bitcore-lib-zcash/browser/ecdsa.js

476 lines
13 KiB
JavaScript

function integerToBytes(i, len) {
var bytes = i.toByteArrayUnsigned();
if (len < bytes.length) {
bytes = bytes.slice(bytes.length-len);
} else while (len > bytes.length) {
bytes.unshift(0);
}
return bytes;
};
ECFieldElementFp.prototype.getByteLength = function () {
return Math.floor((this.toBigInteger().bitLength() + 7) / 8);
};
ECPointFp.prototype.getEncoded = function (compressed) {
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
// Get value as a 32-byte Buffer
// Fixed length based on a patch by bitaddress.org and Casascius
var enc = integerToBytes(x, 32);
if (compressed) {
if (y.isEven()) {
// Compressed even pubkey
// M = 02 || X
enc.unshift(0x02);
} else {
// Compressed uneven pubkey
// M = 03 || X
enc.unshift(0x03);
}
} else {
// Uncompressed pubkey
// M = 04 || X || Y
enc.unshift(0x04);
enc = enc.concat(integerToBytes(y, 32));
}
return enc;
};
ECPointFp.decodeFrom = function (curve, enc) {
var type = enc[0];
var dataLen = enc.length-1;
// Extract x and y as byte arrays
var xBa = enc.slice(1, 1 + dataLen/2);
var yBa = enc.slice(1 + dataLen/2, 1 + dataLen);
// Prepend zero byte to prevent interpretation as negative integer
xBa.unshift(0);
yBa.unshift(0);
// Convert to BigIntegers
var x = new BigInteger(xBa);
var y = new BigInteger(yBa);
// Return point
return new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y));
};
ECPointFp.prototype.add2D = function (b) {
if(this.isInfinity()) return b;
if(b.isInfinity()) return this;
if (this.x.equals(b.x)) {
if (this.y.equals(b.y)) {
// this = b, i.e. this must be doubled
return this.twice();
}
// this = -b, i.e. the result is the point at infinity
return this.curve.getInfinity();
}
var x_x = b.x.subtract(this.x);
var y_y = b.y.subtract(this.y);
var gamma = y_y.divide(x_x);
var x3 = gamma.square().subtract(this.x).subtract(b.x);
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
return new ECPointFp(this.curve, x3, y3);
};
ECPointFp.prototype.twice2D = function () {
if (this.isInfinity()) return this;
if (this.y.toBigInteger().signum() == 0) {
// if y1 == 0, then (x1, y1) == (x1, -y1)
// and hence this = -this and thus 2(x1, y1) == infinity
return this.curve.getInfinity();
}
var TWO = this.curve.fromBigInteger(BigInteger.valueOf(2));
var THREE = this.curve.fromBigInteger(BigInteger.valueOf(3));
var gamma = this.x.square().multiply(THREE).add(this.curve.a).divide(this.y.multiply(TWO));
var x3 = gamma.square().subtract(this.x.multiply(TWO));
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
return new ECPointFp(this.curve, x3, y3);
};
ECPointFp.prototype.multiply2D = function (k) {
if(this.isInfinity()) return this;
if(k.signum() == 0) return this.curve.getInfinity();
var e = k;
var h = e.multiply(new BigInteger("3"));
var neg = this.negate();
var R = this;
var i;
for (i = h.bitLength() - 2; i > 0; --i) {
R = R.twice();
var hBit = h.testBit(i);
var eBit = e.testBit(i);
if (hBit != eBit) {
R = R.add2D(hBit ? this : neg);
}
}
return R;
};
ECPointFp.prototype.isOnCurve = function () {
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
var a = this.curve.getA().toBigInteger();
var b = this.curve.getB().toBigInteger();
var n = this.curve.getQ();
var lhs = y.multiply(y).mod(n);
var rhs = x.multiply(x).multiply(x)
.add(a.multiply(x)).add(b).mod(n);
return lhs.equals(rhs);
};
ECPointFp.prototype.toString = function () {
return '('+this.getX().toBigInteger().toString()+','+
this.getY().toBigInteger().toString()+')';
};
/**
* Validate an elliptic curve point.
*
* See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive
*/
ECPointFp.prototype.validate = function () {
var n = this.curve.getQ();
// Check Q != O
if (this.isInfinity()) {
throw new Error("Point is at infinity.");
}
// Check coordinate bounds
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
if (x.compareTo(BigInteger.ONE) < 0 ||
x.compareTo(n.subtract(BigInteger.ONE)) > 0) {
throw new Error('x coordinate out of bounds');
}
if (y.compareTo(BigInteger.ONE) < 0 ||
y.compareTo(n.subtract(BigInteger.ONE)) > 0) {
throw new Error('y coordinate out of bounds');
}
// Check y^2 = x^3 + ax + b (mod n)
if (!this.isOnCurve()) {
throw new Error("Point is not on the curve.");
}
// Check nQ = 0 (Q is a scalar multiple of G)
if (this.multiply(n).isInfinity()) {
// TODO: This check doesn't work - fix.
throw new Error("Point is not a scalar multiple of G.");
}
return true;
};
function dmp(v) {
if (!(v instanceof BigInteger)) v = v.toBigInteger();
return Crypto.util.bytesToHex(v.toByteArrayUnsigned());
};
Bitcoin.ECDSA = (function () {
var ecparams = getSECCurveByName("secp256k1");
var rng = new SecureRandom();
var P_OVER_FOUR = null;
function implShamirsTrick(P, k, Q, l)
{
var m = Math.max(k.bitLength(), l.bitLength());
var Z = P.add2D(Q);
var R = P.curve.getInfinity();
for (var i = m - 1; i >= 0; --i) {
R = R.twice2D();
R.z = BigInteger.ONE;
if (k.testBit(i)) {
if (l.testBit(i)) {
R = R.add2D(Z);
} else {
R = R.add2D(P);
}
} else {
if (l.testBit(i)) {
R = R.add2D(Q);
}
}
}
return R;
};
var ECDSA = {
getBigRandom: function (limit) {
return new BigInteger(limit.bitLength(), rng)
.mod(limit.subtract(BigInteger.ONE))
.add(BigInteger.ONE)
;
},
sign: function (hash, priv) {
var d = priv;
var n = ecparams.getN();
var e = BigInteger.fromByteArrayUnsigned(hash);
do {
var k = ECDSA.getBigRandom(n);
var G = ecparams.getG();
var Q = G.multiply(k);
var r = Q.getX().toBigInteger().mod(n);
} while (r.compareTo(BigInteger.ZERO) <= 0);
var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n);
return ECDSA.serializeSig(r, s);
},
verify: function (hash, sig, pubkey) {
var r,s;
if (Bitcoin.Util.isArray(sig)) {
var obj = ECDSA.parseSig(sig);
r = obj.r;
s = obj.s;
} else if ("object" === typeof sig && sig.r && sig.s) {
r = sig.r;
s = sig.s;
} else {
throw "Invalid value for signature";
}
var Q;
if (pubkey instanceof ECPointFp) {
Q = pubkey;
} else if (Bitcoin.Util.isArray(pubkey)) {
Q = ECPointFp.decodeFrom(ecparams.getCurve(), pubkey);
} else {
throw "Invalid format for pubkey value, must be byte array or ECPointFp";
}
var e = BigInteger.fromByteArrayUnsigned(hash);
return ECDSA.verifyRaw(e, r, s, Q);
},
verifyRaw: function (e, r, s, Q) {
var n = ecparams.getN();
var G = ecparams.getG();
if (r.compareTo(BigInteger.ONE) < 0 ||
r.compareTo(n) >= 0)
return false;
if (s.compareTo(BigInteger.ONE) < 0 ||
s.compareTo(n) >= 0)
return false;
var c = s.modInverse(n);
var u1 = e.multiply(c).mod(n);
var u2 = r.multiply(c).mod(n);
// TODO(!!!): For some reason Shamir's trick isn't working with
// signed message verification!? Probably an implementation
// error!
//var point = implShamirsTrick(G, u1, Q, u2);
var point = G.multiply(u1).add(Q.multiply(u2));
var v = point.getX().toBigInteger().mod(n);
return v.equals(r);
},
/**
* Serialize a signature into DER format.
*
* Takes two BigIntegers representing r and s and returns a byte array.
*/
serializeSig: function (r, s) {
var rBa = r.toByteArraySigned();
var sBa = s.toByteArraySigned();
var sequence = [];
sequence.push(0x02); // INTEGER
sequence.push(rBa.length);
sequence = sequence.concat(rBa);
sequence.push(0x02); // INTEGER
sequence.push(sBa.length);
sequence = sequence.concat(sBa);
sequence.unshift(sequence.length);
sequence.unshift(0x30); // SEQUENCE
return sequence;
},
/**
* Parses a byte array containing a DER-encoded signature.
*
* This function will return an object of the form:
*
* {
* r: BigInteger,
* s: BigInteger
* }
*/
parseSig: function (sig) {
var cursor;
if (sig[0] != 0x30)
throw new Error("Signature not a valid DERSequence");
cursor = 2;
if (sig[cursor] != 0x02)
throw new Error("First element in signature must be a DERInteger");;
var rBa = sig.slice(cursor+2, cursor+2+sig[cursor+1]);
cursor += 2+sig[cursor+1];
if (sig[cursor] != 0x02)
throw new Error("Second element in signature must be a DERInteger");
var sBa = sig.slice(cursor+2, cursor+2+sig[cursor+1]);
cursor += 2+sig[cursor+1];
//if (cursor != sig.length)
// throw new Error("Extra bytes in signature");
var r = BigInteger.fromByteArrayUnsigned(rBa);
var s = BigInteger.fromByteArrayUnsigned(sBa);
return {r: r, s: s};
},
parseSigCompact: function (sig) {
if (sig.length !== 65) {
throw "Signature has the wrong length";
}
// Signature is prefixed with a type byte storing three bits of
// information.
var i = sig[0] - 27;
if (i < 0 || i > 7) {
throw "Invalid signature type";
}
var n = ecparams.getN();
var r = BigInteger.fromByteArrayUnsigned(sig.slice(1, 33)).mod(n);
var s = BigInteger.fromByteArrayUnsigned(sig.slice(33, 65)).mod(n);
return {r: r, s: s, i: i};
},
/**
* Recover a public key from a signature.
*
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public
* Key Recovery Operation".
*
* http://www.secg.org/download/aid-780/sec1-v2.pdf
*/
recoverPubKey: function (r, s, hash, i) {
// The recovery parameter i has two bits.
i = i & 3;
// The less significant bit specifies whether the y coordinate
// of the compressed point is even or not.
var isYEven = i & 1;
// The more significant bit specifies whether we should use the
// first or second candidate key.
var isSecondKey = i >> 1;
var n = ecparams.getN();
var G = ecparams.getG();
var curve = ecparams.getCurve();
var p = curve.getQ();
var a = curve.getA().toBigInteger();
var b = curve.getB().toBigInteger();
// We precalculate (p + 1) / 4 where p is if the field order
if (!P_OVER_FOUR) {
P_OVER_FOUR = p.add(BigInteger.ONE).divide(BigInteger.valueOf(4));
}
// 1.1 Compute x
var x = isSecondKey ? r.add(n) : r;
// 1.3 Convert x to point
var alpha = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(p);
var beta = alpha.modPow(P_OVER_FOUR, p);
var xorOdd = beta.isEven() ? (i % 2) : ((i+1) % 2);
// If beta is even, but y isn't or vice versa, then convert it,
// otherwise we're done and y == beta.
var y = (beta.isEven() ? !isYEven : isYEven) ? beta : p.subtract(beta);
// 1.4 Check that nR is at infinity
var R = new ECPointFp(curve,
curve.fromBigInteger(x),
curve.fromBigInteger(y));
R.validate();
// 1.5 Compute e from M
var e = BigInteger.fromByteArrayUnsigned(hash);
var eNeg = BigInteger.ZERO.subtract(e).mod(n);
// 1.6 Compute Q = r^-1 (sR - eG)
var rInv = r.modInverse(n);
var Q = implShamirsTrick(R, s, G, eNeg).multiply(rInv);
Q.validate();
if (!ECDSA.verifyRaw(e, r, s, Q)) {
throw "Pubkey recovery unsuccessful";
}
var pubKey = new Bitcoin.ECKey();
pubKey.pub = Q;
return pubKey;
},
/**
* Calculate pubkey extraction parameter.
*
* When extracting a pubkey from a signature, we have to
* distinguish four different cases. Rather than putting this
* burden on the verifier, Bitcoin includes a 2-bit value with the
* signature.
*
* This function simply tries all four cases and returns the value
* that resulted in a successful pubkey recovery.
*/
calcPubkeyRecoveryParam: function (address, r, s, hash)
{
for (var i = 0; i < 4; i++) {
try {
var pubkey = Bitcoin.ECDSA.recoverPubKey(r, s, hash, i);
if (pubkey.getBitcoinAddress().toString() == address) {
return i;
}
} catch (e) {}
}
throw "Unable to find valid recovery factor";
}
};
return ECDSA;
})();