wideband/firmware/boards/f1_dual_rev1/port.cpp

205 lines
7.0 KiB
C++
Raw Normal View History

#include "port.h"
#include "wideband_config.h"
#include "hal.h"
#define ADC_CHANNEL_COUNT 10
#define ADC_SAMPLE ADC_SAMPLE_7P5
static adcsample_t adcBuffer[ADC_CHANNEL_COUNT * ADC_OVERSAMPLE];
const ADCConversionGroup convGroup =
{
.circular = false,
.num_channels = ADC_CHANNEL_COUNT,
.end_cb = nullptr,
.error_cb = nullptr,
.cr1 = 0,
.cr2 =
ADC_CR2_CONT/* |
ADC_CR2_ADON*/, /* keep ADC enabled between convertions - for GD32 */
.smpr1 =
ADC_SMPR1_SMP_AN10(ADC_SAMPLE) |
ADC_SMPR1_SMP_AN11(ADC_SAMPLE) |
ADC_SMPR1_SMP_AN12(ADC_SAMPLE) | /* PC2 - ADC123_IN12 - L_Un_3x_sense */
ADC_SMPR1_SMP_AN13(ADC_SAMPLE) | /* PC3 */
ADC_SMPR1_SMP_AN14(ADC_SAMPLE) |
ADC_SMPR1_SMP_AN15(ADC_SAMPLE), /* PC5 */
.smpr2 =
ADC_SMPR2_SMP_AN0(ADC_SAMPLE) | /* PA0 */
ADC_SMPR2_SMP_AN1(ADC_SAMPLE) | /* PA1 - ADC12_IN1 - R_Un_3x_sense */
ADC_SMPR2_SMP_AN2(ADC_SAMPLE) | /* PA2 */
ADC_SMPR2_SMP_AN3(ADC_SAMPLE) | /* PA3 */
ADC_SMPR2_SMP_AN4(ADC_SAMPLE) |
ADC_SMPR2_SMP_AN5(ADC_SAMPLE) |
ADC_SMPR2_SMP_AN6(ADC_SAMPLE) | /* PA6 */
ADC_SMPR2_SMP_AN7(ADC_SAMPLE) | /* PA7 */
ADC_SMPR2_SMP_AN8(ADC_SAMPLE) | /* PB8 */
ADC_SMPR2_SMP_AN9(ADC_SAMPLE),
.sqr1 = ADC_SQR1_NUM_CH(ADC_CHANNEL_COUNT),
.sqr2 =
/* TODO: move these two channels to slow ADC! */
ADC_SQR2_SQ7_N(15) | /* PC5 - ADC12_IN15 - L_Heater_sense */
ADC_SQR2_SQ8_N(8) | /* PB0 - ADC12_IN8 - R_Heater_sense */
ADC_SQR2_SQ9_N(2) | /* PA2 - ADC12_IN2 - R_Un_sense */
ADC_SQR2_SQ10_N(3), /* PA3 - ADC12_IN3 - L_Un_sense */
.sqr3 =
ADC_SQR3_SQ1_N(0) | /* PA0 - ADC12_IN0 - R_Ip_sense */
ADC_SQR3_SQ2_N(1) | /* PA1 - ADC12_IN1 - R_Un_3x_sense */
ADC_SQR3_SQ3_N(13) | /* PC3 - ADC123_IN13 - L_Ip_sense */
ADC_SQR3_SQ4_N(12) | /* PC2 - ADC123_IN12 - L_Un_3x_sense */
/* TODO: move these two channels to slow ADC! */
ADC_SQR3_SQ5_N(6) | /* PA6 - ADC12_IN6 - R_AUX_ADC */
ADC_SQR3_SQ6_N(7), /* PA7 - ADC12_IN7 - L_AUX_ADC */
};
static float AverageSamples(adcsample_t* buffer, size_t idx)
{
uint32_t sum = 0;
for (size_t i = 0; i < ADC_OVERSAMPLE; i++)
{
sum += buffer[idx];
idx += ADC_CHANNEL_COUNT;
}
constexpr float scale = VCC_VOLTS / (ADC_MAX_COUNT * ADC_OVERSAMPLE);
return (float)sum * scale;
}
static float GetMaxSample(adcsample_t* buffer, size_t idx)
{
adcsample_t max = 0;
for (size_t i = 0; i < ADC_OVERSAMPLE; i++)
{
if (buffer[idx] > max)
{
max = buffer[idx];
}
idx += ADC_CHANNEL_COUNT;
}
constexpr float scale = VCC_VOLTS / ADC_MAX_COUNT;
return (float)max * scale;
}
static float l_heater_voltage = 0;
static float r_heater_voltage = 0;
AnalogResult AnalogSample()
{
AnalogResult res;
/* TODO: remove Vbat measurement through heaters
* TODO: keep heater voltage measurement for optional source for pwm calculation
* TODO: add aux output voltage measurement for diagnostic (use slow ADC?) */
bool l_heater = !palReadPad(L_HEATER_PORT, L_HEATER_PIN);
bool r_heater = !palReadPad(R_HEATER_PORT, R_HEATER_PIN);
adcConvert(&ADCD1, &convGroup, adcBuffer, ADC_OVERSAMPLE);
bool l_heater_new = !palReadPad(L_HEATER_PORT, L_HEATER_PIN);
bool r_heater_new = !palReadPad(R_HEATER_PORT, R_HEATER_PIN);
if (l_heater && l_heater_new)
{
float vbatt_raw = GetMaxSample(adcBuffer, 6) / HEATER_INPUT_DIVIDER;
l_heater_voltage = HEATER_FILTER_ALPHA * vbatt_raw + (1.0 - HEATER_FILTER_ALPHA) * l_heater_voltage;
}
if (r_heater && r_heater_new)
{
float vbatt_raw = GetMaxSample(adcBuffer, 7) / HEATER_INPUT_DIVIDER;
r_heater_voltage = HEATER_FILTER_ALPHA * vbatt_raw + (1.0 - HEATER_FILTER_ALPHA) * r_heater_voltage;
}
/* Dual board has separate internal virtual ground = 3.3V / 2
* VirtualGroundVoltageInt is used to calculate Ip current only as it
* is used as offset for diffirential amp */
res.VirtualGroundVoltageInt = HALF_VCC;
for (int i = 0; i < AFR_CHANNELS; i++) {
float NernstRaw = AverageSamples(adcBuffer, (i == 0) ? 3 : 1);
if ((NernstRaw > 0.01) && (NernstRaw < (3.3 - 0.01))) {
/* not clamped */
res.ch[i].NernstVoltage = (NernstRaw - NERNST_INPUT_OFFSET) * NERNST_INPUT_GAIN;
} else {
/* Clamped, use ungained input */
res.ch[i].NernstVoltage = AverageSamples(adcBuffer, (i == 0) ? 9 : 8) - HALF_VCC;
}
}
/* left */
res.ch[0].PumpCurrentVoltage = AverageSamples(adcBuffer, 2);
res.ch[0].BatteryVoltage = l_heater_voltage;
/* right */
res.ch[1].PumpCurrentVoltage = AverageSamples(adcBuffer, 0);
res.ch[1].BatteryVoltage = r_heater_voltage;
return res;
}
/* TODO: optimize */
void SetupESRDriver(SensorType sensor)
{
switch (sensor) {
case SensorType::LSU42:
/* disable bias */
palSetPadMode(NERNST_49_BIAS_PORT, NERNST_49_BIAS_PIN,
PAL_MODE_INPUT);
/* disable all others ESR drivers */
palSetPadMode(NERNST_49_ESR_DRIVER_PORT, NERNST_49_ESR_DRIVER_PIN,
PAL_MODE_INPUT);
palSetPadMode(NERNST_ADV_ESR_DRIVER_PORT, NERNST_ADV_ESR_DRIVER_PIN,
PAL_MODE_INPUT);
/* enable LSU4.2 */
palSetPadMode(NERNST_42_ESR_DRIVER_PORT, NERNST_42_ESR_DRIVER_PIN,
PAL_MODE_OUTPUT_PUSHPULL);
break;
case SensorType::LSU49:
/* disable all others ESR drivers */
palSetPadMode(NERNST_42_ESR_DRIVER_PORT, NERNST_42_ESR_DRIVER_PIN,
PAL_MODE_INPUT);
palSetPadMode(NERNST_ADV_ESR_DRIVER_PORT, NERNST_ADV_ESR_DRIVER_PIN,
PAL_MODE_INPUT);
/* enable LSU4.2 */
palSetPadMode(NERNST_49_ESR_DRIVER_PORT, NERNST_49_ESR_DRIVER_PIN,
PAL_MODE_OUTPUT_PUSHPULL);
/* enable bias */
palSetPadMode(NERNST_49_BIAS_PORT, NERNST_49_BIAS_PIN,
PAL_MODE_OUTPUT_PUSHPULL);
palSetPad(NERNST_49_BIAS_PORT, NERNST_49_BIAS_PIN);
break;
case SensorType::LSUADV:
/* disable bias */
palSetPadMode(NERNST_49_BIAS_PORT, NERNST_49_BIAS_PIN,
PAL_MODE_INPUT);
/* disable all others ESR drivers */
palSetPadMode(NERNST_49_ESR_DRIVER_PORT, NERNST_49_ESR_DRIVER_PIN,
PAL_MODE_INPUT);
palSetPadMode(NERNST_42_ESR_DRIVER_PORT, NERNST_42_ESR_DRIVER_PIN,
PAL_MODE_INPUT);
/* enable LSU4.2 */
palSetPadMode(NERNST_ADV_ESR_DRIVER_PORT, NERNST_ADV_ESR_DRIVER_PIN,
PAL_MODE_OUTPUT_PUSHPULL);
break;
}
}
int GetESRSupplyR()
{
switch (GetSensorType()) {
case SensorType::LSU42:
return 6800;
case SensorType::LSU49:
return 22000;
case SensorType::LSUADV:
return 47000;
}
return 0;
}