pasta/amicable.sage

206 lines
7.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
import sys
from multiprocessing import Pool, cpu_count
from traceback import print_exc
from math import ceil
from itertools import combinations
# Let Ep/Fp : y^2 = x^3 + bp
# Let Eq/Fq : y^2 = x^3 + bq
# p and q should each be ~ L bits.
DEFAULT_TWOADICITY = 21
DEFAULT_STRETCH = 0
COEFFICIENT_RANGE = (5,)
#COEFFICIENT_RANGE = xrange(1, 10000)
ACCEPTABLE_PRIMES = (5,)
#ACCEPTABLE_PRIMES = Primes()
# <https://eprint.iacr.org/2011/465.pdf>
# It is well known that if g is neither a square nor a cube in Fp, then all
# possible group orders an elliptic curve E : y^2 = x^3 + b can have over Fp
# occur as the order of one of the 6 twists with b \in {1, g, g^2, g^3, g^4, g^5}.
# <https://math.stackexchange.com/questions/127251/when-is-a-not-a-cube-mod-p>:
# If p = 2 (mod 3) then all elements are cubes.
# If p = 1 (mod 3) then a is a cube iff a^((p-1)/3) = 1.
# <https://cryptojedi.org/papers/pfcpo.pdf> section 2:
# [...] the order of a curve satisfying the norm equation 3V^2 = 4p - t^2 has one
# of the six forms {p+1 +/- t, p+1 +/- (t +/- 3V)/2} [IEEE Std 1363-2000, section
# A.14.2.3, item 6].
#
# We choose 4p = 3V^2 + t^2, where (V-1)/2 and (t-1)/2 are both multiples of 2^twoadicity.
#
# Then 4p = (3(V-1)^2 + 6(V-1) + 3) + ((t-1)^2 + 2(t-1) + 1)
# = 3(V-1)^2 + 6(V-1) + (t-1)^2 + 2(t-1) + 4
# p = 3((V-1)/2)^2 + 3(V-1)/2 + ((t-1)/2)^2 + (t-1)/2 + 1
#
# So p-1 will be a multiple of 2^twoadicity, and so will (p+1-t)-1 = (p-1)-(t-1).
#
# We'd also like both p and q to be 1 (mod 3), so that we have efficient endomorphisms
# on both curves. We explicitly check p = 1 (mod 3), and then if t is chosen to be
# 1 (mod 3) then p+1-t will be 1 (mod 3) (but we must still check q since it
# is not necessarily that order).
def low_hamming_order(L, twoadicity, wid, processes):
Vlen = (L-1)//2 + 1
Vbase = 1 << Vlen
tlen = (L-1)//4
tbase = 1 << tlen
trailing_zeros = twoadicity+1
for w in xrange(wid, tlen-trailing_zeros, processes):
for Vc in combinations(xrange(trailing_zeros, Vlen), w):
V = Vbase + sum([1 << i for i in Vc]) + 1
assert(((V-1)/2) % (1<<twoadicity) == 0)
for tw in xrange(1, w+1):
for tc in combinations(xrange(trailing_zeros, tlen), tw):
t = tbase + sum([1 << i for i in tc]) + 1
assert(((t-1)/2) % (1<<twoadicity) == 0)
if t % 6 != 1:
continue
p4 = 3*V^2 + t^2
assert(p4 % 4 == 0)
p = p4//4
assert(p % (1<<twoadicity) == 1)
if p % 6 == 1 and is_pseudoprime(p):
yield (p, t, V)
def near_powerof2_order(L, twoadicity, wid, processes):
trailing_zeros = twoadicity+1
Vbase = isqrt((1<<(L+1))//3) >> trailing_zeros
for Voffset in symmetric_range(10000, base=wid, step=processes):
V = ((Vbase + Voffset) << trailing_zeros) + 1
assert(((V-1)/2) % (1 << twoadicity) == 0)
tmp = (1<<(L+1)) - 3*V^2
if tmp < 0: continue
tbase = isqrt(tmp) >> trailing_zeros
for toffset in symmetric_range(10000):
t = ((tbase + toffset) << trailing_zeros) + 1
assert(((t-1)/2) % (1<<twoadicity) == 0)
if t % 6 != 1:
continue
p4 = 3*V^2 + t^2
assert(p4 % 4 == 0)
p = p4//4
assert(p % (1<<twoadicity) == 1)
if p > 1<<(L-1) and p % 6 == 1 and is_pseudoprime(p):
yield (p, t, V)
def find_nonsquare_noncube(p):
for g_int in xrange(2, 1000):
g = Mod(g_int, p)
if g^((p-1)//3) != 1 and g^((p-1)//2) != 1:
return g
return None
def symmetric_range(n, base=0, step=1):
for i in xrange(base, n, step):
yield -i
yield i+1
def find_nice_curves(strategy, L, twoadicity, stretch, wid, processes):
for (p, t, V) in strategy(L, max(0, twoadicity-stretch), wid, processes):
sys.stdout.write('.')
sys.stdout.flush()
for (q, qdesc) in ((p + 1 - t, "p + 1 - t"),
(p + 1 + (t-3*V)//2, "p + 1 + (t-3*V)/2")):
if q > 1<<(L-1) and q % 6 == 1 and q % (1<<twoadicity) == 1 and is_prime(q) and is_prime(p):
bp = find_coefficient(p, q)
if bp == None: continue
bq = find_coefficient(q, p)
if bq == None: continue
gp = find_nonsquare_noncube(p)
if gp == None: continue
gq = find_nonsquare_noncube(q)
if gq == None: continue
aq = gq**((q-1)//3)
assert(aq**3 == Mod(1, q))
ap = gp**((p-1)//3)
assert(ap**3 == Mod(1, p))
yield (p, q, bp, bq, ap, aq, qdesc)
def find_coefficient(p, q):
for b in COEFFICIENT_RANGE:
E = EllipticCurve(GF(p), [0, b])
if E.count_points() == q:
return b
return None
def find_lowest_prime(p):
for r in ACCEPTABLE_PRIMES:
if gcd(p-1, r) == 1:
return r
def format_weight(x, detail=True):
X = format(abs(x), 'b')
if detail:
assert(X.endswith('1'))
detailstr = " (bitlength %d, weight %d, 2-adicity %d)" % (len(X), sum([int(c) for c in X]),
len(X) - len(X[:-1].rstrip('0')))
else:
detailstr = " (bitlength %d)" % (len(X),)
return "%s0b%s%s" % ("-" if x < 0 else "", X, detailstr)
def main():
args = sys.argv[1:]
strategy = near_powerof2_order if "--nearpowerof2" in args else low_hamming_order
processes = 1 if "--sequential" in args else cpu_count()
args = [arg for arg in args if not arg.startswith("--")]
if len(args) < 1:
print("Usage: sage amicable.sage [--sequential] [--nearpowerof2] <min-bitlength> [<min-2adicity> [<stretch]]\n")
return
L = int(args[0])
twoadicity = int(args[1]) if len(args) > 1 else DEFAULT_TWOADICITY
stretch = int(args[2]) if len(args) > 2 else DEFAULT_STRETCH
print("Using %d processes." % (processes,))
pool = Pool(processes=processes)
try:
for wid in xrange(processes):
pool.apply_async(worker, (strategy, L, twoadicity, stretch, wid, processes))
while True:
sleep(1000)
except (KeyboardInterrupt, SystemExit):
pass
finally:
pool.terminate()
def worker(*args):
try:
real_worker(*args)
except (KeyboardInterrupt, SystemExit):
pass
except:
print_exc()
def real_worker(*args):
for (p, q, bp, bq, ap, aq, qdesc) in find_nice_curves(*args):
output = "\n"
output += "p = %s\n" % format_weight(p)
output += "q = %s\n" % format_weight(q)
output += " = %s\n" % qdesc
output += "α_p = %s (mod p)\n" % format_weight(int(ap), detail=False)
output += "α_q = %s (mod q)\n" % format_weight(int(aq), detail=False)
output += "Ep/Fp : y^2 = x^3 + %d (%ssquare)\n" % (bp, "" if Mod(bp, p).is_square() else "non")
output += "Eq/Fq : y^2 = x^3 + %d (%ssquare)\n" % (bq, "" if Mod(bq, q).is_square() else "non")
output += "gcd(p-1, %d) = 1\n" % find_lowest_prime(p)
output += "gcd(q-1, %d) = 1\n" % find_lowest_prime(q)
print(output) # one syscall to minimize tearing
main()