Merge pull request #33 from ebfull/general-improvements

General improvements
This commit is contained in:
ebfull 2018-02-20 18:39:02 -07:00 committed by GitHub
commit 1a89b3a486
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 457 additions and 426 deletions

View File

@ -234,6 +234,77 @@ impl AllocatedBit {
}
}
pub fn u64_into_allocated_bits_be<E: Engine, CS: ConstraintSystem<E>>(
mut cs: CS,
value: Option<u64>
) -> Result<Vec<AllocatedBit>, SynthesisError>
{
let values = match value {
Some(ref value) => {
let mut tmp = Vec::with_capacity(64);
for i in (0..64).rev() {
tmp.push(Some(*value >> i & 1 == 1));
}
tmp
},
None => {
vec![None; 64]
}
};
let bits = values.into_iter().enumerate().map(|(i, b)| {
AllocatedBit::alloc(
cs.namespace(|| format!("bit {}", i)),
b
)
}).collect::<Result<Vec<_>, SynthesisError>>()?;
Ok(bits)
}
pub fn field_into_allocated_bits_be<E: Engine, CS: ConstraintSystem<E>, F: PrimeField>(
mut cs: CS,
value: Option<F>
) -> Result<Vec<AllocatedBit>, SynthesisError>
{
let values = match value {
Some(ref value) => {
let mut field_char = BitIterator::new(F::char());
let mut tmp = Vec::with_capacity(F::NUM_BITS as usize);
let mut found_one = false;
for b in BitIterator::new(value.into_repr()) {
// Skip leading bits
found_one |= field_char.next().unwrap();
if !found_one {
continue;
}
tmp.push(Some(b));
}
assert_eq!(tmp.len(), F::NUM_BITS as usize);
tmp
},
None => {
vec![None; F::NUM_BITS as usize]
}
};
let bits = values.into_iter().enumerate().map(|(i, b)| {
AllocatedBit::alloc(
cs.namespace(|| format!("bit {}", i)),
b
)
}).collect::<Result<Vec<_>, SynthesisError>>()?;
Ok(bits)
}
/// This is a boolean value which may be either a constant or
/// an interpretation of an `AllocatedBit`.
#[derive(Clone)]
@ -509,7 +580,12 @@ mod test {
use pairing::bls12_381::{Bls12, Fr};
use pairing::{Field, PrimeField, PrimeFieldRepr, BitIterator};
use ::circuit::test::*;
use super::{AllocatedBit, Boolean};
use super::{
AllocatedBit,
Boolean,
field_into_allocated_bits_be,
u64_into_allocated_bits_be
};
#[test]
fn test_allocated_bit() {
@ -1129,4 +1205,47 @@ mod test {
}
}
}
#[test]
fn test_u64_into_allocated_bits_be() {
let mut cs = TestConstraintSystem::<Bls12>::new();
let bits = u64_into_allocated_bits_be(&mut cs, Some(17234652694787248421)).unwrap();
assert!(cs.is_satisfied());
assert_eq!(bits.len(), 64);
assert_eq!(bits[0].value.unwrap(), true);
assert_eq!(bits[1].value.unwrap(), true);
assert_eq!(bits[2].value.unwrap(), true);
assert_eq!(bits[3].value.unwrap(), false);
assert_eq!(bits[4].value.unwrap(), true);
assert_eq!(bits[5].value.unwrap(), true);
assert_eq!(bits[20].value.unwrap(), true);
assert_eq!(bits[21].value.unwrap(), false);
assert_eq!(bits[22].value.unwrap(), false);
}
#[test]
fn test_field_into_allocated_bits_be() {
let mut cs = TestConstraintSystem::<Bls12>::new();
let r = Fr::from_str("9147677615426976802526883532204139322118074541891858454835346926874644257775").unwrap();
let bits = field_into_allocated_bits_be(&mut cs, Some(r)).unwrap();
assert!(cs.is_satisfied());
assert_eq!(bits.len(), 255);
assert_eq!(bits[0].value.unwrap(), false);
assert_eq!(bits[1].value.unwrap(), false);
assert_eq!(bits[2].value.unwrap(), true);
assert_eq!(bits[3].value.unwrap(), false);
assert_eq!(bits[4].value.unwrap(), true);
assert_eq!(bits[5].value.unwrap(), false);
assert_eq!(bits[20].value.unwrap(), true);
assert_eq!(bits[23].value.unwrap(), true);
}
}

View File

@ -12,9 +12,13 @@ use super::{
Assignment
};
use super::num::AllocatedNum;
use super::num::{
AllocatedNum,
Num
};
use ::jubjub::{
edwards,
JubjubEngine,
JubjubParams,
FixedGenerators
@ -41,8 +45,7 @@ impl<E: Engine> Clone for EdwardsPoint<E> {
}
/// Perform a fixed-base scalar multiplication with
/// `by` being in little-endian bit order. `by` must
/// be a multiple of 3.
/// `by` being in little-endian bit order.
pub fn fixed_base_multiplication<E, CS>(
mut cs: CS,
base: FixedGenerators,
@ -52,11 +55,6 @@ pub fn fixed_base_multiplication<E, CS>(
where CS: ConstraintSystem<E>,
E: JubjubEngine
{
// We're going to chunk the scalar into 3-bit windows,
// so let's force the caller to supply the right number
// of bits for our lookups.
assert!(by.len() % 3 == 0);
// Represents the result of the multiplication
let mut result = None;
@ -64,9 +62,13 @@ pub fn fixed_base_multiplication<E, CS>(
.zip(params.circuit_generators(base).iter())
.enumerate()
{
let chunk_a = chunk.get(0).map(|e| e.clone()).unwrap_or(Boolean::constant(false));
let chunk_b = chunk.get(1).map(|e| e.clone()).unwrap_or(Boolean::constant(false));
let chunk_c = chunk.get(2).map(|e| e.clone()).unwrap_or(Boolean::constant(false));
let (x, y) = lookup3_xy(
cs.namespace(|| format!("window table lookup {}", i)),
chunk,
&[chunk_a, chunk_b, chunk_c],
window
)?;
@ -90,6 +92,41 @@ pub fn fixed_base_multiplication<E, CS>(
}
impl<E: JubjubEngine> EdwardsPoint<E> {
/// This 'witnesses' a point inside the constraint system.
/// It guarantees the point is on the curve.
pub fn witness<Order, CS>(
mut cs: CS,
p: Option<edwards::Point<E, Order>>,
params: &E::Params
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E>
{
let p = p.map(|p| p.into_xy());
// Allocate x
let x = AllocatedNum::alloc(
cs.namespace(|| "x"),
|| {
Ok(p.get()?.0)
}
)?;
// Allocate y
let y = AllocatedNum::alloc(
cs.namespace(|| "y"),
|| {
Ok(p.get()?.1)
}
)?;
Self::interpret(
cs.namespace(|| "point interpretation"),
&x,
&y,
params
)
}
/// This extracts the x-coordinate, which is an injective
/// encoding for elements of the prime order subgroup.
pub fn into_num(&self) -> AllocatedNum<E> {
@ -238,12 +275,116 @@ impl<E: JubjubEngine> EdwardsPoint<E> {
pub fn double<CS>(
&self,
cs: CS,
mut cs: CS,
params: &E::Params
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E>
{
self.add(cs, self, params)
// Compute T = (x1 + y1) * (x1 + y1)
let t = AllocatedNum::alloc(cs.namespace(|| "T"), || {
let mut t0 = *self.x.get_value().get()?;
t0.add_assign(self.y.get_value().get()?);
let mut t1 = *self.x.get_value().get()?;
t1.add_assign(self.y.get_value().get()?);
t0.mul_assign(&t1);
Ok(t0)
})?;
cs.enforce(
|| "T computation",
|lc| lc + self.x.get_variable()
+ self.y.get_variable(),
|lc| lc + self.x.get_variable()
+ self.y.get_variable(),
|lc| lc + t.get_variable()
);
// Compute A = x1 * y1
let a = self.x.mul(cs.namespace(|| "A computation"), &self.y)?;
// Compute C = d*A*A
let c = AllocatedNum::alloc(cs.namespace(|| "C"), || {
let mut t0 = *a.get_value().get()?;
t0.square();
t0.mul_assign(params.edwards_d());
Ok(t0)
})?;
cs.enforce(
|| "C computation",
|lc| lc + (*params.edwards_d(), a.get_variable()),
|lc| lc + a.get_variable(),
|lc| lc + c.get_variable()
);
// Compute x3 = (2.A) / (1 + C)
let x3 = AllocatedNum::alloc(cs.namespace(|| "x3"), || {
let mut t0 = *a.get_value().get()?;
t0.double();
let mut t1 = E::Fr::one();
t1.add_assign(c.get_value().get()?);
match t1.inverse() {
Some(t1) => {
t0.mul_assign(&t1);
Ok(t0)
},
None => {
Err(SynthesisError::DivisionByZero)
}
}
})?;
let one = CS::one();
cs.enforce(
|| "x3 computation",
|lc| lc + one + c.get_variable(),
|lc| lc + x3.get_variable(),
|lc| lc + a.get_variable()
+ a.get_variable()
);
// Compute y3 = (U - 2.A) / (1 - C)
let y3 = AllocatedNum::alloc(cs.namespace(|| "y3"), || {
let mut t0 = *a.get_value().get()?;
t0.double();
t0.negate();
t0.add_assign(t.get_value().get()?);
let mut t1 = E::Fr::one();
t1.sub_assign(c.get_value().get()?);
match t1.inverse() {
Some(t1) => {
t0.mul_assign(&t1);
Ok(t0)
},
None => {
Err(SynthesisError::DivisionByZero)
}
}
})?;
cs.enforce(
|| "y3 computation",
|lc| lc + one - c.get_variable(),
|lc| lc + y3.get_variable(),
|lc| lc + t.get_variable()
- a.get_variable()
- a.get_variable()
);
Ok(EdwardsPoint {
x: x3,
y: y3
})
}
/// Perform addition between any two points
@ -366,8 +507,8 @@ impl<E: JubjubEngine> EdwardsPoint<E> {
}
pub struct MontgomeryPoint<E: Engine> {
x: AllocatedNum<E>,
y: AllocatedNum<E>
x: Num<E>,
y: Num<E>
}
impl<E: JubjubEngine> MontgomeryPoint<E> {
@ -400,9 +541,9 @@ impl<E: JubjubEngine> MontgomeryPoint<E> {
cs.enforce(
|| "u computation",
|lc| lc + self.y.get_variable(),
|lc| lc + &self.y.lc(E::Fr::one()),
|lc| lc + u.get_variable(),
|lc| lc + (*params.scale(), self.x.get_variable())
|lc| lc + &self.x.lc(*params.scale())
);
// Compute v = (x - 1) / (x + 1)
@ -427,10 +568,10 @@ impl<E: JubjubEngine> MontgomeryPoint<E> {
let one = CS::one();
cs.enforce(
|| "v computation",
|lc| lc + self.x.get_variable()
|lc| lc + &self.x.lc(E::Fr::one())
+ one,
|lc| lc + v.get_variable(),
|lc| lc + self.x.get_variable()
|lc| lc + &self.x.lc(E::Fr::one())
- one,
);
@ -445,8 +586,8 @@ impl<E: JubjubEngine> MontgomeryPoint<E> {
/// on the curve. Useful for constants and
/// window table lookups.
pub fn interpret_unchecked(
x: AllocatedNum<E>,
y: AllocatedNum<E>
x: Num<E>,
y: Num<E>
) -> Self
{
MontgomeryPoint {
@ -486,13 +627,13 @@ impl<E: JubjubEngine> MontgomeryPoint<E> {
cs.enforce(
|| "evaluate lambda",
|lc| lc + other.x.get_variable()
- self.x.get_variable(),
|lc| lc + &other.x.lc(E::Fr::one())
- &self.x.lc(E::Fr::one()),
|lc| lc + lambda.get_variable(),
|lc| lc + other.y.get_variable()
- self.y.get_variable()
|lc| lc + &other.y.lc(E::Fr::one())
- &self.y.lc(E::Fr::one())
);
// Compute x'' = lambda^2 - A - x - x'
@ -513,8 +654,8 @@ impl<E: JubjubEngine> MontgomeryPoint<E> {
|lc| lc + lambda.get_variable(),
|lc| lc + lambda.get_variable(),
|lc| lc + (*params.montgomery_a(), one)
+ self.x.get_variable()
+ other.x.get_variable()
+ &self.x.lc(E::Fr::one())
+ &other.x.lc(E::Fr::one())
+ xprime.get_variable()
);
@ -532,121 +673,18 @@ impl<E: JubjubEngine> MontgomeryPoint<E> {
// y' + y = lambda(x - x')
cs.enforce(
|| "evaluate yprime",
|lc| lc + self.x.get_variable()
|lc| lc + &self.x.lc(E::Fr::one())
- xprime.get_variable(),
|lc| lc + lambda.get_variable(),
|lc| lc + yprime.get_variable()
+ self.y.get_variable()
+ &self.y.lc(E::Fr::one())
);
Ok(MontgomeryPoint {
x: xprime,
y: yprime
})
}
/// Performs an affine point doubling, not defined for
/// the point of order two (0, 0).
pub fn double<CS>(
&self,
mut cs: CS,
params: &E::Params
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E>
{
// Square x
let xx = self.x.square(&mut cs)?;
// Compute lambda = (3.xx + 2.A.x + 1) / 2.y
let lambda = AllocatedNum::alloc(cs.namespace(|| "lambda"), || {
let mut t0 = *xx.get_value().get()?;
let mut t1 = t0;
t0.double(); // t0 = 2.xx
t0.add_assign(&t1); // t0 = 3.xx
t1 = *self.x.get_value().get()?; // t1 = x
t1.mul_assign(params.montgomery_2a()); // t1 = 2.A.x
t0.add_assign(&t1);
t0.add_assign(&E::Fr::one());
t1 = *self.y.get_value().get()?; // t1 = y
t1.double(); // t1 = 2.y
match t1.inverse() {
Some(t1) => {
t0.mul_assign(&t1);
Ok(t0)
},
None => {
Err(SynthesisError::DivisionByZero)
}
}
})?;
// (2.y) * (lambda) = (3.xx + 2.A.x + 1)
let one = CS::one();
cs.enforce(
|| "evaluate lambda",
|lc| lc + self.y.get_variable()
+ self.y.get_variable(),
|lc| lc + lambda.get_variable(),
|lc| lc + xx.get_variable()
+ xx.get_variable()
+ xx.get_variable()
+ (*params.montgomery_2a(), self.x.get_variable())
+ one
);
// Compute x' = (lambda^2) - A - 2.x
let xprime = AllocatedNum::alloc(cs.namespace(|| "xprime"), || {
let mut t0 = *lambda.get_value().get()?;
t0.square();
t0.sub_assign(params.montgomery_a());
t0.sub_assign(self.x.get_value().get()?);
t0.sub_assign(self.x.get_value().get()?);
Ok(t0)
})?;
// (lambda) * (lambda) = (A + 2.x + x')
cs.enforce(
|| "evaluate xprime",
|lc| lc + lambda.get_variable(),
|lc| lc + lambda.get_variable(),
|lc| lc + (*params.montgomery_a(), one)
+ self.x.get_variable()
+ self.x.get_variable()
+ xprime.get_variable()
);
// Compute y' = -(y + lambda(x' - x))
let yprime = AllocatedNum::alloc(cs.namespace(|| "yprime"), || {
let mut t0 = *xprime.get_value().get()?;
t0.sub_assign(self.x.get_value().get()?);
t0.mul_assign(lambda.get_value().get()?);
t0.add_assign(self.y.get_value().get()?);
t0.negate();
Ok(t0)
})?;
// y' + y = lambda(x - x')
cs.enforce(
|| "evaluate yprime",
|lc| lc + self.x.get_variable()
- xprime.get_variable(),
|lc| lc + lambda.get_variable(),
|lc| lc + yprime.get_variable()
+ self.y.get_variable()
);
Ok(MontgomeryPoint {
x: xprime,
y: yprime
x: xprime.into(),
y: yprime.into()
})
}
}
@ -696,7 +734,7 @@ mod test {
Ok(y)
}).unwrap();
let p = MontgomeryPoint::interpret_unchecked(numx, numy);
let p = MontgomeryPoint::interpret_unchecked(numx.into(), numy.into());
let q = p.into_edwards(&mut cs, params).unwrap();
@ -721,6 +759,23 @@ mod test {
let params = &JubjubBls12::new();
let rng = &mut XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
for _ in 0..100 {
let p = edwards::Point::<Bls12, _>::rand(rng, &params);
let mut cs = TestConstraintSystem::<Bls12>::new();
let q = EdwardsPoint::witness(
&mut cs,
Some(p.clone()),
&params
).unwrap();
let p = p.into_xy();
assert!(cs.is_satisfied());
assert_eq!(q.x.get_value().unwrap(), p.0);
assert_eq!(q.y.get_value().unwrap(), p.1);
}
for _ in 0..100 {
let p = edwards::Point::<Bls12, _>::rand(rng, &params);
let (x, y) = p.into_xy();
@ -759,27 +814,6 @@ mod test {
}
}
#[test]
fn test_doubling_order_2() {
let params = &JubjubBls12::new();
let mut cs = TestConstraintSystem::<Bls12>::new();
let x = AllocatedNum::alloc(cs.namespace(|| "x"), || {
Ok(Fr::zero())
}).unwrap();
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
Ok(Fr::zero())
}).unwrap();
let p = MontgomeryPoint {
x: x,
y: y
};
assert!(p.double(&mut cs, params).is_err());
}
#[test]
fn test_edwards_fixed_base_multiplication() {
let params = &JubjubBls12::new();
@ -788,7 +822,7 @@ mod test {
for _ in 0..100 {
let mut cs = TestConstraintSystem::<Bls12>::new();
let p = params.generator(FixedGenerators::NoteCommitmentRandomization);
let p = params.generator(FixedGenerators::NoteCommitmentRandomness);
let s = Fs::rand(rng);
let q = p.mul(s, params);
let (x1, y1) = q.into_xy();
@ -805,7 +839,7 @@ mod test {
let q = fixed_base_multiplication(
cs.namespace(|| "multiplication"),
FixedGenerators::NoteCommitmentRandomization,
FixedGenerators::NoteCommitmentRandomness,
&s_bits,
params
).unwrap();
@ -1088,13 +1122,13 @@ mod test {
}).unwrap();
let p1 = MontgomeryPoint {
x: num_x0,
y: num_y0
x: num_x0.into(),
y: num_y0.into()
};
let p2 = MontgomeryPoint {
x: num_x1,
y: num_y1
x: num_x1.into(),
y: num_y1.into()
};
let p3 = p1.add(cs.namespace(|| "addition"), &p2, params).unwrap();
@ -1118,60 +1152,4 @@ mod test {
assert_eq!(cs.which_is_unsatisfied(), Some("addition/evaluate lambda"));
}
}
#[test]
fn test_montgomery_doubling() {
let params = &JubjubBls12::new();
let rng = &mut XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
for _ in 0..100 {
let p = loop {
let x: Fr = rng.gen();
let s: bool = rng.gen();
if let Some(p) = montgomery::Point::<Bls12, _>::get_for_x(x, s, params) {
break p;
}
};
let p2 = p.double(params);
let (x0, y0) = p.into_xy().unwrap();
let (x1, y1) = p2.into_xy().unwrap();
let mut cs = TestConstraintSystem::<Bls12>::new();
let x = AllocatedNum::alloc(cs.namespace(|| "x"), || {
Ok(x0)
}).unwrap();
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
Ok(y0)
}).unwrap();
let p = MontgomeryPoint {
x: x,
y: y
};
let p2 = p.double(cs.namespace(|| "doubling"), params).unwrap();
assert!(cs.is_satisfied());
assert!(p2.x.get_value().unwrap() == x1);
assert!(p2.y.get_value().unwrap() == y1);
cs.set("doubling/yprime/num", rng.gen());
assert_eq!(cs.which_is_unsatisfied(), Some("doubling/evaluate yprime"));
cs.set("doubling/yprime/num", y1);
assert!(cs.is_satisfied());
cs.set("doubling/xprime/num", rng.gen());
assert_eq!(cs.which_is_unsatisfied(), Some("doubling/evaluate xprime"));
cs.set("doubling/xprime/num", x1);
assert!(cs.is_satisfied());
cs.set("doubling/lambda/num", rng.gen());
assert_eq!(cs.which_is_unsatisfied(), Some("doubling/evaluate lambda"));
}
}
}

View File

@ -1,6 +1,9 @@
use pairing::{Engine, Field};
use super::*;
use super::num::AllocatedNum;
use super::num::{
AllocatedNum,
Num
};
use super::boolean::Boolean;
use bellman::{
ConstraintSystem
@ -123,7 +126,7 @@ pub fn lookup3_xy_with_conditional_negation<E: Engine, CS>(
mut cs: CS,
bits: &[Boolean],
coords: &[(E::Fr, E::Fr)]
) -> Result<(AllocatedNum<E>, AllocatedNum<E>), SynthesisError>
) -> Result<(Num<E>, Num<E>), SynthesisError>
where CS: ConstraintSystem<E>
{
assert_eq!(bits.len(), 3);
@ -145,19 +148,16 @@ pub fn lookup3_xy_with_conditional_negation<E: Engine, CS>(
_ => None
};
// Allocate the x-coordinate resulting from the lookup
let res_x = AllocatedNum::alloc(
cs.namespace(|| "x"),
|| {
Ok(coords[*i.get()?].0)
}
)?;
// Allocate the y-coordinate resulting from the lookup
let res_y = AllocatedNum::alloc(
// and conditional negation
let y = AllocatedNum::alloc(
cs.namespace(|| "y"),
|| {
Ok(coords[*i.get()?].1)
let mut tmp = coords[*i.get()?].1;
if *bits[2].get_value().get()? {
tmp.negate();
}
Ok(tmp)
}
)?;
@ -169,29 +169,27 @@ pub fn lookup3_xy_with_conditional_negation<E: Engine, CS>(
synth::<E, _>(2, coords.iter().map(|c| &c.0), &mut x_coeffs);
synth::<E, _>(2, coords.iter().map(|c| &c.1), &mut y_coeffs);
cs.enforce(
|| "x-coordinate lookup",
|lc| lc + (x_coeffs[0b01], one)
+ &bits[1].lc::<E>(one, x_coeffs[0b11]),
|lc| lc + &bits[0].lc::<E>(one, E::Fr::one()),
|lc| lc + res_x.get_variable()
- (x_coeffs[0b00], one)
- &bits[1].lc::<E>(one, x_coeffs[0b10])
);
let precomp = Boolean::and(cs.namespace(|| "precomp"), &bits[0], &bits[1])?;
let x = Num::zero()
.add_bool_with_coeff(one, &Boolean::constant(true), x_coeffs[0b00])
.add_bool_with_coeff(one, &bits[0], x_coeffs[0b01])
.add_bool_with_coeff(one, &bits[1], x_coeffs[0b10])
.add_bool_with_coeff(one, &precomp, x_coeffs[0b11]);
let y_lc = precomp.lc::<E>(one, y_coeffs[0b11]) +
&bits[1].lc::<E>(one, y_coeffs[0b10]) +
&bits[0].lc::<E>(one, y_coeffs[0b01]) +
(y_coeffs[0b00], one);
cs.enforce(
|| "y-coordinate lookup",
|lc| lc + (y_coeffs[0b01], one)
+ &bits[1].lc::<E>(one, y_coeffs[0b11]),
|lc| lc + &bits[0].lc::<E>(one, E::Fr::one()),
|lc| lc + res_y.get_variable()
- (y_coeffs[0b00], one)
- &bits[1].lc::<E>(one, y_coeffs[0b10])
|lc| lc + &y_lc + &y_lc,
|lc| lc + &bits[2].lc::<E>(one, E::Fr::one()),
|lc| lc + &y_lc - y.get_variable()
);
let final_y = res_y.conditionally_negate(&mut cs, &bits[2])?;
Ok((res_x, final_y))
Ok((x, y.into()))
}
#[cfg(test)]

View File

@ -6,7 +6,7 @@ pub mod uint32;
pub mod blake2s;
pub mod num;
pub mod lookup;
pub mod mont;
pub mod ecc;
pub mod pedersen_hash;
use bellman::SynthesisError;

View File

@ -2,7 +2,6 @@ use pairing::{
Engine,
Field,
PrimeField,
BitIterator
};
use bellman::{
@ -17,8 +16,8 @@ use super::{
};
use super::boolean::{
Boolean,
AllocatedBit
self,
Boolean,
};
pub struct AllocatedNum<E: Engine> {
@ -76,39 +75,10 @@ impl<E: Engine> AllocatedNum<E> {
) -> Result<Vec<Boolean>, SynthesisError>
where CS: ConstraintSystem<E>
{
let bit_values = match self.value {
Some(value) => {
let mut field_char = BitIterator::new(E::Fr::char());
let mut tmp = Vec::with_capacity(E::Fr::NUM_BITS as usize);
let mut found_one = false;
for b in BitIterator::new(value.into_repr()) {
// Skip leading bits
found_one |= field_char.next().unwrap();
if !found_one {
continue;
}
tmp.push(Some(b));
}
assert_eq!(tmp.len(), E::Fr::NUM_BITS as usize);
tmp
},
None => {
vec![None; E::Fr::NUM_BITS as usize]
}
};
let mut bits = vec![];
for (i, b) in bit_values.into_iter().enumerate() {
bits.push(AllocatedBit::alloc(
cs.namespace(|| format!("bit {}", i)),
b
)?);
}
let bits = boolean::field_into_allocated_bits_be(
&mut cs,
self.value
)?;
let mut lc = LinearCombination::zero();
let mut coeff = E::Fr::one();
@ -342,38 +312,6 @@ impl<E: Engine> AllocatedNum<E> {
Ok((c, d))
}
pub fn conditionally_negate<CS>(
&self,
mut cs: CS,
condition: &Boolean
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E>
{
let r = Self::alloc(
cs.namespace(|| "conditional negation result"),
|| {
let mut tmp = *self.value.get()?;
if *condition.get_value().get()? {
tmp.negate();
}
Ok(tmp)
}
)?;
// (1-c)(x) + (c)(-x) = r
// x - 2cx = r
// (2x) * (c) = x - r
cs.enforce(
|| "conditional negation",
|lc| lc + self.variable + self.variable,
|_| condition.lc(CS::one(), E::Fr::one()),
|lc| lc + self.variable - r.variable
);
Ok(r)
}
pub fn get_value(&self) -> Option<E::Fr> {
self.value
}
@ -383,6 +321,61 @@ impl<E: Engine> AllocatedNum<E> {
}
}
pub struct Num<E: Engine> {
value: Option<E::Fr>,
lc: LinearCombination<E>
}
impl<E: Engine> From<AllocatedNum<E>> for Num<E> {
fn from(num: AllocatedNum<E>) -> Num<E> {
Num {
value: num.value,
lc: LinearCombination::<E>::zero() + num.variable
}
}
}
impl<E: Engine> Num<E> {
pub fn zero() -> Self {
Num {
value: Some(E::Fr::zero()),
lc: LinearCombination::zero()
}
}
pub fn get_value(&self) -> Option<E::Fr> {
self.value
}
pub fn lc(&self, coeff: E::Fr) -> LinearCombination<E> {
LinearCombination::zero() + (coeff, &self.lc)
}
pub fn add_bool_with_coeff(
self,
one: Variable,
bit: &Boolean,
coeff: E::Fr
) -> Self
{
let newval = match (self.value, bit.get_value()) {
(Some(mut curval), Some(mut bval)) => {
if bval {
curval.add_assign(&coeff);
}
Some(curval)
},
_ => None
};
Num {
value: newval,
lc: self.lc + &bit.lc(one, coeff)
}
}
}
#[cfg(test)]
mod test {
use rand::{SeedableRng, Rand, Rng, XorShiftRng};
@ -463,107 +456,6 @@ mod test {
}
}
#[test]
fn test_num_conditional_negation() {
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::one())).unwrap();
let b = Boolean::constant(true);
let n2 = n.conditionally_negate(&mut cs, &b).unwrap();
let mut negone = Fr::one();
negone.negate();
assert!(cs.is_satisfied());
assert!(cs.get("conditional negation result/num") == negone);
assert!(n2.value.unwrap() == negone);
cs.set("conditional negation result/num", Fr::from_str("1").unwrap());
assert!(!cs.is_satisfied());
}
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::one())).unwrap();
let b = Boolean::constant(false);
let n2 = n.conditionally_negate(&mut cs, &b).unwrap();
assert!(cs.is_satisfied());
assert!(cs.get("conditional negation result/num") == Fr::one());
assert!(n2.value.unwrap() == Fr::one());
cs.set("conditional negation result/num", Fr::from_str("2").unwrap());
assert!(!cs.is_satisfied());
}
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::one())).unwrap();
let b = Boolean::from(
AllocatedBit::alloc(cs.namespace(|| "condition"), Some(true)).unwrap()
);
let n2 = n.conditionally_negate(&mut cs, &b).unwrap();
let mut negone = Fr::one();
negone.negate();
assert!(cs.is_satisfied());
assert!(cs.get("conditional negation result/num") == negone);
assert!(n2.value.unwrap() == negone);
cs.set("conditional negation result/num", Fr::from_str("1").unwrap());
assert!(!cs.is_satisfied());
}
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::one())).unwrap();
let b = Boolean::from(
AllocatedBit::alloc(cs.namespace(|| "condition"), Some(false)).unwrap()
);
let n2 = n.conditionally_negate(&mut cs, &b).unwrap();
assert!(cs.is_satisfied());
assert!(cs.get("conditional negation result/num") == Fr::one());
assert!(n2.value.unwrap() == Fr::one());
cs.set("conditional negation result/num", Fr::from_str("2").unwrap());
assert!(!cs.is_satisfied());
}
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::one())).unwrap();
let b = Boolean::from(
AllocatedBit::alloc(cs.namespace(|| "condition"), Some(false)).unwrap()
).not();
let n2 = n.conditionally_negate(&mut cs, &b).unwrap();
let mut negone = Fr::one();
negone.negate();
assert!(cs.is_satisfied());
assert!(cs.get("conditional negation result/num") == negone);
assert!(n2.value.unwrap() == negone);
cs.set("conditional negation result/num", Fr::from_str("1").unwrap());
assert!(!cs.is_satisfied());
}
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::one())).unwrap();
let b = Boolean::from(
AllocatedBit::alloc(cs.namespace(|| "condition"), Some(true)).unwrap()
).not();
let n2 = n.conditionally_negate(&mut cs, &b).unwrap();
assert!(cs.is_satisfied());
assert!(cs.get("conditional negation result/num") == Fr::one());
assert!(n2.value.unwrap() == Fr::one());
cs.set("conditional negation result/num", Fr::from_str("2").unwrap());
assert!(!cs.is_satisfied());
}
}
#[test]
fn test_num_nonzero() {
{

View File

@ -1,5 +1,5 @@
use super::*;
use super::mont::{
use super::ecc::{
MontgomeryPoint,
EdwardsPoint
};
@ -10,18 +10,43 @@ use bellman::{
};
use super::lookup::*;
// TODO: ensure these match the spec
pub enum Personalization {
NoteCommitment,
AnotherPersonalization
}
impl Personalization {
fn get_constant_bools(&self) -> Vec<Boolean> {
self.get_bits()
.into_iter()
.map(|e| Boolean::constant(e))
.collect()
}
pub fn get_bits(&self) -> Vec<bool> {
match *self {
Personalization::NoteCommitment =>
vec![false, false, false, false, false, false],
Personalization::AnotherPersonalization =>
vec![false, false, false, false, false, true],
}
}
}
pub fn pedersen_hash<E: JubjubEngine, CS>(
mut cs: CS,
personalization: Personalization,
bits: &[Boolean],
params: &E::Params
) -> Result<EdwardsPoint<E>, SynthesisError>
where CS: ConstraintSystem<E>
{
// Unnecessary if forced personalization is introduced
assert!(bits.len() > 0);
let personalization = personalization.get_constant_bools();
assert_eq!(personalization.len(), 6);
let mut edwards_result = None;
let mut bits = bits.iter();
let mut bits = personalization.iter().chain(bits.iter());
let mut segment_generators = params.pedersen_circuit_generators().iter();
let boolean_false = Boolean::constant(false);
@ -124,12 +149,13 @@ mod test {
pedersen_hash(
cs.namespace(|| "pedersen hash"),
Personalization::NoteCommitment,
&input_bools,
params
).unwrap();
assert!(cs.is_satisfied());
assert_eq!(cs.num_constraints(), 1539);
assert_eq!(cs.num_constraints(), 1377);
}
#[test]
@ -151,6 +177,7 @@ mod test {
let res = pedersen_hash(
cs.namespace(|| "pedersen hash"),
Personalization::NoteCommitment,
&input_bools,
params
).unwrap();
@ -158,12 +185,23 @@ mod test {
assert!(cs.is_satisfied());
let expected = ::pedersen_hash::pedersen_hash::<Bls12, _>(
input.into_iter(),
Personalization::NoteCommitment,
input.clone().into_iter(),
params
).into_xy();
assert_eq!(res.x.get_value().unwrap(), expected.0);
assert_eq!(res.y.get_value().unwrap(), expected.1);
// Test against the output of a different personalization
let unexpected = ::pedersen_hash::pedersen_hash::<Bls12, _>(
Personalization::AnotherPersonalization,
input.into_iter(),
params
).into_xy();
assert!(res.x.get_value().unwrap() != unexpected.0);
assert!(res.y.get_value().unwrap() != unexpected.1);
}
}
}

View File

@ -67,8 +67,11 @@ impl JubjubEngine for Bls12 {
/// exponent.
#[derive(Copy, Clone)]
pub enum FixedGenerators {
NoteCommitmentRandomization = 0,
Max = 1
NoteCommitmentRandomness = 0,
ProvingPublicKey = 1,
ValueCommitmentValue = 2,
ValueCommitmentRandomness = 3,
Max = 4
}
pub struct JubjubBls12 {

View File

@ -1,14 +1,17 @@
use jubjub::*;
use pairing::*;
use circuit::pedersen_hash::Personalization;
pub fn pedersen_hash<E, I>(
personalization: Personalization,
bits: I,
params: &E::Params
) -> edwards::Point<E, PrimeOrder>
where I: IntoIterator<Item=bool>,
E: JubjubEngine
{
let mut bits = bits.into_iter();
let mut bits = personalization.get_bits().into_iter().chain(bits.into_iter());
let mut result = edwards::Point::zero();
let mut generators = params.pedersen_hash_generators().iter();