Avoid clashing notation. Refer to the Montgomery form of Jubjub as \mathbb{M}.

Signed-off-by: Daira Hopwood <daira@jacaranda.org>
This commit is contained in:
Daira Hopwood 2018-09-30 22:40:14 +01:00
parent 88e255b63f
commit dc41de37f3
1 changed files with 27 additions and 8 deletions

View File

@ -1113,6 +1113,7 @@ electronic commerce and payment, financial privacy, proof of work, zero knowledg
\newcommand{\TransmitCiphertext}[1]{\Ctext^\enc_{#1}}
\newcommand{\TransmitKey}[1]{\Key^\enc_{#1}}
\newcommand{\OutCiphertext}{\Ctext^\mathsf{out}}
\newcommand{\Extractor}[1]{\mathcal{E}_{#1}}
\newcommand{\Adversary}{\mathcal{A}}
\newcommand{\Oracle}{\mathsf{O}}
\newcommand{\CryptoBoxSeal}{\mathsf{crypto\_box\_seal}}
@ -1629,9 +1630,13 @@ electronic commerce and payment, financial privacy, proof of work, zero knowledg
\newcommand{\HashOutput}{\bytes{H}}
\newcommand{\FindGroupJHash}{\FindGroupHash^{\SubgroupJstar}}
\newcommand{\MontCurve}{\mathbb{M}}
\newcommand{\ParamM}[1]{{{#1}_\mathbb{\hskip 0.03em M}}}
\newcommand{\ParamMexp}[2]{{{#1}_\mathbb{\hskip 0.03em M}\!}^{#2}}
\newcommand{\Edwards}[1]{E_{\kern 0.03em\mathsf{Edwards}({#1})}}
\newcommand{\Montgomery}[1]{E_{\mathsf{Mont}({#1})}}
\newcommand{\pack}{\mathsf{pack}}
\newcommand{\Acc}{\mathsf{Acc}}
@ -3549,7 +3554,7 @@ for any $(x, w) \in \ZKSatisfying$, if $\ZKProve{\pk}(x, w)$ outputs $\Proof{}$,
then $\ZKVerify{\vk}(x, \Proof{}) = 1$.
\item \textbf{Knowledge Soundness:} For any adversary $\Adversary$ able to find an
$x \typecolon \ZKPrimary$ and proof $\Proof{} \typecolon \ZKProof$ such that $\ZKVerify{\vk}(x, \Proof{}) = 1$,
there is an efficient extractor $E_{\Adversary}$ such that if $E_{\Adversary}(\vk, \pk)$
there is an efficient extractor $\Extractor{\Adversary}$ such that if $\Extractor{\Adversary}(\vk, \pk)$
returns $w$, then the probability that $(x, w) \not\in \ZKSatisfying$ is insignificant.
\item \textbf{Statistical Zero Knowledge:} An honestly generated proof is statistical
zero knowledge. That is, there is a feasible stateful simulator $\Simulator$ such that,
@ -9765,6 +9770,19 @@ Peter Newell's illustration of the Jubjub bird, from \cite{Carroll1902}.
\intropart
\section{Change History}
\subparagraph{2018.0-beta-31}
2018-09-30
\begin{itemize}
\item No changes to \Sprout.
\sapling{
\item Minor changes to avoid clashing notation, affecting extractors
$\Extractor{\Adversary}$, Edwards curves $\Edwards{a,d}$, and Montgomery curves
$\Montgomery{A,B}$.
} %sapling
\end{itemize}
\introlist
\subparagraph{2018.0-beta-30}
2018-09-02
@ -10772,7 +10790,7 @@ in \crossref{notation}.
\subsection{Elliptic curve background} \label{ecbackground}
The circuit makes use of a twisted Edwards curve, $\JubjubCurve$, and also a
Montgomery curve that is birationally equivalent to $\JubjubCurve$.
Montgomery curve $\MontCurve$ that is birationally equivalent to $\JubjubCurve$.
From here on we omit ``twisted'' when referring to the Edwards $\JubjubCurve$
curve or coordinates. Following the notation in \cite{BL2017} we use
$(u, \varv)$ for affine coordinates on the Edwards curve, and $(x, y)$ for
@ -10782,7 +10800,7 @@ A point $P$ is normally represented by two $\GF{\ParamS{r}}$ variables, which
we name as $(P^u, P^{\vv})$ for an affine Edwards point, for instance.
\introlist
The Montgomery curve has parameters $\ParamM{A} = 40962$ and $\ParamM{B} = 1$.
The Montgomery curve $\MontCurve$ has parameters $\ParamM{A} = 40962$ and $\ParamM{B} = 1$.
We use an affine representation of this curve with the formula:
\begin{formulae}
@ -10833,8 +10851,8 @@ Montgomery curves.
\fact{$\ParamM{A}^2 - 4$ is a nonsquare in $\GF{\ParamJ{r}}$.}
\begin{theorem} \label{thmmontynotzero}
Let $P = (x, y)$ be a point other than $(0, 0)$ on a Montgomery curve
over $\GF{r}$ with parameter $A$, such that $A^2 - 4$ is a nonsquare in $\GF{r}$.
Let $P = (x, y)$ be a point other than $(0, 0)$ on a Montgomery curve $\Montgomery{A,B}$
over $\GF{r}$, such that $A^2 - 4$ is a nonsquare in $\GF{r}$.
Then $y \neq 0$.
\end{theorem}
@ -11232,8 +11250,8 @@ can be inferred by applying the doubling formula.)
\vspace{0.5ex}
\begin{theorem} \label{thmconversiontoedwardsnoexcept}
Let $(x, y)$ be an affine point on a Montgomery curve over $\GF{r}$
with parameter $A$ such that $A^2 - 4$ is a nonsquare in $\GF{r}$,
Let $(x, y)$ be an affine point on a Montgomery curve $\Montgomery{A,B}$ over $\GF{r}$
with parameters $A$ and $B$ such that $A^2 - 4$ is a nonsquare in $\GF{r}$,
that is birationally equivalent to a complete twisted Edwards curve.
Then $x + 1 \neq 0$, and the only point $(x, y)$ with $y = 0$ is
$(0, 0)$ of order 2.
@ -11278,7 +11296,8 @@ can be safely used:
\newcommand{\halfs}{\frac{s-1}{2}}
\begin{theorem} \label{thmdistinctxcriterion}
Let $Q$ be a point of odd-prime order $s$ on a Montgomery curve $E_{\ParamM{A},\ParamM{B}} / \GF{\ParamS{r}}$.
Let $Q$ be a point of odd-prime order $s$ on a Montgomery curve
$\MontCurve = \Montgomery{\ParamM{A},\ParamM{B}}$ over $\GF{\ParamS{r}}$.
Let $k_\barerange{1}{2}$ be integers in $\bigrangenozero{-\halfs}{\halfs}$.
Let $P_i = \scalarmult{k_i}{Q} = (x_i, y_i)$ for $i \in \range{1}{2}$, with
$k_1 \neq \pm k_2$. Then the non-unified addition constraints