#!/usr/bin/python3 # -*- coding: utf-8 -*- # Dependencies: # (pip install bintrees) # (pip install Pillow), if --animate is used import sys from dataclasses import dataclass from typing import Optional from collections import deque from math import log # From the Halo paper: # Let A = [0, 2^{λ/2 + 1} + 2^{λ/2} - 1]. It is straightforward to verify that a, b ∈ A # at the end of Algorithm 3 for any input \mathbf{r}. # {In fact a, b ∈ [2^{λ/2} + 1, 2^{λ/2 + 1} + 2^{λ/2} - 1], but it is convenient to # define A to start at 0.} # # Next we need to show that the mapping (a ⦂ A, b ⦂ A) ↦ (a ζ_q + b) mod q is injective. # This will depend on the specific values of ζ_q and q, and can be cast as a sumset problem. # # We use the notation v·A + A for { (av + b) mod q : a, b ∈ A }, and A - A for -1·A + A. # {We take sumsets using this notation to implicitly be subsets of F_q.} # The question is then whether |ζ_q·A + A| = |A|^2. # # For intuition, note that if av + b = a'v + b' (mod q), with a ≠ a', we would have # v = (b' - b)/(a - a') (mod q). Thus the number of v ∈ F_q for which |v·A + A| < |A|^2 # is at most (|A - A| - 1)^2. {We thank Robert Israel for this observation. [HI2019]} # Since in our case (|A - A| - 1)^2 ≈ 9·2^130 is small compared to q ≈ 2^254, we would # heuristically expect that |ζ_q·A + A| = |A|^2 unless there is some reason why ζ_q does # not "behave like a random element of F_q". # # Of course ζ_q is *not* a random element of F_q, and so the above argument can only be # used for intuition. Even when (|A - A| - 1)^2 is small compared to q, there are clearly # values of ζ_q and q for which it would not hold. To prove that it holds in the needed # cases for the Tweedledum and Tweedledee curves used in our implementation, we take a # different tack. # # Define a distance metric δ_q on F_q so that δ_q(x, y) is the minimum distance between # x and y around the ring of integers modulo q in either direction, i.e. # # δ_q(x, y) = min(z, q - z) where z = (x - y) mod q # # Now let D_{q,ζ_q}(m) be the minimum δ_q-distance between any two elements of ζ_q·[0, m], # i.e. # # D_{q,ζ_q}(m) = min{ δ_q(a ζ_q, a' ζ_q ) : a, a' ∈ [0, m] } # # An algorithm to compute D_{q,ζ_q}(m) is implemented by checksumsets.py in [Hopw2019] # [i.e. this file]; it works by iteratively finding each m at which D_{q,ζ_q}(m) # decreases. [...] # # Now if D_{q,ζ_q}(2^{λ/2 + 1} + 2^{λ/2} - 1) ≥ 2^{λ/2 + 1} + 2^{λ/2}, then copies of # A will "fit within the gaps" in ζ_q·A. That is, ζ_q·A + A will have |A|^2 elements, # because all of the sets { ζ_q·{a} + A : a ∈ A } will be disjoint. # # The algorithm is based on the observation that the problem of deciding when # D_{q,ζ_q}(m) next decreases is self-similar to deciding when it first decreases. # It computes the exact min-distance at each decrease (not just a lower bound), # which facilitates detecting any bugs in the algorithm. Also, we check correctness # of the partial results up to a given bound on m, against a naive algorithm. BRUTEFORCE_THRESHOLD = 100000 DEBUG = False @dataclass class State: u: int m: int n: int d: int def D(q, zeta, mm, animator=None): if DEBUG: print("(q, zeta, mm) =", (q, zeta, mm)) Dcheck = [] if BRUTEFORCE_THRESHOLD == 0 else bruteforce_D(q, zeta, min(mm, BRUTEFORCE_THRESHOLD)) # (u + am) : a ∈ Nat is the current arithmetic progression # n is the previous min-distance # d is the current min-distance cur = State(u=0, m=1, n=q, d=zeta) old = None while True: # Consider values of x where D_{q,ζ_q}(x) decreases, i.e. where # D_{q,ζ_q}(x) < D_{q,ζ_q})(x-1). # # We keep track of an arithmetic progression (u + am) such that the next # value at which D_{q,ζ_q}(x) decreases will be for x in this progression, # at the point at which xζ gets close to (but not equal to) 0. # # TODO: explain why the target is always 0. # # If we set s = floor(n/d), then D_{q,ζ_q}(x) can decrease at a = s # and potentially also at a = s+1. assert (cur.m*zeta) % q in (cur.d, q - cur.d) s = cur.n // cur.d x0 = cur.u + s*cur.m d0 = cur.n % cur.d if DEBUG: print("\n(x0, d0, cur, s) =", (x0, d0, cur, s)) assert dist(0, x0*zeta, q) == d0 if x0-1 < len(Dcheck): assert Dcheck[x0-1] == cur.d if x0 > mm: if animator is not None: if DEBUG: print("(q, zeta, old, cur, s) =", (q, zeta, old, cur, s)) animator.render(q, zeta, old, cur, None, s) return cur.d if x0 < len(Dcheck): assert Dcheck[x0] == d0 x1 = cur.u + (s+1)*cur.m d1 = (s+1)*cur.d - cur.n if d1 < d0: if DEBUG: print("(x1, d1, cur, s+1) =", (x1, d1, cur, s+1)) assert dist(0, x1*zeta, q) == d1 if x1-1 < len(Dcheck): assert Dcheck[x1-1] == d0 if x1 > mm: if animator is not None: if DEBUG: print("(q, zeta, old, cur, s+1) =", (q, zeta, old, cur, s+1)) animator.render(q, zeta, old, cur, None, s+1) return d0 if x1 < len(Dcheck): assert Dcheck[x1] == d1 # This is the case where the smaller new distance is past zero. # The next iteration should consider the region of size d0 starting at x = x0 # (i.e. just before we went past zero) and increasing by x1, i.e. dividing # that region by intervals of d1. new = State(u=x0, m=x1, n=d0, d=d1) else: # This is the case where the smaller new distance is short of zero. # The next iteration should check the region of size cur.d - d0 starting at x = x1 # (i.e. the wraparound past zero) and increasing by x0, i.e. dividing that # region by intervals of d0. new = State(u=x1, m=x0, n=cur.d - d0, d=d0) assert dist(0, new.u*zeta, q) in (new.n, q - new.n) #if dist(0, new.u*zeta, q) != new.n: print("hmm") if animator is not None: animator.render(q, zeta, old, cur, new, s) (old, cur) = (cur, new) def bruteforce_D(q, zeta, mm): # Can't use sortedcontainers because its data structures are backed by # lists-of-lists, not trees. We must have O(log n) insert, prev, and succ. from bintrees import RBTree as sortedset resD = deque([zeta]) lastd = zeta S = sortedset() S.insert(0, None) S.insert(q, None) for x in range(1, mm+1): v = (x*zeta) % q S.insert(v, None) vp = S.prev_key(v) vs = S.succ_key(v) d = min(v-vp, vs-v) resD.append(d) #if DEBUG and d < lastd: print((x, d)) lastd = d return list(resD) def dist(x, y, q): z = (x-y+q) % q return min(z, q-z) def signed_mod(x, q): r = x % q return r if r <= q//2 else r-q class Animator: fontfile = '/usr/share/texlive/texmf-dist/fonts/truetype/google/roboto/Roboto-Regular.ttf' frame_duration = 20 # ms pause_frames = 35 zoom_frames = 45 width = 800 # pixels height = 400 # pixels oversample = 3 line_halfwidth = 1 # subpixels ground_colour = '#ffffff' # white scale_colour = '#0000a0' # blue midline_colour = '#c00000' # red old_colour = '#a0a0a0' # grey cur_colour = '#000000' # black new_colour = '#008000' # green final_colour = '#c00000' # red def __init__(self, name): # We don't want to depend on PIL unless an Animator is instantiated. from PIL import Image, ImageDraw, ImageColor, ImageFont self.Image = Image self.ImageDraw = ImageDraw self.ImageColor = ImageColor self.font = ImageFont.truetype(self.fontfile, 20*self.oversample, index=0, encoding='unic') self.font_super = ImageFont.truetype(self.fontfile, 12*self.oversample, index=0, encoding='unic') self.images = deque() self.name = name def render(self, q, zeta, old, cur, new, s): sys.stdout.write(':') sys.stdout.flush() n = min(cur.n, q//2) for aa in range(1, s+1): self.render_zoomed(q, zeta, old, cur, None, aa, n) if new is None: self.render_zoomed(q, zeta, old, cur, new, s, n, final=True) return self.render_zoomed( q, zeta, old, cur, new, s+1, n, frames=self.pause_frames) step = (1.0*n/new.n - 1.0)/self.zoom_frames for zoom in range(1, self.zoom_frames): n_scale = int(n/(1.0 + zoom*step)) self.render_zoomed(q, zeta, old, cur, new, s+1, n_scale) self.render_zoomed( q, zeta, old, cur, new, s+1, new.n, frames=self.pause_frames) def render_zoomed(self, q, zeta, old, cur, new, aa, n_scale, frames=1, final=False): px = self.oversample lx = self.line_halfwidth (w, h) = (self.width * px, self.height * px) scale = (w/2)/n_scale xmid = w//2 ymid = (40*px + h)//2 image = self.Image.new('RGB', (w, h), color=self.ground_colour) image.convert('P') draw = self.ImageDraw.Draw(image) bits = int(log(n_scale, 2)) for tick in range(bits-3, bits+1): xoff = int(scale*(1<= limit else '<'), limit) if animator is not None: animator.save() assert Dq >= limit def main(): args = sys.argv[1:] if "--help" in args: print("Usage: checksumsets.py [--animate]") return halflambda = 64 limit = 3<