Merge pull request #358 from nuttycom/refactor/component_modules_2

Generalize Sapling note encryption to allow reuse with Orchard notes.

Extracted from: 3b02c8b26e
This commit is contained in:
str4d 2021-04-16 04:17:57 +01:00 committed by GitHub
commit a014a10384
2 changed files with 510 additions and 6 deletions

View File

@ -4,6 +4,7 @@ description = "TBD"
version = "0.0.0"
authors = [
"Jack Grigg <jack@electriccoin.co>",
"Kris Nuttycombe <kris@electriccoin.co>"
]
homepage = "https://github.com/zcash/librustzcash"
repository = "https://github.com/zcash/librustzcash"
@ -11,3 +12,14 @@ license = "MIT OR Apache-2.0"
edition = "2018"
[dependencies]
blake2b_simd = "0.5"
byteorder = "1"
crypto_api_chachapoly = "0.4"
ff = "0.8"
group = "0.8"
rand_core = "0.5.1"
subtle = "2.2.3"
[dev-dependencies]
zcash_primitives = { version = "0.5", path = "../../zcash_primitives" }
jubjub = "0.5.1"

View File

@ -1,8 +1,500 @@
#[cfg(test)]
mod tests {
#[allow(clippy::eq_op)]
#[test]
fn it_works() {
assert_eq!(2 + 2, 4);
//! Implementation of in-band secret distribution abstractions
//! for Zcash transactions. The implementations here provide
//! functionality that is shared between the Sapling and Orchard
//! protocols.
use crypto_api_chachapoly::{ChaCha20Ietf, ChachaPolyIetf};
use rand_core::RngCore;
use std::convert::TryFrom;
use subtle::{Choice, ConstantTimeEq};
pub const COMPACT_NOTE_SIZE: usize = 1 + // version
11 + // diversifier
8 + // value
32; // rseed (or rcm prior to ZIP 212)
pub const NOTE_PLAINTEXT_SIZE: usize = COMPACT_NOTE_SIZE + 512;
pub const OUT_PLAINTEXT_SIZE: usize = 32 + // pk_d
32; // esk
pub const AEAD_TAG_SIZE: usize = 16;
pub const ENC_CIPHERTEXT_SIZE: usize = NOTE_PLAINTEXT_SIZE + AEAD_TAG_SIZE;
pub const OUT_CIPHERTEXT_SIZE: usize = OUT_PLAINTEXT_SIZE + AEAD_TAG_SIZE;
/// A symmetric key that can be used to recover a single Sapling or Orchard output.
pub struct OutgoingCipherKey(pub [u8; 32]);
impl From<[u8; 32]> for OutgoingCipherKey {
fn from(ock: [u8; 32]) -> Self {
OutgoingCipherKey(ock)
}
}
impl AsRef<[u8]> for OutgoingCipherKey {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
pub struct EphemeralKeyBytes(pub [u8; 32]);
impl AsRef<[u8]> for EphemeralKeyBytes {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl From<[u8; 32]> for EphemeralKeyBytes {
fn from(value: [u8; 32]) -> EphemeralKeyBytes {
EphemeralKeyBytes(value)
}
}
impl ConstantTimeEq for EphemeralKeyBytes {
fn ct_eq(&self, other: &Self) -> Choice {
self.0.ct_eq(&other.0)
}
}
pub struct NotePlaintextBytes(pub [u8; NOTE_PLAINTEXT_SIZE]);
pub struct OutPlaintextBytes(pub [u8; OUT_PLAINTEXT_SIZE]);
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum NoteValidity {
Valid,
Invalid,
}
pub trait Domain {
type EphemeralSecretKey;
type EphemeralPublicKey;
type SharedSecret;
type SymmetricKey: AsRef<[u8]>;
type Note;
type Recipient;
type DiversifiedTransmissionKey;
type IncomingViewingKey;
type OutgoingViewingKey;
type ValueCommitment;
type ExtractedCommitment;
type ExtractedCommitmentBytes: Eq + TryFrom<Self::ExtractedCommitment>;
type Memo;
fn derive_esk(note: &Self::Note) -> Option<Self::EphemeralSecretKey>;
fn get_pk_d(note: &Self::Note) -> Self::DiversifiedTransmissionKey;
fn ka_derive_public(
note: &Self::Note,
esk: &Self::EphemeralSecretKey,
) -> Self::EphemeralPublicKey;
fn ka_agree_enc(
esk: &Self::EphemeralSecretKey,
pk_d: &Self::DiversifiedTransmissionKey,
) -> Self::SharedSecret;
fn ka_agree_dec(
ivk: &Self::IncomingViewingKey,
epk: &Self::EphemeralPublicKey,
) -> Self::SharedSecret;
fn kdf(secret: Self::SharedSecret, ephemeral_key: &EphemeralKeyBytes) -> Self::SymmetricKey;
// for right now, we just need `recipient` to get `d`; in the future when we
// can get that from a Sapling note, the recipient parameter will be able
// to be removed.
fn note_plaintext_bytes(
note: &Self::Note,
recipient: &Self::Recipient,
memo: &Self::Memo,
) -> NotePlaintextBytes;
fn derive_ock(
ovk: &Self::OutgoingViewingKey,
cv: &Self::ValueCommitment,
cmstar: &Self::ExtractedCommitment,
ephemeral_key: &EphemeralKeyBytes,
) -> OutgoingCipherKey;
fn outgoing_plaintext_bytes(
note: &Self::Note,
esk: &Self::EphemeralSecretKey,
) -> OutPlaintextBytes;
fn epk_bytes(epk: &Self::EphemeralPublicKey) -> EphemeralKeyBytes;
fn check_epk_bytes<F: Fn(&Self::EphemeralSecretKey) -> NoteValidity>(
note: &Self::Note,
check: F,
) -> NoteValidity;
fn cmstar(note: &Self::Note) -> Self::ExtractedCommitment;
fn parse_note_plaintext_without_memo_ivk(
&self,
ivk: &Self::IncomingViewingKey,
plaintext: &[u8],
) -> Option<(Self::Note, Self::Recipient)>;
fn parse_note_plaintext_without_memo_ovk(
&self,
pk_d: &Self::DiversifiedTransmissionKey,
esk: &Self::EphemeralSecretKey,
epk: &Self::EphemeralPublicKey,
plaintext: &[u8],
) -> Option<(Self::Note, Self::Recipient)>;
// &self is passed here in anticipation of future changes
// to memo handling where the memos may no longer be
// part of the note plaintext.
fn extract_memo(&self, plaintext: &[u8]) -> Self::Memo;
fn extract_pk_d(
out_plaintext: &[u8; OUT_CIPHERTEXT_SIZE],
) -> Option<Self::DiversifiedTransmissionKey>;
fn extract_esk(out_plaintext: &[u8; OUT_CIPHERTEXT_SIZE]) -> Option<Self::EphemeralSecretKey>;
}
pub trait ShieldedOutput<D: Domain> {
fn epk(&self) -> &D::EphemeralPublicKey;
fn cmstar_bytes(&self) -> D::ExtractedCommitmentBytes;
fn enc_ciphertext(&self) -> &[u8];
}
/// A struct containing context required for encrypting Sapling and Orchard notes.
///
/// This struct provides a safe API for encrypting Sapling and Orchard notes. In particular, it
/// enforces that fresh ephemeral keys are used for every note, and that the ciphertexts are
/// consistent with each other.
///
/// Implements section 4.19 of the
/// [Zcash Protocol Specification](https://zips.z.cash/protocol/nu5.pdf#saplingandorchardinband)
/// NB: the example code is only covering the post-Canopy case.
///
/// # Examples
///
/// ```
/// extern crate ff;
/// extern crate rand_core;
/// extern crate zcash_primitives;
///
/// use ff::Field;
/// use rand_core::OsRng;
/// use zcash_primitives::{
/// consensus::{TEST_NETWORK, TestNetwork, NetworkUpgrade, Parameters},
/// memo::MemoBytes,
/// sapling::{
/// keys::{OutgoingViewingKey, prf_expand},
/// note_encryption::sapling_note_encryption,
/// util::generate_random_rseed,
/// Diversifier, PaymentAddress, Rseed, ValueCommitment
/// },
/// };
///
/// let mut rng = OsRng;
///
/// let diversifier = Diversifier([0; 11]);
/// let pk_d = diversifier.g_d().unwrap();
/// let to = PaymentAddress::from_parts(diversifier, pk_d).unwrap();
/// let ovk = Some(OutgoingViewingKey([0; 32]));
///
/// let value = 1000;
/// let rcv = jubjub::Fr::random(&mut rng);
/// let cv = ValueCommitment {
/// value,
/// randomness: rcv.clone(),
/// };
/// let height = TEST_NETWORK.activation_height(NetworkUpgrade::Canopy).unwrap();
/// let rseed = generate_random_rseed(&TEST_NETWORK, height, &mut rng);
/// let note = to.create_note(value, rseed).unwrap();
/// let cmu = note.cmu();
///
/// let mut enc = sapling_note_encryption::<_, TestNetwork>(ovk, note, to, MemoBytes::empty(), &mut rng);
/// let encCiphertext = enc.encrypt_note_plaintext();
/// let outCiphertext = enc.encrypt_outgoing_plaintext(&cv.commitment().into(), &cmu, &mut rng);
/// ```
pub struct NoteEncryption<D: Domain> {
epk: D::EphemeralPublicKey,
esk: D::EphemeralSecretKey,
note: D::Note,
to: D::Recipient,
memo: D::Memo,
/// `None` represents the `ovk = ⊥` case.
ovk: Option<D::OutgoingViewingKey>,
}
impl<D: Domain> NoteEncryption<D> {
/// Construct a new note encryption context for the specified note,
/// recipient, and memo.
pub fn new(
ovk: Option<D::OutgoingViewingKey>,
note: D::Note,
to: D::Recipient,
memo: D::Memo,
) -> Self {
let esk = D::derive_esk(&note).expect("ZIP 212 is active.");
Self::new_with_esk(esk, ovk, note, to, memo)
}
/// For use only with Sapling. This method is preserved in order that test code
/// be able to generate pre-ZIP-212 ciphertexts so that tests can continue to
/// cover pre-ZIP-212 transaction decryption.
pub fn new_with_esk(
esk: D::EphemeralSecretKey,
ovk: Option<D::OutgoingViewingKey>,
note: D::Note,
to: D::Recipient,
memo: D::Memo,
) -> Self {
NoteEncryption {
epk: D::ka_derive_public(&note, &esk),
esk,
note,
to,
memo,
ovk,
}
}
/// Exposes the ephemeral secret key being used to encrypt this note.
pub fn esk(&self) -> &D::EphemeralSecretKey {
&self.esk
}
/// Exposes the encoding of the ephemeral public key being used to encrypt this note.
pub fn epk(&self) -> &D::EphemeralPublicKey {
&self.epk
}
/// Generates `encCiphertext` for this note.
pub fn encrypt_note_plaintext(&self) -> [u8; ENC_CIPHERTEXT_SIZE] {
let pk_d = D::get_pk_d(&self.note);
let shared_secret = D::ka_agree_enc(&self.esk, &pk_d);
let key = D::kdf(shared_secret, &D::epk_bytes(&self.epk));
let input = D::note_plaintext_bytes(&self.note, &self.to, &self.memo);
let mut output = [0u8; ENC_CIPHERTEXT_SIZE];
assert_eq!(
ChachaPolyIetf::aead_cipher()
.seal_to(&mut output, &input.0, &[], key.as_ref(), &[0u8; 12])
.unwrap(),
ENC_CIPHERTEXT_SIZE
);
output
}
/// Generates `outCiphertext` for this note.
pub fn encrypt_outgoing_plaintext<R: RngCore>(
&self,
cv: &D::ValueCommitment,
cmstar: &D::ExtractedCommitment,
rng: &mut R,
) -> [u8; OUT_CIPHERTEXT_SIZE] {
let (ock, input) = if let Some(ovk) = &self.ovk {
let ock = D::derive_ock(ovk, &cv, &cmstar, &D::epk_bytes(&self.epk));
let input = D::outgoing_plaintext_bytes(&self.note, &self.esk);
(ock, input)
} else {
// ovk = ⊥
let mut ock = OutgoingCipherKey([0; 32]);
let mut input = [0u8; OUT_PLAINTEXT_SIZE];
rng.fill_bytes(&mut ock.0);
rng.fill_bytes(&mut input);
(ock, OutPlaintextBytes(input))
};
let mut output = [0u8; OUT_CIPHERTEXT_SIZE];
assert_eq!(
ChachaPolyIetf::aead_cipher()
.seal_to(&mut output, &input.0, &[], ock.as_ref(), &[0u8; 12])
.unwrap(),
OUT_CIPHERTEXT_SIZE
);
output
}
}
/// Trial decryption of the full note plaintext by the recipient.
///
/// Attempts to decrypt and validate the given `enc_ciphertext` using the given `ivk`.
/// If successful, the corresponding Sapling note and memo are returned, along with the
/// `PaymentAddress` to which the note was sent.
///
/// Implements section 4.19.2 of the
/// [Zcash Protocol Specification](https://zips.z.cash/protocol/nu5.pdf#decryptivk)
pub fn try_note_decryption<D: Domain, Output: ShieldedOutput<D>>(
domain: &D,
ivk: &D::IncomingViewingKey,
output: &Output,
) -> Option<(D::Note, D::Recipient, D::Memo)> {
assert_eq!(output.enc_ciphertext().len(), ENC_CIPHERTEXT_SIZE);
let shared_secret = D::ka_agree_dec(ivk, output.epk());
let key = D::kdf(shared_secret, &D::epk_bytes(output.epk()));
let mut plaintext = [0; ENC_CIPHERTEXT_SIZE];
assert_eq!(
ChachaPolyIetf::aead_cipher()
.open_to(
&mut plaintext,
output.enc_ciphertext(),
&[],
key.as_ref(),
&[0u8; 12]
)
.ok()?,
NOTE_PLAINTEXT_SIZE
);
let (note, to) = parse_note_plaintext_without_memo_ivk(
domain,
ivk,
output.epk(),
&output.cmstar_bytes(),
&plaintext,
)?;
let memo = domain.extract_memo(&plaintext);
Some((note, to, memo))
}
fn parse_note_plaintext_without_memo_ivk<D: Domain>(
domain: &D,
ivk: &D::IncomingViewingKey,
epk: &D::EphemeralPublicKey,
cmstar_bytes: &D::ExtractedCommitmentBytes,
plaintext: &[u8],
) -> Option<(D::Note, D::Recipient)> {
let (note, to) = domain.parse_note_plaintext_without_memo_ivk(ivk, &plaintext)?;
if let NoteValidity::Valid = check_note_validity::<D>(&note, epk, cmstar_bytes) {
Some((note, to))
} else {
None
}
}
fn check_note_validity<D: Domain>(
note: &D::Note,
epk: &D::EphemeralPublicKey,
cmstar_bytes: &D::ExtractedCommitmentBytes,
) -> NoteValidity {
if D::ExtractedCommitmentBytes::try_from(D::cmstar(&note))
.map_or(false, |cs| &cs == cmstar_bytes)
{
let epk_bytes = D::epk_bytes(epk);
D::check_epk_bytes(&note, |derived_esk| {
if D::epk_bytes(&D::ka_derive_public(&note, &derived_esk))
.ct_eq(&epk_bytes)
.into()
{
NoteValidity::Valid
} else {
NoteValidity::Invalid
}
})
} else {
// Published commitment doesn't match calculated commitment
NoteValidity::Invalid
}
}
/// Trial decryption of the compact note plaintext by the recipient for light clients.
///
/// Attempts to decrypt and validate the first 52 bytes of `enc_ciphertext` using the
/// given `ivk`. If successful, the corresponding Sapling note is returned, along with the
/// `PaymentAddress` to which the note was sent.
///
/// Implements the procedure specified in [`ZIP 307`].
///
/// [`ZIP 307`]: https://zips.z.cash/zip-0307
pub fn try_compact_note_decryption<D: Domain, Output: ShieldedOutput<D>>(
domain: &D,
ivk: &D::IncomingViewingKey,
output: &Output,
) -> Option<(D::Note, D::Recipient)> {
assert_eq!(output.enc_ciphertext().len(), COMPACT_NOTE_SIZE);
let shared_secret = D::ka_agree_dec(&ivk, output.epk());
let key = D::kdf(shared_secret, &D::epk_bytes(output.epk()));
// Start from block 1 to skip over Poly1305 keying output
let mut plaintext = [0; COMPACT_NOTE_SIZE];
plaintext.copy_from_slice(output.enc_ciphertext());
ChaCha20Ietf::xor(key.as_ref(), &[0u8; 12], 1, &mut plaintext);
parse_note_plaintext_without_memo_ivk(
domain,
ivk,
output.epk(),
&output.cmstar_bytes(),
&plaintext,
)
}
/// Recovery of the full note plaintext by the sender.
///
/// Attempts to decrypt and validate the given `enc_ciphertext` using the given `ock`.
/// If successful, the corresponding Sapling note and memo are returned, along with the
/// `PaymentAddress` to which the note was sent.
///
/// Implements part of section 4.19.3 of the
/// [Zcash Protocol Specification](https://zips.z.cash/protocol/nu5.pdf#decryptovk)
/// For decryption using a Full Viewing Key see [`try_sapling_output_recovery`].
pub fn try_output_recovery_with_ock<D: Domain, Output: ShieldedOutput<D>>(
domain: &D,
ock: &OutgoingCipherKey,
output: &Output,
out_ciphertext: &[u8],
) -> Option<(D::Note, D::Recipient, D::Memo)> {
assert_eq!(output.enc_ciphertext().len(), ENC_CIPHERTEXT_SIZE);
assert_eq!(out_ciphertext.len(), OUT_CIPHERTEXT_SIZE);
let mut op = [0; OUT_CIPHERTEXT_SIZE];
assert_eq!(
ChachaPolyIetf::aead_cipher()
.open_to(&mut op, &out_ciphertext, &[], ock.as_ref(), &[0u8; 12])
.ok()?,
OUT_PLAINTEXT_SIZE
);
let pk_d = D::extract_pk_d(&op)?;
let esk = D::extract_esk(&op)?;
let shared_secret = D::ka_agree_enc(&esk, &pk_d);
// The small-order point check at the point of output parsing rejects
// non-canonical encodings, so reencoding here for the KDF should
// be okay.
let key = D::kdf(shared_secret, &D::epk_bytes(output.epk()));
let mut plaintext = [0; ENC_CIPHERTEXT_SIZE];
assert_eq!(
ChachaPolyIetf::aead_cipher()
.open_to(
&mut plaintext,
output.enc_ciphertext(),
&[],
key.as_ref(),
&[0u8; 12]
)
.ok()?,
NOTE_PLAINTEXT_SIZE
);
let (note, to) =
domain.parse_note_plaintext_without_memo_ovk(&pk_d, &esk, output.epk(), &plaintext)?;
let memo = domain.extract_memo(&plaintext);
if let NoteValidity::Valid =
check_note_validity::<D>(&note, output.epk(), &output.cmstar_bytes())
{
Some((note, to, memo))
} else {
None
}
}