Refactor into modules
This commit is contained in:
parent
c0d4ff2fd2
commit
95f483fd3d
|
@ -0,0 +1,39 @@
|
|||
#!/usr/bin/env python3
|
||||
from pyblake2 import blake2s
|
||||
|
||||
from sapling_jubjub import Point, JUBJUB_COFACTOR
|
||||
|
||||
# First 64 bytes of the BLAKE2s input during group hash.
|
||||
# This is chosen to be some random string that we couldn't have
|
||||
# anticipated when we designed the algorithm, for rigidity purposes.
|
||||
# We deliberately use an ASCII hex string of 32 bytes here.
|
||||
CRS = b'096b36a5804bfacef1691e173c366a47ff5ba84a44f26ddd7e8d9f79d5b42df0'
|
||||
|
||||
def group_hash(d, m):
|
||||
digest = blake2s(person=d)
|
||||
digest.update(CRS)
|
||||
digest.update(m)
|
||||
p = Point.from_bytes(digest.digest())
|
||||
if not p:
|
||||
return None
|
||||
q = p * JUBJUB_COFACTOR
|
||||
if q == Point.ZERO:
|
||||
return None
|
||||
return q
|
||||
|
||||
def find_group_hash(d, m):
|
||||
i = 0
|
||||
while True:
|
||||
p = group_hash(d, m + bytes([i]))
|
||||
if p:
|
||||
return p
|
||||
i += 1
|
||||
assert(i < 256)
|
||||
|
||||
|
||||
#
|
||||
# Sapling generators
|
||||
#
|
||||
|
||||
SPENDING_KEY_BASE = find_group_hash(b'Zcash_G_', b'')
|
||||
PROVING_KEY_BASE = find_group_hash(b'Zcash_H_', b'')
|
|
@ -0,0 +1,189 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
ENDIANNESS = 'little'
|
||||
|
||||
q_j = 52435875175126190479447740508185965837690552500527637822603658699938581184513
|
||||
r_j = 6554484396890773809930967563523245729705921265872317281365359162392183254199
|
||||
|
||||
qm1d2 = 26217937587563095239723870254092982918845276250263818911301829349969290592256
|
||||
assert((q_j - 1) // 2 == qm1d2)
|
||||
|
||||
|
||||
#
|
||||
# Field arithmetic
|
||||
#
|
||||
|
||||
class FieldElement(object):
|
||||
def __init__(self, t, s, modulus):
|
||||
self.t = t
|
||||
self.s = s % modulus
|
||||
self.m = modulus
|
||||
|
||||
def __add__(self, a):
|
||||
return self.t(self.s + a.s)
|
||||
|
||||
def __sub__(self, a):
|
||||
return self.t(self.s - a.s)
|
||||
|
||||
def __mul__(self, a):
|
||||
return self.t(self.s * a.s)
|
||||
|
||||
def __truediv__(self, a):
|
||||
assert(a.s != 0)
|
||||
return self * a.inv()
|
||||
|
||||
def exp(self, e):
|
||||
e = format(e, '0256b')
|
||||
ret = self.t(1)
|
||||
for c in e:
|
||||
ret = ret * ret
|
||||
if int(c):
|
||||
ret = ret * self
|
||||
return ret
|
||||
|
||||
def inv(self):
|
||||
return self.exp(self.m - 2)
|
||||
|
||||
def __bytes__(self):
|
||||
return self.s.to_bytes(32, byteorder=ENDIANNESS)
|
||||
|
||||
def __eq__(self, a):
|
||||
return self.s == a.s
|
||||
|
||||
|
||||
|
||||
class Fq(FieldElement):
|
||||
@staticmethod
|
||||
def from_bytes(buf):
|
||||
s = int.from_bytes(buf, byteorder=ENDIANNESS)
|
||||
return Fq(s)
|
||||
|
||||
def __init__(self, s):
|
||||
FieldElement.__init__(self, Fq, s, q_j)
|
||||
|
||||
def __str__(self):
|
||||
return 'Fq(%s)' % self.s
|
||||
|
||||
def sqrt(self):
|
||||
# Tonelli-Shank's algorithm for q mod 16 = 1
|
||||
# https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
|
||||
a = self.exp(qm1d2)
|
||||
if a == self.ONE:
|
||||
c = Fq(10238227357739495823651030575849232062558860180284477541189508159991286009131)
|
||||
r = self.exp(6104339283789297388802252303364915521546564123189034618274734669824)
|
||||
t = self.exp(12208678567578594777604504606729831043093128246378069236549469339647)
|
||||
m = 32
|
||||
|
||||
# 7: while b != 1 do
|
||||
while t != self.ONE:
|
||||
# 8: Find least integer k >= 0 such that b^(2^k) == 1
|
||||
i = 1
|
||||
t2i = t * t
|
||||
while t2i != self.ONE:
|
||||
t2i = t2i * t2i
|
||||
i += 1
|
||||
assert(i < m)
|
||||
|
||||
# 9:
|
||||
# w <- z^(2^(v-k-1))
|
||||
for j in range(0, m - i - 1):
|
||||
c = c * c
|
||||
# b <- bz
|
||||
r = r * c
|
||||
# z <- w^2
|
||||
c = c * c
|
||||
# x <- xw
|
||||
t = t * c
|
||||
# v <- k
|
||||
m = i
|
||||
assert(r * r == self)
|
||||
return r
|
||||
elif a == self.MINUS_ONE:
|
||||
return None
|
||||
else:
|
||||
return self.ZERO
|
||||
|
||||
|
||||
class Fr(FieldElement):
|
||||
@staticmethod
|
||||
def from_bytes(buf):
|
||||
s = int.from_bytes(buf, byteorder=ENDIANNESS)
|
||||
return Fr(s)
|
||||
|
||||
def __init__(self, s):
|
||||
FieldElement.__init__(self, Fr, s, r_j)
|
||||
|
||||
def __str__(self):
|
||||
return 'Fr(%s)' % self.s
|
||||
|
||||
|
||||
#
|
||||
# Point arithmetic
|
||||
#
|
||||
|
||||
Fq.ZERO = Fq(0)
|
||||
Fq.ONE = Fq(1)
|
||||
Fq.MINUS_ONE = Fq(-1)
|
||||
|
||||
JUBJUB_A = Fq.MINUS_ONE
|
||||
JUBJUB_D = Fq(-10240) / Fq(10241)
|
||||
JUBJUB_COFACTOR = Fr(8)
|
||||
|
||||
class Point(object):
|
||||
@staticmethod
|
||||
def from_bytes(buf):
|
||||
u_sign = buf[31] >> 7
|
||||
buf = buf[:31] + bytes([buf[31] & 0b01111111])
|
||||
v = Fq.from_bytes(buf)
|
||||
|
||||
vv = v * v
|
||||
u2 = (vv - Fq.ONE) / (vv * JUBJUB_D - JUBJUB_A)
|
||||
|
||||
u = u2.sqrt()
|
||||
if not u:
|
||||
return None
|
||||
|
||||
if u.s % 2 != u_sign:
|
||||
u = Fq.ZERO - u
|
||||
|
||||
return Point(u, v)
|
||||
|
||||
def __init__(self, u, v):
|
||||
self.u = u
|
||||
self.v = v
|
||||
|
||||
def __add__(self, a):
|
||||
(u1, v1) = (self.u, self.v)
|
||||
(u2, v2) = (a.u, a.v)
|
||||
u3 = (u1*v2 + v1*u2) / (Fq.ONE + JUBJUB_D*u1*u2*v1*v2)
|
||||
v3 = (v1*v2 - JUBJUB_A*u1*u2) / (Fq.ONE - JUBJUB_D*u1*u2*v1*v2)
|
||||
return Point(u3, v3)
|
||||
|
||||
def double(self):
|
||||
return self + self
|
||||
|
||||
def __mul__(self, s):
|
||||
s = format(s.s, '0256b')
|
||||
ret = self.ZERO
|
||||
for c in s:
|
||||
ret = ret.double()
|
||||
if int(c):
|
||||
ret = ret + self
|
||||
return ret
|
||||
|
||||
def __bytes__(self):
|
||||
buf = bytes(self.v)
|
||||
if self.u.s % 2 == 1:
|
||||
buf = buf[:31] + bytes([buf[31] | (1 << 7)])
|
||||
return buf
|
||||
|
||||
def __eq__(self, a):
|
||||
return self.u == a.u and self.v == a.v
|
||||
|
||||
def __str__(self):
|
||||
return 'Point(%s, %s)' % (self.u, self.v)
|
||||
|
||||
|
||||
Point.ZERO = Point(Fq.ZERO, Fq.ONE)
|
||||
|
||||
assert(Point.ZERO + Point.ZERO == Point.ZERO)
|
|
@ -2,194 +2,8 @@
|
|||
from binascii import hexlify
|
||||
from pyblake2 import blake2b, blake2s
|
||||
|
||||
ENDIANNESS = 'little'
|
||||
|
||||
# First 64 bytes of the BLAKE2s input during group hash.
|
||||
# This is chosen to be some random string that we couldn't have
|
||||
# anticipated when we designed the algorithm, for rigidity purposes.
|
||||
# We deliberately use an ASCII hex string of 32 bytes here.
|
||||
CRS = b'096b36a5804bfacef1691e173c366a47ff5ba84a44f26ddd7e8d9f79d5b42df0'
|
||||
|
||||
q_j = 52435875175126190479447740508185965837690552500527637822603658699938581184513
|
||||
r_j = 6554484396890773809930967563523245729705921265872317281365359162392183254199
|
||||
|
||||
qm1d2 = 26217937587563095239723870254092982918845276250263818911301829349969290592256
|
||||
assert((q_j - 1) // 2 == qm1d2)
|
||||
|
||||
#
|
||||
# Field arithmetic
|
||||
#
|
||||
|
||||
class FieldElement(object):
|
||||
def __init__(self, t, s, modulus):
|
||||
self.t = t
|
||||
self.s = s % modulus
|
||||
self.m = modulus
|
||||
|
||||
def __add__(self, a):
|
||||
return self.t(self.s + a.s)
|
||||
|
||||
def __sub__(self, a):
|
||||
return self.t(self.s - a.s)
|
||||
|
||||
def __mul__(self, a):
|
||||
return self.t(self.s * a.s)
|
||||
|
||||
def __truediv__(self, a):
|
||||
assert(a.s != 0)
|
||||
return self * a.inv()
|
||||
|
||||
def exp(self, e):
|
||||
e = format(e, '0256b')
|
||||
ret = self.t(1)
|
||||
for c in e:
|
||||
ret = ret * ret
|
||||
if int(c):
|
||||
ret = ret * self
|
||||
return ret
|
||||
|
||||
def inv(self):
|
||||
return self.exp(self.m - 2)
|
||||
|
||||
def __bytes__(self):
|
||||
return self.s.to_bytes(32, byteorder=ENDIANNESS)
|
||||
|
||||
def __eq__(self, a):
|
||||
return self.s == a.s
|
||||
|
||||
|
||||
|
||||
class Fq(FieldElement):
|
||||
def from_bytes(buf):
|
||||
s = int.from_bytes(buf, byteorder=ENDIANNESS)
|
||||
return Fq(s)
|
||||
|
||||
def __init__(self, s):
|
||||
FieldElement.__init__(self, Fq, s, q_j)
|
||||
|
||||
def __str__(self):
|
||||
return 'Fq(%s)' % self.s
|
||||
|
||||
def sqrt(self):
|
||||
# Tonelli-Shank's algorithm for q mod 16 = 1
|
||||
# https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
|
||||
a = self.exp(qm1d2)
|
||||
if a == ONE:
|
||||
c = Fq(10238227357739495823651030575849232062558860180284477541189508159991286009131)
|
||||
r = self.exp(6104339283789297388802252303364915521546564123189034618274734669824)
|
||||
t = self.exp(12208678567578594777604504606729831043093128246378069236549469339647)
|
||||
m = 32
|
||||
|
||||
# 7: while b != 1 do
|
||||
while t != ONE:
|
||||
# 8: Find least integer k >= 0 such that b^(2^k) == 1
|
||||
i = 1
|
||||
t2i = t * t
|
||||
while t2i != ONE:
|
||||
t2i = t2i * t2i
|
||||
i += 1
|
||||
assert(i < m)
|
||||
|
||||
# 9:
|
||||
# w <- z^(2^(v-k-1))
|
||||
for j in range(0, m - i - 1):
|
||||
c = c * c
|
||||
# b <- bz
|
||||
r = r * c
|
||||
# z <- w^2
|
||||
c = c * c
|
||||
# x <- xw
|
||||
t = t * c
|
||||
# v <- k
|
||||
m = i
|
||||
assert(r * r == self)
|
||||
return r
|
||||
elif a == MINUS_ONE:
|
||||
return None
|
||||
else:
|
||||
return ZERO
|
||||
|
||||
|
||||
class Fr(FieldElement):
|
||||
def from_bytes(buf):
|
||||
s = int.from_bytes(buf, byteorder=ENDIANNESS)
|
||||
return Fr(s)
|
||||
|
||||
def __init__(self, s):
|
||||
FieldElement.__init__(self, Fr, s, r_j)
|
||||
|
||||
def __str__(self):
|
||||
return 'Fr(%s)' % self.s
|
||||
|
||||
|
||||
#
|
||||
# Point arithmetic
|
||||
#
|
||||
|
||||
ZERO = Fq(0)
|
||||
ONE = Fq(1)
|
||||
MINUS_ONE = Fq(-1)
|
||||
EIGHT = Fr(8)
|
||||
JUBJUB_A = MINUS_ONE
|
||||
JUBJUB_D = Fq(-10240) / Fq(10241)
|
||||
|
||||
class Point(object):
|
||||
def from_bytes(buf):
|
||||
u_sign = buf[31] >> 7
|
||||
buf = buf[:31] + bytes([buf[31] & 0b01111111])
|
||||
v = Fq.from_bytes(buf)
|
||||
|
||||
vv = v * v
|
||||
u2 = (vv - ONE) / (vv * JUBJUB_D - JUBJUB_A)
|
||||
|
||||
u = u2.sqrt()
|
||||
if not u:
|
||||
return None
|
||||
|
||||
if u.s % 2 != u_sign:
|
||||
u = ZERO - u
|
||||
|
||||
return Point(u, v)
|
||||
|
||||
def __init__(self, u, v):
|
||||
self.u = u
|
||||
self.v = v
|
||||
|
||||
def __add__(self, a):
|
||||
(u1, v1) = (self.u, self.v)
|
||||
(u2, v2) = (a.u, a.v)
|
||||
u3 = (u1*v2 + v1*u2) / (ONE + JUBJUB_D*u1*u2*v1*v2)
|
||||
v3 = (v1*v2 - JUBJUB_A*u1*u2) / (ONE - JUBJUB_D*u1*u2*v1*v2)
|
||||
return Point(u3, v3)
|
||||
|
||||
def double(self):
|
||||
return self + self
|
||||
|
||||
def __mul__(self, s):
|
||||
s = format(s.s, '0256b')
|
||||
ret = ZERO_POINT
|
||||
for c in s:
|
||||
ret = ret.double()
|
||||
if int(c):
|
||||
ret = ret + self
|
||||
return ret
|
||||
|
||||
def __bytes__(self):
|
||||
buf = bytes(self.v)
|
||||
if self.u.s % 2 == 1:
|
||||
buf = buf[:31] + bytes([buf[31] | (1 << 7)])
|
||||
return buf
|
||||
|
||||
def __eq__(self, a):
|
||||
return self.u == a.u and self.v == a.v
|
||||
|
||||
def __str__(self):
|
||||
return 'Point(%s, %s)' % (self.u, self.v)
|
||||
|
||||
|
||||
ZERO_POINT = Point(ZERO, ONE)
|
||||
|
||||
assert(ZERO_POINT + ZERO_POINT == ZERO_POINT)
|
||||
from sapling_generators import PROVING_KEY_BASE, SPENDING_KEY_BASE, group_hash
|
||||
from sapling_jubjub import Fr
|
||||
|
||||
#
|
||||
# PRFs and hashes
|
||||
|
@ -209,35 +23,6 @@ def crh_ivk(ak, nk):
|
|||
ivk = ivk[:31] + bytes([ivk[31] & 0b00000111])
|
||||
return ivk
|
||||
|
||||
def group_hash(d, m):
|
||||
digest = blake2s(person=d)
|
||||
digest.update(CRS)
|
||||
digest.update(m)
|
||||
p = Point.from_bytes(digest.digest())
|
||||
if not p:
|
||||
return None
|
||||
q = p * EIGHT
|
||||
if q == ZERO_POINT:
|
||||
return None
|
||||
return q
|
||||
|
||||
def find_group_hash(d, m):
|
||||
i = 0
|
||||
while True:
|
||||
p = group_hash(d, m + bytes([i]))
|
||||
if p:
|
||||
return p
|
||||
i += 1
|
||||
assert(i < 256)
|
||||
|
||||
|
||||
#
|
||||
# Sapling generators
|
||||
#
|
||||
|
||||
SPENDING_KEY_BASE = find_group_hash(b'Zcash_G_', b'')
|
||||
PROVING_KEY_BASE = find_group_hash(b'Zcash_H_', b'')
|
||||
|
||||
|
||||
#
|
||||
# Key components
|
||||
|
|
Loading…
Reference in New Issue