orchard_vesta.py: Add constants for Vesta curve.
This commit is contained in:
parent
a3fd15bc20
commit
4cbfddd566
|
@ -0,0 +1,274 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf8 -*-
|
||||
import sys; assert sys.version_info[0] >= 3, "Python 3 required."
|
||||
|
||||
from sapling_jubjub import FieldElement
|
||||
from utils import leos2ip
|
||||
|
||||
p = 0x40000000000000000000000000000000224698fc0994a8dd8c46eb2100000001
|
||||
q = 0x40000000000000000000000000000000224698fc094cf91b992d30ed00000001
|
||||
|
||||
pm1d2 = 0x2000000000000000000000000000000011234c7e04ca546ec623759080000000
|
||||
assert (p - 1) // 2 == pm1d2
|
||||
|
||||
S = 32
|
||||
T = 0x40000000000000000000000000000000224698fc0994a8dd8c46eb21
|
||||
assert (p - 1) == (1 << S) * T
|
||||
|
||||
tm1d2 = 0x2000000000000000000000000000000011234c7e04ca546ec6237590
|
||||
assert (T - 1) // 2 == tm1d2
|
||||
|
||||
# 5^T (mod p)
|
||||
ROOT_OF_UNITY = 0x2235e1a7415bf936f4c8f353124086c14ad38b9084b8a80c57eecda0a84b6836
|
||||
|
||||
|
||||
#
|
||||
# Field arithmetic
|
||||
#
|
||||
|
||||
class Fq(FieldElement):
|
||||
@staticmethod
|
||||
def from_bytes(buf):
|
||||
return Fq(leos2ip(buf), strict=True)
|
||||
|
||||
def random(rand):
|
||||
while True:
|
||||
try:
|
||||
return Fq(leos2ip(rand.b(32)), strict=True)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
def __init__(self, s, strict=False):
|
||||
FieldElement.__init__(self, Fq, s, p, strict=strict)
|
||||
|
||||
def __str__(self):
|
||||
return 'Fq(%s)' % self.s
|
||||
|
||||
def sgn0(self):
|
||||
# https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-10#section-4.1
|
||||
return (self.s % 2) == 1
|
||||
|
||||
def sqrt(self):
|
||||
# Tonelli-Shank's algorithm for p mod 16 = 1
|
||||
# https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
|
||||
a = self.exp(pm1d2)
|
||||
if a == self.ONE:
|
||||
# z <- c^t
|
||||
c = Fq(ROOT_OF_UNITY)
|
||||
# x <- a \omega
|
||||
x = self.exp(tm1d2 + 1)
|
||||
# b <- x \omega = a \omega^2
|
||||
b = self.exp(T)
|
||||
y = S
|
||||
|
||||
# 7: while b != 1 do
|
||||
while b != self.ONE:
|
||||
# 8: Find least integer k >= 0 such that b^(2^k) == 1
|
||||
k = 1
|
||||
b2k = b * b
|
||||
while b2k != self.ONE:
|
||||
b2k = b2k * b2k
|
||||
k += 1
|
||||
assert k < y
|
||||
|
||||
# 9:
|
||||
# w <- z^(2^(y-k-1))
|
||||
for _ in range(0, y - k - 1):
|
||||
c = c * c
|
||||
# x <- xw
|
||||
x = x * c
|
||||
# z <- w^2
|
||||
c = c * c
|
||||
# b <- bz
|
||||
b = b * c
|
||||
# y <- k
|
||||
y = k
|
||||
assert x * x == self
|
||||
return x
|
||||
elif a == self.MINUS_ONE:
|
||||
return None
|
||||
return self.ZERO
|
||||
|
||||
|
||||
class Scalar(FieldElement):
|
||||
def __init__(self, s, strict=False):
|
||||
FieldElement.__init__(self, Scalar, s, q, strict=strict)
|
||||
|
||||
def __str__(self):
|
||||
return 'Scalar(%s)' % self.s
|
||||
|
||||
@staticmethod
|
||||
def from_bytes(buf):
|
||||
return Scalar(leos2ip(buf), strict=True)
|
||||
|
||||
def random(rand):
|
||||
while True:
|
||||
try:
|
||||
return Scalar(leos2ip(rand.b(32)), strict=True)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
|
||||
for F in (Fq, Scalar):
|
||||
F.ZERO = F(0)
|
||||
F.ONE = F(1)
|
||||
F.MINUS_ONE = F(-1)
|
||||
|
||||
assert F.ZERO + F.ZERO == F.ZERO
|
||||
assert F.ZERO + F.ONE == F.ONE
|
||||
assert F.ONE + F.ZERO == F.ONE
|
||||
assert F.ZERO - F.ONE == F.MINUS_ONE
|
||||
assert F.ZERO * F.ONE == F.ZERO
|
||||
assert F.ONE * F.ZERO == F.ZERO
|
||||
|
||||
|
||||
#
|
||||
# Point arithmetic
|
||||
#
|
||||
|
||||
VESTA_B = Fq(5)
|
||||
|
||||
class Point(object):
|
||||
@staticmethod
|
||||
def rand(rand):
|
||||
while True:
|
||||
data = rand.b(32)
|
||||
p = Point.from_bytes(data)
|
||||
if p is not None:
|
||||
return p
|
||||
|
||||
@staticmethod
|
||||
def from_bytes(buf):
|
||||
assert len(buf) == 32
|
||||
if buf == bytes([0]*32):
|
||||
return Point.identity()
|
||||
|
||||
y_sign = buf[31] >> 7
|
||||
buf = buf[:31] + bytes([buf[31] & 0b01111111])
|
||||
try:
|
||||
x = Fq.from_bytes(buf)
|
||||
except ValueError:
|
||||
return None
|
||||
|
||||
x3 = x * x * x
|
||||
y2 = x3 + VESTA_B
|
||||
|
||||
y = y2.sqrt()
|
||||
if y is None:
|
||||
return None
|
||||
|
||||
if y.s % 2 != y_sign:
|
||||
y = Fq.ZERO - y
|
||||
|
||||
return Point(x, y)
|
||||
|
||||
def __init__(self, x, y, is_identity=False):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.is_identity = is_identity
|
||||
|
||||
if is_identity:
|
||||
assert self.x == Fq.ZERO
|
||||
assert self.y == Fq.ZERO
|
||||
else:
|
||||
assert self.y * self.y == self.x * self.x * self.x + VESTA_B
|
||||
|
||||
def identity():
|
||||
p = Point(Fq.ZERO, Fq.ZERO, True)
|
||||
return p
|
||||
|
||||
def __neg__(self):
|
||||
if self.is_identity:
|
||||
return self
|
||||
else:
|
||||
return Point(Fq(self.x.s), -Fq(self.y.s))
|
||||
|
||||
def __add__(self, a):
|
||||
if self.is_identity:
|
||||
return a
|
||||
elif a.is_identity:
|
||||
return self
|
||||
else:
|
||||
(x1, y1) = (self.x, self.y)
|
||||
(x2, y2) = (a.x, a.y)
|
||||
|
||||
if x1 != x2:
|
||||
# <https://core.ac.uk/download/pdf/10898289.pdf> section 4.1
|
||||
λ = (y1 - y2) / (x1 - x2)
|
||||
x3 = λ*λ - x1 - x2
|
||||
y3 = λ*(x1 - x3) - y1
|
||||
return Point(x3, y3)
|
||||
elif y1 == -y2:
|
||||
return Point.identity()
|
||||
else:
|
||||
return self.double()
|
||||
|
||||
def checked_incomplete_add(self, a):
|
||||
assert self != a
|
||||
assert self != -a
|
||||
assert self != Point.identity()
|
||||
assert a != Point.identity()
|
||||
return self + a
|
||||
|
||||
def __sub__(self, a):
|
||||
return (-a) + self
|
||||
|
||||
def double(self):
|
||||
if self.is_identity:
|
||||
return self
|
||||
|
||||
# <https://core.ac.uk/download/pdf/10898289.pdf> section 4.1
|
||||
λ = (Fq(3) * self.x * self.x) / (self.y + self.y)
|
||||
x = λ*λ - self.x - self.x
|
||||
y = λ*(self.x - x) - self.y
|
||||
return Point(x, y)
|
||||
|
||||
def extract(self):
|
||||
if self.is_identity:
|
||||
return Fq.ZERO
|
||||
return self.x
|
||||
|
||||
def __mul__(self, s):
|
||||
assert isinstance(s, Scalar)
|
||||
s = format(s.s, '0256b')
|
||||
ret = self.ZERO
|
||||
for c in s:
|
||||
ret = ret.double()
|
||||
if int(c):
|
||||
ret = ret + self
|
||||
return ret
|
||||
|
||||
def __bytes__(self):
|
||||
if self.is_identity:
|
||||
return bytes([0] * 32)
|
||||
|
||||
buf = bytes(self.x)
|
||||
if self.y.s % 2 == 1:
|
||||
buf = buf[:31] + bytes([buf[31] | (1 << 7)])
|
||||
return buf
|
||||
|
||||
def __eq__(self, a):
|
||||
if a is None:
|
||||
return False
|
||||
if not (self.is_identity or a.is_identity):
|
||||
return self.x == a.x and self.y == a.y
|
||||
else:
|
||||
return self.is_identity == a.is_identity
|
||||
|
||||
def __str__(self):
|
||||
if self.is_identity:
|
||||
return 'Point(identity)'
|
||||
else:
|
||||
return 'Point(%s, %s)' % (self.x, self.y)
|
||||
|
||||
|
||||
Point.ZERO = Point.identity()
|
||||
Point.GENERATOR = Point(Fq.MINUS_ONE, Fq(2))
|
||||
|
||||
assert Point.ZERO + Point.ZERO == Point.ZERO
|
||||
assert Point.GENERATOR - Point.GENERATOR == Point.ZERO
|
||||
assert Point.GENERATOR + Point.GENERATOR + Point.GENERATOR == Point.GENERATOR * Scalar(3)
|
||||
assert Point.GENERATOR + Point.GENERATOR - Point.GENERATOR == Point.GENERATOR
|
||||
|
||||
assert Point.from_bytes(bytes([0]*32)) == Point.ZERO
|
||||
assert Point.from_bytes(bytes(Point.GENERATOR)) == Point.GENERATOR
|
Loading…
Reference in New Issue