wideband/firmware/boards/f0_module/bootloader/bootloader.cpp

269 lines
6.8 KiB
C++

#include "ch.h"
#include "hal.h"
#include "port_shared.h"
#include "flash.h"
#include "io_pins.h"
#include "../../for_rusefi/wideband_can.h"
#include <cstring>
#include <rusefi/crc.h>
// These are defined in the linker script
extern uint32_t __appflash_start__[64];
extern uint32_t __appflash_size__;
extern uint32_t __ram_vectors_start__[64];
extern uint32_t __ram_vectors_size__;
#define SWAP_UINT32(x) ((((x) >> 24) & 0xff) | (((x) << 8) & 0xff0000) | (((x) >> 8) & 0xff00) | (((x) << 24) & 0xff000000))
bool isAppValid() {
const uint32_t* appFlash =
__appflash_start__;
int appSize = 25600;
uint32_t expectedCrc = appFlash[appSize / 4 - 1];
uint32_t actualCrc = SWAP_UINT32(crc32(reinterpret_cast<const uint8_t*>(appFlash), appSize - 4));
return actualCrc == expectedCrc;
}
__attribute__((noreturn))
void boot_app() {
// Goodbye, ChibiOS
chSysDisable();
// Reset peripherals we might have used
rccDisableCAN1();
const uint32_t* appFlash = __appflash_start__;
// The reset vector is at offset 4 (second uint32)
uint32_t reset_vector = appFlash[1];
#ifdef STM32F0XX
// copy vector table to sram
// TODO: use __ram_vectors_size__
memcpy(reinterpret_cast<char*>(&__ram_vectors_start__), appFlash, 256);
// M0 core version, newer cores do same thing a bit nicer
// switch to use vectors in ram
SYSCFG->CFGR1 |= 3;
#endif
// TODO: is this necessary?
//uint32_t app_msp = appLocation[0];
//__set_MSP(app_msp);
typedef void (*ResetVectorFunction)(void);
((ResetVectorFunction)reset_vector)();
while(1);
}
uintptr_t appFlashAddr = (uintptr_t)__appflash_start__;
void EraseAppPages()
{
uintptr_t blSize = (uintptr_t)(appFlashAddr - 0x08000000);
size_t pageIdx = blSize / 1024;
// size_t appSizeKb = __appflash_size__ / 1024;
size_t appSizeKb = 25;
for (size_t i = 0; i < appSizeKb; i++)
{
Flash::ErasePage(pageIdx);
pageIdx++;
}
}
void WaitForBootloaderCmd()
{
while(true)
{
CANRxFrame frame;
msg_t result = canReceiveTimeout(&CAND1, CAN_ANY_MAILBOX, &frame, TIME_INFINITE);
// Ignore non-ok results
if (result != MSG_OK)
{
continue;
}
// Ignore std frames, only listen to ext
if (frame.IDE != CAN_IDE_EXT)
{
continue;
}
// if we got a bootloader-init message, here we go!
if (frame.DLC == 0 && frame.EID == WB_BL_ENTER)
{
return;
}
}
}
void sendAck()
{
CANTxFrame frame;
frame.IDE = CAN_IDE_EXT;
frame.EID = WB_ACK; // ascii "rus"
frame.RTR = CAN_RTR_DATA;
frame.DLC = 0;
canTransmitTimeout(&CAND1, CAN_ANY_MAILBOX, &frame, TIME_INFINITE);
}
void sendNak()
{
// TODO: implement
}
bool bootloaderBusy = false;
void RunBootloaderLoop()
{
// First ack that the bootloader is alive
sendAck();
while (true)
{
CANRxFrame frame;
msg_t result = canReceiveTimeout(&CAND1, CAN_ANY_MAILBOX, &frame, TIME_INFINITE);
// Ignore non-ok results
if (result != MSG_OK)
{
continue;
}
// Ignore std frames, only listen to ext
if (frame.IDE != CAN_IDE_EXT)
{
continue;
}
// 29-bit extended ID:
// 0 xxxy zzzz
// xx = header, always equals 0xEF
// y = opcode
// zzzz = extra 2 data bytes hidden in the address!
uint16_t header = frame.EID >> 20;
// All rusEfi bootloader packets start with 0x0EF, ignore other traffic on the bus
if (header != WB_BL_HEADER)
{
continue;
}
uint8_t opcode = (frame.EID >> 16) & 0x0F;
uint16_t embeddedData = frame.EID & 0xFFFF;
switch (opcode) {
case WB_OPCODE_START: // opcode 0 is simply the "enter BL" command, but we're already here. Send an ack.
sendAck();
break;
case WB_OPCODE_ERASE: // opcode 1 is "erase app flash"
// embedded data must be 0x5A5A
if (embeddedData == WB_ERASE_TAG)
{
EraseAppPages();
sendAck();
}
else
{
sendNak();
}
break;
case 0x02: // opcode 2 is "write flash data"
// Embedded data is the flash address
// Don't allow misaligned writes
if (embeddedData % sizeof(flashdata_t) != 0 || frame.DLC % sizeof(flashdata_t) != 0)
{
sendNak();
}
// Don't allow out of bounds writes
else if (embeddedData >= 26 * 1024)
{
sendNak();
}
else
{
Flash::Write(appFlashAddr + embeddedData, &frame.data8[0], frame.DLC);
sendAck();
}
break;
case WB_OPCODE_REBOOT: // opcode 3 is "boot app"
sendAck();
// Let the message get out
chThdSleepMilliseconds(100);
// Clear the flag
bootloaderBusy = false;
// Kill this thread
return;
default:
sendNak();
break;
}
}
}
THD_WORKING_AREA(waBootloaderThread, 512);
THD_FUNCTION(BootloaderThread, arg)
{
(void)arg;
// turn on CAN
canStart(&CAND1, &GetCanConfig());
WaitForBootloaderCmd();
// We've rx'd a BL command, don't load the app!
bootloaderBusy = true;
RunBootloaderLoop();
}
/*
* Application entry point.
*/
int main(void) {
halInit();
chSysInit();
chThdCreateStatic(waBootloaderThread, sizeof(waBootloaderThread), NORMALPRIO + 1, BootloaderThread, nullptr);
palSetPadMode(LED_BLUE_PORT, LED_BLUE_PIN, PAL_MODE_OUTPUT_PUSHPULL);
palSetPadMode(LED_GREEN_PORT, LED_GREEN_PIN, PAL_MODE_OUTPUT_PUSHPULL);
palTogglePad(LED_GREEN_PORT, LED_GREEN_PIN);
for (size_t i = 0; i < 20; i++)
{
palTogglePad(LED_BLUE_PORT, LED_BLUE_PIN);
palTogglePad(LED_GREEN_PORT, LED_GREEN_PIN);
chThdSleepMilliseconds(40);
}
// Block until booting the app is allowed and CRC matches
while (bootloaderBusy || !isAppValid())
{
palTogglePad(LED_BLUE_PORT, LED_BLUE_PIN);
palTogglePad(LED_GREEN_PORT, LED_GREEN_PIN);
chThdSleepMilliseconds(200);
}
boot_app();
}