[book] Add macros, constraint tables, and region layout to Commit^ivk

I also merged in content from a page I wrote independently while
reviewing the Action circuit PR, and made various cleanups to the
Markdown source.
This commit is contained in:
Jack Grigg 2021-07-23 13:37:54 +01:00
parent 4a5a4cc437
commit f376a61bb8
3 changed files with 226 additions and 44 deletions

View File

@ -6,3 +6,4 @@ src = "src"
title = "The Orchard Book"
[preprocessor.katex]
macros = "macros.txt"

28
book/macros.txt Normal file
View File

@ -0,0 +1,28 @@
# Conventions
\bconcat:{\mathop{\kern 0.1em||\kern 0.1em}}
# Conversions
\ItoLEBSP:{\mathsf{I2LEBSP}_{#1}}
# Fields and curves
\BaseLength:{\ell^\mathsf{#1\vphantom{p}}_{\mathsf{base}}}
# Key components
\AuthSignPublic:{\mathsf{ak}}
\NullifierKey:{\mathsf{nk}}
\InViewingKey:{\mathsf{ivk}}
# Commitments and hashes
\SinsemillaHash:{\mathsf{SinsemillaHash}}
\SinsemillaShortCommit:{\mathsf{SinsemillaShortCommit}}
\CommitIvk:{\mathsf{Commit}^{\InViewingKey}}
# Circuit constraint helper methods
\BoolCheck:{\texttt{bool\_check}({#1})}
\ShortLookupRangeCheck:{\texttt{short\_lookup\_range\_check}({#1})}

View File

@ -1,76 +1,229 @@
# CommitIvk
## Message decomposition
$\mathsf{SinsemillaShortCommit}$ is used in the [$\mathsf{CommitIvk}$ function](https://zips.z.cash/protocol/protocol.pdf#concretesinsemillacommit). The input to $\mathsf{SinsemillaShortCommit}$ is:
$$\mathsf{I2LEBSP}_{\ell_{\textsf{base}}^{\textsf{Orchard}}}(ak) || \mathsf{I2LEBSP}_{\ell_{\textsf{base}}^{\textsf{Orchard}}}(nk),$$
$\SinsemillaShortCommit$ is used in the
[$\CommitIvk$ function](https://zips.z.cash/protocol/protocol.pdf#concretesinsemillacommit).
The input to $\SinsemillaShortCommit$ is:
where $\mathsf{ak, nk}$ are Pallas base field elements, and $\ell_{\textsf{base}}^{\textsf{Orchard}} = 255.$
$$\ItoLEBSP{\BaseLength{Orchard}}(\AuthSignPublic) \bconcat \ItoLEBSP{\BaseLength{Orchard}}(\NullifierKey),$$
We break these inputs into the following `MessagePiece`s:
where $\AuthSignPublic$, $\NullifierKey$ are Pallas base field elements, and $\BaseLength{Orchard} = 255.$
Sinsemilla operates on multiples of 10 bits, so we start by decomposing the message into
chunks:
$$
\begin{aligned}
a \text{ (250 bits)} &= \text{bits } 0..=249 \text{ of } \mathsf{ak} \\
b \text{ (10 bits)} &= b_0||b_1||b_2 \\
&= (\text{bits } 250..=253 \text{ of } \mathsf{ak}) || (\text{bit } 254 \text{ of } \mathsf{ak}) || (\text{bits } 0..=4 \text{ of } \mathsf{nk}) \\
c \text{ (240 bits)} &= \text{bits } 5..=244 \text{ of } \mathsf{nk} \\
d \text{ (10 bits)} &= d_0||d_1 \\
&= (\text{bits } 245..=253 \text{ of } \mathsf{nk}) || (\text{bit } 254 \text{ of } \mathsf{nk})
\end{aligned}
\begin{align}
\ItoLEBSP{\BaseLength{Orchard}}(\AuthSignPublic) &= a \bconcat b_0 \bconcat b_1 \\
&= (\text{bits 0..=249 of } \AuthSignPublic) \bconcat
(\text{bits 250..=253 of } \AuthSignPublic) \bconcat
(\text{bit 254 of } \AuthSignPublic) \\
\ItoLEBSP{\BaseLength{Orchard}}(\NullifierKey) &= b_2 \bconcat c \bconcat d_0 \bconcat d_1 \\
&= (\text{bits 0..=4 of } \NullifierKey) \bconcat
(\text{bits 5..=244 of } \NullifierKey) \bconcat
(\text{bits 245..=253 of } \NullifierKey) \bconcat
(\text{bit 254 of } \NullifierKey) \\
\end{align}
$$
$a,b,c,d$ are constrained by the $\textsf{SinsemillaHash}$ to be $250$ bits, $10$ bits, $240$ bits, and $10$ bits respectively.
Then we recompose the chunks into message pieces:
In a custom gate, we check this message decomposition by enforcing the following constraints:
$$
\begin{array}{|c|l|}
\hline
\text{Length (bits)} & \text{Piece} \\\hline
250 & a \\
10 & b = b_0 \bconcat b_1 \bconcat b_2 \\
240 & c \\
10 & d = d_0 \bconcat d_1 \\\hline
\end{array}
$$
1. $b = b_0 + 2^4 \cdot b_1 + 2^5 \cdot b_2$
<br>
$b_0, b_2$ are witnessed outside this gate, and constrained to be $4$ bits and $5$ bits respectively. $b_1$ is witnessed and boolean-constrained in this gate:
$$(b_1)(1 - b_1) = 0.$$
From these witnessed subpieces, we check that we recover the original `MessagePiece` input to the hash:
$$b = b_0 + 2^4 \cdot b_1 + 2^5 \cdot b_2.$$
Each message piece is constrained by $\SinsemillaHash$ to its stated length. Additionally,
$\AuthSignPublic$ and $\NullifierKey$ are witnessed as field elements, so we know they are
canonical. However, we need additional constraints to enforce that:
2. $d = d_0 + 2^9 \cdot d_1$
<br>
$d_0$ is witnessed outside this gate, and constrained to be $9$ bits. $d_1$ is witnessed and boolean-constrained in this gate:
$$(d_1)(1 - d_1) = 0.$$
From these witnessed subpieces, we check that we recover the original `MessagePiece` input to the hash:
$$d = d_0 + 2^9 \cdot d_1.$$
- The chunks are the correct bit lengths (or else they could overlap in the decompositions
and allow the prover to witness an arbitrary $\SinsemillaShortCommit$ message).
- The chunks contain the canonical decompositions of $\AuthSignPublic$ and $\NullifierKey$
(or else the prover could witness an input to $\SinsemillaShortCommit$ that is
equivalent to $\AuthSignPublic$ and $\NullifierKey$ but not identical).
Some of these constraints can be implemented with reusable circuit gadgets. We define a
custom gate controlled by the selector $q_\CommitIvk$ to hold the remaining constraints.
## Bit length constraints
Chunks $a$ and $c$ are directly constrained by Sinsemilla. For the remaining chunks, we
use the following constraints:
$$
\begin{array}{|c|l|}
\hline
\text{Degree} & \text{Constraint} \\\hline
& \ShortLookupRangeCheck{b_0, 4} \\\hline
& \ShortLookupRangeCheck{b_2, 5} \\\hline
& \ShortLookupRangeCheck{d_0, 9} \\\hline
3 & q_\CommitIvk \cdot \BoolCheck{b_1} = 0 \\\hline
3 & q_\CommitIvk \cdot \BoolCheck{d_1} = 0 \\\hline
\end{array}
$$
where $\BoolCheck{x} = x \cdot (1 - x)$ and $\ShortLookupRangeCheck{}$ is a
[short lookup range check](../lookup_range_check.md#short-range-check).
## Decomposition constraints
We have now derived or witnessed every subpiece, and range-constrained every subpiece:
- $a$ ($250$ bits) is witnessed and constrained outside the gate;
- $b_0$ ($4$ bits) is witnessed and constrained outside the gate;
- $b_1$ ($1$ bits) is witnessed and boolean-constrained in the gate;
- $b_2$ ($5$ bits) is witnessed and constrained outside the gate;
- $c$ ($240$ bits) is witnessed and constrained outside the gate;
- $d_0$ ($9$ bits) is witnessed and constrained outside the gate;
- $d_1$ ($1$ bits) is witnessed and boolean-constrained in the gate,
and we use them to reconstruct the original field element inputs:
- $d_1$ ($1$ bits) is witnessed and boolean-constrained in the gate.
3. $\textsf{ak} = a + 2^{250} \cdot b_0 + 2^{254} \cdot b_1$
4. $\textsf{nk} = b_2 + 2^5 \cdot c + 2^{245} \cdot d_0 + 2^{254} \cdot d_1$
We can now use them to reconstruct both the (chunked) message pieces, and the original
field element inputs:
## Canonicity
The modulus of the Pallas base field is $p = 2^{254} + t_p,$ where $t_p = 45560315531419706090280762371685220353 < 2^{126}.$
$$
\begin{align}
b &= b_0 + 2^4 \cdot b_1 + 2^5 \cdot b_2 \\
d &= d_0 + 2^9 \cdot d_1 \\
\AuthSignPublic &= a + 2^{250} \cdot b_0 + 2^{254} \cdot b_1 \\
\NullifierKey &= b_2 + 2^5 \cdot c + 2^{245} \cdot d_0 + 2^{254} \cdot d_1 \\
\end{align}
$$
### $\textsf{ak} = a (250 \text{ bits}) || b_0 (4 \text{ bits}) || b_1 (1 \text{ bit})$
We check that $\mathsf{I2LEBSP_{\ell_{base}^{Orchard}}(ak)}$ is a canonically-encoded $255$-bit value, i.e. $\textsf{ak} < p$. If the high bit is not set $b_1 = 0$, we are guaranteed that $\textsf{ak} < 2^{254}$. Thus, we are only interested in cases when $b_1 = 1 \implies \textsf{ak} \geq 2^{254}$. In these cases, we check that $\textsf{ak}_{0..=253} < t_p < 2^{126}$:
$$
\begin{array}{|c|l|}
\hline
\text{Degree} & \text{Constraint} \\\hline
2 & q_\CommitIvk \cdot (b - (b_0 + b_1 \cdot 2^4 + b_2 \cdot 2^5)) = 0 \\\hline
2 & q_\CommitIvk \cdot (d - (d_0 + d_1 \cdot 2^9)) = 0 \\\hline
2 & q_\CommitIvk \cdot (a + b_0 \cdot 2^{250} + b_1 \cdot 2^{254} - \AuthSignPublic) = 0 \\\hline
2 & q_\CommitIvk \cdot (b_2 + c \cdot 2^5 + d_0 \cdot 2^{245} + d_1 \cdot 2^{254} - \NullifierKey) = 0 \\\hline
\end{array}
$$
## Canonicity checks
At this point, we have constrained $\ItoLEBSP{\BaseLength{Orchard}}(\AuthSignPublic)$ and
$\ItoLEBSP{\BaseLength{Orchard}}(\NullifierKey)$ to be 255-bit values, with top bits $b_1$
and $d_1$ respectively. We have also constrained:
$$
\begin{align}
\ItoLEBSP{\BaseLength{Orchard}}(\AuthSignPublic) &= \AuthSignPublic \pmod{q_\mathbb{P}} \\
\ItoLEBSP{\BaseLength{Orchard}}(\NullifierKey) &= \NullifierKey \pmod{q_\mathbb{P}} \\
\end{align}
$$
where $q_\mathbb{P}$ is the Pallas base field modulus. The remaining constraints will
enforce that these are indeed canonically-encoded field elements, i.e.
$$
\begin{align}
\ItoLEBSP{\BaseLength{Orchard}}(\AuthSignPublic) &< q_\mathbb{P} \\
\ItoLEBSP{\BaseLength{Orchard}}(\NullifierKey) &< q_\mathbb{P} \\
\end{align}
$$
The Pallas base field modulus has the form $q_\mathbb{P} = 2^{254} + t_\mathbb{P}$, where
$$t_\mathbb{P} = \mathtt{0x224698fc094cf91b992d30ed00000001}$$
is 126 bits. We therefore know that if the top bit is not set, then the remaining bits
will always comprise a canonical encoding of a field element. Thus the canonicity checks
below are enforced if and only if $b_1 = 1$ (for $\AuthSignPublic$) or $d_1 = 1$ (for
$\NullifierKey$).
> In the constraints below we use a base-$2^{10}$ variant of the method used in libsnark
> (originally from [[SVPBABW2012](https://eprint.iacr.org/2012/598.pdf), Appendix C.1]) for
> range constraints $0 \leq x < t$:
>
> - Let $t'$ be the smallest power of $2^{10}$ greater than $t$.
> - Enforce $0 \leq x < t'$.
> - Let $x' = x + t' - t$.
> - Enforce $0 \leq x' < t'$.
### $\AuthSignPublic$ with $b_1 = 1 \implies \AuthSignPublic \geq 2^{254}$
In these cases, we check that $\textsf{ak}_{0..=253} < t_\mathbb{P} < 2^{126}$:
1. $b_1 = 1 \implies b_0 = 0.$
Since $b_1 = 1 \implies \textsf{ak}_{0..=253} < 2^{126},$ we know that $\textsf{ak}_{126..=253} = 0,$ and in particular $b_0 = \textsf{ak}_{250..=253} = 0.$ So, we constrain $$b_1 \cdot b_0 = 0.$$
Since $b_1 = 1 \implies \AuthSignPublic_{0..=253} < 2^{126},$ we know that
$\AuthSignPublic_{126..=253} = 0,$ and in particular
$$b_0 := \AuthSignPublic_{250..=253} = 0.$$
2. $b_1 = 1 \implies 0 \leq a < 2^{126}.$
To check that $a < 2^{126}$, we use two constraints:
a) $0 \leq a < 2^{130}$. This is expressed in the custom gate as $$b_1 \cdot z_{13,a} = 0,$$ where $z_{13,a}$ is the index-13 running sum output by $\textsf{SinsemillaHash}(a).$
To check that $a < 2^{126}$, we use two constraints:
b) $0 \leq a + 2^{130} - t_p < 2^{130}$. To check this, we decompose $a' = a + 2^{130} - t_p$ into thirteen 10-bit words (little-endian) using a running sum $z_{a'}$, looking up each word in a $10$-bit lookup table. We then enforce in the custom gate that $$b_1 \cdot z_{13, a'} = 0.$$
a) $0 \leq a < 2^{130}$. This is expressed in the custom gate as
$$b_1 \cdot z_{a,13} = 0,$$
where $z_{a,13}$ is the index-13 running sum output by $\SinsemillaHash(a).$
### $\textsf{nk} = b_2 (5 \text{ bits}) || c (240 \text{ bits}) || d_0 (9 \text{ bits}) || d_1 (1 \text{ bit})$
We check that $\mathsf{I2LEBSP}_{\ell_{\textsf{base}}^{\textsf{Orchard}}}(nk)$ is a canonically-encoded $255$-bit value, i.e. $\textsf{nk} < p$. If the high bit is not set $d_1 = 0$, we are guaranteed that $nk < 2^{254}$. Thus, we are only interested in cases when $d_1 = 1 \implies nk \geq 2^{254}$. In these cases, we check that $\textsf{nk}_{0..=253} < t_p < 2^{126}$:
b) $0 \leq a + 2^{130} - t_\mathbb{P} < 2^{130}$. To check this, we decompose
$a' = a + 2^{130} - t_\mathbb{P}$ into thirteen 10-bit words (little-endian) using
a running sum $z_{a'}$, looking up each word in a $10$-bit lookup table. We then
enforce in the custom gate that
$$b_1 \cdot z_{a',13} = 0.$$
1. $d_1 = 1 \implies 0 \leq b_2 + 2^5 \cdot c < 2^{126}.$
To check that $0 \leq b_2 + 2^5 \cdot c < 2^{126}$, we use two constraints:
$$
\begin{array}{|c|l|}
\hline
\text{Degree} & \text{Constraint} \\\hline
3 & q_\CommitIvk \cdot b_1 \cdot b_0 = 0 \\\hline
3 & q_\CommitIvk \cdot b_1 \cdot z_{a,13} = 0 \\\hline
2 & q_\CommitIvk \cdot (a + 2^{130} - t_\mathbb{P} - a') = 0 \\\hline
3 & q_\CommitIvk \cdot b_1 \cdot z_{a',13} = 0 \\\hline
\end{array}
$$
a) $0 \leq b_2 + 2^5 \cdot c < 2^{140}$. $b_2$ is already constrained individually to be a $5$-bit value. $z_{13, c}$ is the index-13 running sum output by $\textsf{SinsemillaHash}(c).$ By constraining $$d_1 \cdot z_{13,c} = 0,$$ we constrain $b_2 + 2^5 \cdot c < 2^{135} < 2^{140}.$
### $\NullifierKey$ with $d_1 = 1 \implies \NullifierKey \geq 2^{254}$
b) $0 \leq b_2 + 2^5 \cdot c + 2^{140} - t_p < 2^{140}$. To check this, we decompose $b' = b_2 + 2^5 \cdot c + 2^{140} - t_p$ into fourteen 10-bit words (little-endian) using a running sum $z_{b'}$, looking up each word in a $10$-bit lookup table. We then enforce in the custom gate that $$d_1 \cdot z_{14, b'} = 0.$$
In these cases, we check that $\textsf{nk}_{0..=253} < t_\mathbb{P} < 2^{126}$:
1. $d_1 = 1 \implies d_0 = 0.$
Since $d_1 = 1 \implies \NullifierKey_{0..=253} < 2^{126},$ we know that $\NullifierKey_{126..=253} = 0,$ and in particular $$d_0 := \NullifierKey_{245..=253} = 0.$$
2. $d_1 = 1 \implies 0 \leq b_2 + 2^5 \cdot c < 2^{126}.$
To check that $0 \leq b_2 + 2^5 \cdot c < 2^{126}$, we use two constraints:
a) $0 \leq b_2 + 2^5 \cdot c < 2^{140}$. $b_2$ is already constrained individually to
be a $5$-bit value. $z_{c,13}$ is the index-13 running sum output by
$\SinsemillaHash(c).$ By constraining $$d_1 \cdot z_{c,13} = 0,$$ we constrain
$b_2 + 2^5 \cdot c < 2^{135} < 2^{140}.$
b) $0 \leq b_2 + 2^5 \cdot c + 2^{140} - t_\mathbb{P} < 2^{140}$. To check this, we
decompose ${b_2}c' = b_2 + 2^5 \cdot c + 2^{140} - t_\mathbb{P}$ into fourteen
10-bit words (little-endian) using a running sum $z_{{b_2}c'}$, looking up each
word in a $10$-bit lookup table. We then enforce in the custom gate that
$$d_1 \cdot z_{{b_2}c',14} = 0.$$
$$
\begin{array}{|c|l|}
\hline
\text{Degree} & \text{Constraint} \\\hline
3 & q_\CommitIvk \cdot d_1 \cdot d_0 = 0 \\\hline
3 & q_\CommitIvk \cdot d_1 \cdot z_{c,13} = 0 \\\hline
2 & q_\CommitIvk \cdot (b_2 + c \cdot 2^5 + 2^{140} - t_\mathbb{P} - {b_2}c') = 0 \\\hline
3 & q_\CommitIvk \cdot d_1 \cdot z_{{b_2}c',14} = 0 \\\hline
\end{array}
$$
## Region layout
The constraints controlled by the $q_\CommitIvk$ selector are arranged across all 10
advice columns, requiring two rows.
$$
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c}
& & & & & & & & & & q_\CommitIvk \\\hline
a & b & c & d & \AuthSignPublic & \NullifierKey & b_0 & b_1 & b_2 & d_0 & 0 \\\hline
d_1 & z_{a,13} & a' & z_{a',13} & z_{c,13} & {b_2}c' & z_{{b_2}c',14} & & & & 1 \\\hline
\end{array}
$$