mirror of https://github.com/zcash/pasta.git
290 lines
9.1 KiB
Python
Executable File
290 lines
9.1 KiB
Python
Executable File
#!/usr/bin/env sage
|
|
|
|
# This implements a prototype of Palash Sarkar's square root algorithm
|
|
# from <https://eprint.iacr.org/2020/1407>, for the Pasta fields.
|
|
|
|
import sys
|
|
|
|
if sys.version_info[0] == 2:
|
|
range = xrange
|
|
|
|
DEBUG = True
|
|
VERBOSE = False
|
|
EXPENSIVE = False
|
|
|
|
SUBGROUP_TEST = True
|
|
OP_COUNT = True
|
|
|
|
|
|
class Cost:
|
|
def __init__(self, sqrs=0, muls=0, invs=0):
|
|
self.sqrs = sqrs
|
|
self.muls = muls
|
|
self.invs = invs
|
|
|
|
def sqr(self, x):
|
|
self.sqrs += 1
|
|
return x^2
|
|
|
|
def mul(self, x, y):
|
|
self.muls += 1
|
|
return x * y
|
|
|
|
def div(self, x, y):
|
|
self.invs += 1
|
|
self.muls += 1
|
|
return x / y
|
|
|
|
def batch_inv0(self, xs):
|
|
self.invs += 1
|
|
self.muls += 3*(len(xs)-1)
|
|
# This should use Montgomery's trick (with constant-time substitutions to handle zeros).
|
|
return [0 if x == 0 else x^-1 for x in xs]
|
|
|
|
def __repr__(self):
|
|
return "%dS + %dM + %dI" % (self.sqrs, self.muls, self.invs)
|
|
|
|
def __add__(self, other):
|
|
return Cost(self.sqrs + other.sqrs, self.muls + other.muls, self.invs + other.invs)
|
|
|
|
def include(self, other):
|
|
self.sqrs += other.sqrs
|
|
self.muls += other.muls
|
|
|
|
def divide(self, divisor):
|
|
return Cost((self.sqrs / divisor).numerical_approx(), (self.muls / divisor).numerical_approx())
|
|
|
|
|
|
class SqrtField:
|
|
def __init__(self, p, z, base_cost, hash_xor=None, hash_mod=None):
|
|
n = 32
|
|
m = p >> n
|
|
assert p == 1 + m * 2^n
|
|
if EXPENSIVE: assert Mod(z, p).multiplicative_order() == p-1
|
|
g = Mod(z, p)^m
|
|
if EXPENSIVE: assert g.multiplicative_order() == 2^n
|
|
|
|
gtab = [[0]*256 for i in range(4)]
|
|
gi = g
|
|
for i in range(4):
|
|
if DEBUG: assert gi == g^(256^i), (i, gi)
|
|
acc = Mod(1, p)
|
|
for j in range(256):
|
|
if DEBUG: assert acc == g^(256^i * j), (i, j, acc)
|
|
gtab[i][j] = acc
|
|
acc *= gi
|
|
gi = acc
|
|
|
|
if hash_xor is None:
|
|
(hash_xor, hash_mod) = self.find_perfect_hash(gtab[3])
|
|
(self.hash_xor, self.hash_mod) = (hash_xor, hash_mod)
|
|
|
|
# Now invert gtab[3].
|
|
invtab = [1]*hash_mod
|
|
for j in range(256):
|
|
h = self.hash(gtab[3][j])
|
|
# 1 is the last value to be assigned, so this ensures there are no collisions.
|
|
assert invtab[h] == 1
|
|
invtab[h] = (256-j) % 256
|
|
|
|
gtab[3] = gtab[3][:129]
|
|
|
|
(self.p, self.n, self.m, self.g, self.gtab, self.invtab, self.base_cost) = (
|
|
p, n, m, g, gtab, invtab, base_cost)
|
|
|
|
def hash(self, x):
|
|
return ((int(x) & 0xFFFFFFFF) ^^ self.hash_xor) % self.hash_mod
|
|
|
|
def find_perfect_hash(self, gt):
|
|
gt = [int(x) & 0xFFFFFFFF for x in gt]
|
|
assert len(set(gt)) == len(gt)
|
|
|
|
def is_ok(c_invtab, c_xor, c_mod):
|
|
for j in range(256):
|
|
hash = (gt[j] ^^ c_xor) % c_mod
|
|
if c_invtab[hash] == c_mod:
|
|
return False
|
|
c_invtab[hash] = c_mod
|
|
|
|
return True
|
|
|
|
hash_xor = None
|
|
hash_mod = 10000
|
|
for c_xor in range(1, 0x200000):
|
|
c_invtab = [0]*hash_mod
|
|
for c_mod in range(256, hash_mod):
|
|
if is_ok(c_invtab, c_xor, c_mod):
|
|
(hash_xor, hash_mod) = (c_xor, c_mod)
|
|
print("0x%X: %d" % (hash_xor, hash_mod))
|
|
break
|
|
|
|
print("best is hash_xor=0x%X, hash_mod=%d" % (hash_xor, hash_mod))
|
|
return (hash_xor, hash_mod)
|
|
|
|
"""
|
|
Return (sqrt(u), True ), if u is square in the field.
|
|
(sqrt(g*u), False), otherwise.
|
|
"""
|
|
def sarkar_sqrt(self, u, c):
|
|
if VERBOSE: print("u = %r" % (u,))
|
|
|
|
# This would actually be done using the addition chain.
|
|
v = u^((self.m-1)/2)
|
|
c.include(self.base_cost)
|
|
|
|
uv = c.mul(u, v)
|
|
(res, zero_if_square) = self.sarkar_sqrt_common(u, 1, uv, v, c)
|
|
return (res, zero_if_square)
|
|
|
|
"""
|
|
Return (sqrt(N/D), True, c), if N/D is square in the field.
|
|
(sqrt(g*N/D), False, c), otherwise.
|
|
|
|
This avoids the full cost of computing N/D.
|
|
"""
|
|
def sarkar_divsqrt(self, N, D, c):
|
|
if DEBUG:
|
|
u = N/D
|
|
if VERBOSE: print("N/D = %r/%r\n = %r" % (N, D, u))
|
|
|
|
# We need to calculate uv and v, where v = u^((m-1)/2), u = N/D, and p-1 = m * 2^n.
|
|
# We can rewrite as follows:
|
|
#
|
|
# v = (N/D)^((m-1)/2)
|
|
# = N^((m-1)/2) * D^(p-1 - (m-1)/2) [Fermat's Little Theorem]
|
|
# = " * D^(m * 2^n - (m-1)/2)
|
|
# = " * D^((2^(n+1) - 1)*(m-1)/2 + 2^n)
|
|
# = (N * D^(2^(n+1) - 1))^((m-1)/2) * D^(2^n)
|
|
#
|
|
# Let w = (N * D^(2^(n+1) - 1))^((m-1)/2) * D^(2^n - 1).
|
|
# Then v = w * D, and uv = N * v/D = N * w.
|
|
#
|
|
# We calculate:
|
|
#
|
|
# s = D^(2^n - 1) using an addition chain
|
|
# t = D^(2^(n+1) - 1) = s^2 * D
|
|
# w = (N * t)^((m-1)/2) * s using another addition chain
|
|
#
|
|
# then u and uv as above. The addition chains are given in addchain_sqrt.py .
|
|
# The overall cost of this part is similar to a single full-width exponentiation,
|
|
# regardless of n.
|
|
|
|
s = D^(2^self.n - 1)
|
|
c.sqrs += 31
|
|
c.muls += 5
|
|
t = c.mul(c.sqr(s), D)
|
|
if DEBUG: assert t == D^(2^(self.n+1) - 1)
|
|
w = c.mul(c.mul(N, t)^((self.m-1)/2), s)
|
|
c.include(self.base_cost)
|
|
v = c.mul(w, D)
|
|
uv = c.mul(N, w)
|
|
|
|
if DEBUG:
|
|
assert v == u^((self.m-1)/2)
|
|
assert uv == u * v
|
|
|
|
(res, zero_if_square) = self.sarkar_sqrt_common(N, D, uv, v, c)
|
|
|
|
if DEBUG:
|
|
(res_ref, zero_if_square_ref) = self.sarkar_sqrt(u, Cost())
|
|
assert res == res_ref
|
|
assert (zero_if_square == 0) == (zero_if_square_ref == 0)
|
|
|
|
return (res, zero_if_square)
|
|
|
|
def sarkar_sqrt_common(self, N, D, uv, v, c):
|
|
x3 = uv * v
|
|
c.muls += 2
|
|
if DEBUG:
|
|
u = N/D
|
|
assert x3 == u^self.m
|
|
if EXPENSIVE:
|
|
x3_order = x3.multiplicative_order()
|
|
if VERBOSE: print("x3_order = %r" % (x3_order,))
|
|
# x3_order is 2^n iff u is nonsquare, otherwise it divides 2^(n-1).
|
|
assert x3.divides(2^self.n)
|
|
|
|
x2 = x3^(1<<8)
|
|
x1 = x2^(1<<8)
|
|
x0 = x1^(1<<8)
|
|
if DEBUG:
|
|
assert x0 == x3^(1<<(self.n-1-7))
|
|
assert x1 == x3^(1<<(self.n-1-15))
|
|
assert x2 == x3^(1<<(self.n-1-23))
|
|
|
|
c.sqrs += 8+8+8
|
|
|
|
# i = 0, 1
|
|
t_ = self.invtab[self.hash(x0)] # = t >> 16
|
|
if DEBUG: assert 1 == x0 * self.g^(t_ << 24), (x0, t_)
|
|
assert t_ < 0x100, t_
|
|
alpha = x1 * self.gtab[2][t_]
|
|
c.muls += 1
|
|
|
|
# i = 2
|
|
t_ += self.invtab[self.hash(alpha)] << 8 # = t >> 8
|
|
if DEBUG: assert 1 == x1 * self.g^(t_ << 16), (x1, t_)
|
|
assert t_ < 0x10000, t_
|
|
alpha = x2 * self.gtab[1][t_ % 256] * self.gtab[2][t_ >> 8]
|
|
c.muls += 2
|
|
|
|
# i = 3
|
|
t_ += self.invtab[self.hash(alpha)] << 16 # = t
|
|
if DEBUG: assert 1 == x2 * self.g^(t_ << 8), (x2, t_)
|
|
assert t_ < 0x1000000, t_
|
|
alpha = x3 * self.gtab[0][t_ % 256] * self.gtab[1][(t_ >> 8) % 256] * self.gtab[2][t_ >> 16]
|
|
c.muls += 3
|
|
|
|
t_ += self.invtab[self.hash(alpha)] << 24 # = t << 1
|
|
if DEBUG: assert 1 == x3 * self.g^t_, (x3, t_)
|
|
t_ = (t_ + 1) >> 1
|
|
assert t_ <= 0x80000000, t_
|
|
res = uv * self.gtab[0][t_ % 256] * self.gtab[1][(t_ >> 8) % 256] * self.gtab[2][(t_ >> 16) % 256] * self.gtab[3][t_ >> 24]
|
|
c.muls += 4
|
|
|
|
zero_if_square = c.mul(c.sqr(res), D) - N
|
|
if DEBUG:
|
|
assert (zero_if_square == 0) == u.is_square()
|
|
if EXPENSIVE: assert (zero_if_square == 0) == (x3_order != 2^self.n), (zero_if_square, x3_order)
|
|
if zero_if_square != 0:
|
|
assert(res^2 == u * self.g)
|
|
|
|
return (res, zero_if_square)
|
|
|
|
|
|
p = 0x40000000000000000000000000000000224698fc094cf91b992d30ed00000001
|
|
q = 0x40000000000000000000000000000000224698fc0994a8dd8c46eb2100000001
|
|
|
|
# see addchain_sqrt.py for base costs of u^{(m-1)/2}
|
|
F_p = SqrtField(p, 5, Cost(223, 23), hash_xor=0x11BE, hash_mod=1098)
|
|
F_q = SqrtField(q, 5, Cost(223, 24), hash_xor=0x116A9E, hash_mod=1206)
|
|
|
|
print("p = %r" % (p,))
|
|
|
|
x = Mod(0x1234567890123456789012345678901234567890123456789012345678901234, p)
|
|
print(F_p.sarkar_sqrt(x, Cost()))
|
|
Dx = Mod(0x123456, p)
|
|
print(F_p.sarkar_divsqrt(x*Dx, Dx, Cost()))
|
|
|
|
x = Mod(0x2345678901234567890123456789012345678901234567890123456789012345, p)
|
|
print(F_p.sarkar_sqrt(x, Cost()))
|
|
|
|
# nonsquare
|
|
x = Mod(0x3456789012345678901234567890123456789012345678901234567890123456, p)
|
|
print(F_p.sarkar_sqrt(x, Cost()))
|
|
|
|
if SUBGROUP_TEST:
|
|
for i in range(33):
|
|
x = F_p.g^(2^i)
|
|
print(F_p.sarkar_sqrt(x, Cost()))
|
|
|
|
if OP_COUNT:
|
|
cost = Cost()
|
|
iters = 50
|
|
for i in range(iters):
|
|
x = GF(p).random_element()
|
|
y = GF(p).random_element()
|
|
(_, _) = F_p.sarkar_divsqrt(x, y, cost)
|
|
|
|
print cost.divide(iters)
|