
Faster probabilistic verification of one or more Pinocchio proof

January 16, 2017

The Pinocchio verifier uses pairing operations. The verifier requires 12 pairings. However, using
the fact that the pairing is bilinear, and that some of the pairing inputs repeat themselves, we can
reduce the number of required operations, assuming we are willing to use probabilistic verification,
where there is a 1/|Fr| probability of accepting a false proof.

The basic claim used for the probabilistic verification is

Claim 0.1. Suppose G is a group of prime order r. (The G we are thinking of here is the multi-
plicative subgroup of order r in Fpk which is the pairing target group). Suppose that a1, . . . , at ∈ G
are not all equal to one. Chooose random elements r1, . . . , rt ∈ Fr, then the probability that

ar11 · · · a
rt
t = 1

is at most 1/r.

More significant savings can be made when we want to “batch” proofs - meaning that we want to
check whether there is at least one bad proof in a sequence of proofs (all using the same verification
key). Details follow.

1 optimizing one Pinocchio verification

We want to check

1. e(πA, vkA) = e(π′A, g2)

2. e(vkB, πB) = e(π′B, g2)

3. e(πC , vkC) = e(π′C , g2)

4. e(πK , vkγ) = e(vkx + πA + πC , vk
2
βγ)e(vk1βγ , πB) .

5. e(vkx + πA, πB) = e(πH , vkZ) · e(πC , g2)

Note first that the above checks are equivalent to:

1. e(πA, vkA) · e(π′A,−g2) = 1

2. e(vkB, πB) · e(π′B,−g2) = 1

3. e(πC , vkC) · e(π′C ,−g2) = 1

1

4. e(πK , vkγ) · e(−(vkx + πA + πC), vk2βγ)e(−(vk1βγ), πB) = 1 .

5. e(vkx + πA, πB) · e(πH ,−vkZ) · e(πC ,−g2) = 1

Now pick r1, . . . , r5 from a subset S ⊂ F of size s uniformly. We will check instead that a
combination of the above factors with random powers is not 1; “shoving in” the exponents into the
G1 element of the pairing, we get the check

e(r1 · πA, vkA) · e(r1π′A,−g2) · e(r2vkB, πB) · e(r2π′B,−g2) · e(r3πC , vkC) · e(r3π′C ,−g2)

·e(r4πK , vkγ)·e(−r4(vkx+πA+πC), vk2βγ)e(−r4(vk1βγ), πB)·e(r5(vkx+πA), πB)·e(r5πH ,−vkZ)·e(r5πC ,−g2) = 1

Now, we merge together factors that have the same G2 part, using the rule e(a, c) · e(b, c) =
e(a+ b, c). We get

e(r1·πA, vkA)·e(r1π′A+r2π
′
B+r3π

′
C+r5πC ,−g2)·e(r3πC , vkC)·e(r4πK , vkγ)·e(−r4(vkx+πA+πC), vk2βγ)·e(r5πH ,−vkZ)

·e(r2vkB − r4vk1βγ + r5(vkx + πA), πB) = 1

2 Batch verification of proofs

Note that in 4 out of the 5 factors above, the G2 argument depended only on the verification key.
Thus, we can batch these factors from different proofs using accumulators.

1. a1-accumulates the sum of r1πA

2. a2-accumulates the sum of r1π
′
A + r2π

′
B + r3π

′
C + r5πC

3. a3-accumulates the sum of r3πC

4. a4-accumulates the sum of r4πK

5. a5-accumulates the sum of −r4(vkx + πA + πC)

6. a6-accumulates the sum of r5πH

7. a7-accumulates the product of ML(r2vkB − r4vk1βγ + r5(vkx + πA), πB).

It is important to choose different r1, . . . , r5 for each proof!
When the verifier is done accumulating proofs, and wants to check, probabilistically, if they are

all valid. He computes

FE(ML(a1, vkA) ·ML(a2,−g2) ·ML(a3, vkC) ·ML(a4, vkγ) ·ML(a5, vk
2
βγ) ·ML(a6,−vkZ) ·a7) = 1.

In fact, one can save some time, by using a 6-fold Miller-Loop, to compute the product of the
first 6 factors in the equation above.

One can show that a set of valid proofs will always be accepted, and a set of proof of which at
least one is non-valid, will be accepted with probability at most 1/s.

2

