Minor tweak to the statement of Theorem A.3.4 to make the contradiction clearer.

Signed-off-by: Daira Hopwood <daira@jacaranda.org>
This commit is contained in:
Daira Hopwood 2018-10-01 11:22:49 +01:00
parent da7c6fe190
commit 223b8db3a7
1 changed files with 6 additions and 4 deletions

View File

@ -9785,7 +9785,9 @@ Peter Newell's illustration of the Jubjub bird, from \cite{Carroll1902}.
Edwards curves $\Edwards{a,d}$, Montgomery curves $\Montgomery{A,B}$, and
extractors $\Extractor{\Adversary}$.
\item Correct a use of $\GroupJ$ that should have been $\MontCurve$ in the proof of
\theoremref{thmdistinctxcriterion}.
\theoremref{thmdistinctxcriterion}, and make a minor tweak to the theorem statement
($k_2 \neq \pm k_1$ instead of $k_1 \neq \pm k_2$) to make the contradiction
derived by the proof clearer.
\item Address some of the findings of the QED-it report:
\begin{itemize}
\item Improved cross-referencing in \crossref{concretepedersenhash}.
@ -11314,7 +11316,7 @@ Let $Q$ be a point of odd-prime order $s$ on a Montgomery curve
$\MontCurve = \Montgomery{\ParamM{A},\ParamM{B}}$ over $\GF{\ParamS{r}}$.
Let $k_\barerange{1}{2}$ be integers in $\bigrangenozero{-\halfs}{\halfs}$.
Let $P_i = \scalarmult{k_i}{Q} = (x_i, y_i)$ for $i \in \range{1}{2}$, with
$k_1 \neq \pm k_2$. Then the non-unified addition constraints
$k_2 \neq \pm k_1$. Then the non-unified addition constraints
\begin{formulae}
\item $\constraint{x_2 - x_1}{\lambda}{y_2 - y_1}$
@ -11342,8 +11344,8 @@ then $k_2 = \pm k_1$ (contradiction).
The conditions of this theorem are called the \distinctXCriterion.
In particular, if $k_\barerange{1}{2}$ are integers in $\bigrange{1}{\halfs}$
then it is sufficient to require $k_1 \neq k_2$, since that implies
$k_1 \neq \pm k_2$.
then it is sufficient to require $k_2 \neq k_1$, since that implies
$k_2 \neq \pm k_1$.
\vspace{2ex}
\introlist