wideband/firmware/heater_control.cpp

349 lines
10 KiB
C++

#include "heater_control.h"
#include "wideband_config.h"
#include "ch.h"
#include "hal.h"
#include "port.h"
#include "fault.h"
#include "pwm.h"
#include "sampling.h"
#include "pid.h"
#include "can.h"
struct sensorHeaterParams {
uint16_t closedLoopThresholdESR;
uint16_t targetESR;
uint16_t overheatESR;
uint16_t underheatESR;
};
static const struct sensorHeaterParams heaterParams49 = {
.closedLoopThresholdESR = LSU49_HEATER_CLOSED_LOOP_THRESHOLD_ESR,
.targetESR = LSU49_HEATER_TARGET_ESR,
.overheatESR = LSU49_HEATER_OVERHEAT_ESR,
.underheatESR = LSU49_HEATER_UNDERHEAT_ESR,
};
static const struct sensorHeaterParams heaterParams42 = {
.closedLoopThresholdESR = LSU42_HEATER_CLOSED_LOOP_THRESHOLD_ESR,
.targetESR = LSU42_HEATER_TARGET_ESR,
.overheatESR = LSU42_HEATER_OVERHEAT_ESR,
.underheatESR = LSU42_HEATER_UNDERHEAT_ESR,
};
static const struct sensorHeaterParams heaterParamsAdv = {
//TODO
};
static const sensorHeaterParams *getHeaterParams(SensorType type) {
switch (type) {
case SensorType::LSU49:
return &heaterParams49;
case SensorType::LSU42:
return &heaterParams42;
case SensorType::LSUADV:
return &heaterParamsAdv;
}
}
using namespace wbo;
// 400khz / 1024 = 390hz PWM
static Pwm heaterPwm(HEATER_PWM_DEVICE);
static const PWMConfig heaterPwmConfig = {
400'000,
1024,
nullptr,
{
{PWM_OUTPUT_ACTIVE_HIGH, nullptr},
{PWM_OUTPUT_ACTIVE_HIGH, nullptr},
{PWM_OUTPUT_ACTIVE_HIGH, nullptr},
{PWM_OUTPUT_ACTIVE_HIGH, nullptr}
},
0,
0,
#if STM32_PWM_USE_ADVANCED
0
#endif
};
static constexpr int preheatTimeCounter = HEATER_PREHEAT_TIME / HEATER_CONTROL_PERIOD;
static constexpr int batteryStabTimeCounter = HEATER_BATTERY_STAB_TIME / HEATER_CONTROL_PERIOD;
static const struct sensorHeaterParams *heater;
struct heater_state {
Pid heaterPid;
int timeCounter;
int batteryStabTime;
float rampVoltage;
HeaterState heaterState;
#ifdef HEATER_MAX_DUTY
int cycle;
#endif
uint8_t ch;
uint8_t pwm_ch;
};
static struct heater_state state[AFR_CHANNELS] =
{
{
.heaterPid = Pid(
0.3f, // kP
0.3f, // kI
0.01f, // kD
3.0f, // Integrator clamp (volts)
HEATER_CONTROL_PERIOD
),
.timeCounter = preheatTimeCounter,
.batteryStabTime = batteryStabTimeCounter,
.rampVoltage = 0,
.heaterState = HeaterState::Preheat,
.ch = 0,
.pwm_ch = HEATER_PWM_CHANNEL_0,
},
#if (AFR_CHANNELS > 1)
{
.heaterPid = Pid(
0.3f, // kP
0.3f, // kI
0.01f, // kD
3.0f, // Integrator clamp (volts)
HEATER_CONTROL_PERIOD
),
.timeCounter = preheatTimeCounter,
.batteryStabTime = batteryStabTimeCounter,
.rampVoltage = 0,
.heaterState = HeaterState::Preheat,
.ch = 1,
.pwm_ch = HEATER_PWM_CHANNEL_1,
},
#endif
};
static HeaterState GetNextState(struct heater_state &s, HeaterAllow heaterAllowState, float batteryVoltage, float sensorEsr)
{
bool heaterAllowed = heaterAllowState == HeaterAllow::Allowed;
// Check battery voltage for thresholds only if there is still no command over CAN
if (heaterAllowState == HeaterAllow::Unknown)
{
// measured voltage too low to auto-start heating
if (batteryVoltage < HEATER_BATTETY_OFF_VOLTAGE)
{
s.batteryStabTime = batteryStabTimeCounter;
}
// measured voltage is high enougth to auto-start heating, wait some time to stabilize
if ((batteryVoltage > HEATER_BATTERY_ON_VOLTAGE) && (s.batteryStabTime > 0))
{
s.batteryStabTime--;
}
heaterAllowed = s.batteryStabTime == 0;
}
if (!heaterAllowed)
{
// ECU hasn't allowed preheat yet, reset timer, and force preheat state
s.timeCounter = preheatTimeCounter;
return HeaterState::Preheat;
}
switch (s.heaterState)
{
case HeaterState::Preheat:
s.timeCounter--;
// If preheat timeout, or sensor is already hot (engine running?)
if (s.timeCounter <= 0 || sensorEsr < heater->closedLoopThresholdESR)
{
// If enough time has elapsed, start the ramp
// Start the ramp at 4 volts
s.rampVoltage = 4;
// Next phase times out at 15 seconds
s.timeCounter = HEATER_WARMUP_TIMEOUT / HEATER_CONTROL_PERIOD;
return HeaterState::WarmupRamp;
}
// Stay in preheat - wait for time to elapse
break;
case HeaterState::WarmupRamp:
if (sensorEsr < heater->closedLoopThresholdESR)
{
return HeaterState::ClosedLoop;
}
else if (s.timeCounter == 0)
{
SetFault(s.ch, Fault::SensorDidntHeat);
return HeaterState::Stopped;
}
s.timeCounter--;
break;
case HeaterState::ClosedLoop:
// Check that the sensor's ESR is acceptable for normal operation
if (sensorEsr < heater->overheatESR)
{
SetFault(s.ch, Fault::SensorOverheat);
return HeaterState::Stopped;
}
else if (sensorEsr > heater->underheatESR)
{
SetFault(s.ch, Fault::SensorUnderheat);
return HeaterState::Stopped;
}
break;
case HeaterState::Stopped:
case HeaterState::NoHeaterSupply:
/* nop */
break;
}
return s.heaterState;
}
static float GetVoltageForState(struct heater_state &s, float heaterEsr)
{
switch (s.heaterState)
{
case HeaterState::Preheat:
// Max allowed during condensation phase (preheat) is 2v
return 1.5f;
case HeaterState::WarmupRamp:
if (s.rampVoltage < 10)
{
// 0.3 volt per second, divided by battery voltage and update rate
constexpr float rampRateVoltPerSecond = 0.3f;
constexpr float heaterFrequency = 1000.0f / HEATER_CONTROL_PERIOD;
s.rampVoltage += (rampRateVoltPerSecond / heaterFrequency);
}
return s.rampVoltage;
case HeaterState::ClosedLoop:
// "nominal" heater voltage is 7.5v, so apply correction around that point (instead of relying on integrator so much)
// Negated because lower resistance -> hotter
return 7.5f - s.heaterPid.GetOutput(heater->targetESR, heaterEsr);
case HeaterState::Stopped:
// Something has gone wrong, turn off the heater.
return 0;
}
// should be unreachable
return 0;
}
static THD_WORKING_AREA(waHeaterThread, 256);
static void HeaterThread(void*)
{
int i;
chRegSetThreadName("Heater");
// Wait for temperature sensing to stabilize so we don't
// immediately think we overshot the target temperature
chThdSleepMilliseconds(1000);
// Get sensor type and settings
heater = getHeaterParams(GetSensorType());
while (true)
{
auto heaterAllowState = GetHeaterAllowed();
for (i = 0; i < AFR_CHANNELS; i++) {
heater_state &s = state[i];
// Read sensor state
float heaterEsr = GetSensorInternalResistance(s.ch);
// If we haven't heard from rusEFI, use the internally sensed
// battery voltage instead of voltage over CAN.
float batteryVoltage = heaterAllowState == HeaterAllow::Unknown
? GetInternalBatteryVoltage(s.ch)
: GetRemoteBatteryVoltage();
// Run the state machine
s.heaterState = GetNextState(s, heaterAllowState, batteryVoltage, heaterEsr);
float heaterVoltage = GetVoltageForState(s, heaterEsr);
// Limit to 11 volts
if (heaterVoltage > 11) {
heaterVoltage = 11;
}
// duty = (V_eff / V_batt) ^ 2
float voltageRatio = heaterVoltage / batteryVoltage;
float duty = voltageRatio * voltageRatio;
#ifdef HEATER_MAX_DUTY
s.cycle++;
// limit PWM each 10th cycle (2 time per second) to measure heater supply voltage throuth "Heater-"
if ((s.cycle % 10) == 0) {
if (duty > HEATER_MAX_DUTY) {
duty = HEATER_MAX_DUTY;
}
}
#endif
if (batteryVoltage < 23)
{
// Pipe the output to the heater driver
heaterPwm.SetDuty(s.pwm_ch, duty);
}
else
{
// Overvoltage protection - sensor not rated for PWM above 24v
heaterPwm.SetDuty(s.pwm_ch, 0);
}
}
// Loop at ~20hz
chThdSleepMilliseconds(HEATER_CONTROL_PERIOD);
}
}
void StartHeaterControl()
{
heaterPwm.Start(heaterPwmConfig);
heaterPwm.SetDuty(state[0].pwm_ch, 0);
#if (AFR_CHANNELS > 1)
heaterPwm.SetDuty(state[1].pwm_ch, 0);
#endif
chThdCreateStatic(waHeaterThread, sizeof(waHeaterThread), NORMALPRIO + 1, HeaterThread, nullptr);
}
bool IsRunningClosedLoop(int ch)
{
return state[ch].heaterState == HeaterState::ClosedLoop;
}
float GetHeaterDuty(int ch)
{
return heaterPwm.GetLastDuty(state[ch].pwm_ch);
}
HeaterState GetHeaterState(int ch)
{
return state[ch].heaterState;
}
const char* describeHeaterState(HeaterState state)
{
switch (state) {
case HeaterState::Preheat:
return "Preheat";
case HeaterState::WarmupRamp:
return "WarmupRamp";
case HeaterState::ClosedLoop:
return "ClosedLoop";
case HeaterState::Stopped:
return "Stopped";
case HeaterState::NoHeaterSupply:
return "NoHeaterSupply";
}
return "Unknown";
}