mirror of https://github.com/zcash/pasta.git
Add amicable.sage.
Signed-off-by: Daira Hopwood <daira@jacaranda.org>
This commit is contained in:
parent
28b6046fcc
commit
9547beea4d
|
@ -26,6 +26,9 @@ The criteria that are *not* satisfied are, in summary:
|
|||
* twist security;
|
||||
* rigidity.
|
||||
|
||||
Tweedledum/Tweedledee is one of the cycles output by ``sage amicable.sage --nearpowerof2 255 32``
|
||||
(the first one with constant 5 for both curves and gcd(p-1, 5) = 1, gcd(q-1, 5) = 1).
|
||||
|
||||
Prerequisites:
|
||||
|
||||
* apt-get install sagemath
|
||||
|
|
|
@ -0,0 +1,200 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
import sys
|
||||
from multiprocessing import Pool, cpu_count
|
||||
from traceback import print_exc
|
||||
from math import ceil
|
||||
from itertools import combinations
|
||||
|
||||
PROCESSES = None # auto-detect
|
||||
|
||||
# Let Ep/Fp : y^2 = x^3 + bp
|
||||
# Let Eq/Fq : y^2 = x^3 + bq
|
||||
|
||||
# p and q should each be ~ L bits.
|
||||
|
||||
DEFAULT_TWOADICITY = 21
|
||||
DEFAULT_STRETCH = 0
|
||||
|
||||
# <https://eprint.iacr.org/2011/465.pdf>
|
||||
# It is well known that if g is neither a square nor a cube in Fp, then all
|
||||
# possible group orders an elliptic curve E : y^2 = x^3 + b can have over Fp
|
||||
# occur as the order of one of the 6 twists with b \in {1, g, g^2, g^3, g^4, g^5}.
|
||||
|
||||
# <https://math.stackexchange.com/questions/127251/when-is-a-not-a-cube-mod-p>:
|
||||
# If p = 2 (mod 3) then all elements are cubes.
|
||||
# If p = 1 (mod 3) then a is a cube iff a^((p-1)/3) = 1.
|
||||
|
||||
# <https://cryptojedi.org/papers/pfcpo.pdf> section 2:
|
||||
# [...] the order of a curve satisfying the norm equation 3V^2 = 4p - t^2 has one
|
||||
# of the six forms {p+1 +/- t, p+1 +/- (t +/- 3V)/2} [IEEE Std 1363-2000, section
|
||||
# A.14.2.3, item 6].
|
||||
#
|
||||
# We choose 4p = 3V^2 + t^2, where (V-1)/2 and (t-1)/2 are both multiples of 2^twoadicity.
|
||||
#
|
||||
# Then 4p = (3(V-1)^2 + 6(V-1) + 3) + ((t-1)^2 + 2(t-1) + 1)
|
||||
# = 3(V-1)^2 + 6(V-1) + (t-1)^2 + 2(t-1) + 4
|
||||
# p = 3((V-1)/2)^2 + 3(V-1)/2 + ((t-1)/2)^2 + (t-1)/2 + 1
|
||||
#
|
||||
# So p-1 will be a multiple of 2^twoadicity, and so will (p+1-t)-1 = (p-1)-(t-1).
|
||||
#
|
||||
# We'd also like both p and q to be 1 (mod 3), so that we have efficient endomorphisms
|
||||
# on both curves. We explicitly check p = 1 (mod 3), and then if t is chosen to be
|
||||
# 1 (mod 3) then p+1-t will be 1 (mod 3) (but we must still check q since it
|
||||
# is not necessarily that order).
|
||||
|
||||
def low_hamming_order(L, twoadicity, wid, processes):
|
||||
Vlen = (L-1)//2 + 1
|
||||
Vbase = 1 << Vlen
|
||||
tlen = (L-1)//4
|
||||
tbase = 1 << tlen
|
||||
trailing_zeros = twoadicity+1
|
||||
for w in xrange(wid, tlen-trailing_zeros, processes):
|
||||
for Vc in combinations(xrange(trailing_zeros, Vlen), w):
|
||||
V = Vbase + sum([1 << i for i in Vc]) + 1
|
||||
assert(((V-1)/2) % (1<<twoadicity) == 0)
|
||||
for tw in xrange(1, w+1):
|
||||
for tc in combinations(xrange(trailing_zeros, tlen), tw):
|
||||
t = tbase + sum([1 << i for i in tc]) + 1
|
||||
assert(((t-1)/2) % (1<<twoadicity) == 0)
|
||||
if t % 3 != 1:
|
||||
continue
|
||||
p4 = 3*V^2 + t^2
|
||||
assert(p4 % 4 == 0)
|
||||
p = p4//4
|
||||
assert(p % (1<<twoadicity) == 1)
|
||||
if p % 3 == 1 and is_prime(p):
|
||||
yield p
|
||||
|
||||
def near_powerof2_order(L, twoadicity, wid, processes):
|
||||
trailing_zeros = twoadicity+1
|
||||
Vbase = isqrt((1<<(L+2))//3) >> trailing_zeros
|
||||
for Voffset in symmetric_range(10000, base=wid, step=processes):
|
||||
V = ((Vbase + Voffset) << trailing_zeros) + 1
|
||||
assert(((V-1)/2) % (1 << twoadicity) == 0)
|
||||
tmp = (1<<(L+2)) - 3*V^2
|
||||
if tmp < 0: continue
|
||||
tbase = isqrt(tmp) >> trailing_zeros
|
||||
for toffset in symmetric_range(10000):
|
||||
t = ((tbase + toffset) << trailing_zeros) + 1
|
||||
assert(((t-1)/2) % (1<<twoadicity) == 0)
|
||||
if t % 3 != 1:
|
||||
continue
|
||||
p4 = 3*V^2 + t^2
|
||||
assert(p4 % 4 == 0)
|
||||
p = p4//4
|
||||
assert(p % (1<<twoadicity) == 1)
|
||||
if p % 3 == 1 and is_prime(p):
|
||||
yield p
|
||||
|
||||
def find_nonsquare_noncube(p):
|
||||
for g_int in xrange(2, 100):
|
||||
g = Mod(g_int, p)
|
||||
if g^((p-1)//3) != 1 and g^((p-1)//2) != 1:
|
||||
return g
|
||||
return None
|
||||
|
||||
def symmetric_range(n, base=0, step=1):
|
||||
for i in xrange(base, n, step):
|
||||
yield -i
|
||||
yield i+1
|
||||
|
||||
def find_nice_curves(strategy, L, twoadicity, stretch, wid, processes):
|
||||
for p in strategy(L, max(0, twoadicity-stretch), wid, processes):
|
||||
sys.stdout.write('.')
|
||||
sys.stdout.flush()
|
||||
if p % (1<<twoadicity) != 1: continue
|
||||
gp = find_nonsquare_noncube(p)
|
||||
if gp is None: continue
|
||||
|
||||
for i in xrange(6):
|
||||
bp = gp^i
|
||||
Ep = EllipticCurve(GF(p), [0, bp])
|
||||
q = Ep.count_points()
|
||||
if q % (1<<twoadicity) == 1 and q % 3 == 1 and is_prime(q):
|
||||
bp = find_coefficient(p, q)
|
||||
if bp is not None:
|
||||
bq = find_coefficient(q, p)
|
||||
if bq is not None:
|
||||
gq = find_nonsquare_noncube(q)
|
||||
aq = gq^((q-1)//3)
|
||||
assert(aq^3 == Mod(1, q))
|
||||
ap = gp^((p-1)//3)
|
||||
assert(ap^3 == Mod(1, p))
|
||||
yield (p, q, bp, bq, ap, aq)
|
||||
|
||||
def find_coefficient(p, q):
|
||||
for b in xrange(1, 10000):
|
||||
E = EllipticCurve(GF(p), [0, b])
|
||||
if E.count_points() == q:
|
||||
return b
|
||||
return None
|
||||
|
||||
def find_lowest_prime(p):
|
||||
for r in Primes():
|
||||
if gcd(p-1, r) == 1:
|
||||
return r
|
||||
|
||||
def format_weight(x, detail=True):
|
||||
X = format(abs(x), 'b')
|
||||
if detail:
|
||||
assert(X.endswith('1'))
|
||||
detailstr = " (bitlength %d, weight %d, 2-adicity %d)" % (len(X), sum([int(c) for c in X]),
|
||||
len(X) - len(X[:-1].rstrip('0')))
|
||||
else:
|
||||
detailstr = " (bitlength %d)" % (len(X),)
|
||||
|
||||
return "%s0b%s%s" % ("-" if x < 0 else "", X, detailstr)
|
||||
|
||||
|
||||
def main():
|
||||
strategy = near_powerof2_order if "--nearpowerof2" in sys.argv[1:] else low_hamming_order
|
||||
args = [arg for arg in sys.argv[1:] if not arg.startswith("--")]
|
||||
|
||||
if len(args) < 1:
|
||||
print("Usage: sage amicable.sage [--nearpowerof2] <min-bitlength> [<min-2adicity> [<stretch]]\n")
|
||||
return
|
||||
|
||||
L = int(args[0])
|
||||
twoadicity = int(args[1]) if len(args) > 1 else DEFAULT_TWOADICITY
|
||||
stretch = int(args[2]) if len(args) > 2 else DEFAULT_STRETCH
|
||||
|
||||
processes = PROCESSES or cpu_count()
|
||||
print("Using %d processes." % (processes,))
|
||||
pool = Pool(processes=processes)
|
||||
|
||||
try:
|
||||
for wid in xrange(processes):
|
||||
pool.apply_async(worker, (strategy, L, twoadicity, stretch, wid, processes))
|
||||
|
||||
while True:
|
||||
sleep(1000)
|
||||
except (KeyboardInterrupt, SystemExit):
|
||||
pass
|
||||
finally:
|
||||
pool.terminate()
|
||||
|
||||
def worker(*args):
|
||||
try:
|
||||
real_worker(*args)
|
||||
except (KeyboardInterrupt, SystemExit):
|
||||
pass
|
||||
except:
|
||||
print_exc()
|
||||
|
||||
def real_worker(*args):
|
||||
for (p, q, bp, bq, ap, aq) in find_nice_curves(*args):
|
||||
output = "\n"
|
||||
output += "p = %s\n" % format_weight(p)
|
||||
output += "q = %s\n" % format_weight(q)
|
||||
output += "α_p = %s (mod p)\n" % format_weight(int(ap), detail=False)
|
||||
output += "α_q = %s (mod q)\n" % format_weight(int(aq), detail=False)
|
||||
|
||||
output += "Ep/Fp : y^2 = x^3 + %d (%ssquare)\n" % (bp, "" if Mod(bp, p).is_square() else "non")
|
||||
output += "Eq/Fq : y^2 = x^3 + %d (%ssquare)\n" % (bq, "" if Mod(bq, q).is_square() else "non")
|
||||
|
||||
output += "gcd(p-1, %d) = 1\n" % find_lowest_prime(p)
|
||||
output += "gcd(q-1, %d) = 1\n" % find_lowest_prime(q)
|
||||
|
||||
print(output) # one syscall to minimize tearing
|
||||
|
||||
main()
|
Loading…
Reference in New Issue