speeduino/speeduino/sensors.ino

219 lines
9.0 KiB
C++

/*
Speeduino - Simple engine management for the Arduino Mega 2560 platform
Copyright (C) Josh Stewart
A full copy of the license may be found in the projects root directory
*/
#include "sensors.h"
void initialiseADC()
{
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__) //AVR chips use the ISR for this
#if defined(ANALOG_ISR)
//This sets the ADC (Analog to Digitial Converter) to run at 250KHz, greatly reducing analog read times (MAP/TPS)
//the code on ISR run each conversion every 25 ADC clock, conversion run about 100KHz effectively
//making a 6250 conversions/s on 16 channels and 12500 on 8 channels devices.
noInterrupts(); //Interrupts should be turned off when playing with any of these registers
ADCSRB = 0x00; //ADC Auto Trigger Source is in Free Running mode
ADMUX = 0x40; //Select AREF as reference, ADC Left Adjust Result, Starting at channel 0
//All of the below is the longhand version of: ADCSRA = 0xEE;
#define ADFR 5 //Why the HELL isn't this defined in the same place as everything else (wiring.h)?!?!
BIT_SET(ADCSRA,ADFR); //Set free running mode
BIT_SET(ADCSRA,ADIE); //Set ADC interrupt enabled
BIT_CLEAR(ADCSRA,ADIF); //Clear interrupt flag
// Set ADC clock to 125KHz (Prescaler = 128)
BIT_SET(ADCSRA,ADPS2);
BIT_SET(ADCSRA,ADPS1);
BIT_SET(ADCSRA,ADPS0);
BIT_SET(ADCSRA,ADEN); //Enable ADC
interrupts();
BIT_SET(ADCSRA,ADSC); //Start conversion
#else
//This sets the ADC (Analog to Digitial Converter) to run at 1Mhz, greatly reducing analog read times (MAP/TPS) when using the standard analogRead() function
//1Mhz is the fastest speed permitted by the CPU without affecting accuracy
//Please see chapter 11 of 'Practical Arduino' (http://books.google.com.au/books?id=HsTxON1L6D4C&printsec=frontcover#v=onepage&q&f=false) for more detail
BIT_SET(ADCSRA,ADPS2);
BIT_CLEAR(ADCSRA,ADPS1);
BIT_CLEAR(ADCSRA,ADPS0);
#endif
#endif
}
void instanteneousMAPReading()
{
//Instantaneous MAP readings
#if defined(ANALOG_ISR)
tempReading = AnChannel[pinMAP-A0];
#else
tempReading = analogRead(pinMAP);
tempReading = analogRead(pinMAP);
#endif
//Error checking
if(tempReading >= VALID_MAP_MAX || tempReading <= VALID_MAP_MIN) { mapErrorCount += 1; }
else { currentStatus.mapADC = tempReading; mapErrorCount = 0; }
currentStatus.MAP = fastMap1023toX(currentStatus.mapADC, configPage1.mapMax); //Get the current MAP value
}
void readMAP()
{
//MAP Sampling system
switch(configPage1.mapSample)
{
case 0:
//Instantaneous MAP readings
instanteneousMAPReading();
break;
case 1:
//Average of a cycle
if (currentStatus.RPM < 1) { instanteneousMAPReading(); return; } //If the engine isn't running, fall back to instantaneous reads
if( (MAPcurRev == currentStatus.startRevolutions) || (MAPcurRev == currentStatus.startRevolutions+1) ) //2 revolutions are looked at for 4 stroke. 2 stroke not currently catered for.
{
#if defined(ANALOG_ISR)
tempReading = AnChannel[pinMAP-A0];
#else
tempReading = analogRead(pinMAP);
tempReading = analogRead(pinMAP);
#endif
//Error check
if(tempReading < VALID_MAP_MAX && tempReading > VALID_MAP_MIN)
{
MAPrunningValue = MAPrunningValue + tempReading; //Add the current reading onto the total
MAPcount++;
}
else { mapErrorCount += 1; }
}
else
{
//Reaching here means that the last cylce has completed and the MAP value should be calculated
currentStatus.mapADC = ldiv(MAPrunningValue, MAPcount).quot;
currentStatus.MAP = fastMap1023toX(currentStatus.mapADC, configPage1.mapMax); //Get the current MAP value
MAPcurRev = currentStatus.startRevolutions; //Reset the current rev count
MAPrunningValue = 0;
MAPcount = 0;
}
break;
case 2:
//Minimum reading in a cycle
if (currentStatus.RPM < 1) { instanteneousMAPReading(); return; } //If the engine isn't running, fall back to instantaneous reads
if( (MAPcurRev == currentStatus.startRevolutions) || (MAPcurRev == currentStatus.startRevolutions+1) ) //2 revolutions are looked at for 4 stroke. 2 stroke not currently catered for.
{
#if defined(ANALOG_ISR)
tempReading = AnChannel[pinMAP-A0];
#else
tempReading = analogRead(pinMAP);
tempReading = analogRead(pinMAP);
#endif
//Error check
if(tempReading < VALID_MAP_MAX && tempReading > VALID_MAP_MIN)
{
if( tempReading < MAPrunningValue) { MAPrunningValue = tempReading; } //Check whether the current reading is lower than the running minimum
}
else { mapErrorCount += 1; }
}
else
{
//Reaching here means that the last cylce has completed and the MAP value should be calculated
currentStatus.mapADC = MAPrunningValue;
currentStatus.MAP = fastMap1023toX(currentStatus.mapADC, configPage1.mapMax); //Get the current MAP value
MAPcurRev = currentStatus.startRevolutions; //Reset the current rev count
MAPrunningValue = 1023; //Reset the latest value so the next reading will always be lower
}
break;
}
}
void readTPS()
{
currentStatus.TPSlast = currentStatus.TPS;
currentStatus.TPSlast_time = currentStatus.TPS_time;
#if defined(ANALOG_ISR)
byte tempTPS = fastMap1023toX(AnChannel[pinTPS-A0], 255); //Get the current raw TPS ADC value and map it into a byte
#else
analogRead(pinTPS);
byte tempTPS = fastMap1023toX(analogRead(pinTPS), 255); //Get the current raw TPS ADC value and map it into a byte
#endif
currentStatus.tpsADC = ADC_FILTER(tempTPS, ADCFILTER_TPS, currentStatus.tpsADC);
//Check that the ADC values fall within the min and max ranges (Should always be the case, but noise can cause these to fluctuate outside the defined range).
byte tempADC = currentStatus.tpsADC; //The tempADC value is used in order to allow TunerStudio to recover and redo the TPS calibration if this somehow gets corrupted
if (currentStatus.tpsADC < configPage1.tpsMin) { tempADC = configPage1.tpsMin; }
else if(currentStatus.tpsADC > configPage1.tpsMax) { tempADC = configPage1.tpsMax; }
currentStatus.TPS = map(tempADC, configPage1.tpsMin, configPage1.tpsMax, 0, 100); //Take the raw TPS ADC value and convert it into a TPS% based on the calibrated values
currentStatus.TPS_time = currentLoopTime;
}
void readCLT()
{
#if defined(ANALOG_ISR)
tempReading = fastMap1023toX(AnChannel[pinCLT-A0], 511); //Get the current raw CLT value
#else
tempReading = analogRead(pinCLT);
tempReading = fastMap1023toX(analogRead(pinCLT), 511); //Get the current raw CLT value
#endif
currentStatus.cltADC = ADC_FILTER(tempReading, ADCFILTER_CLT, currentStatus.cltADC);
currentStatus.coolant = cltCalibrationTable[currentStatus.cltADC] - CALIBRATION_TEMPERATURE_OFFSET; //Temperature calibration values are stored as positive bytes. We subtract 40 from them to allow for negative temperatures
}
void readIAT()
{
#if defined(ANALOG_ISR)
tempReading = fastMap1023toX(AnChannel[pinIAT-A0], 511); //Get the current raw IAT value
#else
tempReading = analogRead(pinIAT);
tempReading = fastMap1023toX(analogRead(pinIAT), 511); //Get the current raw IAT value
#endif
currentStatus.iatADC = ADC_FILTER(tempReading, ADCFILTER_IAT, currentStatus.iatADC);
currentStatus.IAT = iatCalibrationTable[currentStatus.iatADC] - CALIBRATION_TEMPERATURE_OFFSET;
}
void readO2()
{
#if defined(ANALOG_ISR)
tempReading = fastMap1023toX(AnChannel[pinO2-A0], 511); //Get the current O2 value.
#else
tempReading = analogRead(pinO2);
tempReading = fastMap1023toX(analogRead(pinO2), 511); //Get the current O2 value.
#endif
currentStatus.O2ADC = ADC_FILTER(tempReading, ADCFILTER_O2, currentStatus.O2ADC);
currentStatus.O2 = o2CalibrationTable[currentStatus.O2ADC];
}
/* Second O2 currently disabled as its not being used
currentStatus.O2_2ADC = map(analogRead(pinO2_2), 0, 1023, 0, 511); //Get the current O2 value.
currentStatus.O2_2ADC = ADC_FILTER(tempReading, ADCFILTER_O2, currentStatus.O2_2ADC);
currentStatus.O2_2 = o2CalibrationTable[currentStatus.O2_2ADC];
*/
void readBat()
{
#if defined(ANALOG_ISR)
tempReading = fastMap1023toX(AnChannel[pinBat-A0], 245); //Get the current raw Battery value. Permissible values are from 0v to 24.5v (245)
#else
tempReading = analogRead(pinBat);
tempReading = fastMap1023toX(analogRead(pinBat), 245); //Get the current raw Battery value. Permissible values are from 0v to 24.5v (245)
#endif
currentStatus.battery10 = ADC_FILTER(tempReading, ADCFILTER_BAT, currentStatus.battery10);
}
/*
* The interrupt function for reading the flex sensor frequency
* This value is incremented with every pulse and reset back to 0 once per second
*/
void flexPulse()
{
++flexCounter;
}