
Contents

So what’s the go? . 1
Current Feature List . 1
Overview . 3
Installation - SpeedyLoader . 3
Installation - Manually Compiling . 3

Requirements . 4
Downloading the firmware . 4
Compiling the firmware . 4
Installing . 5
Older firmware releases . 6
Verifying Firmware . 6
Troubleshooting . 6

Hardware Requirements overview 9
Arduino . 9
Inputs . 9

Crank sensor . 9
TPS . 10
MAP (Manifold Pressure) . 11
Temperature Sensors (CLT and IAT) . 11
Exhaust Gas Oxygen Sensors (O2 and WBO2) . 11
Application-Specific Inputs . 12

Outputs . 14
Injectors . 14
Coils . 14
Aux Outputs . 15

Auxilary IO . 16
CanBus . 16
Third Party Addon’s . 16
GPIO for Speeduino . 17

1

2020-01-14T14:06:47.340Z Speeduino Firmware setup

So what’s the go?

The Speeduino project aims to create a fully featured, totally open source (Hardware and firmware)
Engine Management System (EMS) / Engine Control Unit (ECU) on top of the | Arduino Mega platform.
In order of priority the specific aims are:

• Low barrier to entry (ie price and availability of hardware, clear, well documented code, easily
accessible software development etc)

• Capabilities / Features
• Simplicity of development

In short, the main goal is to be in all places as simple as possible. No weird build environments, no
knowledge of assembly needed, favour simplicity over performance where needed and make as low
a barrier to entry as can possibly be achieved. Both the hardware and software/firmware sides of the
system are covered with all being covered under open licenses.

Current Feature List

What you will get is flexible and configurable fuel and ignition management that will work for the
majority of every day type setups. Currently supported features include:

• 16x16 3D fuel and ignition maps, with base of either TPS (Alpha-N) or MAP (Speed Density)
• Supports up to 8 cylinders fuel and ignition with 4 channels of fuel and 4 channels of ignition
outputs

– 1, 2 (Even fire only), 3 and 4 cylinder engines with full sequential fuel and ignition
– 6 (even fire only) and 8 cylinder engines are supportedwithwasted spark and 2 squirts per
cycle

• 6x6 3D individual cylinder trim on engines up to 4 cylinders
• After Start Enrichment
• Rev limiting (Spark based, hard and soft)
• Cranking specific enrichment, dwell timing and advance
• General logging through TunerStudio
• High speed tooth logging
• TPS calibration through TunerStudio
• Sensor calibration through TunerStudio (Coolant, IAT and O2)
• Warm Up Enrichment (WUE)
• TPS based acceleration enrichment

2

http://arduino.cc/en/Main/arduinoBoardMega2560

Speeduino Firmware setup 2020-01-14T14:06:47.340Z

• Tacho output
• Fuel pump activation/deactivation (With priming)
• Over dwell and over duty protection
• Battery voltage compensation for dwell and injectors
• Modular wheel decoder support. Included decoders:

– Missing tooth (Eg 36-1, 60-2 etc)
– Dual wheel (Evenly spaced teeth on crank, single tooth on cam)
– Basic distributor
– GM 7X
– GM 24X
– 4g63 aka 4/2
– “Jeep 2000”
– Audi 135
– Miata 99-05
– Honda D17 (12+1)
– Nissan 360
– Subaru 6/7
– Taking requests…

• Open and closed loop idle control (PWM and Stepper)
• Closed loop boost control
• Open loop VVT control
• Deceleration fuel cut off (DFCO)
• Launch control
• Flex fuel
• O2 based autotune (Registered version of TunerStudio required)

Overview

The Speeduino firmware is the code that powers the hardware andmust be installed onto your board
prior tousing theECU.New firmware releases aremade regularly (Approximately every 2months) that
bring new features, bug fixes and performance improvements so staying up to date is highly recom-
mended.

With the goal of maximum simplicity in mind, the process of compiling and installing the firmware
is reasonably straightforward. Most users will use the SpeedyLoader method for installing the
firmware

3

2020-01-14T14:06:47.340Z Speeduino Firmware setup

Installation - SpeedyLoader

The simplest (and recommended) method of installing the Speeduino firmware onto a standard
Arduino Mega 2560 is with the SpeedyLoader utility. SpeedyLoader takes care of downloading the
firmware and installing it onto an Arduino without the need to manually compile any of the code
yourself. You can choose the newest firmware that has been released, or select from one of the older
ones if preferred. SpeedyLoader will also download the INI file and optionally a base tune for the
firmware you choose so it can be loaded into your TunerStudio project.

• Windows: 32-bit / 64-bit
• Mac: SpeedyLoader.dmg
• Linux: SpeedyLoader.AppImage (Will need to bemade executable after downloading)
• Raspberry Pi SpeedyLoader.AppImage

– Linux / RaspberryPi versions require libusb libraries to be installed. EG if on De-
bian/Ubuntu: sudo apt-get install libusb-1.0-0 libusb-0.1-4:i386

Once the firmware is installed on the board, see Connecting to TunerStudio for more details on how
to configure TunerStudio

Installation - Manually Compiling

Note thatmanually compiling the firmware isNOT required to install Speeduino, the easiest (and
recommended for most users) method is using SpeedyLoader as described above. {.is-warning}

If you want to compile the firmware yourself, or make any code changes, then the source of both the
releases and the current development version is freely available.

Requirements

• A Windows, Mac or linux PC
• One of the following:

– The Arduino IDE. Current minimum version required is 1.6.7, although a newer version is
recommended.

– PlatformIO. Can be downloaded from http://platformio.org/platformio-ide

• A copy of the latest Speeduino codebase. See below.
• A copy of TunerStudio to test that the firmware has uploaded successfully

4

https://github.com/speeduino/SpeedyLoader/releases/latest/download/SpeedyLoader-ia32.exe
https://github.com/speeduino/SpeedyLoader/releases/latest/download/SpeedyLoader-x64.exe
https://github.com/speeduino/SpeedyLoader/releases/latest/download/SpeedyLoader.dmg
https://github.com/speeduino/SpeedyLoader/releases/latest/download/SpeedyLoader.AppImage
https://github.com/speeduino/SpeedyLoader/releases/latest/download/SpeedyLoader-armv7l.AppImage
http://arduino.cc/en/Main/Software
http://platformio.org/
http://platformio.org/platformio-ide
http://www.tunerstudio.com/index.php/downloads

Speeduino Firmware setup 2020-01-14T14:06:47.340Z

Downloading the firmware

There are twomethods for obtaining the Speeduino firmware:

1. Regular, stable code drops are produced and made as releases on Github. These can be found
at: https://github.com/noisymime/speeduino/releases

2. If you want the latest and greatest (And occasionally flakiest) code, the git repository can be
cloned and updated. See https://github.com/noisymime/speeduino

Compiling the firmware

• Start the IDE, select File > Open, navigate to the location you downloaded Speeduino to and
open the speeduino.ino file.

• Set the board type: Tools > Board > Arduino Mega 2560 or Mega ADK (This is the only board cur-
rently supported)

• Click the Verify icon in the top left corner (Looks like a tick)

At this point you should have a compiled firmware! If you experienced a problem during the compile,
see the Troubleshooting section below.

This videowalks through thewhole process of installing the firmware on your Arduino from scratch:

Optional (But recommended)

There is an option available for changing the compiler optimization level, which can improve . By
default, the IDE uses the -Os compile option, which focuses on producing small binaries. As the size
of the Speeduino code is not an issue but speed is a consideration, changing this to -O3 produces
better results (Approximately 20% faster, with a 40% larger sketch size) To do this, you need to edit
the platform.txt file:

• Make sure the Arduino IDE isn’t running
• Open the platform.txt file which is in the following locations:

– OnWindows: c:\Program Files\Arduino\hardware\arduino\avr
– OnMac: /Applications/Arduino/Contents/Resources/Java/hardware/arduino/avr/
– On Linux:

• On the following 3 entries, change the Os to be O3:

– compiler.c.flags
– compiler.c.elf.flags

5

https://github.com/noisymime/speeduino/releases
https://github.com/noisymime/speeduino
http://speeduino.com/wiki/index.php?title=Compiling_and_Installing_Firmware&action=edit§ion=4#Troubleshooting

2020-01-14T14:06:47.340Z Speeduino Firmware setup

– compiler.cpp.flags

• Save the file and restart the Arduino IDE

Note: This is NOT required if using PlatformIO, the above optimisation is applied automatically
there

Installing

Once you’ve successfully compiled the firmware, installation on the board is trivial.

• Plug in your Mega 2560 to a free USB port
• If you’re running an older version ofWindows and this is the first time you’ve used an Arduino,
youmay need to install drivers for the Arduino serial chip (USB-UART or “USB adapter chip”).

Most official boards andmany non-official versions use the ATMega16U2 or 8U2, whereasmany of the
Mega2560 clone boards utilize the CH340G IC. Both types workwell. The serial chips can generally be
identified by appearance:

ATMega16U (square IC) - drivers included in Windows, MacOS and Linux:

or

WCH CH340G (Rectangular IC) - uses “CH341” drivers fromWCH for Windows:

WCH-original CH340/CH341 drivers for other systems (Mac, Linux, Android, etc) may be found here.

• In Arduino IDE; select the Mega2560: Tools > Board
• Select your system’s serial port to upload: Tools > Serial Port
• Hit the Upload button from the top left corner (Looks like an arrow point to the right)

Assuming all goes well, you should see the IDEmessage that avrdude is done, similar to this:

Older firmware releases

If required, older firmware releases and details can be found at Firmware History

Verifying Firmware

The firmware is now loaded onto your board and you are now able tomove onto Connecting to Tuner-
Studio.

6

http://www.wch.cn/downloads/file/65.html
http://www.wch.cn/downloads/CH341SER_ZIP.html

Speeduino Firmware setup 2020-01-14T14:06:47.340Z

Optionally, you may perform a manual verification of the firmware by using the Arduino IDE’s Serial
Monitor. This can be started by selecting “Serial Monitor” from the Tools menu.

In thewindow that appears, enter a capital “S” (no quotes) and press Enter. TheMega should respond
with the year andmonth of the code version installed (xxxx.xx):

1 Speeduino 2017.03

NOTE: Ensure the baud rate is set to 115200

You can also enter “?” for a list of queries from your Mega.

Troubleshooting

Incorrect Arduino board selected

If you see the following (or similar) errors when trying to compile the firmware and the solutions:

1 scheduler.ino:317:7: error: ‘’OCR4A was not declared in this scope
2 scheduler.ino:323:8: error: ‘’TIMSK5 was not declared in this scope
3 scheduler.ino:323:25: error: ‘’OCIE4A was not declared in this scope

Youmay have thewrong kind of Arduino board selected. Set the board type by selecting Tools > Board
> Arduino Mega 2560 or Mega ADK

Entire Speeduino project is not opened

The following can occur if you have only opened the speeduino.ino file rather than the whole
project.

speeduino.ino:27:21: fatal error: globals.h: No such file or directory

Make sure all the files are contained within the same directory, then select File->Open and find the
speeduino.ino file. If you have opened the project correctly, you should have multiple tabs along the
top:

title: Hardware Requirements description: published: true date: 2020-01-14T07:31:48.212Z tags:
wiring, hardware —

7

2020-01-14T14:06:47.340Z Speeduino Firmware setup

8

Hardware Requirements overview

This pagepresents thebasic hardware requirements of a Speeduino system, aswell as anumber of op-
tions for different variations of these. It does not represent every supported combination of hardware,
but provides an overview if you’re starting out.

Arduino

Speeduino uses the Arduino Mega 2560 R3 as the controller. All official and most clone Arduino
Mega 2560 boards will work fine, but it is recommended to use a board that has the 16u2 serial
interface rather than the cheaper CH340. Which chip a board uses can usually be found on the
information/specification listing frommost retailers, but if in doubt, ask the seller you are looking to
buy from.

Inputs

Crank sensor

This is arguably themost important sensor for Speeduino to function correctly. The signal going to the
Arduino must be a 0v-5v square wave series of pulses (shown below) representing teeth on a wheel
running at crank (or cam) speed. Many Hall and “opto” sensors meet this digital square-wave spec. If
only a crankshaft trigger wheel is used (no cam signal), the crank wheel must have a “missing” tooth
in order to provide position information as well as the engine RPM. Tested missing-tooth wheels cur-
rently are 4-1, 12-1, 36-1 and 60-2.

Alternatively (and necessary for full-sequential injection) an added cam signal with or without crank
wheelmissing teeth. These setups are indicatedby the added “/x”, such as 60-2/1, for a 60-tooth crank
wheel, with 2missing teeth, and a 1-tooth cam signal per cycle. Cam-speedmissing-tooth wheels can
also support semi and full-sequential.

VR (variable reluctance) sensors can also be used, however as the board does not contain any sort of
signal conditioner to convert the sinewave (below) to the required squarewave, anadditionalmodule

9

2020-01-14T14:06:47.340Z Speeduino Firmware setup

will beneeded. An8-pinDIP socket is locatedonv0.3.x andv0.4.x seriesofficial boards for thispurpose
as IC3. The MAX9926 chip has been tested to work with most types of input signals, and is available
from the Speeduino Store, however any similar module that outputs a 0v-5v square wave (LM1815,
LM358, SSC/DSC, many OEMmodules, etc.) should also work fine with VR sensor signals.

Figure 0.1: vr_wave.gif

TPS

TPS sensor must be of the 3 wire potentiometer type, rather than the 2 wire on/off switches found on
some throttles. If your TPS is a 3 wire sensor then it will likely work, however youwill need to confirm
it is a potentiometer (variable) type sensor.

The TPS functions by sending an analog variable voltage signal to Speeduino in order to report the
current position of the throttle. It is typically supplied with V+ of 5V and ground (GND, signal ground,
or signal return), routing through an internal potentiometer to output a low voltage at low throttle
opening, and a rising voltage with greater throttle opening.

If using a TPS with unknown connections; it is recommended to test the TPS with an ohm meter in
order to determine the connection of each pin without risking damage by applying sensor power ran-
domly. This can be accomplished on the bench or with the engine off and TPS disconnected:

• Assign a letter to each pin.
• Attach the ohm meter to two pins, and operate the throttle from closed (idle) to wide-open
(WOT), recording the results.

• Find the pair of pins where the resistance does not change significantly from idle toWOT. These
are your two power pins.

• The remaining pin is your Signal pin.
• In order to determine which power pin is V+ and which is GND, test ohms between the Signal
pin and one power pin.

• In idle position; if ohms are low that power pin is GND. If ohms are high that power pin is V+.

10

https://speeduino.com/shop/index.php?id_product=17&controller=product

Speeduino Firmware setup 2020-01-14T14:06:47.340Z

Most usable TPS sensors have 3 pins. If your TPS has a different number of pins, referring to the orig-
inal engine wiring diagram may show the function, and whether it is usable or which pins to use for
Speeduino. For TP sensors thatwork “backwards”, andwiring cannot be changed, a simple codemod-
ification is available on the Forums to make use of this type of TPS.

MAP (Manifold Pressure)

RecommendedMAPsensor is theMPX4250 fromFreescale, howevermanyMAPsensors are supported.
If you want to use one that is not included in the list (Under Tools->Map Calibration in TunerStudio)
then pleasemake a new thread in the forum requesting this. Other sensors can andwill work just fine,
but you will need to calibrate these within TunerStudio against a different set of values.

Temperature Sensors (CLT and IAT)

Any standard 2-wire thermistor sensor can be used for these temperature functions. The sensors have
1 side connected to a ground (Preferably from the ECU) and the other running to the signal line. These
sensors have no polarity, so the orientation of these wires does not matter.

For full details, please see the Sensor Calibration page

Exhaust Gas Oxygen Sensors (O2 andWBO2)

The type of O2 sensor (narrow or wide-band)must be selected in TunerStudio under Tools > Calibrate
AFR Table.

Narrow-band

NBO2 sensor signals are read directly by Speeduino. TunerStudio applies the standard non-linear 0-
volt to 1-volt values for all standardNBO2 sensors automatically under calibration. Once set in calibra-
tion, Speeduino will use the designated NBO2 to adjust fueling according to the entries you make in
the AFR table (Tuning > AFR Table), and the sensor is selected for type and parameters (or disabled) un-
der Tuning > AFR/O2. Note that narrow-band sensorswere originally designed to target stoichiometric
AFR (Lambda 1.0) for efficient catalytic emissions control, and are generally not sufficiently accurate
or suitable for tuning efficient lean economy or rich power fueling. While not recommended; involved
tuning methods are available to allow limited and approximate tuning for lean and rich AFRs using a
NBO2 sensor.

11

https://speeduino.com/forum/viewtopic.php?f=19&t=1159#p18146

2020-01-14T14:06:47.340Z Speeduino Firmware setup

Wide-band

Wide-band oxygen (WBO2) sensors can detect and report a wider range of lambda () or AFRs than
narrow-band, and with greater accuracy, from approximately 10:1 to 20:1 (about 0.7 to 1.3 lambda),
depending on specific sensor version and controller. Speeduino cannot use WBO2 sensors directly,
requiring an external controller to process the signal and to apply sensor heating control. Enter the
controller brand andmodel from the list displayed. If the controller signal is generic linear or custom,
select and enter the required information, or an option to install a custom INC file is available in the
menu list.

Once set in Tools > Calibrate AFR Sensor, Speeduino can use the designated WBO2 to report lamb-
da/AFR to TunerStudio for gauge display. After the sensor is selected for type and parameters under
Tuning > AFR/O2 it can adjust corrective fueling on-the-fly according to the entries youmake in the AFR
table (Tuning > AFR Table), and for auto-tuning in TunerStudio, or MegaLogViewer in real-time or from
logs. Settings also include the option to disable. Although Speeduino can use the WBO2 information
to correct fueling; it is strongly suggested it not be used to compensate for poor tuning.

Application-Specific Inputs

Circuits and techniques Speeduino users have found useful for adapting or implementing certain in-
puts or functions.

Flex Fuel Sensor

See the Flex Fuel section for details on hardware and configuration of flex fuel setups.

12V Input Signal

Some position sensors output a 12v signal. To correct this, and avoid damaging the Arduino, a circuit
like the one in the diagram can be constructed. The resistor R1 is not always required, but will make
sure that any output that is not high is pulled low. Along with this circuit use the pull-up jumper on
the Speeduino. This will effectively change a 0v/12v into a 0v/5v signal.

Many thanks to PSIG for the info and diagram.

GM 7 / 8 pin Distributor Module

The GM 7 /8 pinmodules have been used in a wide variety of GM engines from 4 cylinder to V8s (small
and big block). The 8 pin distributor was also widely used in marine applications by Indmar, Mer-

12

Speeduino Firmware setup 2020-01-14T14:06:47.340Z

cruiser, and others.

GM 7-Pin Module

GM 8-Pin Ignition Module

The 7 and 8 pin modules are functionally equivalent and largely share the same wiring. The 7 pin
is used in the large coil-in-cap distributors while the 8 pin is used in the small cap distributors with
remote mounted coils. The 8 pin has one additional terminal that provides a sensor ground. Both
modules provide coil ground via the metal grommets used to secure them to the distributor.

These modules provide an simple means for computer controlled timing while retaining the distrib-
utor. They were designed to be used with throttle body injection and port injection motors and pro-
vide automatic coil current limiting (7.5 amps was the GM specification) and automatic dwell control.
The can be adapted to other distributor applications that use either variable reluctor or hall type sen-
sors.

Pin Descriptions and connections • “+” : Battery voltage from a switched ignition source. Provides
the power to operate the module.

• “C-” : Ignition coil negative connection.

• “P & N” : Positive and Negative of the distributor reluctor. Polarity is important. GM distributor con-
nectors can only be connected one way. For use with other distributors, verify polarity of the reluctor
leads.

• “B” : Ignition bypass. When cranking, grounding this line bypasses computer control of timing. The
timing iscontrolled by the module only. This can be done using the Speeduino Cranking Bypass pin
function (see below).

• “R” : Reference or tach signal. This outputs a 5 volt square wave that serves as the RPM1 input for
the Speeduino. To use this, connect it to RPM1 and set JP2 to Hall and JP4 connected (ie, 5 volt pull
up).

• “E” : Timing control signal. When pin B has 5 volts on it, themodule allows Speeduino to control the
timing using this pin. The output of Ign1 should be connected to this pin.

• “G”: (8 pin only) Signal ground. Should be connected to the Speeduino sensor ground. (Module
ground is provided through the metal mounting grommets)

A timingbypass circuitmust be constructed toutilize the Speeduino ignition timing control. The small
circuit below should be built in the proto area.

In addition, the cranking bypass should be turned on and the bypass pin should be set to pin 3 in the
Cranking Settings dialog (under Starting / Idle in TunerStudio):

13

2020-01-14T14:06:47.340Z Speeduino Firmware setup

Trigger settings (under Starting / Trigger Setup in TunerStudio) should be as shown below. You will
need to adjust the trigger angle to get correct timing. Instructions for this are in the wiki.

Timing control is set in the Spark / Spark Settings dialog:

The module works well, however, some applications result in a noisy trigger signal. This shows as
an unstable RPM (either at idle, or more frequently, at higher speeds). Trigger filtering may help, but
a modification may be necessary to clean up the signal. The circuit below effectively cleans/filters
the signal, allowing use with no trigger filtering by the Speeduino. It has been tested with single and
8-pole reluctors andmodules from GM, Transpo and a no-name generic.

Many thanks to apollard for this outline information.

Outputs

Injectors

Speeduino injector drivers use on/off (not PWM) control and are designed to work with “High-Z” in-
jectors. This type of injectors are also known as “saturated” or “high-impedance” that use full battery
voltage to control the injector open cycle, and generally the impedance is greater than about 8 Ohms.
If you are running “Low-Z” (“peak and hold” or PWM-controlled) injectors that are lower impedance,
you will need to install series resistors on these to avoid damaging the board with excessive current.
The resistor ohms and watt rating can be calculated by Ohm’s Law, or use an Internet calculator page
such as the Speeduino Injector Resistor Calculator.

Speeduino can drive up to 2 High-Z injectors per output channel.

Coils

Current versions of the Speeduino use low-power output signals, designed to work with external
small-signal ignition coil drivers, whether a separate type (module or ICM, igniter, IGBT, etc.), or built
into the coil assembly (“smart” coils). This method permits Speeduino to have great flexibility to con-
trol most types of ignition systems. Attaching the Speeduino outputs directly to a traditional high
current passive (“dumb” or 2-pin) ignition coil without an ignition coil driver WILL cause damage to
your Arduino.

HowSpeeduino controls ignition circuit power In prior history, the coil driverwas a set ofmechanical
contact points (“points”), simply replaced today by an electronic version. The added coil driver can
be anywhere from inside the Speeduino to inside the coil assembly; though near or in the coil reduces
electrical noise.

14

http://efistuff.orgfree.com/InjectorResistorCalculator.html

Speeduino Firmware setup 2020-01-14T14:06:47.340Z

In the example animated image below, the Speeduino ignition signal is normally low (near ground or
0V)while Speeduino calculates the time to the next coil firing. At the proper time, Speeduino switches
the ignition output to high (near 5V or 12V selectable) in order to switch the coil driver (example IGBT)
on, allowing current to flow through the coil to ground. This is called the “dwell” period. During dwell
an increasing energy field is generated around the ignition coil core and wire windings.

At the end of the dwell period and therefore at the proper time for spark; Speeduino switches the
coil driver off, stopping current flow, which collapses the energy field to create high voltage and the
resulting spark:

In TunerStudio, the setting for this example would be to fire the spark “going low”. The dwell setting
is highly variable depending on coil type, voltage levels, etc. Too little dwell will giveweak or no spark
and excess dwell will rapidly increase heat, possibly damaging any of the ignition components, but
usually the ignition coil or coil driver.

The wasted-spark version is below to show how it is identical in operation, but with the high-voltage
spark returning through the second spark plug to complete the circuit:

Agoodrundownof “smart” coil typescanbe foundat: <http://www.megamanual.com/seq/coils.htm>.
There are many ignition modules available that Speeduino can use to control standard coils, or for
smart coils you can generally use 4 or 5-pin types as these will always be logic level, although some
3-pin coils are also of this variety. GM LS1/2 coils are an example of powerful smart coils that are
commonly used and can usually be obtained easily and cheaply.

(Note: In the past, some ignition control modules with current limiting or dwell control features (e.g.,
1970s GM HEI, Bosch “024” types, and Ford DS1) were referred-to as “smart” modules. While still true,
common terminology of individual ignition coils with at least a driver integrated, or newer technology
withgreater controls (e.g., controlled sparkdurationormulti-spark) areall considered “smart” coils. You
must know the control requirements of the specific drivers, control modules, or coils you intend to use in
order to operate them properly with Speeduino.)

Aux Outputs

Low Current

Most Speeduino versions have low-current (LC) signal outputs directly from the MEGA processor to
(usually) the prototyping (proto) area of the board. These outputs are generally not suited to control
power devices directly in this form, and need suitable output circuits built on the proto area to enable
their use. Alternatively, the output functions such as Fuel Pump or Fan are re-assignable to other pins
and components, such as the existing HCmedium-current output MOSFETs.

15

http://www.megamanual.com/seq/coils.htm

2020-01-14T14:06:47.340Z Speeduino Firmware setup

Some Speeduino versions include an 8-channel ULN2803A Darlington transistor array IC that is ca-
pable of switching up to 1/2 amp per channel. These auxiliary outputs are sufficient to switch small
devices directly, or to switch power-handling devices, such as power MOSFETs or automotive relays.
Configuration and settings of these outputs is described in the Configuration section. Additional in-
formation for using aULN2803A on v0.4-series boardsmay be found here. Similar output options and
pin assignments may be used on other board designs.

Medium Current

v0.3x and later boards include medium-power MOSFET auxiliary outputs to switch up to 3 amps di-
rectly. These are labeled “HC” in schematics and some references. These outputs are commonly used
to operate idle valves, boost-control valves, VVT solenoids, etc., or to control relays for handlingmuch
larger loads, such as electric radiator fans. Configuration and settings of these outputs is described in
the Configuration section.

Auxilary IO

On Arduino Mega2560 based Speeduino boards (official or just running current firmware) git commit
13f80e7 support is available for the external connection of 8 16bit analog inputs via Serial3

CanBus

As the Arduino mega2560 has no CanBus interface a seperate “co-processor” interface has been de-
signed. More information about this unit can be found here https://github.com/Autohome2/Spe
eduino-can-interface. This uses the functionality provided by the Serial3 port and connects via that
port.

On the upcoming Teensy3.5 variant of Speeduino the CanBus codewill be incorporated into themain
system firmware as the Teensy3.5 has integrated CanBus and only requires a transceiver module
added.

Third Party Addon’s

In This section you will find information about third party designed hardware designed to be used in
conjunction with the Speeduino ECU

16

https://speeduino.com/forum/viewtopic.php?f=19&t=1023&p=16588#p16588
https://github.com/Autohome2/Speeduino-can-interface
https://github.com/Autohome2/Speeduino-can-interface

Speeduino Firmware setup 2020-01-14T14:06:47.340Z

GPIO for Speeduino

There are several variants of the GPIO , The firmware can be downloaded here https://github.com/A
utohome2/Speeduino-GPIO

More information GPIO_for_Speeduino

17

https://github.com/Autohome2/Speeduino-GPIO
https://github.com/Autohome2/Speeduino-GPIO
GPIO_for_Speeduino

	So what's the go?
	Current Feature List
	Overview
	Installation - SpeedyLoader
	Installation - Manually Compiling
	Requirements
	Downloading the firmware
	Compiling the firmware
	Installing
	Older firmware releases
	Verifying Firmware
	Troubleshooting

	Hardware Requirements overview
	Arduino
	Inputs
	Crank sensor
	TPS
	MAP (Manifold Pressure)
	Temperature Sensors (CLT and IAT)
	Exhaust Gas Oxygen Sensors (O2 and WBO2)
	Application-Specific Inputs

	Outputs
	Injectors
	Coils
	Aux Outputs

	Auxilary IO
	CanBus
	Third Party Addon's
	GPIO for Speeduino

