orchard/src/tree.rs

498 lines
18 KiB
Rust
Raw Normal View History

//! Types related to Orchard note commitment trees and anchors.
use crate::{
constants::{
util::gen_const_array, L_ORCHARD_MERKLE, MERKLE_CRH_PERSONALIZATION, MERKLE_DEPTH_ORCHARD,
},
note::commitment::ExtractedNoteCommitment,
primitives::sinsemilla::{i2lebsp_k, HashDomain},
};
2021-06-21 09:13:30 -07:00
use incrementalmerkletree::{Altitude, Hashable};
use pasta_curves::{arithmetic::FieldExt, pallas};
2021-06-15 07:41:33 -07:00
use ff::{Field, PrimeField, PrimeFieldBits};
use lazy_static::lazy_static;
2021-04-14 21:14:34 -07:00
use rand::RngCore;
use serde::de::{Deserializer, Error};
2021-06-21 09:13:30 -07:00
use serde::ser::Serializer;
use serde::{Deserialize, Serialize};
use std::iter;
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
2021-04-14 21:14:34 -07:00
// The uncommitted leaf is defined as pallas::Base(2).
// <https://zips.z.cash/protocol/protocol.pdf#thmuncommittedorchard>
lazy_static! {
2021-06-24 11:33:02 -07:00
static ref UNCOMMITTED_ORCHARD: pallas::Base = pallas::Base::from_u64(2);
pub(crate) static ref EMPTY_ROOTS: Vec<pallas::Base> = {
iter::empty()
2021-06-24 11:33:02 -07:00
.chain(Some(*UNCOMMITTED_ORCHARD))
.chain(
2021-06-24 11:33:02 -07:00
(0..MERKLE_DEPTH_ORCHARD).scan(*UNCOMMITTED_ORCHARD, |state, l| {
*state = hash_with_l(
l,
Pair {
left: *state,
right: *state,
},
)
.unwrap();
Some(*state)
}),
)
.collect()
};
}
2021-01-20 12:30:35 -08:00
/// The root of an Orchard commitment tree.
2021-06-15 07:42:06 -07:00
#[derive(Eq, PartialEq, Clone, Copy, Debug)]
pub struct Anchor(pallas::Base);
2021-04-14 21:14:34 -07:00
impl From<pallas::Base> for Anchor {
fn from(anchor_field: pallas::Base) -> Anchor {
Anchor(anchor_field)
}
}
impl std::ops::Deref for Anchor {
type Target = pallas::Base;
fn deref(&self) -> &pallas::Base {
&self.0
}
}
2021-06-15 07:41:33 -07:00
impl Anchor {
/// Parses an Orchard anchor from a byte encoding.
pub fn from_bytes(bytes: [u8; 32]) -> Option<Anchor> {
pallas::Base::from_repr(bytes).map(Anchor)
}
/// Returns the byte encoding of this anchor.
pub fn to_bytes(self) -> [u8; 32] {
self.0.to_repr()
}
}
/// The Merkle path from a leaf of the note commitment tree
/// to its anchor.
2021-04-14 21:14:34 -07:00
#[derive(Debug)]
pub struct MerklePath {
position: u32,
auth_path: [pallas::Base; MERKLE_DEPTH_ORCHARD],
}
2021-04-14 21:14:34 -07:00
impl MerklePath {
/// Generates a dummy Merkle path for use in dummy spent notes.
pub(crate) fn dummy(mut rng: &mut impl RngCore) -> Self {
MerklePath {
position: rng.next_u32(),
auth_path: gen_const_array(|_| pallas::Base::random(&mut rng)),
}
}
/// <https://zips.z.cash/protocol/protocol.pdf#orchardmerklecrh>
/// The layer with 2^n nodes is called "layer n":
/// - leaves are at layer MERKLE_DEPTH_ORCHARD = 32;
/// - the root is at layer 0.
/// `l` is MERKLE_DEPTH_ORCHARD - layer - 1.
/// - when hashing two leaves, we produce a node on the layer above the leaves, i.e.
/// layer = 31, l = 0
/// - when hashing to the final root, we produce the anchor with layer = 0, l = 31.
2021-06-24 08:43:10 -07:00
pub fn root(&self, cmx: ExtractedNoteCommitment) -> CtOption<Anchor> {
self.auth_path
.iter()
.enumerate()
2021-06-24 08:43:10 -07:00
.fold(CtOption::new(*cmx, 1.into()), |node, (l, sibling)| {
let swap = self.position & (1 << l) != 0;
2021-06-24 08:43:10 -07:00
node.and_then(|n| hash_with_l(l, cond_swap(swap, n, *sibling)))
})
.map(Anchor)
2021-04-14 21:14:34 -07:00
}
/// Returns the position of the leaf using this Merkle path.
pub fn position(&self) -> u32 {
self.position
}
/// Returns the authentication path.
pub fn auth_path(&self) -> [pallas::Base; MERKLE_DEPTH_ORCHARD] {
self.auth_path
}
2021-04-14 21:14:34 -07:00
}
struct Pair {
left: pallas::Base,
right: pallas::Base,
}
fn cond_swap(swap: bool, node: pallas::Base, sibling: pallas::Base) -> Pair {
if swap {
Pair {
left: sibling,
right: node,
}
} else {
Pair {
left: node,
right: sibling,
}
}
}
/// Implements the function `hash` (internal to MerkleCRH^Orchard) defined
/// in <https://zips.z.cash/protocol/protocol.pdf#orchardmerklecrh>
///
/// The layer with 2^n nodes is called "layer n":
/// - leaves are at layer MERKLE_DEPTH_ORCHARD = 32;
/// - the root is at layer 0.
/// `l` is MERKLE_DEPTH_ORCHARD - layer - 1.
/// - when hashing two leaves, we produce a node on the layer above the leaves, i.e.
/// layer = 31, l = 0
/// - when hashing to the final root, we produce the anchor with layer = 0, l = 31.
fn hash_with_l(l: usize, pair: Pair) -> CtOption<pallas::Base> {
// MerkleCRH Sinsemilla hash domain.
let domain = HashDomain::new(MERKLE_CRH_PERSONALIZATION);
domain.hash(
iter::empty()
.chain(i2lebsp_k(l).iter().copied())
.chain(
pair.left
.to_le_bits()
.iter()
.by_val()
.take(L_ORCHARD_MERKLE),
)
.chain(
pair.right
.to_le_bits()
.iter()
.by_val()
.take(L_ORCHARD_MERKLE),
),
)
}
/// A newtype wrapper for leaves and internal nodes in the Orchard
/// incremental note commitment tree.
///
/// This wraps a CtOption<pallas::Base> because Sinsemilla hashes
/// can produce a bottom value which needs to be accounted for in
/// the production of a Merkle root. Leaf nodes are always wrapped
/// with the `Some` constructor.
#[derive(Copy, Clone, Debug)]
pub struct MerkleCrhOrchardOutput(pallas::Base);
impl MerkleCrhOrchardOutput {
/// Creates an incremental tree leaf digest from the specified
/// Orchard extracted note commitment.
pub fn from_cmx(value: &ExtractedNoteCommitment) -> Self {
MerkleCrhOrchardOutput(**value)
}
/// Convert this digest to its canonical byte representation.
pub fn to_bytes(&self) -> [u8; 32] {
self.0.to_bytes()
}
/// Parses a incremental tree leaf digest from the bytes of
/// a note commitment.
///
/// Returns the empty `CtOption` if the provided bytes represent
/// a non-canonical encoding.
pub fn from_bytes(bytes: &[u8; 32]) -> CtOption<Self> {
pallas::Base::from_bytes(bytes).map(MerkleCrhOrchardOutput)
}
}
/// This instance should only be used for hash table key comparisons.
impl std::cmp::PartialEq for MerkleCrhOrchardOutput {
fn eq(&self, other: &Self) -> bool {
self.0.ct_eq(&other.0).into()
}
}
/// This instance should only be used for hash table key comparisons.
impl std::cmp::Eq for MerkleCrhOrchardOutput {}
/// This instance should only be used for hash table key hashing.
impl std::hash::Hash for MerkleCrhOrchardOutput {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
2021-06-21 09:13:30 -07:00
<Option<pallas::Base>>::from(self.0)
.map(|b| b.to_bytes())
.hash(state)
}
}
impl ConditionallySelectable for MerkleCrhOrchardOutput {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
MerkleCrhOrchardOutput(pallas::Base::conditional_select(&a.0, &b.0, choice))
}
}
impl Hashable for MerkleCrhOrchardOutput {
fn empty_leaf() -> Self {
MerkleCrhOrchardOutput(*UNCOMMITTED_ORCHARD)
}
/// Implements `MerkleCRH^Orchard` as defined in
/// <https://zips.z.cash/protocol/protocol.pdf#orchardmerklecrh>
fn combine(altitude: Altitude, left: &Self, right: &Self) -> Self {
hash_with_l(
altitude.into(),
Pair {
left: left.0,
right: right.0,
},
)
.map(MerkleCrhOrchardOutput)
.unwrap_or_else(|| MerkleCrhOrchardOutput(pallas::Base::zero()))
}
fn empty_root(altitude: Altitude) -> Self {
MerkleCrhOrchardOutput(EMPTY_ROOTS[<usize>::from(altitude)])
}
}
impl Serialize for MerkleCrhOrchardOutput {
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
self.to_bytes().serialize(serializer)
}
}
impl<'de> Deserialize<'de> for MerkleCrhOrchardOutput {
fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
let parsed = <[u8; 32]>::deserialize(deserializer)?;
2021-06-28 09:56:25 -07:00
<Option<_>>::from(Self::from_bytes(&parsed)).ok_or_else(|| {
Error::custom(
"Attempted to deserialize a non-canonical representation of a Pallas base field element.",
2021-06-28 09:56:25 -07:00
)
})
}
}
/// Generators for property testing.
#[cfg(any(test, feature = "test-dependencies"))]
pub mod testing {
2021-06-28 09:56:25 -07:00
#[cfg(test)]
use incrementalmerkletree::{
bridgetree::Frontier as BridgeFrontier, Altitude, Frontier, Hashable,
};
2021-06-28 09:56:25 -07:00
use std::convert::TryInto;
use crate::{
constants::MERKLE_DEPTH_ORCHARD,
note::{commitment::ExtractedNoteCommitment, testing::arb_note, Note},
value::{testing::arb_positive_note_value, MAX_NOTE_VALUE},
};
2021-06-28 09:56:25 -07:00
#[cfg(test)]
use pasta_curves::arithmetic::FieldExt;
use pasta_curves::pallas;
use proptest::collection::vec;
use proptest::prelude::*;
2021-06-28 09:56:25 -07:00
#[cfg(test)]
use super::MerkleCrhOrchardOutput;
2021-06-28 09:56:25 -07:00
use super::{hash_with_l, Anchor, MerklePath, Pair, EMPTY_ROOTS};
#[test]
fn test_vectors() {
let tv_empty_roots = crate::test_vectors::commitment_tree::test_vectors().empty_roots;
for (height, root) in EMPTY_ROOTS.iter().enumerate() {
assert_eq!(tv_empty_roots[height], root.to_bytes());
}
}
prop_compose! {
/// Generates an arbitrary Merkle tree of with `n_notes` nonempty leaves.
pub fn arb_tree(n_notes: usize)
(
// generate note values that we're certain won't exceed MAX_NOTE_VALUE in total
notes in vec(
arb_positive_note_value(MAX_NOTE_VALUE / n_notes as u64).prop_flat_map(arb_note),
n_notes
),
)
-> (Vec<(Note, MerklePath)>, Anchor) {
// Inefficient algorithm to build a perfect subtree containing all notes.
let perfect_subtree_depth = (n_notes as f64).log2().ceil() as usize;
let n_leaves = 1 << perfect_subtree_depth;
let commitments: Vec<Option<ExtractedNoteCommitment>> = notes.iter().map(|note| {
let cmx: ExtractedNoteCommitment = note.commitment().into();
Some(cmx)
}).collect();
let padded_leaves = {
let mut padded_leaves = commitments.clone();
let pad = (0..(n_leaves - n_notes)).map(
|_| None
).collect::<Vec<_>>();
padded_leaves.extend_from_slice(&pad);
padded_leaves
};
let perfect_subtree = {
let mut perfect_subtree: Vec<Vec<Option<pallas::Base>>> = vec![
padded_leaves.iter().map(|cmx| cmx.map(|cmx| *cmx)).collect()
];
// <https://zips.z.cash/protocol/protocol.pdf#orchardmerklecrh>
// The layer with 2^n nodes is called "layer n":
// - leaves are at layer MERKLE_DEPTH_ORCHARD = 32;
// - the root is at layer 0.
// `l` is MERKLE_DEPTH_ORCHARD - layer - 1.
// - when hashing two leaves, we produce a node on the layer above the leaves, i.e.
// layer = 31, l = 0
// - when hashing to the final root, we produce the anchor with layer = 0, l = 31.
for l in 0..perfect_subtree_depth {
let inner_nodes = (0..(n_leaves >> (l + 1))).map(|pos| {
let left = perfect_subtree[l][pos * 2];
let right = perfect_subtree[l][pos * 2 + 1];
match (left, right) {
(None, None) => None,
(Some(left), None) => {
let right = EMPTY_ROOTS[l];
Some(hash_with_l(l, Pair {left, right}).unwrap())
},
(Some(left), Some(right)) => {
Some(hash_with_l(l, Pair {left, right}).unwrap())
},
(None, Some(_)) => {
unreachable!("The perfect subtree is left-packed.")
}
}
}).collect();
perfect_subtree.push(inner_nodes);
};
perfect_subtree
};
// Get Merkle path for each note commitment
let auth_paths = {
let mut auth_paths: Vec<MerklePath> = Vec::new();
for (pos, _) in commitments.iter().enumerate() {
// Initialize the authentication path to the path for an empty tree.
let mut auth_path: [pallas::Base; MERKLE_DEPTH_ORCHARD] = (0..MERKLE_DEPTH_ORCHARD).map(|idx| EMPTY_ROOTS[idx]).collect::<Vec<_>>().try_into().unwrap();
let mut layer_pos = pos;
for height in 0..perfect_subtree_depth {
let is_right_sibling = layer_pos & 1 == 1;
let sibling = if is_right_sibling {
// This node is the right sibling, so we need its left sibling at the current height.
perfect_subtree[height][layer_pos - 1]
} else {
// This node is the left sibling, so we need its right sibling at the current height.
perfect_subtree[height][layer_pos + 1]
};
if let Some(sibling) = sibling {
auth_path[height] = sibling;
}
layer_pos = (layer_pos - is_right_sibling as usize) / 2;
};
let path = MerklePath {position: pos as u32, auth_path};
auth_paths.push(path);
}
auth_paths
};
// Compute anchor for this tree
2021-06-24 08:43:10 -07:00
let anchor = auth_paths[0].root(notes[0].commitment().into()).unwrap();
(
notes.into_iter().zip(auth_paths.into_iter()).map(|(note, auth_path)| (note, auth_path)).collect(),
anchor
)
}
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(10))]
#[allow(clippy::redundant_closure)]
#[test]
fn tree(
(notes_and_auth_paths, anchor) in (1usize..4).prop_flat_map(|n_notes| arb_tree(n_notes))
) {
for (note, auth_path) in notes_and_auth_paths.iter() {
2021-06-24 08:43:10 -07:00
let computed_anchor = auth_path.root(note.commitment().into()).unwrap();
assert_eq!(anchor, computed_anchor);
}
}
}
2021-06-21 09:13:30 -07:00
#[test]
fn empty_roots_incremental() {
let tv_empty_roots = crate::test_vectors::commitment_tree::test_vectors().empty_roots;
for (altitude, tv_root) in tv_empty_roots.iter().enumerate() {
assert_eq!(
MerkleCrhOrchardOutput::empty_root(Altitude::from(altitude as u8))
2021-06-21 09:13:30 -07:00
.0
.to_bytes(),
*tv_root,
"Empty root mismatch at altitude {}",
altitude
);
}
}
#[test]
fn anchor_incremental() {
// These commitment values are derived from the bundle data that was generated for
// testing commitment tree construction inside of zcashd here.
// https://github.com/zcash/zcash/blob/ecec1f9769a5e37eb3f7fd89a4fcfb35bc28eed7/src/test/data/merkle_roots_orchard.h
let commitments = [
[
0x68, 0x13, 0x5c, 0xf4, 0x99, 0x33, 0x22, 0x90, 0x99, 0xa4, 0x4e, 0xc9, 0x9a, 0x75,
0xe1, 0xe1, 0xcb, 0x46, 0x40, 0xf9, 0xb5, 0xbd, 0xec, 0x6b, 0x32, 0x23, 0x85, 0x6f,
0xea, 0x16, 0x39, 0x0a,
],
[
0x78, 0x31, 0x50, 0x08, 0xfb, 0x29, 0x98, 0xb4, 0x30, 0xa5, 0x73, 0x1d, 0x67, 0x26,
0x20, 0x7d, 0xc0, 0xf0, 0xec, 0x81, 0xea, 0x64, 0xaf, 0x5c, 0xf6, 0x12, 0x95, 0x69,
0x01, 0xe7, 0x2f, 0x0e,
],
[
0xee, 0x94, 0x88, 0x05, 0x3a, 0x30, 0xc5, 0x96, 0xb4, 0x30, 0x14, 0x10, 0x5d, 0x34,
0x77, 0xe6, 0xf5, 0x78, 0xc8, 0x92, 0x40, 0xd1, 0xd1, 0xee, 0x17, 0x43, 0xb7, 0x7b,
0xb6, 0xad, 0xc4, 0x0a,
],
[
0x9d, 0xdc, 0xe7, 0xf0, 0x65, 0x01, 0xf3, 0x63, 0x76, 0x8c, 0x5b, 0xca, 0x3f, 0x26,
0x46, 0x60, 0x83, 0x4d, 0x4d, 0xf4, 0x46, 0xd1, 0x3e, 0xfc, 0xd7, 0xc6, 0xf1, 0x7b,
0x16, 0x7a, 0xac, 0x1a,
],
[
0xbd, 0x86, 0x16, 0x81, 0x1c, 0x6f, 0x5f, 0x76, 0x9e, 0xa4, 0x53, 0x9b, 0xba, 0xff,
0x0f, 0x19, 0x8a, 0x6c, 0xdf, 0x3b, 0x28, 0x0d, 0xd4, 0x99, 0x26, 0x16, 0x3b, 0xd5,
0x3f, 0x53, 0xa1, 0x21,
],
];
// This value was produced by the Python test vector generation code implemented here:
// https://github.com/zcash-hackworks/zcash-test-vectors/blob/f4d756410c8f2456f5d84cedf6dac6eb8c068eed/orchard_merkle_tree.py
let anchor = [
0xc8, 0x75, 0xbe, 0x2d, 0x60, 0x87, 0x3f, 0x8b, 0xcd, 0xeb, 0x91, 0x28, 0x2e, 0x64,
0x2e, 0x0c, 0xc6, 0x5f, 0xf7, 0xd0, 0x64, 0x2d, 0x13, 0x7b, 0x28, 0xcf, 0x28, 0xcc,
0x9c, 0x52, 0x7f, 0x0e,
];
let mut frontier = BridgeFrontier::<MerkleCrhOrchardOutput, 32>::new();
for commitment in commitments.iter() {
let cmx = MerkleCrhOrchardOutput(pallas::Base::from_bytes(commitment).unwrap());
frontier.append(&cmx);
}
assert_eq!(
frontier.root().0,
pallas::Base::from_bytes(&anchor).unwrap()
);
}
}