wideband/firmware/heater_control.cpp

220 lines
6.4 KiB
C++
Raw Normal View History

2020-10-30 01:53:54 -07:00
#include "heater_control.h"
2020-10-31 14:58:34 -07:00
#include "wideband_config.h"
2020-10-30 01:53:54 -07:00
2020-10-30 02:40:18 -07:00
#include "ch.h"
2020-10-30 01:53:54 -07:00
#include "hal.h"
2020-12-10 18:32:41 -08:00
#include "fault.h"
2020-10-30 01:53:54 -07:00
#include "pwm.h"
#include "sampling.h"
2020-10-31 14:58:34 -07:00
#include "pid.h"
#include "can.h"
2020-10-30 01:53:54 -07:00
2022-01-01 21:10:55 -08:00
using namespace wbo;
2020-10-30 01:53:54 -07:00
// 400khz / 1024 = 390hz PWM
static Pwm heaterPwm(HEATER_PWM_DEVICE, HEATER_PWM_CHANNEL, 400'000, 1024);
2020-10-30 01:53:54 -07:00
2020-10-30 02:40:18 -07:00
enum class HeaterState
{
Preheat,
WarmupRamp,
ClosedLoop,
2020-12-10 18:32:41 -08:00
Stopped,
2020-10-30 02:40:18 -07:00
};
2022-04-06 17:23:18 -07:00
static constexpr int preheatTimeCounter = HEATER_PREHEAT_TIME / HEATER_CONTROL_PERIOD;
static constexpr int batteryStabTimeCounter = HEATER_BATTERY_STAB_TIME / HEATER_CONTROL_PERIOD;
2021-07-15 21:50:22 -07:00
static int timeCounter = preheatTimeCounter;
static int batteryStabTime = batteryStabTimeCounter;
2021-07-15 21:50:22 -07:00
static float rampVoltage = 0;
2020-10-30 02:40:18 -07:00
static HeaterState GetNextState(HeaterState state, HeaterAllow heaterAllowState, float batteryVoltage, float sensorEsr)
2020-10-30 02:40:18 -07:00
{
bool heaterAllowed = heaterAllowState == HeaterAllow::Allowed;
// Check battery voltage for thresholds only if there is still no command over CAN
if (heaterAllowState == HeaterAllow::Unknown)
{
// measured voltage too low to auto-start heating
if (batteryVoltage < HEATER_BATTETY_OFF_VOLTAGE)
{
batteryStabTime = batteryStabTimeCounter;
}
// measured voltage is high enougth to auto-start heating, wait some time to stabilize
if ((batteryVoltage > HEATER_BATTERY_ON_VOLTAGE) && (batteryStabTime > 0))
{
batteryStabTime--;
}
heaterAllowed = batteryStabTime == 0;
}
2021-07-15 21:50:22 -07:00
if (!heaterAllowed)
{
// ECU hasn't allowed preheat yet, reset timer, and force preheat state
timeCounter = preheatTimeCounter;
return HeaterState::Preheat;
}
2020-10-30 02:40:18 -07:00
switch (state)
{
case HeaterState::Preheat:
2020-12-10 18:32:41 -08:00
timeCounter--;
2020-10-30 02:40:18 -07:00
2020-12-13 17:24:33 -08:00
// If preheat timeout, or sensor is already hot (engine running?)
if (timeCounter <= 0 || sensorEsr < HEATER_CLOSED_LOOP_THRESHOLD_ESR)
2020-10-30 02:40:18 -07:00
{
// If enough time has elapsed, start the ramp
2021-07-12 15:24:20 -07:00
// Start the ramp at 4 volts
2021-07-16 10:36:05 -07:00
rampVoltage = 4;
2020-12-10 18:32:41 -08:00
// Next phase times out at 15 seconds
2020-12-10 22:08:00 -08:00
timeCounter = HEATER_WARMUP_TIMEOUT / HEATER_CONTROL_PERIOD;
2020-12-10 18:32:41 -08:00
2020-10-30 02:40:18 -07:00
return HeaterState::WarmupRamp;
}
2020-10-31 14:54:50 -07:00
// Stay in preheat - wait for time to elapse
break;
2020-10-30 02:40:18 -07:00
case HeaterState::WarmupRamp:
2020-12-10 22:08:00 -08:00
if (sensorEsr < HEATER_CLOSED_LOOP_THRESHOLD_ESR)
2020-10-30 02:40:18 -07:00
{
return HeaterState::ClosedLoop;
}
2020-12-10 18:32:41 -08:00
else if (timeCounter == 0)
{
2021-11-03 23:02:11 -07:00
SetFault(Fault::SensorDidntHeat);
2020-12-10 18:32:41 -08:00
return HeaterState::Stopped;
}
timeCounter--;
2020-10-31 14:54:50 -07:00
break;
2020-12-10 18:32:41 -08:00
case HeaterState::ClosedLoop:
2021-11-04 15:07:47 -07:00
// Check that the sensor's ESR is acceptable for normal operation
2020-12-11 15:46:03 -08:00
if (sensorEsr < HEATER_OVERHEAT_ESR)
2020-12-10 22:08:00 -08:00
{
2021-11-03 23:02:11 -07:00
SetFault(Fault::SensorOverheat);
2020-12-11 15:10:04 -08:00
return HeaterState::Stopped;
2020-12-10 22:08:00 -08:00
}
2020-12-11 15:46:03 -08:00
else if (sensorEsr > HEATER_UNDERHEAT_ESR)
{
2021-11-03 23:02:11 -07:00
SetFault(Fault::SensorUnderheat);
2020-12-11 15:46:03 -08:00
return HeaterState::Stopped;
}
2020-12-10 22:08:00 -08:00
2020-12-10 18:32:41 -08:00
break;
case HeaterState::Stopped: break;
2020-10-30 02:40:18 -07:00
}
2020-10-31 14:54:50 -07:00
return state;
2020-10-30 02:40:18 -07:00
}
2021-07-12 15:46:10 -07:00
static Pid heaterPid(
2021-07-12 22:40:47 -07:00
0.3f, // kP
0.3f, // kI
2021-07-12 23:49:55 -07:00
0.01f, // kD
2021-07-12 22:40:47 -07:00
3.0f, // Integrator clamp (volts)
2021-07-12 15:46:10 -07:00
HEATER_CONTROL_PERIOD
);
2021-07-09 23:15:24 -07:00
2021-07-12 15:24:20 -07:00
static float GetVoltageForState(HeaterState state, float heaterEsr)
2020-10-30 02:40:18 -07:00
{
switch (state)
{
2021-07-15 21:48:24 -07:00
case HeaterState::Preheat:
// Max allowed during condensation phase (preheat) is 2v
return 1.5f;
2020-10-30 02:40:18 -07:00
case HeaterState::WarmupRamp:
2021-07-12 23:45:35 -07:00
if (rampVoltage < 10)
2020-10-30 02:40:18 -07:00
{
2021-07-09 23:15:24 -07:00
// 0.3 volt per second, divided by battery voltage and update rate
constexpr float rampRateVoltPerSecond = 0.3f;
2021-04-26 17:40:06 -07:00
constexpr float heaterFrequency = 1000.0f / HEATER_CONTROL_PERIOD;
2021-07-12 15:24:20 -07:00
rampVoltage += (rampRateVoltPerSecond / heaterFrequency);
2020-10-30 02:40:18 -07:00
}
2021-07-12 15:24:20 -07:00
return rampVoltage;
2020-10-30 02:40:18 -07:00
case HeaterState::ClosedLoop:
2021-07-12 15:46:10 -07:00
// "nominal" heater voltage is 7.5v, so apply correction around that point (instead of relying on integrator so much)
2020-10-31 17:34:36 -07:00
// Negated because lower resistance -> hotter
2021-07-12 15:46:10 -07:00
return 7.5f - heaterPid.GetOutput(HEATER_TARGET_ESR, heaterEsr);
2020-12-10 18:32:41 -08:00
case HeaterState::Stopped:
2021-07-12 15:24:20 -07:00
// Something has gone wrong, turn off the heater.
2020-12-10 18:32:41 -08:00
return 0;
2020-10-30 02:40:18 -07:00
}
2020-12-10 21:05:02 -08:00
// should be unreachable
return 0;
2020-10-30 02:40:18 -07:00
}
2020-10-31 14:54:50 -07:00
static HeaterState state = HeaterState::Preheat;
2021-07-12 15:31:02 -07:00
2020-10-30 02:40:18 -07:00
static THD_WORKING_AREA(waHeaterThread, 256);
static void HeaterThread(void*)
{
2021-06-03 21:03:41 -07:00
// Wait for temperature sensing to stabilize so we don't
// immediately think we overshot the target temperature
chThdSleepMilliseconds(1000);
2020-10-30 02:40:18 -07:00
while (true)
{
// Read sensor state
float heaterEsr = GetSensorInternalResistance();
auto heaterAllowState = GetHeaterAllowed();
// If we haven't heard from rusEFI, use the internally sensed
// battery voltage instead of voltage over CAN.
float batteryVoltage = heaterAllowState == HeaterAllow::Unknown
? GetInternalBatteryVoltage()
: GetRemoteBatteryVoltage();
2020-10-30 02:40:18 -07:00
// Run the state machine
state = GetNextState(state, heaterAllowState, batteryVoltage, heaterEsr);
2021-07-12 15:33:10 -07:00
float heaterVoltage = GetVoltageForState(state, heaterEsr);
2020-10-30 02:40:18 -07:00
2021-07-12 23:45:35 -07:00
// Limit to 11 volts
if (heaterVoltage > 11) {
heaterVoltage = 11;
2021-07-09 23:15:24 -07:00
}
2021-07-12 15:32:45 -07:00
// duty = (V_eff / V_batt) ^ 2
2021-07-12 15:33:10 -07:00
float voltageRatio = heaterVoltage / batteryVoltage;
2021-07-12 15:32:45 -07:00
float duty = voltageRatio * voltageRatio;
2021-07-12 15:24:20 -07:00
2021-07-12 22:44:42 -07:00
if (batteryVoltage < 23)
{
// Pipe the output to the heater driver
heaterPwm.SetDuty(duty);
}
else
{
// Overvoltage protection - sensor not rated for PWM above 24v
heaterPwm.SetDuty(0);
}
2020-10-30 02:40:18 -07:00
// Loop at ~20hz
2020-10-31 14:58:34 -07:00
chThdSleepMilliseconds(HEATER_CONTROL_PERIOD);
2020-10-30 02:40:18 -07:00
}
}
2020-10-30 01:53:54 -07:00
void StartHeaterControl()
{
heaterPwm.Start();
heaterPwm.SetDuty(0);
2020-10-30 02:40:18 -07:00
chThdCreateStatic(waHeaterThread, sizeof(waHeaterThread), NORMALPRIO + 1, HeaterThread, nullptr);
2020-10-30 01:53:54 -07:00
}
2020-10-31 14:54:50 -07:00
bool IsRunningClosedLoop()
{
return state == HeaterState::ClosedLoop;
}
2021-07-12 15:31:02 -07:00
2022-01-26 10:56:58 -08:00
float GetHeaterDuty()
2022-01-04 11:16:46 -08:00
{
return heaterPwm.GetLastDuty();
}