************************************/
PID::PID(long* Input, long* Output, long* Setpoint,
byte Kp, byte Ki, byte Kd, byte ControllerDirection)
{
myOutput = Output;
myInput = Input;
mySetpoint = Setpoint;
inAuto = false;
PID::SetOutputLimits(0, 255); //default output limit corresponds to
PID::SetOutputLimits(0, 255); //default output limit corresponds to
//the arduino pwm limits
//SampleTime = 100; //default Controller Sample Time is 0.1 seconds
@ -34,16 +34,16 @@ PID::PID(long* Input, long* Output, long* Setpoint,
PID::SetControllerDirection(ControllerDirection);
PID::SetTunings(Kp, Ki, Kd);
//lastTime = millis()-SampleTime;
//lastTime = millis()-SampleTime;
}
/* Compute() **********************************************************************
* This, as they say, is where the magic happens. this function should be called
* every time "void loop()" executes. the function will decide for itself whether a new
* pid Output needs to be computed. returns true when the output is computed,
* false when nothing has been done.
**********************************************************************************/
**********************************************************************************/
bool PID::Compute()
{
if(!inAuto) return false;
@ -58,14 +58,14 @@ bool PID::Compute()
if(ITerm > outMax) ITerm= outMax;
else if(ITerm < outMin) ITerm= outMin;
long dInput = (input - lastInput);
/*Compute PID Output*/
long output = (kp * error)/100 + ITerm- (kd * dInput)/100;
if(output > outMax) output = outMax;
else if(output < outMin) output = outMin;
*myOutput = output;
/*Remember some variables for next time*/
lastInput = input;
//lastTime = now;
@ -76,18 +76,18 @@ bool PID::Compute()
/* SetTunings(...)*************************************************************
* This function allows the controller's dynamic performance to be adjusted.
* This function allows the controller's dynamic performance to be adjusted.
* it's called automatically from the constructor, but tunings can also
* be adjusted on the fly during normal operation
******************************************************************************/
******************************************************************************/
void PID::SetTunings(byte Kp, byte Ki, byte Kd)
{
if (Kp<0 || Ki<0 || Kd<0) return;
dispKp = Kp; dispKi = Ki; dispKd = Kd;
/*
double SampleTimeInSec = ((double)SampleTime)/1000;
double SampleTimeInSec = ((double)SampleTime)/1000;
kp = Kp;
ki = Ki * SampleTimeInSec;
kd = Kd / SampleTimeInSec;
@ -96,7 +96,7 @@ void PID::SetTunings(byte Kp, byte Ki, byte Kd)
kp = Kp;
ki = (Ki * 100) / InverseSampleTimeInSec;
kd = (Kd * InverseSampleTimeInSec) / 100;
if(controllerDirection ==REVERSE)
{
kp = (0 - kp);
@ -104,9 +104,9 @@ void PID::SetTunings(byte Kp, byte Ki, byte Kd)
kd = (0 - kd);
}
}
/* SetSampleTime(...) *********************************************************
* sets the period, in Milliseconds, at which the calculation is performed
* sets the period, in Milliseconds, at which the calculation is performed
******************************************************************************/
void PID::SetSampleTime(int NewSampleTime)
{
@ -119,7 +119,7 @@ void PID::SetSampleTime(int NewSampleTime)
SampleTime = (unsigned long)NewSampleTime;
}
}
/* SetOutputLimits(...)****************************************************
* This function will be used far more often than SetInputLimits. while
* the input to the controller will generally be in the 0-1023 range (which is
@ -133,12 +133,12 @@ void PID::SetOutputLimits(long Min, long Max)
if(Min >= Max) return;
outMin = Min;
outMax = Max;
if(inAuto)
{
if(*myOutput > outMax) *myOutput = outMax;
else if(*myOutput < outMin) *myOutput = outMin;
if(ITerm > outMax) ITerm= outMax;
else if(ITerm < outMin) ITerm= outMin;
}
@ -148,7 +148,7 @@ void PID::SetOutputLimits(long Min, long Max)
* Allows the controller Mode to be set to manual (0) or Automatic (non-zero)
* when the transition from manual to auto occurs, the controller is
* automatically initialized
******************************************************************************/
******************************************************************************/
void PID::SetMode(int Mode)
{
bool newAuto = (Mode == AUTOMATIC);
@ -158,11 +158,11 @@ void PID::SetMode(int Mode)
}
inAuto = newAuto;
}
/* Initialize()****************************************************************
* does all the things that need to happen to ensure a bumpless transfer
* from manual to automatic mode.
******************************************************************************/
******************************************************************************/
void PID::Initialize()
{
ITerm = *myOutput;
@ -172,7 +172,7 @@ void PID::Initialize()
}
/* SetControllerDirection(...)*************************************************
* The PID will either be connected to a DIRECT acting process (+Output leads
* The PID will either be connected to a DIRECT acting process (+Output leads
* to +Input) or a REVERSE acting process(+Output leads to -Input.) we need to
* know which one, because otherwise we may increase the output when we should
* be decreasing. This is called from the constructor.
@ -184,13 +184,13 @@ void PID::SetControllerDirection(byte Direction)
kp = (0 - kp);
ki = (0 - ki);
kd = (0 - kd);
}
}
controllerDirection = Direction;
}
/* Status Funcions*************************************************************
* Just because you set the Kp=-1 doesn't mean it actually happened. these
* functions query the internal state of the PID. they're here for display
* functions query the internal state of the PID. they're here for display
* purposes. this are the functions the PID Front-end uses for example
******************************************************************************/
byte PID::GetKp(){ return dispKp; }
@ -200,19 +200,19 @@ int PID::GetMode(){ return inAuto ? AUTOMATIC : MANUAL;}
int PID::GetDirection(){ return controllerDirection;}
/*Constructor (...)*********************************************************
* The parameters specified here are those for for which we can't set up
* The parameters specified here are those for for which we can't set up
* reliable defaults, so we need to have the user set them.
***************************************************************************/
integerPID::integerPID(long* Input, long* Output, long* Setpoint,
byte Kp, byte Ki, byte Kd, byte ControllerDirection)
{
myOutput = Output;
myInput = (long*)Input;
mySetpoint = Setpoint;
inAuto = false;
integerPID::SetOutputLimits(0, 255); //default output limit corresponds to
integerPID::SetOutputLimits(0, 255); //default output limit corresponds to
//the arduino pwm limits
SampleTime = 100; //default Controller Sample Time is 0.1 seconds
@ -220,61 +220,62 @@ integerPID::integerPID(long* Input, long* Output, long* Setpoint,
integerPID::SetControllerDirection(ControllerDirection);
integerPID::SetTunings(Kp, Ki, Kd);
lastTime = millis()-SampleTime;
lastTime = millis()-SampleTime;
}
/* Compute() **********************************************************************
* This, as they say, is where the magic happens. this function should be called
* every time "void loop()" executes. the function will decide for itself whether a new
* pid Output needs to be computed. returns true when the output is computed,
* false when nothing has been done.
**********************************************************************************/
**********************************************************************************/
bool integerPID::Compute()
{
if(!inAuto) return false;
unsigned long now = millis();
//SampleTime = (now - lastTime);
unsigned long timeChange = (now - lastTime);
if(timeChange>=SampleTime)
if(timeChange >= SampleTime)
{
/*Compute all the working error variables*/
long input = *myInput;
long input = *myInput;
long error = *mySetpoint - input;
ITerm+= (ki * error)/1000; //Note that ki is multiplied by 1000 rather than 100, so it must be divided by 1000 here
if(ITerm > outMax) ITerm= outMax;
else if(ITerm < outMin) ITerm= outMin;
ITerm += (ki * error)/1000; //Note that ki is multiplied by 1000 rather than 100, so it must be divided by 1000 here
if(ITerm > outMax) { ITerm = outMax; }
else if(ITerm < outMin) { ITerm = outMin; }
long dInput = (input - lastInput);
/*Compute PID Output*/
long output = (kp * error)/100 + ITerm - (kd * dInput)/100;
if(output > outMax) output = outMax;
if(output > outMax) output = outMax;
else if(output < outMin) output = outMin;
*myOutput = output;
*myOutput = output;
/*Remember some variables for next time*/
lastInput = input;
lastTime = now;
return true;
return true;
}
else return false;
}
/* SetTunings(...)*************************************************************
* This function allows the controller's dynamic performance to be adjusted.
* This function allows the controller's dynamic performance to be adjusted.
* it's called automatically from the constructor, but tunings can also
* be adjusted on the fly during normal operation
******************************************************************************/
******************************************************************************/
void integerPID::SetTunings(byte Kp, byte Ki, byte Kd)
{
if (Kp<0 || Ki<0 || Kd<0) return;
if ( dispKp == Kp && dispKi == Ki && dispKd == Kd ) return; //Only do anything if one of the values has changed
dispKp = Kp; dispKi = Ki; dispKd = Kd;
/*
double SampleTimeInSec = ((double)SampleTime)/1000;
double SampleTimeInSec = ((double)SampleTime)/1000;
kp = Kp;
ki = Ki * SampleTimeInSec;
kd = Kd / SampleTimeInSec;
@ -283,7 +284,7 @@ void integerPID::SetTunings(byte Kp, byte Ki, byte Kd)
kp = Kp;
ki = (long)((long)Ki * 1000) / InverseSampleTimeInSec;
kd = ((long)Kd * InverseSampleTimeInSec) / 100;
if(controllerDirection == REVERSE)
{
kp = (0 - kp);
@ -291,13 +292,13 @@ void integerPID::SetTunings(byte Kp, byte Ki, byte Kd)
kd = (0 - kd);
}
}
/* SetSampleTime(...) *********************************************************
* sets the period, in Milliseconds, at which the calculation is performed
* sets the period, in Milliseconds, at which the calculation is performed
******************************************************************************/
void integerPID::SetSampleTime(int NewSampleTime)
{
if (SampleTime == (unsigned long)NewSampleTime) return; //If new value = old value, no action required.
if (SampleTime == (unsigned long)NewSampleTime) return; //If new value = old value, no action required.
if (NewSampleTime > 0)
{
unsigned long ratioX1000 = (unsigned long)(NewSampleTime * 1000) / (unsigned long)SampleTime;
@ -307,7 +308,7 @@ void integerPID::SetSampleTime(int NewSampleTime)
SampleTime = (unsigned long)NewSampleTime;
}
}
/* SetOutputLimits(...)****************************************************
* This function will be used far more often than SetInputLimits. while
* the input to the controller will generally be in the 0-1023 range (which is
@ -321,12 +322,12 @@ void integerPID::SetOutputLimits(long Min, long Max)
if(Min >= Max) return;
outMin = Min;
outMax = Max;
if(inAuto)
{
if(*myOutput > outMax) *myOutput = outMax;
else if(*myOutput < outMin) *myOutput = outMin;
if(ITerm > outMax) ITerm= outMax;
else if(ITerm < outMin) ITerm= outMin;
}
@ -336,7 +337,7 @@ void integerPID::SetOutputLimits(long Min, long Max)
* Allows the controller Mode to be set to manual (0) or Automatic (non-zero)
* when the transition from manual to auto occurs, the controller is
* automatically initialized
******************************************************************************/
******************************************************************************/
void integerPID::SetMode(int Mode)
{
bool newAuto = (Mode == AUTOMATIC);
@ -346,11 +347,11 @@ void integerPID::SetMode(int Mode)
}
inAuto = newAuto;
}
/* Initialize()****************************************************************
* does all the things that need to happen to ensure a bumpless transfer
* from manual to automatic mode.
******************************************************************************/
******************************************************************************/
void integerPID::Initialize()
{
ITerm = *myOutput;
@ -360,7 +361,7 @@ void integerPID::Initialize()
}
/* SetControllerDirection(...)*************************************************
* The PID will either be connected to a DIRECT acting process (+Output leads
* The PID will either be connected to a DIRECT acting process (+Output leads
* to +Input) or a REVERSE acting process(+Output leads to -Input.) we need to
* know which one, because otherwise we may increase the output when we should
* be decreasing. This is called from the constructor.
@ -372,13 +373,13 @@ void integerPID::SetControllerDirection(byte Direction)
kp = (0 - kp);
ki = (0 - ki);
kd = (0 - kd);
}
}
controllerDirection = Direction;
}
/* Status Funcions*************************************************************
* Just because you set the Kp=-1 doesn't mean it actually happened. these
* functions query the internal state of the PID. they're here for display
* functions query the internal state of the PID. they're here for display
* purposes. this are the functions the PID Front-end uses for example
******************************************************************************/
byte integerPID::GetKp(){ return dispKp; }