pasta/hashtocurve.sage

357 lines
13 KiB
Python
Executable File

#!/usr/bin/env sage
# Simplified SWU for a = 0 as described in [WB2019] <https://eprint.iacr.org/2019/403> and
# <https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-10.html#name-simplified-swu-for-ab-0-2>.
import sys
from math import ceil, log
from struct import pack
import hashlib
if sys.version_info < (3, 6):
try:
import sha3
except ImportError:
print('Please run:\n`sage -c "import sys; print(sys.executable)"` -m pip install pysha3\n')
raise
from hashlib import shake_128
if sys.version_info[0] == 2:
range = xrange
as_byte = ord
else:
as_byte = lambda x: x
load('squareroottab.sage')
DEBUG = True
# E: a short Weierstrass elliptic curve
def find_z_sswu(E):
(0, 0, 0, A, B) = E.a_invariants()
F = E.base_field()
R.<x> = F[] # Polynomial ring over F
g = x^3 + F(A) * x + F(B) # y^2 = g(x) = x^3 + A * x + B
ctr = F.gen()
while True:
for Z_cand in (F(ctr), F(-ctr)):
if is_good_Z(F, g, A, B, Z_cand):
return Z_cand
ctr += 1
def is_good_Z(F, g, A, B, Z):
# Criterion 1: Z is non-square in F.
if Z.is_square():
return False
# Criterion 2: Z != -1 in F.
if Z == F(-1):
return False
# Criterion 3: g(x) - Z is irreducible over F.
if not (g - Z).is_irreducible():
return False
# Criterion 4: g(B / (Z * A)) is square in F.
if not g(F(B) / (Z * F(A))).is_square():
return False
return True
assert p == 0x40000000000000000000000000000000224698fc094cf91b992d30ed00000001
assert q == 0x40000000000000000000000000000000224698fc0994a8dd8c46eb2100000001
Fp = GF(p)
Fq = GF(q)
E_isop_A = 10949663248450308183708987909873589833737836120165333298109615750520499732811
E_isoq_A = 17413348858408915339762682399132325137863850198379221683097628341577494210225
E_isop_B = 1265
E_isoq_B = 1265
E_isop = EllipticCurve(Fp, [E_isop_A, E_isop_B])
E_isoq = EllipticCurve(Fq, [E_isoq_A, E_isoq_B])
E_p = EllipticCurve(Fp, [0, 5])
E_q = EllipticCurve(Fq, [0, 5])
k = 128
Lp = (len(format(p, 'b')) + k + 7) // 8
Lq = (len(format(q, 'b')) + k + 7) // 8
assert Lp == 48 and Lq == 48
L = Lp
Z_isop = find_z_sswu(E_isop)
Z_isoq = find_z_sswu(E_isoq)
assert Z_isop == Mod(-13, p)
assert Z_isoq == Mod(-13, q)
h_p = F_p.g
h_q = F_q.g
def select_z_nz(s, ifz, ifnz):
# This should be constant-time in a real implementation.
return ifz if (s == 0) else ifnz
def map_to_curve_simple_swu(F, E, Z, u, c):
# would be precomputed
h = F.g
(0, 0, 0, A, B) = E.a_invariants()
mBdivA = -B / A
BdivZA = B / (Z * A)
Z2 = Z^2
assert (Z/h).is_square()
theta = sqrt(Z/h)
# 1. tv1 = inv0(Z^2 * u^4 + Z * u^2)
# 2. x1 = (-B / A) * (1 + tv1)
# 3. If tv1 == 0, set x1 = B / (Z * A)
# 4. gx1 = x1^3 + A * x1 + B
#
# We use the "Avoiding inversions" optimization in [WB2019, section 4.2]
# (not to be confused with section 4.3):
#
# here [WB2019]
# ------- ---------------------------------
# Z \xi
# u t
# Z * u^2 \xi * t^2 (called u, confusingly)
# x1 X_0(t)
# x2 X_1(t)
# gx1 g(X_0(t))
# gx2 g(X_1(t))
#
# Using the "here" names:
# x1 = N/D = [B*(Z^2 * u^4 + Z * u^2 + 1)] / [-A*(Z^2 * u^4 + Z * u^2]
# gx1 = U/V = [N^3 + A * N * D^2 + B * D^3] / D^3
# Z and B are small so we don't count multiplication by them as a mul; A is large.
Zu2 = Z * c.sqr(u)
ta = c.sqr(Zu2) + Zu2
N = B * (ta + 1)
D = c.mul(-A, ta)
N2 = c.sqr(N)
D2 = c.sqr(D)
D3 = c.mul(D2, D)
U = select_z_nz(ta, BdivZA, c.mul(N2 + c.mul(A, D2), N) + B*D3)
V = select_z_nz(ta, 1, D3)
if DEBUG:
x1 = N/D
gx1 = U/V
tv1 = (0 if ta == 0 else 1/ta)
assert x1 == (BdivZA if tv1 == 0 else mBdivA * (1 + tv1))
assert gx1 == x1^3 + A * x1 + B
# 5. x2 = Z * u^2 * x1
x2 = c.mul(Zu2, x1)
# 6. gx2 = x2^3 + A * x2 + B [optimized out; see below]
# 7. If is_square(gx1), set x = x1 and y = sqrt(gx1)
# 8. Else set x = x2 and y = sqrt(gx2)
(y1, zero_if_gx1_square) = F.sarkar_divsqrt(U, V, c)
# This magic also comes from a generalization of [WB2019, section 4.2].
#
# The Sarkar square root algorithm with input s gives us a square root of
# h * s for free when s is not square, where h is a fixed nonsquare.
# We know that Z/h is a square since both Z and h are nonsquares.
# Precompute \theta as a square root of Z/h, or choose Z = h so that \theta = 1.
#
# We have gx2 = g(Z * u^2 * x1) = Z^3 * u^6 * gx1
# = (Z * u^3)^2 * (Z/h * h * gx1)
# = (Z * \theta * u^3)^2 * (h * gx1)
#
# When gx1 is not square, y1 is a square root of h * gx1, and so Z * \theta * u^3 * y1
# is a square root of gx2. Note that we don't actually need to compute gx2.
y2 = c.mul(theta, c.mul(Zu2, c.mul(u, y1)))
if DEBUG and zero_if_gx1_square != 0:
assert y1^2 == h * gx1, (y1_2, Z, gx1)
assert y2^2 == x2^3 + A * x2 + B, (y2, x2, A, B)
x = select_z_nz(zero_if_gx1_square, x1, x2)
y = select_z_nz(zero_if_gx1_square, y1, y2)
# 9. If sgn0(u) != sgn0(y), set y = -y
y = select_z_nz((int(u) % 2) - (int(y) % 2), y, -y)
return (x, y)
# iso_Ep = Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 10949663248450308183708987909873589833737836120165333298109615750520499732811*x + 1265 over Fp
def isop_map_affine(x, y, c):
c.muls += 2+1+1 + 2+1+1+2
# batch inversion
c.muls += 3
c.invs += 1
Nx = ((( 6432893846517566412420610278260439325191790329320346825767705947633326140075 *x +
23989696149150192365340222745168215001509815558210986772351135915822265203574)*x +
10492611921771203378452795982353351666191589197598957448093274638589204800759)*x +
12865787693035132824841220556520878650383580658640693651535411895266652280192)
Dx = (( x +
13271109177048389296812780941310096270046944650307955939477485891950613419807)*x +
22768321103861051515190775253992702316905399997697804654926324362758820947460)
Ny = (((11793638718615538422771118843477472096184948937087302513907460903994431256804 *x +
11994848074575096182670111372584107500754907779105493386175567957911132601787)*x +
28823569610051396102362669851238297121581474897215657071023781420043761726004)*x +
1072148974419594402070101713043406554198631721553391137627950991272221023311) * y
Dy = ((( x +
5432652610908059517272798285879155923388888734491153551238890455750936314542)*x +
10408918692925056833786833257634153023990087029210292532869619559576527581706)*x +
28948022309329048855892746252171976963363056481941560715954676764349967629797)
return (Nx / Dx, Ny / Dy)
# The same isogeny but in Jacobian coordinates <https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>,
# according to "Avoiding inversions" in [WB2019, section 4.3].
def isop_map_jacobian(x, y, z, c):
z2 = c.sqr(z)
z3 = c.mul(z, z2)
z4 = c.sqr(z2)
z6 = c.sqr(z3)
Nx = ((( 6432893846517566412420610278260439325191790329320346825767705947633326140075 *x +
23989696149150192365340222745168215001509815558210986772351135915822265203574*z2)*x +
10492611921771203378452795982353351666191589197598957448093274638589204800759*z4)*x +
12865787693035132824841220556520878650383580658640693651535411895266652280192*z6)
c.muls += 6
Dx = (( z2 *x +
13271109177048389296812780941310096270046944650307955939477485891950613419807*z4)*x +
22768321103861051515190775253992702316905399997697804654926324362758820947460*z6)
c.muls += 4
Ny = (((11793638718615538422771118843477472096184948937087302513907460903994431256804 *x +
11994848074575096182670111372584107500754907779105493386175567957911132601787*z2)*x +
28823569610051396102362669851238297121581474897215657071023781420043761726004*z4)*x +
1072148974419594402070101713043406554198631721553391137627950991272221023311*z6) * y
c.muls += 7
Dy = ((( x +
5432652610908059517272798285879155923388888734491153551238890455750936314542*z2)*x +
10408918692925056833786833257634153023990087029210292532869619559576527581706*z4)*x +
28948022309329048855892746252171976963363056481941560715954676764349967629797*z6) * z3
c.muls += 6
zo = c.mul(Dx, Dy)
xo = c.mul(c.mul(Nx, Dy), zo)
yo = c.mul(c.mul(Ny, Dx), c.sqr(zo))
assert isop_map_affine(x / z2, y / z3, Cost()) == (xo / zo^2, yo / zo^3)
return (xo, yo, zo)
# Unified addition on y^2 = x^3 + Ax + B with affine input and Jacobian output.
# The inputs must not be the point at infinity; the output may be.
def unified_mmadd_jacobian(A, Px, Py, Qx, Qy, c):
# Addition using Jacobian coordinates for general A
# <https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-mmadd-2007-bl>
H = Qx - Px
I = 4*c.sqr(H)
J = c.mul(H, I)
r = 2*(Qy - Py)
V = c.mul(Px, I)
# Doubling using Jacobian coordinates for general A
# <https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-mdbl-2007-bl>
XX = c.sqr(Px)
YY = c.sqr(Py)
YYYY = c.sqr(YY)
S = 2*(c.sqr(Px + YY) - XX - YYYY)
M = 3*XX + A
# Common part between doubling and addition. J = 0 for doubling.
M_or_r = select_z_nz(H, M, r)
S_or_V = select_z_nz(H, S, V)
Rx = c.sqr(M_or_r) - J - 2*S_or_V
Ry = c.mul(M_or_r, S_or_V - Rx) - select_z_nz(H, 8*YYYY, 2*c.mul(Py, J))
# If Q = -P (i.e. H = 0 and Py + Qy = 0), then the result is the point at infinity, represented by Rz = 0.
U = select_z_nz(Py + Qy, 0, Qy)
Rz = 2*select_z_nz(H, U, H)
return (Rx, Ry, Rz)
def expand_message_xof(msg, DST, len_in_bytes):
assert len(DST) < 256
len_in_bytes = int(len_in_bytes)
# This is horrible but matches the reference code.
xof = shake_128()
xof.update(msg)
xof.update(pack(">H", len_in_bytes))
xof.update(pack("B", len(DST)))
xof.update(DST)
return xof.digest(len_in_bytes)
def hash_to_field(msg, DST, count):
uniform_bytes = expand_message_xof(msg, DST, L*count)
return [Mod(OS2IP(uniform_bytes[L*i : L*(i+1)]), p) for i in range(count)]
def OS2IP(bs):
acc = 0
for b in bs:
acc = (acc<<8) + as_byte(b)
return acc
def hash_to_curve_affine(msg, DST, uniform=True):
c = Cost()
us = hash_to_field(msg, DST, 2 if uniform else 1)
#print("u = ", u)
(Q0x, Q0y) = map_to_curve_simple_swu(F_p, E_isop, Z_isop, us[0], c)
if uniform:
(Q1x, Q1y) = map_to_curve_simple_swu(F_p, E_isop, Z_isop, us[1], c)
# Complete addition using affine coordinates: I + 2M + 2S
# (S for x1^2; compute numerator and denominator of the division for the correct case;
# I + M to divide; S + M to compute x and y of the result.)
# Just use Sage's implementation, since this is mainly for comparison to the Jacobian impl.
R = E_isop((Q0x, Q0y)) + E_isop((Q1x, Q1y))
#print("R = ", R)
c.invs += 1
c.sqrs += 2
c.muls += 2
(Rx, Ry) = R.xy()
else:
(Rx, Ry) = (Q0x, Q0y)
# no cofactor clearing needed since Pallas and Vesta are prime-order
P = E_p(isop_map_affine(Rx, Ry, c))
return (P, c)
def hash_to_curve_jacobian(msg, DST):
c = Cost()
us = hash_to_field(msg, DST, 2)
#print("u = ", u)
(Q0x, Q0y) = map_to_curve_simple_swu(F_p, E_isop, Z_isop, us[0], c)
(Q1x, Q1y) = map_to_curve_simple_swu(F_p, E_isop, Z_isop, us[1], c)
if DEBUG:
R = E_isop((Q0x, Q0y)) + E_isop((Q1x, Q1y))
#print("R = ", R)
(Rx, Ry, Rz) = unified_mmadd_jacobian(E_isop_A, Q0x, Q0y, Q1x, Q1y, c)
if DEBUG: assert E_isop((Rx / Rz^2, Ry / Rz^3)) == R
# no cofactor clearing needed since Pallas and Vesta are prime-order
(Px, Py, Pz) = isop_map_jacobian(Rx, Ry, Rz, c)
P = E_p((Px / Pz^2, Py / Pz^3))
return (P, c)
print(hash_to_curve_affine("hello", "blah", uniform=True))
print(hash_to_curve_jacobian("hello", "blah"))
print("")
iters = 100
for i in range(iters):
(R_affine, cost_affine) = hash_to_curve_affine(pack(">I", i), "blah", uniform=True)
(R_jacobian, cost_jacobian) = hash_to_curve_jacobian(pack(">I", i), "blah")
assert R_affine == R_jacobian # Sage will normalize them
print(R_affine, cost_affine, cost_jacobian)