mirror of https://github.com/zcash/pasta.git
[WIP] Add a prototype implementation of hash-to-curve. This intends to implement the Internet Draft but has not been checked.
Signed-off-by: Daira Hopwood <daira@jacaranda.org>
This commit is contained in:
parent
7afb4e0d75
commit
96fd2c794e
|
@ -0,0 +1,232 @@
|
|||
#!/usr/bin/env sage
|
||||
|
||||
# Simplified SWU for a = 0 as described in [WB19] <https://eprint.iacr.org/2019/403> and
|
||||
# <https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-10.html#name-simplified-swu-for-ab-0-2>.
|
||||
|
||||
import sys
|
||||
from math import ceil, log
|
||||
from struct import pack
|
||||
|
||||
import hashlib
|
||||
if sys.version_info < (3, 6):
|
||||
try:
|
||||
import sha3
|
||||
except ImportError:
|
||||
print('Please run:\n`sage -c "import sys; print(sys.executable)"` -m pip install pysha3\n')
|
||||
raise
|
||||
from hashlib import shake_128
|
||||
|
||||
if sys.version_info[0] == 2:
|
||||
range = xrange
|
||||
as_byte = ord
|
||||
else:
|
||||
as_byte = lambda x: x
|
||||
|
||||
|
||||
class Cost:
|
||||
def __init__(self, sqrs=0, muls=0, invs=0):
|
||||
self.sqrs = sqrs
|
||||
self.muls = muls
|
||||
self.invs = invs
|
||||
|
||||
def sqr(self, x):
|
||||
self.sqrs += 1
|
||||
return x^2
|
||||
|
||||
def mul(self, x, y):
|
||||
self.muls += 1
|
||||
return x * y
|
||||
|
||||
def div(self, x, y):
|
||||
self.invs += 1
|
||||
self.muls += 1
|
||||
return x / y
|
||||
|
||||
def inv0(self, x):
|
||||
self.invs += 1
|
||||
return 0 if x == 0 else x^-1
|
||||
|
||||
def sqrt(self, x):
|
||||
self.sqrs += 247
|
||||
self.muls += 35
|
||||
return x.sqrt() if x.is_square() else 0
|
||||
|
||||
def __add__(self, other):
|
||||
return Cost(self.sqrs + other.sqrs, self.muls + other.muls, self.invs + other.invs)
|
||||
|
||||
def __repr__(self):
|
||||
return "%dS + %dM + %dI" % (self.sqrs, self.muls, self.invs)
|
||||
|
||||
# E: a short Weierstrass elliptic curve
|
||||
def find_z_sswu(E):
|
||||
(0, 0, 0, A, B) = E.a_invariants()
|
||||
F = E.base_field()
|
||||
|
||||
R.<x> = F[] # Polynomial ring over F
|
||||
g = x^3 + F(A) * x + F(B) # y^2 = g(x) = x^3 + A * x + B
|
||||
ctr = F.gen()
|
||||
while True:
|
||||
for Z_cand in (F(ctr), F(-ctr)):
|
||||
if Z_cand.is_square():
|
||||
# Criterion 1: Z is non-square in F.
|
||||
continue
|
||||
if Z_cand == F(-1):
|
||||
# Criterion 2: Z != -1 in F.
|
||||
continue
|
||||
if not (g - Z_cand).is_irreducible():
|
||||
# Criterion 3: g(x) - Z is irreducible over F.
|
||||
continue
|
||||
if g(B / (Z_cand * A)).is_square():
|
||||
# Criterion 4: g(B / (Z * A)) is square in F.
|
||||
return Z_cand
|
||||
ctr += 1
|
||||
|
||||
|
||||
p = 0x40000000000000000000000000000000224698fc094cf91b992d30ed00000001
|
||||
E_isop = EllipticCurve(GF(p), [10949663248450308183708987909873589833737836120165333298109615750520499732811, 1265])
|
||||
E_p = EllipticCurve(GF(p), [0, 5])
|
||||
Z_isop = find_z_sswu(E_isop)
|
||||
assert Z_isop == Mod(-13, p)
|
||||
|
||||
k = 128
|
||||
L = (len(format(p, 'b')) + k + 7) // 8
|
||||
assert L == 48
|
||||
|
||||
CONSTANT_TIME = True
|
||||
|
||||
def select_z_nz(s, ifz, ifnz):
|
||||
# This should be constant-time in a real implementation.
|
||||
return ifz if (s == 0) else ifnz
|
||||
|
||||
def map_to_curve_simple_swu(E, Z, u, c):
|
||||
# would be precomputed
|
||||
(0, 0, 0, A, B) = E.a_invariants()
|
||||
mBdivA = -B / A
|
||||
BdivZA = B / (Z * A)
|
||||
#print("A = ", A)
|
||||
#print("B = ", B)
|
||||
#print("Z = ", Z)
|
||||
#print("-B/A = ", mBdivA)
|
||||
#print("B/ZA = ", BdivZA)
|
||||
|
||||
# 1. tv1 = inv0(Z^2 * u^4 + Z * u^2)
|
||||
Z2 = c.sqr(Z)
|
||||
u2 = c.sqr(u)
|
||||
u4 = c.sqr(u2)
|
||||
ta = c.mul(Z2, u4) + c.mul(Z, u2)
|
||||
tv1 = c.inv0(ta)
|
||||
|
||||
# 2. x1 = (-B / A) * (1 + tv1)
|
||||
# 3. If tv1 == 0, set x1 = B / (Z * A)
|
||||
x1 = select_z_nz(tv1, BdivZA, mBdivA * (1 + tv1))
|
||||
|
||||
# 4. gx1 = x1^3 + A * x1 + B
|
||||
# = x1*(x1^2 + A) + B
|
||||
x1_2 = c.sqr(x1)
|
||||
gx1 = c.mul(x1, x1_2 + A) + B
|
||||
|
||||
# 5. x2 = Z * u^2 * x1
|
||||
tb = c.mul(Z, u2)
|
||||
x2 = c.mul(tb, x1)
|
||||
|
||||
# 6. gx2 = x2^3 + A * x2 + B
|
||||
# = x2*(x2^2 + A) + B
|
||||
x2_2 = c.sqr(x2)
|
||||
gx2 = c.mul(x2, x2_2 + A) + B
|
||||
|
||||
# 7. If is_square(gx1), set x = x1 and y = sqrt(gx1)
|
||||
# 8. Else set x = x2 and y = sqrt(gx2)
|
||||
y1 = c.sqrt(gx1)
|
||||
y1_2 = c.sqr(y1)
|
||||
if CONSTANT_TIME or y1_2 != gx1:
|
||||
y2 = c.sqrt(gx2)
|
||||
x = select_z_nz(y1_2 - gx1, x1, x2)
|
||||
y = select_z_nz(y1_2 - gx1, y1, y2)
|
||||
else:
|
||||
(x, y) = (x1, y1)
|
||||
|
||||
# 9. If sgn0(u) != sgn0(y), set y = -y
|
||||
y = select_z_nz((int(u) % 2) - (int(y) % 2), y, -y)
|
||||
|
||||
return E((x, y))
|
||||
|
||||
|
||||
# iso_Ep = Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 10949663248450308183708987909873589833737836120165333298109615750520499732811*x + 1265 over Fp
|
||||
def iso_map(x, y, c):
|
||||
c.muls += 2+1+1 + 2+1+1+2
|
||||
# batch inversion
|
||||
c.muls += 3
|
||||
c.invs += 1
|
||||
return (((( 6432893846517566412420610278260439325191790329320346825767705947633326140075 *x +
|
||||
23989696149150192365340222745168215001509815558210986772351135915822265203574)*x +
|
||||
10492611921771203378452795982353351666191589197598957448093274638589204800759)*x +
|
||||
12865787693035132824841220556520878650383580658640693651535411895266652280192) /
|
||||
(( x +
|
||||
13271109177048389296812780941310096270046944650307955939477485891950613419807)*x +
|
||||
22768321103861051515190775253992702316905399997697804654926324362758820947460),
|
||||
(((11793638718615538422771118843477472096184948937087302513907460903994431256804 *x +
|
||||
11994848074575096182670111372584107500754907779105493386175567957911132601787)*x +
|
||||
28823569610051396102362669851238297121581474897215657071023781420043761726004)*x +
|
||||
1072148974419594402070101713043406554198631721553391137627950991272221023311) * y /
|
||||
((( x +
|
||||
5432652610908059517272798285879155923388888734491153551238890455750936314542)*x +
|
||||
10408918692925056833786833257634153023990087029210292532869619559576527581706)*x +
|
||||
28948022309329048855892746252171976963363056481941560715954676764349967629797))
|
||||
|
||||
|
||||
def expand_message_xof(msg, DST, len_in_bytes):
|
||||
assert len(DST) < 256
|
||||
len_in_bytes = int(len_in_bytes)
|
||||
|
||||
# This is horrible but matches the reference code.
|
||||
xof = shake_128()
|
||||
xof.update(msg)
|
||||
xof.update(pack(">H", len_in_bytes))
|
||||
xof.update(pack("B", len(DST)))
|
||||
xof.update(DST)
|
||||
return xof.digest(len_in_bytes)
|
||||
|
||||
def hash_to_field(msg, DST, count):
|
||||
uniform_bytes = expand_message_xof(msg, DST, L*count)
|
||||
return [Mod(OS2IP(uniform_bytes[L*i : L*(i+1)]), p) for i in range(count)]
|
||||
|
||||
def OS2IP(bs):
|
||||
acc = 0
|
||||
for b in bs:
|
||||
acc = (acc<<8) + as_byte(b)
|
||||
return acc
|
||||
|
||||
def hash_to_curve(msg, DST, uniform=True):
|
||||
c = Cost()
|
||||
u = hash_to_field(msg, DST, 2)
|
||||
#print("u = ", u)
|
||||
R = map_to_curve_simple_swu(E_isop, Z_isop, u[0], c)
|
||||
|
||||
if uniform:
|
||||
Q1 = map_to_curve_simple_swu(E_isop, Z_isop, u[1], c)
|
||||
|
||||
# We could batch the two inv0 inversions (not done above for simplicity).
|
||||
c.invs -= 1
|
||||
c.muls += 3
|
||||
|
||||
# Complete addition using affine coordinates: I + 2M + 2S
|
||||
# (S for x1^2; compute numerator and denominator of the division for the correct case;
|
||||
# I + M to divide; S + M to compute x and y of the result.)
|
||||
R = R + Q1
|
||||
#print("R = ", R)
|
||||
c.invs += 1
|
||||
c.sqrs += 2
|
||||
c.muls += 2
|
||||
|
||||
# no cofactor clearing needed since Pallas and Vesta are prime-order
|
||||
(x, y) = R.xy()
|
||||
P = E_p(iso_map(x, y, c))
|
||||
return (P, c)
|
||||
|
||||
|
||||
#print(hash_to_curve("hello", "blah"))
|
||||
|
||||
iters = 100
|
||||
for i in range(iters):
|
||||
(res, cost) = hash_to_curve(pack(">I", i), "blah", uniform=False)
|
||||
print(res, cost)
|
Loading…
Reference in New Issue