1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
//! Structs and constants specific to the Sapling shielded pool.

pub mod group_hash;
pub mod keys;
pub mod note_encryption;
pub mod pedersen_hash;
pub mod prover;
pub mod redjubjub;
pub mod util;

use bitvec::{order::Lsb0, view::AsBits};
use blake2s_simd::Params as Blake2sParams;
use byteorder::{LittleEndian, WriteBytesExt};
use ff::{Field, PrimeField};
use group::{Curve, Group, GroupEncoding};
use lazy_static::lazy_static;
use rand_core::{CryptoRng, RngCore};
use std::array::TryFromSliceError;
use std::convert::{TryFrom, TryInto};
use std::io::{self, Read, Write};
use subtle::{Choice, ConstantTimeEq};

use crate::{
    constants::{self, SPENDING_KEY_GENERATOR},
    merkle_tree::Hashable,
    transaction::components::amount::MAX_MONEY,
};

use self::{
    group_hash::group_hash,
    keys::prf_expand,
    pedersen_hash::{pedersen_hash, Personalization},
    redjubjub::{PrivateKey, PublicKey, Signature},
};

pub const SAPLING_COMMITMENT_TREE_DEPTH: usize = 32;

/// Compute a parent node in the Sapling commitment tree given its two children.
pub fn merkle_hash(depth: usize, lhs: &[u8; 32], rhs: &[u8; 32]) -> [u8; 32] {
    let lhs = {
        let mut tmp = [false; 256];
        for (a, b) in tmp.iter_mut().zip(lhs.as_bits::<Lsb0>()) {
            *a = *b;
        }
        tmp
    };

    let rhs = {
        let mut tmp = [false; 256];
        for (a, b) in tmp.iter_mut().zip(rhs.as_bits::<Lsb0>()) {
            *a = *b;
        }
        tmp
    };

    jubjub::ExtendedPoint::from(pedersen_hash(
        Personalization::MerkleTree(depth),
        lhs.iter()
            .copied()
            .take(bls12_381::Scalar::NUM_BITS as usize)
            .chain(
                rhs.iter()
                    .copied()
                    .take(bls12_381::Scalar::NUM_BITS as usize),
            ),
    ))
    .to_affine()
    .get_u()
    .to_repr()
}

/// A node within the Sapling commitment tree.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct Node {
    repr: [u8; 32],
}

impl Node {
    pub fn new(repr: [u8; 32]) -> Self {
        Node { repr }
    }
}

impl Hashable for Node {
    fn read<R: Read>(mut reader: R) -> io::Result<Self> {
        let mut repr = [0u8; 32];
        reader.read_exact(&mut repr)?;
        Ok(Node::new(repr))
    }

    fn write<W: Write>(&self, mut writer: W) -> io::Result<()> {
        writer.write_all(self.repr.as_ref())
    }

    fn combine(depth: usize, lhs: &Self, rhs: &Self) -> Self {
        Node {
            repr: merkle_hash(depth, &lhs.repr, &rhs.repr),
        }
    }

    fn blank() -> Self {
        Node {
            repr: Note::uncommitted().to_repr(),
        }
    }

    fn empty_root(depth: usize) -> Self {
        EMPTY_ROOTS[depth]
    }
}

impl From<Node> for bls12_381::Scalar {
    fn from(node: Node) -> Self {
        bls12_381::Scalar::from_repr(node.repr).expect("Tree nodes should be in the prime field")
    }
}

lazy_static! {
    static ref EMPTY_ROOTS: Vec<Node> = {
        let mut v = vec![Node::blank()];
        for d in 0..SAPLING_COMMITMENT_TREE_DEPTH {
            let next = Node::combine(d, &v[d], &v[d]);
            v.push(next);
        }
        v
    };
}

/// Create the spendAuthSig for a Sapling SpendDescription.
pub fn spend_sig<R: RngCore + CryptoRng>(
    ask: PrivateKey,
    ar: jubjub::Fr,
    sighash: &[u8; 32],
    rng: &mut R,
) -> Signature {
    spend_sig_internal(ask, ar, sighash, rng)
}

pub(crate) fn spend_sig_internal<R: RngCore>(
    ask: PrivateKey,
    ar: jubjub::Fr,
    sighash: &[u8; 32],
    rng: &mut R,
) -> Signature {
    // We compute `rsk`...
    let rsk = ask.randomize(ar);

    // We compute `rk` from there (needed for key prefixing)
    let rk = PublicKey::from_private(&rsk, SPENDING_KEY_GENERATOR);

    // Compute the signature's message for rk/spend_auth_sig
    let mut data_to_be_signed = [0u8; 64];
    data_to_be_signed[0..32].copy_from_slice(&rk.0.to_bytes());
    (&mut data_to_be_signed[32..64]).copy_from_slice(&sighash[..]);

    // Do the signing
    rsk.sign(&data_to_be_signed, rng, SPENDING_KEY_GENERATOR)
}

#[derive(Clone)]
pub struct ValueCommitment {
    pub value: u64,
    pub randomness: jubjub::Fr,
}

impl ValueCommitment {
    pub fn commitment(&self) -> jubjub::SubgroupPoint {
        (constants::VALUE_COMMITMENT_VALUE_GENERATOR * jubjub::Fr::from(self.value))
            + (constants::VALUE_COMMITMENT_RANDOMNESS_GENERATOR * self.randomness)
    }
}

#[derive(Clone)]
pub struct ProofGenerationKey {
    pub ak: jubjub::SubgroupPoint,
    pub nsk: jubjub::Fr,
}

impl ProofGenerationKey {
    pub fn to_viewing_key(&self) -> ViewingKey {
        ViewingKey {
            ak: self.ak,
            nk: constants::PROOF_GENERATION_KEY_GENERATOR * self.nsk,
        }
    }
}

#[derive(Debug, Clone)]
pub struct ViewingKey {
    pub ak: jubjub::SubgroupPoint,
    pub nk: jubjub::SubgroupPoint,
}

impl ViewingKey {
    pub fn rk(&self, ar: jubjub::Fr) -> jubjub::SubgroupPoint {
        self.ak + constants::SPENDING_KEY_GENERATOR * ar
    }

    pub fn ivk(&self) -> SaplingIvk {
        let mut h = [0; 32];
        h.copy_from_slice(
            Blake2sParams::new()
                .hash_length(32)
                .personal(constants::CRH_IVK_PERSONALIZATION)
                .to_state()
                .update(&self.ak.to_bytes())
                .update(&self.nk.to_bytes())
                .finalize()
                .as_bytes(),
        );

        // Drop the most significant five bits, so it can be interpreted as a scalar.
        h[31] &= 0b0000_0111;

        SaplingIvk(jubjub::Fr::from_repr(h).expect("should be a valid scalar"))
    }

    pub fn to_payment_address(&self, diversifier: Diversifier) -> Option<PaymentAddress> {
        self.ivk().to_payment_address(diversifier)
    }
}

#[derive(Debug, Clone)]
pub struct SaplingIvk(pub jubjub::Fr);

impl SaplingIvk {
    pub fn to_payment_address(&self, diversifier: Diversifier) -> Option<PaymentAddress> {
        diversifier.g_d().and_then(|g_d| {
            let pk_d = g_d * self.0;

            PaymentAddress::from_parts(diversifier, pk_d)
        })
    }

    pub fn to_repr(&self) -> [u8; 32] {
        self.0.to_repr()
    }
}

#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Diversifier(pub [u8; 11]);

impl Diversifier {
    pub fn g_d(&self) -> Option<jubjub::SubgroupPoint> {
        group_hash(&self.0, constants::KEY_DIVERSIFICATION_PERSONALIZATION)
    }
}

/// A Sapling payment address.
///
/// # Invariants
///
/// `pk_d` is guaranteed to be prime-order (i.e. in the prime-order subgroup of Jubjub,
/// and not the identity).
#[derive(Clone, Debug)]
pub struct PaymentAddress {
    pk_d: jubjub::SubgroupPoint,
    diversifier: Diversifier,
}

impl PartialEq for PaymentAddress {
    fn eq(&self, other: &Self) -> bool {
        self.pk_d == other.pk_d && self.diversifier == other.diversifier
    }
}

impl PaymentAddress {
    /// Constructs a PaymentAddress from a diversifier and a Jubjub point.
    ///
    /// Returns None if `pk_d` is the identity.
    pub fn from_parts(diversifier: Diversifier, pk_d: jubjub::SubgroupPoint) -> Option<Self> {
        if pk_d.is_identity().into() {
            None
        } else {
            Some(PaymentAddress { pk_d, diversifier })
        }
    }

    /// Constructs a PaymentAddress from a diversifier and a Jubjub point.
    ///
    /// Only for test code, as this explicitly bypasses the invariant.
    #[cfg(test)]
    pub(crate) fn from_parts_unchecked(
        diversifier: Diversifier,
        pk_d: jubjub::SubgroupPoint,
    ) -> Self {
        PaymentAddress { pk_d, diversifier }
    }

    /// Parses a PaymentAddress from bytes.
    pub fn from_bytes(bytes: &[u8; 43]) -> Option<Self> {
        let diversifier = {
            let mut tmp = [0; 11];
            tmp.copy_from_slice(&bytes[0..11]);
            Diversifier(tmp)
        };
        // Check that the diversifier is valid
        diversifier.g_d()?;

        let pk_d = jubjub::SubgroupPoint::from_bytes(bytes[11..43].try_into().unwrap());
        if pk_d.is_some().into() {
            PaymentAddress::from_parts(diversifier, pk_d.unwrap())
        } else {
            None
        }
    }

    /// Returns the byte encoding of this `PaymentAddress`.
    pub fn to_bytes(&self) -> [u8; 43] {
        let mut bytes = [0; 43];
        bytes[0..11].copy_from_slice(&self.diversifier.0);
        bytes[11..].copy_from_slice(&self.pk_d.to_bytes());
        bytes
    }

    /// Returns the [`Diversifier`] for this `PaymentAddress`.
    pub fn diversifier(&self) -> &Diversifier {
        &self.diversifier
    }

    /// Returns `pk_d` for this `PaymentAddress`.
    pub fn pk_d(&self) -> &jubjub::SubgroupPoint {
        &self.pk_d
    }

    pub fn g_d(&self) -> Option<jubjub::SubgroupPoint> {
        self.diversifier.g_d()
    }

    pub fn create_note(&self, value: u64, rseed: Rseed) -> Option<Note> {
        self.g_d().map(|g_d| Note {
            value,
            rseed,
            g_d,
            pk_d: self.pk_d,
        })
    }
}

/// Enum for note randomness before and after [ZIP 212](https://zips.z.cash/zip-0212).
///
/// Before ZIP 212, the note commitment trapdoor `rcm` must be a scalar value.
/// After ZIP 212, the note randomness `rseed` is a 32-byte sequence, used to derive
/// both the note commitment trapdoor `rcm` and the ephemeral private key `esk`.
#[derive(Copy, Clone, Debug)]
pub enum Rseed {
    BeforeZip212(jubjub::Fr),
    AfterZip212([u8; 32]),
}

/// Typesafe wrapper for nullifier values.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct Nullifier(pub [u8; 32]);

impl Nullifier {
    pub fn from_slice(bytes: &[u8]) -> Result<Nullifier, TryFromSliceError> {
        bytes.try_into().map(Nullifier)
    }

    pub fn to_vec(&self) -> Vec<u8> {
        self.0.to_vec()
    }
}
impl AsRef<[u8]> for Nullifier {
    fn as_ref(&self) -> &[u8] {
        &self.0
    }
}

impl ConstantTimeEq for Nullifier {
    fn ct_eq(&self, other: &Self) -> Choice {
        self.0.ct_eq(&other.0)
    }
}

#[derive(Clone, Copy, Debug, PartialEq)]
pub struct NoteValue(u64);

impl TryFrom<u64> for NoteValue {
    type Error = ();

    fn try_from(value: u64) -> Result<Self, Self::Error> {
        if value <= MAX_MONEY as u64 {
            Ok(NoteValue(value))
        } else {
            Err(())
        }
    }
}

impl From<NoteValue> for u64 {
    fn from(value: NoteValue) -> u64 {
        value.0
    }
}

#[derive(Clone, Debug)]
pub struct Note {
    /// The value of the note
    pub value: u64,
    /// The diversified base of the address, GH(d)
    pub g_d: jubjub::SubgroupPoint,
    /// The public key of the address, g_d^ivk
    pub pk_d: jubjub::SubgroupPoint,
    /// rseed
    pub rseed: Rseed,
}

impl PartialEq for Note {
    fn eq(&self, other: &Self) -> bool {
        self.value == other.value
            && self.g_d == other.g_d
            && self.pk_d == other.pk_d
            && self.rcm() == other.rcm()
    }
}

impl Note {
    pub fn uncommitted() -> bls12_381::Scalar {
        // The smallest u-coordinate that is not on the curve
        // is one.
        bls12_381::Scalar::one()
    }

    /// Computes the note commitment, returning the full point.
    fn cm_full_point(&self) -> jubjub::SubgroupPoint {
        // Calculate the note contents, as bytes
        let mut note_contents = vec![];

        // Writing the value in little endian
        (&mut note_contents)
            .write_u64::<LittleEndian>(self.value)
            .unwrap();

        // Write g_d
        note_contents.extend_from_slice(&self.g_d.to_bytes());

        // Write pk_d
        note_contents.extend_from_slice(&self.pk_d.to_bytes());

        assert_eq!(note_contents.len(), 32 + 32 + 8);

        // Compute the Pedersen hash of the note contents
        let hash_of_contents = pedersen_hash(
            Personalization::NoteCommitment,
            note_contents
                .into_iter()
                .flat_map(|byte| (0..8).map(move |i| ((byte >> i) & 1) == 1)),
        );

        // Compute final commitment
        (constants::NOTE_COMMITMENT_RANDOMNESS_GENERATOR * self.rcm()) + hash_of_contents
    }

    /// Computes the nullifier given the viewing key and
    /// note position
    pub fn nf(&self, viewing_key: &ViewingKey, position: u64) -> Nullifier {
        // Compute rho = cm + position.G
        let rho = self.cm_full_point()
            + (constants::NULLIFIER_POSITION_GENERATOR * jubjub::Fr::from(position));

        // Compute nf = BLAKE2s(nk | rho)
        Nullifier::from_slice(
            Blake2sParams::new()
                .hash_length(32)
                .personal(constants::PRF_NF_PERSONALIZATION)
                .to_state()
                .update(&viewing_key.nk.to_bytes())
                .update(&rho.to_bytes())
                .finalize()
                .as_bytes(),
        )
        .unwrap()
    }

    /// Computes the note commitment
    pub fn cmu(&self) -> bls12_381::Scalar {
        // The commitment is in the prime order subgroup, so mapping the
        // commitment to the u-coordinate is an injective encoding.
        jubjub::ExtendedPoint::from(self.cm_full_point())
            .to_affine()
            .get_u()
    }

    pub fn rcm(&self) -> jubjub::Fr {
        match self.rseed {
            Rseed::BeforeZip212(rcm) => rcm,
            Rseed::AfterZip212(rseed) => {
                jubjub::Fr::from_bytes_wide(prf_expand(&rseed, &[0x04]).as_array())
            }
        }
    }

    pub fn generate_or_derive_esk<R: RngCore + CryptoRng>(&self, rng: &mut R) -> jubjub::Fr {
        self.generate_or_derive_esk_internal(rng)
    }

    pub(crate) fn generate_or_derive_esk_internal<R: RngCore>(&self, rng: &mut R) -> jubjub::Fr {
        match self.derive_esk() {
            None => jubjub::Fr::random(rng),
            Some(esk) => esk,
        }
    }

    /// Returns the derived `esk` if this note was created after ZIP 212 activated.
    pub fn derive_esk(&self) -> Option<jubjub::Fr> {
        match self.rseed {
            Rseed::BeforeZip212(_) => None,
            Rseed::AfterZip212(rseed) => Some(jubjub::Fr::from_bytes_wide(
                prf_expand(&rseed, &[0x05]).as_array(),
            )),
        }
    }
}

#[cfg(any(test, feature = "test-dependencies"))]
pub mod testing {
    use proptest::prelude::*;
    use std::cmp::min;
    use std::convert::TryFrom;

    use crate::{
        transaction::components::amount::MAX_MONEY, zip32::testing::arb_extended_spending_key,
    };

    use super::{Node, Note, NoteValue, PaymentAddress, Rseed};

    prop_compose! {
        pub fn arb_note_value()(value in 0u64..=MAX_MONEY as u64) -> NoteValue {
            NoteValue::try_from(value).unwrap()
        }
    }

    prop_compose! {
        /// The
        pub fn arb_positive_note_value(bound: u64)(
            value in 1u64..=(min(bound, MAX_MONEY as u64))
        ) -> NoteValue {
            NoteValue::try_from(value).unwrap()
        }
    }

    pub fn arb_payment_address() -> impl Strategy<Value = PaymentAddress> {
        arb_extended_spending_key()
            .prop_map(|sk| sk.default_address().map(|(_, a)| a))
            .prop_filter("A valid payment address is required.", |r| r.is_ok())
            .prop_map(|r| r.unwrap())
    }

    prop_compose! {
        pub fn arb_node()(value in prop::array::uniform32(prop::num::u8::ANY)) -> Node {
            Node::new(value)
        }
    }

    prop_compose! {
        pub fn arb_note(value: NoteValue)(
            addr in arb_payment_address(),
            rseed in prop::array::uniform32(prop::num::u8::ANY).prop_map(Rseed::AfterZip212)
        ) -> Note {
            Note {
                value: value.into(),
                g_d: addr.g_d().unwrap(), // this unwrap is safe because arb_payment_address always generates an address witha valid g_d
                pk_d: *addr.pk_d(),
                rseed
            }
        }
    }
}