wideband/firmware/pump_dac.cpp

85 lines
1.6 KiB
C++

#include "pump_dac.h"
#include "pwm.h"
#include "heater_control.h"
#include "wideband_config.h"
#include "hal.h"
// 48MHz / 1024 = 46.8khz PWM
// 64MHz / 1024 = 62.5khz PWM
static const PWMConfig pumpDacConfig = {
STM32_SYSCLK,
1024,
nullptr,
{
{PWM_OUTPUT_ACTIVE_HIGH, nullptr},
{PWM_OUTPUT_ACTIVE_HIGH, nullptr},
{PWM_OUTPUT_ACTIVE_HIGH, nullptr},
{PWM_OUTPUT_ACTIVE_HIGH, nullptr}
},
0,
0,
#if STM32_PWM_USE_ADVANCED
0
#endif
};
static Pwm pumpDac(PUMP_DAC_PWM_DEVICE);
struct pump_dac_state {
int32_t curIpump;
};
static const uint8_t pumpDacPwmCh[] = {
PUMP_DAC_PWM_CHANNEL_0,
#if (AFR_CHANNELS > 1)
PUMP_DAC_PWM_CHANNEL_1,
#endif
};
static struct pump_dac_state state[AFR_CHANNELS];
void InitPumpDac()
{
pumpDac.Start(pumpDacConfig);
for (int ch = 0; ch < AFR_CHANNELS; ch++)
{
// Set zero current to start - sensor can be damaged if current flowing
// while warming up
SetPumpCurrentTarget(ch, 0);
}
}
void SetPumpCurrentTarget(int ch, int32_t microampere)
{
// Don't allow pump current when the sensor isn't hot
if (!IsRunningClosedLoop(ch))
{
microampere = 0;
}
state[ch].curIpump = microampere;
// 47 ohm resistor
// 0.147 gain
// effective resistance of 317 ohms
float volts = -0.000321162f * microampere;
// offset by half vcc
volts += HALF_VCC;
pumpDac.SetDuty(pumpDacPwmCh[ch], volts / VCC_VOLTS);
}
float GetPumpOutputDuty(int ch)
{
return pumpDac.GetLastDuty(ch);
}
float GetPumpCurrent(int ch)
{
return (float)state[ch].curIpump / 1000.0;
}