wiki.js/reference/Interface_Protocol.md

922 lines
23 KiB
Markdown
Raw Normal View History

---
title: Interface Protocols
description:
published: true
date: 2021-07-29T23:08:51.046Z
tags:
editor: markdown
dateCreated: 2021-07-29T18:45:18.652Z
---
# Interface Protocols
> This information is intended for Advanced users ,a typical user does not need to have an understanding of the protocols used by the Interfaces in order to use Speeduino.
{.is-warning}
Speeduino can be interfaced to via several ways.
1. USB
2. Secondary Serial
3. Canbus (MCU dependent)
## 1. USB
This is the primary interface and the way in which TunerStudio connects to Speeduino in order to program/configure its settings.
Only a single device can communicate with Speeduino via the USB at a time, this is usually a laptop or other computer running the TunerStudio Application software.
It is also possible to use this interface with other devices if the correct communication protocol is used. Great care must be taken as it is possible to corrupt the configuration of your Speeduino MCU such that it no longer functions correctly or at all!
> It is highly recommended to connect Dashes,Dataloggers and other Third party devices via the Secondary Serial interface or Canbus(if available)
{.is-warning}
### The Primary Protocol
The Speeduino Primary serial protocol uses a request/response method, in that untill it recieves the correct set of commands it will not transmit data out.You must not send additional commands until the current one has been actioned.
All data is little-endian. (Low byte first.) Data is sent in binary format and there is no conversion to text.Commands are case sensitive.
### The Commands
#### 'a' Command
This Command is for legacy use only. It returns the current realtime data.
The data value list speeduino replies with can be seen below , along with their function.ONLY the data value is sent NOT its order number or description.
The format to send is
'a' , '0' , '6'
Speeduino replies with
1. highByte(currentStatus.secl)
2. lowByte(currentStatus.secl)
3. highByte(currentStatus.PW1)
4. lowByte(currentStatus.PW1)
5. highByte(currentStatus.PW2)
6. lowByte(currentStatus.PW2)
7. highByte(currentStatus.RPM)
8. lowByte(currentStatus.RPM)
9. highByte(currentStatus.advance * 10)
10. lowByte(currentStatus.advance * 10)
11. currentStatus.nSquirts);
12. currentStatus.engine);
13. currentStatus.afrTarget);
14. currentStatus.afrTarget); // send twice so afrtgt1 == afrtgt2
15. (99)
// send dummy data as we don't have wbo2_en1
16. (99)
// send dummy data as we don't have wbo2_en2
17. highByte(currentStatus.baro * 10)
18. lowByte(currentStatus.baro * 10)
19. highByte(currentStatus.MAP * 10)
20. lowByte(currentStatus.MAP * 10)
21. highByte(currentStatus.IAT * 10)
22. lowByte(currentStatus.IAT * 10)
23. highByte(currentStatus.coolant * 10)
24. lowByte(currentStatus.coolant * 10)
25. highByte(currentStatus.TPS * 10)
26. lowByte(currentStatus.TPS * 10)
27. highByte(currentStatus.battery10)
28. lowByte(currentStatus.battery10)
29. highByte(currentStatus.O2)
30. lowByte(currentStatus.O2)
31. highByte(currentStatus.O2_2)
32. lowByte(currentStatus.O2_2)
33. (99)
// blank data for knock
34. (99)
// blank data for knock
35. highByte(currentStatus.egoCorrection * 10)
// egocor1
36. lowByte(currentStatus.egoCorrection * 10)
// egocor1
37. highByte(currentStatus.egoCorrection * 10)
// egocor2
38. lowByte(currentStatus.egoCorrection * 10)
// egocor2
39. highByte(currentStatus.iatCorrection * 10)
// aircor
40. lowByte(currentStatus.iatCorrection * 10)
// aircor
41. highByte(currentStatus.wueCorrection * 10)
// warmcor
42. lowByte(currentStatus.wueCorrection * 10)
// warmcor
43. (99)
// blank data for accelEnrich
44. (99)
// blank data for accelEnrich
45. (99)
// blank data for tpsFuelCut
46. (99)
// blank data for tpsFuelCut
47. (99)
// blank data for baroCorrection
48. (99)
// blank data for baroCorrection
49. highByte(currentStatus.corrections * 10)
// gammaEnrich
50. lowByte(currentStatus.corrections * 10)
// gammaEnrich
51. highByte(currentStatus.VE * 10)
// ve1
52. lowByte(currentStatus.VE * 10)
// ve1
53. highByte(currentStatus.VE2 * 10)
// ve2
54. lowByte(currentStatus.VE2 * 10)
// ve2
55. (99)
// blank data for iacstep
56. (99)
// blank data for iacstep
57. (99)
// blank data for cold_adv_deg
58. (99)
// blank data for cold_adv_deg
59. highByte(currentStatus.tpsDOT * 10)
// TPSdot
60. lowByte(currentStatus.tpsDOT * 10)
// TPSdot
61. highByte(currentStatus.mapDOT * 10)
// MAPdot
62. lowByte(currentStatus.mapDOT * 10)
// MAPdot
63. highByte(currentStatus.dwell * 10)
// dwell
64. lowByte(currentStatus.dwell * 10)
// dwell
65. (99)
// blank data for MAF
66. (99)
// blank data for MAF
67. (currentStatus.fuelLoad*10)
// fuelload
68. (99)
// blank data for fuelcor
69. (99)
// blank data for fuelcor
70. (99)
// blank data for portStatus
71. highByte(currentStatus.advance1 * 10)
72. lowByte(currentStatus.advance1 * 10)
73. highByte(currentStatus.advance2 * 10)
74. lowByte(currentStatus.advance2 * 10)
75. to 114. (99)
// bytes 75 to 114 blank data to fill buffer
#### 'A' Command
This returns all the current realtime data(120 bytes 29/07/2021).
The data value list speeduino replies with can be seen below , along with their function.ONLY the data value is sent NOT its order number or description.
The Format to send is
'A'
Speeduino replies with
0. currentStatus.secl
//secl is simply a counter that increments each second. Used to track unexpected resets (Which will reset this count to 0)
1. currentStatus.status1
//status1 Bitfield
2. currentStatus.engine
//Engine Status Bitfield
3. currentStatus.syncLossCounter
4. lowByte(currentStatus.MAP)
5. highByte(currentStatus.MAP)
6. (byte)(currentStatus.IAT + CALIBRATION_TEMPERATURE_OFFSET)
//mat
7. (byte)(currentStatus.coolant + CALIBRATION_TEMPERATURE_OFFSET)
//Coolant ADC
8. currentStatus.batCorrection
//Battery voltage correction (%)
9. currentStatus.battery10
//battery voltage
10. currentStatus.O2
//O2
11. currentStatus.egoCorrection
//Exhaust gas correction (%)
12. currentStatus.iatCorrection
//Air temperature Correction (%)
13. currentStatus.wueCorrection
//Warmup enrichment (%)
14. lowByte(currentStatus.RPM)
//rpm HB
15. highByte(currentStatus.RPM)
//rpm LB
16. (byte)(currentStatus.AEamount >> 1)
//TPS acceleration enrichment (%) divided by 2 (Can exceed 255)
17. lowByte(currentStatus.corrections)
//Total GammaE (%)
18. highByte(currentStatus.corrections)
//Total GammaE (%)
19. currentStatus.VE1
//VE 1 (%)
20. currentStatus.VE2
//VE 2 (%)
21. currentStatus.afrTarget
22. currentStatus.tpsDOT
//TPS DOT
23. currentStatus.advance
24. currentStatus.TPS
// TPS (0% to 100%)
25. lowByte(currentStatus.loopsPerSecond)
26. highByte(currentStatus.loopsPerSecond)
27. lowByte(currentStatus.freeRAM)
28. highByte(currentStatus.freeRAM)
29. (byte)(currentStatus.boostTarget >> 1
//Divide boost target by 2 to fit in a byte
30. (byte)(currentStatus.boostDuty / 100)
31. currentStatus.spark
//Spark related bitfield
32. lowByte(currentStatus.rpmDOT)
// rpmDOT must be sent as a signed integer
33. highByte(currentStatus.rpmDOT)
34. currentStatus.ethanolPct
// Flex sensor value (or 0 if not used)
35. currentStatus.flexCorrection
// Flex fuel correction (% above or below 100)
36. currentStatus.flexIgnCorrection
//Ignition correction (Increased degrees of advance) for flex fuel
37. currentStatus.idleLoad
38. currentStatus.testOutputs
39. currentStatus.O2_2
//O2
40. currentStatus.baro
//Barometer value
41. lowByte(currentStatus.canin[0])
42. highByte(currentStatus.canin[0])
43. lowByte(currentStatus.canin[1])
44. highByte(currentStatus.canin[1])
45. lowByte(currentStatus.canin[2])
46. highByte(currentStatus.canin[2])
47. lowByte(currentStatus.canin[3])
48. highByte(currentStatus.canin[3])
49. lowByte(currentStatus.canin[4])
50. highByte(currentStatus.canin[4])
51. lowByte(currentStatus.canin[5])
52. highByte(currentStatus.canin[5])
53. lowByte(currentStatus.canin[6])
54. highByte(currentStatus.canin[6])
55. lowByte(currentStatus.canin[7])
56. highByte(currentStatus.canin[7])
57. lowByte(currentStatus.canin[8])
58. highByte(currentStatus.canin[8])
59. lowByte(currentStatus.canin[9])
60. highByte(currentStatus.canin[9])
61. lowByte(currentStatus.canin[10])
62. highByte(currentStatus.canin[10])
63. lowByte(currentStatus.canin[11])
64. highByte(currentStatus.canin[11])
65. lowByte(currentStatus.canin[12])
66. highByte(currentStatus.canin[12])
67. lowByte(currentStatus.canin[13])
68. highByte(currentStatus.canin[13])
69. lowByte(currentStatus.canin[14])
70. highByte(currentStatus.canin[14])
71. lowByte(currentStatus.canin[15])
72. highByte(currentStatus.canin[15])
73. currentStatus.tpsADC
74. getNextError()
75. lowByte(currentStatus.PW1)
//Pulsewidth 1 multiplied by 10 in ms. Have to convert from uS to mS.
76. highByte(currentStatus.PW1)
//Pulsewidth 1 multiplied by 10 in ms. Have to convert from uS to mS.
77. lowByte(currentStatus.PW2)
//Pulsewidth 2 multiplied by 10 in ms. Have to convert from uS to mS.
78. highByte(currentStatus.PW2)
//Pulsewidth 2 multiplied by 10 in ms. Have to convert from uS to mS.
79. lowByte(currentStatus.PW3)
//Pulsewidth 3 multiplied by 10 in ms. Have to convert from uS to mS.
80. highByte(currentStatus.PW3)
//Pulsewidth 3 multiplied by 10 in ms. Have to convert from uS to mS.
81. lowByte(currentStatus.PW4)
//Pulsewidth 4 multiplied by 10 in ms. Have to convert from uS to mS.
82. highByte(currentStatus.PW4)
//Pulsewidth 4 multiplied by 10 in ms. Have to convert from uS to mS.
83. currentStatus.status3
84. currentStatus.engineProtectStatus
85. lowByte(currentStatus.fuelLoad)
86. highByte(currentStatus.fuelLoad)
87. lowByte(currentStatus.ignLoad)
88. highByte(currentStatus.ignLoad)
89. lowByte(currentStatus.dwell)
90. highByte(currentStatus.dwell)
91. currentStatus.CLIdleTarget
92. currentStatus.mapDOT
93. lowByte(currentStatus.vvt1Angle)
//2 bytes for vvt1Angle
94. highByte(currentStatus.vvt1Angle)
95. currentStatus.vvt1TargetAngle
96. (byte)(currentStatus.vvt1Duty)
97. lowByte(currentStatus.flexBoostCorrection)
98. highByte(currentStatus.flexBoostCorrection)
99. currentStatus.baroCorrection
100. currentStatus.VE
//Current VE (%). Can be equal to VE1 or VE2 or a calculated value from both of them
101. currentStatus.ASEValue
//Current ASE (%)
102. lowByte(currentStatus.vss)
103. highByte(currentStatus.vss)
104. currentStatus.gear
105. currentStatus.fuelPressure
106. currentStatus.oilPressure
107. currentStatus.wmiPW
108. currentStatus.status4
109. lowByte(currentStatus.vvt2Angle)
110. highByte(currentStatus.vvt2Angle)
111. currentStatus.vvt2TargetAngle
112. (byte)(currentStatus.vvt2Duty)
113. currentStatus.outputsStatus
114. (byte)(currentStatus.fuelTemp + CALIBRATION_TEMPERATURE_OFFSET)
//Fuel temperature from flex sensor
115. currentStatus.fuelTempCorrection
//Fuel temperature Correction (%)
116. currentStatus.advance1
//advance 1 (%)
117. currentStatus.advance2
//advance 2 (%)
118. currentStatus.TS_SD_Status
//SD card status
119. lowByte(currentStatus.EMAP)
120. highByte(currentStatus.EMAP)
#### 'b' Command
New EEPROM burn command to only burn a single page at a time
The Format to send is
'b' , '0' , '*'
Where * is the config page number
Speeduino response
(none)
#### 'B' Command
This Burns the current configuration from RAM into EEPROM/non-volatile storage.
The Format to send is
'B'
Speeduino response
(none)
#### 'c' Command
Send the current loops/sec value
The Format to send is
'c'
Speeduino response
lowByte(currentStatus.loopsPerSecond) , highByte(currentStatus.loopsPerSecond)
#### 'C' Command
Test communications. This is used by Tunerstudio to see whether there is an ECU on a given serial port
The Format to send is
'B'
Speeduino response
#### 'd' Command
Send a CRC32 hash of a given page
The Format to send is
'd' , '0' , '*'
where * is the value to calc the hash of.
The response is 3 bytes calculated as follows.
CRC32_val = calculateCRC32( * )
((CRC32_val >> 24) & 255) )
byte 1 = ( ((CRC32_val >> 16) & 255) )
byte 2 = ( ((CRC32_val >> 8) & 255) )
byte 3 = ( (CRC32_val & 255) )
Speeduino response
byte 1 , byte 2 , byte 3
#### 'E' Command
Command button commands.
Commands are built as cmdCombined = word(cmdGroup, cmdValue).
this is the current(29/07/2021) list of valid cmdCombined command values.
TS_CMD_TEST_DSBL 256
TS_CMD_TEST_ENBL 257
TS_CMD_INJ1_ON 513
TS_CMD_INJ1_OFF 514
TS_CMD_INJ1_50PC 515
TS_CMD_INJ2_ON 516
TS_CMD_INJ2_OFF 517
TS_CMD_INJ2_50PC 518
TS_CMD_INJ3_ON 519
TS_CMD_INJ3_OFF 520
TS_CMD_INJ3_50PC 521
TS_CMD_INJ4_ON 522
TS_CMD_INJ4_OFF 523
TS_CMD_INJ4_50PC 524
TS_CMD_INJ5_ON 525
TS_CMD_INJ5_OFF 526
TS_CMD_INJ5_50PC 527
TS_CMD_INJ6_ON 528
TS_CMD_INJ6_OFF 529
TS_CMD_INJ6_50PC 530
TS_CMD_INJ7_ON 531
TS_CMD_INJ7_OFF 532
TS_CMD_INJ7_50PC 533
TS_CMD_INJ8_ON 534
TS_CMD_INJ8_OFF 535
TS_CMD_INJ8_50PC 536
TS_CMD_IGN1_ON 769
TS_CMD_IGN1_OFF 770
TS_CMD_IGN1_50PC 771
TS_CMD_IGN2_ON 772
TS_CMD_IGN2_OFF 773
TS_CMD_IGN2_50PC 774
TS_CMD_IGN3_ON 775
TS_CMD_IGN3_OFF 776
TS_CMD_IGN3_50PC 777
TS_CMD_IGN4_ON 778
TS_CMD_IGN4_OFF 779
TS_CMD_IGN4_50PC 780
TS_CMD_IGN5_ON 781
TS_CMD_IGN5_OFF 782
TS_CMD_IGN5_50PC 783
TS_CMD_IGN6_ON 784
TS_CMD_IGN6_OFF 785
TS_CMD_IGN6_50PC 786
TS_CMD_IGN7_ON 787
TS_CMD_IGN7_OFF 788
TS_CMD_IGN7_50PC 789
TS_CMD_IGN8_ON 790
TS_CMD_IGN8_OFF 791
TS_CMD_IGN8_50PC 792
TS_CMD_STM32_REBOOT 12800
TS_CMD_STM32_BOOTLOADER 12801
TS_CMD_VSS_60KMH 39168 //0x99x00
TS_CMD_VSS_RATIO1 39169
TS_CMD_VSS_RATIO2 39170
TS_CMD_VSS_RATIO3 39171
TS_CMD_VSS_RATIO4 39172
TS_CMD_VSS_RATIO5 39173
TS_CMD_VSS_RATIO6 39174
The Format to send is
'E' , cmdGroup , cmdValue
eg for cmdtestspk1on send 'E' , '0x03' , '0x01'
Speeduino response
(none , hardware action only)
#### 'F' Command
send serial protocol version
The Format to send is
'F'
Speeduino response
'0' , '0' , '1'
NOTE these values are sent in ASCII.
#### 'h' Command
Stop the tooth logger
This reconnects the crank and cam input interrupts back to the normal input trigger code.
The Format to send is
'h'
Speeduino response
(none)
#### 'H' Command
Start the tooth logger
This disconnects the crank and cam input interrupts from their normal input trigger code and routes them to the tooth logger code.An acknowledge reply is made by speeduino.
The Format to send is
'H'
Speeduino response
'1'
#### 'j' Command
Stop the composite logger
This reconnects the crank and cam input interrupts back to the normal input trigger code.
The Format to send is
'j'
Speeduino response
#### 'J' Command
Start the composite logger
This disconnects the crank and cam input interrupts from their normal input trigger code and routes them to the composite logger code.An acknowledge reply is made by speeduino.
The Format to send is
'J'
Speeduino response
'1'
#### 'L' Command
List the contents of current page in human readable form
You must set the current page prior to issuing this command to set the required page to be generated.
the data structure is as follows.
currentPage veMapPage:
Serial.println(F("\nVE Map"));
serial_print_3dtable(fuelTable);
currentPage veSetPage:
Serial.println(F("\nPg 2 Cfg"));
// The following loop displays in human readable form of all byte values in config page 1 up to but not including the first array.
serial_println_range((byte *)&configPage2, configPage2.wueValues);
serial_print_space_delimited_array(configPage2.wueValues);
// This displays all the byte values between the last array up to but not including the first unsigned int on config page 1
serial_println_range(_end_range_byte_address(configPage2.wueValues), (byte*)&configPage2.injAng);
// The following loop displays four unsigned ints
serial_println_range(configPage2.injAng, configPage2.injAng + _countof(configPage2.injAng));
// Following loop displays byte values between the unsigned ints
serial_println_range(_end_range_byte_address(configPage2.injAng), (byte*)&configPage2.mapMax);
Serial.println(configPage2.mapMax);
// Following loop displays remaining byte values of the page
serial_println_range(&configPage2.fpPrime, (byte *)&configPage2 + sizeof(configPage2));
break;
currentPage ignMapPage:
Serial.println(F("\nIgnition Map"));
serial_print_3dtable(ignitionTable);
currentPage ignSetPage:
Serial.println(F("\nPg 4 Cfg"));
Serial.println(configPage4.triggerAngle);// configPage4.triggerAngle is an int so just display it without complication
// Following loop displays byte values after that first int up to but not including the first array in config page 2
serial_println_range((byte*)&configPage4.FixAng, configPage4.taeBins);
serial_print_space_delimited_array(configPage4.taeBins);
serial_print_space_delimited_array(configPage4.taeValues);
serial_print_space_delimited_array(configPage4.wueBins);
Serial.println(configPage4.dwellLimit);// Little lonely byte stuck between two arrays. No complications just display it.
serial_print_space_delimited_array(configPage4.dwellCorrectionValues);
serial_println_range(_end_range_byte_address(configPage4.dwellCorrectionValues), (byte *)&configPage4 + sizeof(configPage4));
currentPage afrMapPage:
Serial.println(F("\nAFR Map"));
serial_print_3dtable(afrTable);
break;
currentPage afrSetPage:
Serial.println(F("\nPg 6 Config"));
serial_println_range((byte *)&configPage6, configPage6.voltageCorrectionBins);
serial_print_space_delimited_array(configPage6.voltageCorrectionBins);
serial_print_space_delimited_array(configPage6.injVoltageCorrectionValues);
serial_print_space_delimited_array(configPage6.airDenBins);
serial_print_space_delimited_array(configPage6.airDenRates);
serial_println_range(_end_range_byte_address(configPage6.airDenRates), configPage6.iacCLValues);
serial_print_space_delimited_array(configPage6.iacCLValues);
serial_print_space_delimited_array(configPage6.iacOLStepVal);
serial_print_space_delimited_array(configPage6.iacOLPWMVal);
serial_print_space_delimited_array(configPage6.iacBins);
serial_print_space_delimited_array(configPage6.iacCrankSteps);
serial_print_space_delimited_array(configPage6.iacCrankDuty);
serial_print_space_delimited_array(configPage6.iacCrankBins);
// Following loop is for remaining byte value of page
serial_println_range(_end_range_byte_address(configPage6.iacCrankBins), (byte *)&configPage6 + sizeof(configPage6));
break;
currentPage boostvvtPage:
Serial.println(F("\nBoost Map"));
serial_print_3dtable(boostTable);
Serial.println(F("\nVVT Map"));
serial_print_3dtable(vvtTable);
break;
currentPage seqFuelPage:
Serial.println(F("\nTrim 1 Table"));
serial_print_3dtable(trim1Table);
break;
currentPage canbusPage:
Serial.println(F("\nPage 9 Cfg"));
serial_println_range((byte *)&configPage9, (byte *)&configPage9 + sizeof(configPage9));
break;
currentPage fuelMap2Page:
Serial.println(F("\n2nd Fuel Map"));
serial_print_3dtable(fuelTable2);
break;
currentPage ignMap2Page:
Serial.println(F("\n2nd Ignition Map"));
serial_print_3dtable(ignitionTable2);
break;
currentPage warmupPage:
N/A
currentPage progOutsPage:
N/A
#### 'm' Command
Send the current free memory
The Format to send is
'm'
Speeduino response
'lowByte(currentStatus.freeRAM)' , 'highByte(currentStatus.freeRAM)'
#### 'M' Command
#### 'N' Command
Displays a new line. Like pushing enter in a text editor
The Format to send is
'N'
Speeduino response
' '
NOTE this is sent as plain text NOT ASCII
#### 'p' Command
Sets the current Page.This is the new foramt used by TunerStudio.
6 bytes are required:
- 2 byte - Page identifier
- 2 byte - offset
- 2 byte - Length
#### 'P' Command
Sets the current page. This is a legacy function and is no longer used by TunerStudio. It is maintained for compatibility with other systems.
The Format to send is
'P' , '*'
Where * is the Page number to be selected. this MUST be sent in ASCII format
Speeduino response
(none)
#### 'Q' Command
Send the code version. The response is a 20 byte long ASCII converted string
The Format to send is
'Q'
Speeduino response
'speeduino 202104-dev'
Above is an example reply, the actual reply will depend on what firmware is installed.
#### 'r' Command
This command has multiple functions, It requests specific data.This data may be realtime values or from RTC or SD card.
#### 'S' Command
send the code version. The response is a 20 byte long ASCII converted string
The Format to send is
'S'
Speeduino response
'Speeduino 2021.04-dev'
Above is an example reply, the actual reply will depend on what firmware is installed.
#### 't' Command
receive new Calibration info.
Command structure: "t", tble_idx , data array.
#### 'T' Command
Send 256 tooth log entries to Tuner Studios tooth logger
6 bytes required:
2 - Page identifier
2 - offset
2 - Length
#### 'U' Command
User wants to reset the Arduino (probably for FW update)
#### 'V'Command
send VE table and constants in binary
#### 'w' Command
#### 'W'Command
receive new VE or constant
'W' , offset , newbyte
#### 'z' Command
Send the 256 tooth log entries to a terminal emulator
#### '?' Command
This will send out a human text readable string with details of the command characters and their functions.
The Format to send is
'?'
Speeduino response
===Command Help===
All commands are single character and are concatenated with their parameters without spaces.
Syntax: command , parameter1 , parameter2 , parameterN
===List of Commands===
A - Displays 31 bytes of currentStatus values in binary (live data)
B - Burn current map and configPage values to eeprom
C - Test COM port. Used by Tunerstudio to see whether an ECU is on a given serial port. Returns a binary number.
N - Print new line.
P - Set current page. Syntax: P , pageNumber
R - Same as A command
S - Display signature number
Q - Same as S command
V - Display map or configPage values in binary
W - Set one byte in map or configPage. Expects binary parameters.
Syntax: W+<offset , newbyte
t - Set calibration values. Expects binary parameters. Table index is either 0, 1, or 2.
Syntax: t+ , tble_idx , newValue1 , newValue2 , newValueN
Z - Display calibration values
T - Displays 256 tooth log entries in binary
r - Displays 256 tooth log entries
U - Prepare for firmware update. The next byte received will cause the Arduino to reset.
? - Displays this help page
## 2. Secondary Serial
The Secondary Serial interface enables an external device to access data from Speeduino or to expand the io of the Speeduino ECU.
A full explanation of the features and operation of secondary serial can be found here. [Secondary_Serial_IO_interface](/en/Secondary_Serial_IO_interface)
## 3. CanBus
Canbus is only available directly on Teensy and STM32 MCU based Speeduino. Mega2560 based units need additional hardware such as DxControl GPIO .
A full explanation of the features and operation of secondary serial can be found here.
[Canbus_Support](/en/Canbus_Support2)