217 lines
5.4 KiB
Python
217 lines
5.4 KiB
Python
#!/usr/bin/env python3
|
|
import sys; assert sys.version_info[0] >= 3, "Python 3 required."
|
|
|
|
from utils import i2lebsp, leos2ip, i2leosp
|
|
|
|
q_j = 52435875175126190479447740508185965837690552500527637822603658699938581184513
|
|
r_j = 6554484396890773809930967563523245729705921265872317281365359162392183254199
|
|
|
|
qm1d2 = 26217937587563095239723870254092982918845276250263818911301829349969290592256
|
|
assert (q_j - 1) // 2 == qm1d2
|
|
|
|
|
|
#
|
|
# Field arithmetic
|
|
#
|
|
|
|
class FieldElement(object):
|
|
def __init__(self, t, s, modulus, strict=False):
|
|
if strict and not (0 <= s and s < modulus):
|
|
raise ValueError
|
|
self.t = t
|
|
self.s = s % modulus
|
|
self.m = modulus
|
|
|
|
def __neg__(self):
|
|
return self.t(-self.s)
|
|
|
|
def __add__(self, a):
|
|
return self.t(self.s + a.s)
|
|
|
|
def __sub__(self, a):
|
|
return self.t(self.s - a.s)
|
|
|
|
def __mul__(self, a):
|
|
return self.t(self.s * a.s)
|
|
|
|
def __truediv__(self, a):
|
|
assert a.s != 0
|
|
return self * a.inv()
|
|
|
|
def exp(self, e):
|
|
e = format(e, '0256b')
|
|
ret = self.t(1)
|
|
for c in e:
|
|
ret = ret * ret
|
|
if int(c):
|
|
ret = ret * self
|
|
return ret
|
|
|
|
def inv(self):
|
|
return self.exp(self.m - 2)
|
|
|
|
def bits(self, l):
|
|
return i2lebsp(l, self.s)
|
|
|
|
def __bytes__(self):
|
|
return i2leosp(256, self.s)
|
|
|
|
def __eq__(self, a):
|
|
return self.s == a.s
|
|
|
|
|
|
|
|
class Fq(FieldElement):
|
|
@staticmethod
|
|
def from_bytes(buf):
|
|
return Fq(leos2ip(buf), strict=True)
|
|
|
|
def __init__(self, s, strict=False):
|
|
FieldElement.__init__(self, Fq, s, q_j, strict=strict)
|
|
|
|
def __str__(self):
|
|
return 'Fq(%s)' % self.s
|
|
|
|
def sqrt(self):
|
|
# Tonelli-Shank's algorithm for q mod 16 = 1
|
|
# https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
|
|
a = self.exp(qm1d2)
|
|
if a == self.ONE:
|
|
c = Fq(10238227357739495823651030575849232062558860180284477541189508159991286009131)
|
|
r = self.exp(6104339283789297388802252303364915521546564123189034618274734669824)
|
|
t = self.exp(12208678567578594777604504606729831043093128246378069236549469339647)
|
|
m = 32
|
|
|
|
# 7: while b != 1 do
|
|
while t != self.ONE:
|
|
# 8: Find least integer k >= 0 such that b^(2^k) == 1
|
|
i = 1
|
|
t2i = t * t
|
|
while t2i != self.ONE:
|
|
t2i = t2i * t2i
|
|
i += 1
|
|
assert i < m
|
|
|
|
# 9:
|
|
# w <- z^(2^(v-k-1))
|
|
for _ in range(0, m - i - 1):
|
|
c = c * c
|
|
# b <- bz
|
|
r = r * c
|
|
# z <- w^2
|
|
c = c * c
|
|
# x <- xw
|
|
t = t * c
|
|
# v <- k
|
|
m = i
|
|
assert r * r == self
|
|
return r
|
|
elif a == self.MINUS_ONE:
|
|
return None
|
|
return self.ZERO
|
|
|
|
|
|
class Fr(FieldElement):
|
|
def __init__(self, s, strict=False):
|
|
FieldElement.__init__(self, Fr, s, r_j, strict=strict)
|
|
|
|
def __str__(self):
|
|
return 'Fr(%s)' % self.s
|
|
|
|
Fq.ZERO = Fq(0)
|
|
Fq.ONE = Fq(1)
|
|
Fq.MINUS_ONE = Fq(-1)
|
|
|
|
assert Fq.ZERO + Fq.ZERO == Fq.ZERO
|
|
assert Fq.ZERO + Fq.ONE == Fq.ONE
|
|
assert Fq.ONE + Fq.ZERO == Fq.ONE
|
|
assert Fq.ZERO - Fq.ONE == Fq.MINUS_ONE
|
|
assert Fq.ZERO * Fq.ONE == Fq.ZERO
|
|
assert Fq.ONE * Fq.ZERO == Fq.ZERO
|
|
|
|
_A = Fq(-13443226831829260228624682877674385705155231329884953466695813022153219761455)
|
|
_A_SQUARED = Fq(1615918303262283860389448007513155112015187847020867660361132469416696757234)
|
|
assert _A * _A == _A_SQUARED
|
|
assert _A.exp(2) == _A_SQUARED
|
|
assert _A_SQUARED.sqrt() == _A
|
|
|
|
|
|
#
|
|
# Point arithmetic
|
|
#
|
|
|
|
JUBJUB_A = Fq.MINUS_ONE
|
|
JUBJUB_D = Fq(-10240) / Fq(10241)
|
|
JUBJUB_COFACTOR = Fr(8)
|
|
|
|
class Point(object):
|
|
@staticmethod
|
|
def rand(rand):
|
|
while True:
|
|
data = rand.b(32)
|
|
p = Point.from_bytes(data)
|
|
if p is not None:
|
|
return p
|
|
|
|
@staticmethod
|
|
def from_bytes(buf):
|
|
assert len(buf) == 32
|
|
u_sign = buf[31] >> 7
|
|
buf = buf[:31] + bytes([buf[31] & 0b01111111])
|
|
try:
|
|
v = Fq.from_bytes(buf)
|
|
except ValueError:
|
|
return None
|
|
|
|
vv = v * v
|
|
u2 = (vv - Fq.ONE) / (vv * JUBJUB_D - JUBJUB_A)
|
|
|
|
u = u2.sqrt()
|
|
if u is None:
|
|
return None
|
|
|
|
if u.s % 2 != u_sign:
|
|
u = Fq.ZERO - u
|
|
|
|
return Point(u, v)
|
|
|
|
def __init__(self, u, v):
|
|
self.u = u
|
|
self.v = v
|
|
|
|
def __add__(self, a):
|
|
(u1, v1) = (self.u, self.v)
|
|
(u2, v2) = (a.u, a.v)
|
|
u3 = (u1*v2 + v1*u2) / (Fq.ONE + JUBJUB_D*u1*u2*v1*v2)
|
|
v3 = (v1*v2 - JUBJUB_A*u1*u2) / (Fq.ONE - JUBJUB_D*u1*u2*v1*v2)
|
|
return Point(u3, v3)
|
|
|
|
def double(self):
|
|
return self + self
|
|
|
|
def __mul__(self, s):
|
|
s = format(s.s, '0256b')
|
|
ret = self.ZERO
|
|
for c in s:
|
|
ret = ret.double()
|
|
if int(c):
|
|
ret = ret + self
|
|
return ret
|
|
|
|
def __bytes__(self):
|
|
buf = bytes(self.v)
|
|
if self.u.s % 2 == 1:
|
|
buf = buf[:31] + bytes([buf[31] | (1 << 7)])
|
|
return buf
|
|
|
|
def __eq__(self, a):
|
|
return self.u == a.u and self.v == a.v
|
|
|
|
def __str__(self):
|
|
return 'Point(%s, %s)' % (self.u, self.v)
|
|
|
|
|
|
Point.ZERO = Point(Fq.ZERO, Fq.ONE)
|
|
|
|
assert Point.ZERO + Point.ZERO == Point.ZERO
|