#include "sampling.h" #include "ch.h" #include "hal.h" #include "wideband_config.h" #include "port.h" #include "io_pins.h" #include "livedata.h" #include // Stored results struct measure_results { float nernstAc; float nernstDc; float pumpCurrentSenseVoltage; float internalBatteryVoltage; }; static struct measure_results results[AFR_CHANNELS]; // Last point is approximated by the greatest measurable sensor resistance static const float lsu49TempBins[] = { 80, 150, 200, 250, 300, 350, 400, 450, 550, 650, 800, 1000, 1200, 2500, 5000 }; static const float lsu49TempValues[] = { 1030, 890, 840, 805, 780, 760, 745, 730, 705, 685, 665, 640, 630, 565, 500 }; constexpr float f_abs(float x) { return x > 0 ? x : -x; } static THD_WORKING_AREA(waSamplingThread, 256); static void SamplingThread(void*) { float r_2[AFR_CHANNELS] = {0}; float r_3[AFR_CHANNELS] = {0}; /* GD32: Insert 20us delay after ADC enable */ chThdSleepMilliseconds(1); while(true) { auto result = AnalogSample(); // Toggle the pin after sampling so that any switching noise occurs while we're doing our math instead of when sampling palTogglePad(NERNST_ESR_DRIVER_PORT, NERNST_ESR_DRIVER_PIN); for (int ch = 0; ch < AFR_CHANNELS; ch++) { measure_results &res = results[ch]; float r_1 = result.ch[ch].NernstVoltage; // r2_opposite_phase estimates where the previous sample would be had we not been toggling // AKA the absolute value of the difference between r2_opposite_phase and r2 is the amplitude // of the AC component on the nernst voltage. We have to pull this trick so as to use the past 3 // samples to cancel out any slope in the DC (aka actual nernst cell output) from the AC measurement // See firmware/sampling.png for a drawing of what's going on here float r2_opposite_phase = (r_1 + r_3[ch]) / 2; // Compute AC (difference) and DC (average) components float nernstAcLocal = f_abs(r2_opposite_phase - r_2[ch]); res.nernstDc = (r2_opposite_phase + r_2[ch]) / 2; res.nernstAc = (1 - ESR_SENSE_ALPHA) * res.nernstAc + ESR_SENSE_ALPHA * nernstAcLocal; // Exponential moving average (aka first order lpf) res.pumpCurrentSenseVoltage = (1 - PUMP_FILTER_ALPHA) * res.pumpCurrentSenseVoltage + PUMP_FILTER_ALPHA * (result.ch[ch].PumpCurrentVoltage - result.VirtualGroundVoltageInt); #ifdef BATTERY_INPUT_DIVIDER res.internalBatteryVoltage = result.ch[ch].BatteryVoltage; #endif // Shift history over by one r_3[ch] = r_2[ch]; r_2[ch] = r_1; } #if defined(TS_ENABLED) /* tunerstudio */ SamplingUpdateLiveData(); #endif } } void StartSampling() { adcStart(&ADCD1, nullptr); chThdCreateStatic(waSamplingThread, sizeof(waSamplingThread), NORMALPRIO + 5, SamplingThread, nullptr); } float GetNernstAc(int ch) { return results[ch].nernstAc; } float GetSensorInternalResistance(int ch) { // Sensor is the lowside of a divider, top side is 22k, and 3.3v AC pk-pk is injected float totalEsr = ESR_SUPPLY_R / (VCC_VOLTS / GetNernstAc(ch) - 1); // There is a resistor between the opamp and Vm sensor pin. Remove the effect of that // resistor so that the remainder is only the ESR of the sensor itself return totalEsr - VM_RESISTOR_VALUE; } float GetSensorTemperature(int ch) { float esr = GetSensorInternalResistance(ch); if (esr > 5000) { return 0; } return interpolate2d(esr, lsu49TempBins, lsu49TempValues); } float GetNernstDc(int ch) { return results[ch].nernstDc; } float GetPumpNominalCurrent(int ch) { // Gain is 10x, then a 61.9 ohm resistor // Effective resistance with the gain is 619 ohms // 1000 is to convert to milliamperes constexpr float ratio = -1000 / (PUMP_CURRENT_SENSE_GAIN * LSU_SENSE_R); return results[ch].pumpCurrentSenseVoltage * ratio; } float GetInternalBatteryVoltage(int ch) { // Dual HW can measure heater voltage for each channel // by measuring voltage on Heater- while FET is off // TODO: rename function? return results[ch].internalBatteryVoltage; }