#!/usr/bin/env python3 import sys; assert sys.version_info[0] >= 3, "Python 3 required." import math import orchard_iso_pallas from pyblake2 import blake2b from orchard_pallas import Fp, p, q, PALLAS_B, Point from orchard_iso_pallas import PALLAS_ISO_B, PALLAS_ISO_A from sapling_utils import i2beosp, cldiv, beos2ip, i2leosp, lebs2ip from binascii import hexlify from bitstring import BitArray # https://stackoverflow.com/questions/2612720/how-to-do-bitwise-exclusive-or-of-two-strings-in-python def sxor(s1,s2): return bytes([a ^ b for a,b in zip(s1,s2)]) def expand_message_xmd(msg, dst, len_in_bytes): assert len(dst) <= 255 b_in_bytes = 64 # hash function output size r_in_bytes = 128 ell = cldiv(len_in_bytes, b_in_bytes) assert ell <= 255 dst_prime = dst + i2beosp(8, len(dst)) z_pad = b"\x00" * r_in_bytes l_i_b_str = i2beosp(16, len_in_bytes) msg_prime = z_pad + msg + l_i_b_str + i2beosp(8, 0) + dst_prime b = [] b0_ctx = blake2b(digest_size=b_in_bytes, person=i2beosp(128,0)) b0_ctx.update(msg_prime) b.append(b0_ctx.digest()) assert len(b[0]) == b_in_bytes b1_ctx = blake2b(digest_size=b_in_bytes, person=i2beosp(128,0)) b1_ctx.update(b[0] + i2beosp(8, 1) + dst_prime) b.append(b1_ctx.digest()) assert len(b[1]) == b_in_bytes for i in range(2, ell + 1): bi_input = sxor(b[0], b[i-1]) assert len(bi_input) == b_in_bytes bi_input += i2beosp(8, i) + dst_prime bi_ctx = blake2b(digest_size=b_in_bytes, person=i2beosp(128,0)) bi_ctx.update(bi_input) b.append(bi_ctx.digest()) assert len(b[i]) == b_in_bytes return b''.join(b[1:])[0:len_in_bytes] def hash_to_field(msg, dst): k = 256 count = 2 m = 1 L = cldiv(math.ceil(math.log2(p)) + k, 8) assert L == 512/8 len_in_bytes = count * m * L uniform_bytes = expand_message_xmd(msg, dst, len_in_bytes) elements = [] for i in range(0, count): for j in range(0, m): elm_offset = L * (j + i * m) tv = uniform_bytes[elm_offset:elm_offset+L] elements.append(Fp(beos2ip(tv), False)) assert len(elements) == count return elements def map_to_curve_simple_swu(u): zero = Fp(0) assert zero.inv() == Fp(0) A = PALLAS_ISO_A B = PALLAS_ISO_B Z = Fp(-13, False) c1 = -B / A c2 = Fp(-1) / Z tv1 = Z * u.exp(2) tv2 = tv1.exp(2) x1 = tv1 + tv2 x1 = x1.inv() e1 = x1 == Fp(0) x1 = x1 + Fp(1) if e1: x1 = c2 else: x1 = x1 x1 = x1 * c1 # x1 = (-B / A) * (1 + (1 / (Z^2 * u^4 + Z * u^2))) gx1 = x1.exp(2) gx1 = gx1 + A gx1 = gx1 * x1 gx1 = gx1 + B # gx1 = g(x1) = x1^3 + A * x1 + B x2 = tv1 * x1 # x2 = Z * u^2 * x1 tv2 = tv1 * tv2 gx2 = gx1 * tv2 # gx2 = (Z * u^2)^3 * gx1 e2 = (gx1.sqrt() is not None) x = x1 if e2 else x2 # If is_square(gx1), x = x1, else x = x2 yy = gx1 if e2 else gx2 # If is_square(gx1), yy = gx1, else yy = gx2 y = yy.sqrt() e3 = u.sgn0() == y.sgn0() y = y if e3 else -y #y = CMOV(-y, y, e3) return orchard_iso_pallas.Point(x, y) def group_hash(d, m): dst = d + b"-" + b"pallas" + b"_XMD:BLAKE2b_SSWU_RO_" elems = hash_to_field(m, dst) assert len(elems) == 2 q = [map_to_curve_simple_swu(elems[0]), map_to_curve_simple_swu(elems[1]) ] return (q[0] + q[1]).iso_map() SINSEMILLA_K = 10 def pad(n, m): padding_needed = n * SINSEMILLA_K - m.len zeros = BitArray(bin='0' * padding_needed) m = m + zeros pieces = [] for i in range(n): pieces.append( lebs2ip(m[i*SINSEMILLA_K : (i+1)*SINSEMILLA_K]) ) return pieces def sinsemilla_hash_to_point(d, m): assert isinstance(m, BitArray) n = cldiv(m.len, SINSEMILLA_K) m = pad(n, m) acc = group_hash(b"z.cash:SinsemillaQ", d) for m_i in m: acc = acc.checked_incomplete_add( group_hash(b"z.cash:SinsemillaS", i2leosp(32, m_i)) ).checked_incomplete_add(acc) return acc def sinsemilla_hash(d, m): return sinsemilla_hash_to_point(d, m).extract() if __name__ == "__main__": # This is the Pallas test vector from the Sage and Rust code (in affine coordinates). gh = group_hash(b"z.cash:test", b"Trans rights now!") assert gh == Point(Fp(10899331951394555178876036573383466686793225972744812919361819919497009261523), Fp(851679174277466283220362715537906858808436854303373129825287392516025427980)) # 40 bits, so no padding sh = sinsemilla_hash_to_point(b"z.cash:test-Sinsemilla", BitArray(bin='0001011010100110001101100011011011110110')) assert sh == Point(Fp(19681977528872088480295086998934490146368213853811658798708435106473481753752), Fp(14670850419772526047574141291705097968771694788047376346841674072293161339903))