pasta/squareroot.sage

209 lines
5.5 KiB
Python
Raw Normal View History

#!/usr/bin/env sage
# This implements a prototype of Palash Sarkar's square root algorithm
# from <https://eprint.iacr.org/2020/1407>, for the Pasta fields.
import sys
from copy import copy
from collections import deque
if sys.version_info[0] == 2:
range = xrange
DEBUG = True
VERBOSE = False
EXPENSIVE = False
def count_bits(x):
return len(format(x, 'b'))
def count_ones(x):
return sum([int(b) for b in format(x, 'b')])
class Cost:
def __init__(self, sqrs, muls):
self.sqrs = sqrs
self.muls = muls
def __repr__(self):
return repr((self.sqrs, self.muls))
def __add__(self, other):
return Cost(self.sqrs + other.sqrs, self.muls + other.muls)
def divide(self, divisor):
return Cost((self.sqrs / divisor).numerical_approx(), (self.muls / divisor).numerical_approx())
class SqrtField:
def __init__(self, p, z, base_cost):
n = 32
m = p >> n
assert p == 1 + m * 2^n
if EXPENSIVE: assert Mod(z, p).multiplicative_order() == p-1
g = Mod(z, p)^m
if EXPENSIVE: assert g.multiplicative_order() == 2^n
gtab = [[0]*256 for i in range(4)]
gi = g
for i in range(4):
if DEBUG: assert gi == g^(256^i), (i, gi)
acc = Mod(1, p)
for j in range(256):
if DEBUG: assert acc == g^(256^i * j), (i, j, acc)
gtab[i][j] = acc
acc *= gi
gi = acc
minus1 = Mod(-1, p)
(self.p, self.n, self.m, self.g, self.gtab, self.minus1, self.base_cost) = (
p, n, m, g, gtab, minus1, base_cost)
if DEBUG:
for k in range(32):
self.g_to_power_of_2(k)
def g_to_power_of_2(self, k):
res = self.gtab[k // 8][1<<(k % 8)]
if DEBUG:
expected = self.g^(2^k)
assert res == expected, (k, self.g, res, expected)
return res
def mul_by_g_to(self, acc, t, cost):
if VERBOSE: print(t, count_bits(t), count_ones(t))
if DEBUG: expected = acc * self.g^t
for i in range(4):
acc *= self.gtab[i][t % 256]
t >>= 8
cost.muls += 1
if DEBUG: assert acc == expected, (t, acc, expected)
return acc
def eval(self, alpha, cost):
if EXPENSIVE:
order = alpha.multiplicative_order()
assert order.divides(2^self.n)
if VERBOSE: print("order = 0b%s" % (format(order, 'b'),))
delta = alpha
s = 0
if DEBUG: assert delta == alpha * self.g^s
if DEBUG: bits = deque()
while delta != 1:
# find(delta)
mu = delta
i = 0
while mu != self.minus1:
mu *= mu
cost.sqrs += 1
i += 1
assert i < self.n
# end find
k = self.n-1-i
if DEBUG:
assert k >= 23
assert k not in bits
bits.append(k)
if VERBOSE: print(bits)
s += 1<<k
if i > 0:
delta *= self.g_to_power_of_2(k)
if DEBUG: assert delta == alpha * self.g^s
cost.muls += 1
else:
delta = -delta
if DEBUG: assert delta == alpha * self.g^s
if DEBUG: assert 1 == alpha * self.g^s
return s
def sarkar_sqrt(self, u):
if VERBOSE: print("u = %r" % (u,))
# This would actually be done using the addition chain.
v = u^((self.m-1)/2)
cost = copy(self.base_cost)
uv = u * v
x = uv * v
cost.muls += 2
if DEBUG: assert x == u^self.m
if EXPENSIVE: assert x.multiplicative_order().divides(2^self.n)
x3 = x
x2 = x3^(1<<8)
x1 = x2^(1<<8)
x0 = x1^(1<<8)
if DEBUG:
assert x0 == x^(1<<(self.n-1-7))
assert x1 == x^(1<<(self.n-1-15))
assert x2 == x^(1<<(self.n-1-23))
assert x3 == x^(1<<(self.n-1-31))
cost.sqrs += 8+8+8
# i = 0
s = self.eval(x0, cost)
# i = 1
t = s >> 8
alpha = self.mul_by_g_to(x1, t, cost)
s = self.eval(alpha, cost)
# i = 2
t = (s+t) >> 8
alpha = self.mul_by_g_to(x2, t, cost)
s = self.eval(alpha, cost)
# i = 3
t = (s+t) >> 8
alpha = self.mul_by_g_to(x3, t, cost)
s = self.eval(alpha, cost)
t = (s+t) >> 1
res = self.mul_by_g_to(uv, t, cost)
if res^2 != u:
res = None
cost.sqrs += 1
if DEBUG: assert u.is_square() == (res is not None)
return (res, cost)
p = 0x40000000000000000000000000000000224698fc094cf91b992d30ed00000001
q = 0x40000000000000000000000000000000224698fc0994a8dd8c46eb2100000001
# see addchain.py for base costs of u^{(m-1)/2}
F_p = SqrtField(p, 5, Cost(223, 23))
F_q = SqrtField(q, 5, Cost(223, 24))
print("p = %r" % (p,))
x = Mod(0x1234567890123456789012345678901234567890123456789012345678901234, p)
print(F_p.sarkar_sqrt(x))
x = Mod(0x2345678901234567890123456789012345678901234567890123456789012345, p)
print(F_p.sarkar_sqrt(x))
# nonsquare
x = Mod(0x3456789012345678901234567890123456789012345678901234567890123456, p)
print(F_p.sarkar_sqrt(x))
if True:
total_cost = Cost(0, 0)
iters = 1000
for i in range(iters):
x = GF(p).random_element()
(_, cost) = F_p.sarkar_sqrt(x)
total_cost += cost
print total_cost.divide(iters)