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1 Introduction

Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash [BCG+2014], with some
security �xes and adjustments to terminology, functionality and performance. It bridges the existing transparent
payment scheme used by Bitcoin [Naka2008] with a confidential payment scheme protected by zero-knowledge
succinct non-interactive arguments of knowledge (zk-SNARKs).

Changes from the original Zerocash are explained in §8 ‘Differences from the Zerocash paper’ on p. 27, and high-
lighted in magenta throughout the document.

Technical terms for concepts that play an important role in Zcash are written in slanted text . Italics are used for
emphasis and for references between sections of the document.

This speci�cation is structured as follows:

• Notation — de�nitions of notation used throughout the document;

• Concepts — the principal abstractions needed to understand the protocol;

• Abstract Protocol — a high-level description of the protocol in terms of ideal cryptographic components;

• Concrete Protocol — how the functions and encodings of the abstract protocol are instantiated;

• Zero-Knowledge Proving System — the parameters of the proving system and how proofs are encoded;

• Consensus Changes from Bitcoin — how Zcash differs from Bitcoin at the consensus layer, including the
Proof of Work;

• Differences from the Zerocash protocol — a summary of changes from the protocol in [BCG+2014].

1.1 Caution

Zcash security depends on consensus. Should a program interacting with the Zcash network diverge from con-
sensus, its security will be weakened or destroyed. The cause of the divergence doesn’t matter: it could be a bug
in your program, it could be an error in this documentation which you implemented as described, or it could be
that you do everything right but other software on the network behaves unexpectedly. The speci�c cause will not
matter to the users of your software whose wealth is lost.

Having said that, a speci�cation of intended behaviour is essential for security analysis, understanding of the pro-
tocol, and maintenance of Zcash and related software. If you �nd any mistake in this speci�cation, please contact
<security@z.cash>. While the production Zcash network has yet to be launched, please feel free to do so in
public even if you believe the mistake may indicate a security weakness.

1.2 High-level Overview

The following overview is intended to give a concise summary of the ideas behind the protocol, for an audience
already familiar with block chain-based cryptocurrencies such as Bitcoin. It is imprecise in some aspects and is
not part of the normative protocol speci�cation.

Value in Zcash is carried by notes 1, which specify an amount and a paying key. The paying key is part of a payment
address , which is a destination to which notes can be sent. As in Bitcoin, this is associated with a private key that
can be used to spend notes sent to the address; in Zcash this is called a spending key.

To each note there is cryptographically associated a note commitment , and a nulli�er 1 (so that there is a 1:1:1
relation between notes , note commitments , and nulli�ers). However, it is infeasible to correlate a commitment
with its nulli�er without knowledge of the note . Computing the nulli�er requires the associated private spending
key. An unspent valid note , at a given point on the block chain, is one for which the note commitment has been
publicly revealed on the block chain prior to that point, but the nulli�er has not.

1 In Zerocash [BCG+2014], notes were called “coins”, and nulli�ers were called “serial numbers”.
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Transactions can contain “transparent” inputs, outputs, and scripts, which all work basically as in Bitcoin. They
also contain a sequence of zero or more JoinSplit descriptions . Each of these describes a JoinSplit operation 2

which takes in a transparent value and up to two input notes , and produces a transparent value and up to two
output notes . The nulli�ers of the input notes are revealed (preventing them from being spent again) and the
commitments of the output notes are revealed (allowing them to be spent in future). Each JoinSplit description
also includes a computationally sound zk-SNARK proof, which proves all of the following:

• The inputs and outputs balance (individually for each JoinSplit operation).

• For each input note of non-zero value, some revealed note commitment exists for that note .

• The prover knew the private spending keys of the input notes .

• The nulli�ers and note commitments are computed correctly.

• The private spending keys of the input notes are cryptographically linked to a signature over the whole trans-
action, in such a way that the transaction cannot be modi�ed by a party who did not know these private keys.

• Each output note is generated in such a way that its nulli�er will not collide with the nulli�er of any other
note .

Outside the zk-SNARK , it is also checked that the nulli�ers for the input notes had not already been revealed (i.e.
they had not already been spent).

A payment address includes two public keys: a paying key matching that of notes sent to the address, and a trans-
mission key for a key-private asymmetric encryption scheme. “Key-private” means that ciphertexts do not reveal
information about which key they were encrypted to, except to a holder of the corresponding private key, which
in this context is called the viewing key. This facility is used to communicate encrypted output notes on the block
chain to their intended recipient, who can use the viewing key to scan the block chain for notes addressed to them
and then decrypt those notes .

The basis of the privacy properties of Zcash is that when a note is spent, the spender only proves that some com-
mitment for it had been revealed, without revealing which one. This implies that a spent note cannot be linked
to the transaction in which it was created. Unlike other proposals for private payment systems that are based on
mixing of a limited number of transactions, such as CoinJoin [Bitcoin-CoinJoin] or CryptoNote [vanS2013], the note
anonymity set is all previously created notes . The nulli�ers are necessary to prevent double-spending: each note
only has one valid nulli�er, and so attempting to spend a note twice would reveal the nulli�er twice, which would
cause the second transaction to be rejected.

2 Notation

The notation 0x followed by a string of boldface hexadecimal digits means the corresponding integer converted
from hexadecimal.

The notation B` means the set of sequences of ` bits. B8? means the set of bit sequences constrained to be of
length a multiple of 8 bits.

The notation “...” means the given string represented as a sequence of bytes in US-ASCII. For example, “abc”
represents the byte sequence [0x61,0x62,0x63].

The notation a..b, used as a subscript, means the sequence of values with indices a through b inclusive. For example,
anew

pk,1..Nnew means the sequence [anew
pk,1, anew

pk,2, ... anew
pk,Nnew ]. (For consistency with the notation in [BCG+2014] and in

[BK2016], this speci�cation uses 1-based indexing and inclusive ranges, notwithstanding the compelling arguments
to the contrary made in [EWD-831].)

The notation {a .. b}means the set of integers from a through b inclusive. k{a .. b}means the set containing integers
kn for all n ∈ {a .. b}.

2 JoinSplit operations in Zcash generalize “Mint” and “Pour” transactions in Zerocash; see § 8.1 ‘Transaction Structure’ on p. 27 for the
differences.
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The notation [f (x) for x from a up to b] means the sequence formed by evaluating f on each integer from a to b
inclusive, in ascending order. Similarly, [f (x) for x from a down to b] means the sequence formed by evaluating f
on each integer from a to b inclusive, in descending order.

The notation concatB(S) means the sequence of bits obtained by concatenating the elements of S viewed as bit
sequences. If the elements of S are byte sequences, they are converted to bit sequences with the most significant
bit of each byte �rst.

The notation Nmeans the set of nonnegative integers.

The notation Fq means the �nite �eld with q elements. Fq[z] means the ring of polynomials over z with coef�cients
in Fq .

The notation a mod q, for integers a ≥ 0 and q > 0, means the remainder on dividing a by q.

The notation a⊕bmeans the bitwise exclusive-or of a and b, de�ned either on integers or bit sequences depending
on context.

The notation
N∑

i=1
ai means the sum of a1..N .

The notation
N⊕

i=1
ai means the bitwise exclusive-or of a1..N .

The notation floor(x) means the largest integer≤ x. ceiling(x) means the smallest integer≥ x.

The symbol ⊥ is used to indicate unavailable information or a failed decryption.

The notation x ◦
◦ T is used to specify that x has type T . A cartesian product type is denoted byS×T , and a function

type by S → T . A subscripted argument of a function is taken to be its �rst argument, e.g. if x ◦
◦ X , y ◦

◦ Y , and
PRFx(y) ◦

◦ Z , then PRF ◦
◦ X × Y → Z . An argument to a function can determine other argument or result types.

The following integer constants will be instantiated in §5.2 ‘Constants’ on p. 17: d, Nold, Nnew, `Merkle, `General, `PRF,
`ask , `ϕ, MAX MONEY.

3 Concepts

3.1 Payment Addresses and Keys

A key tuple (ask, skenc, addrpk) is generated by users who wish to receive payments under this scheme. The viewing
key skenc and the payment address addrpk = (apk, pkenc) are derived from the spending key ask.

The following diagram depicts the relations between key components. Arrows point from a component to any
other component(s) that can be derived from it.
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The composition of payment addresses , viewing keys , and spending keys is a cryptographic protocol detail that
should not normally be exposed to users. However, user-visible operations should be provided to obtain a pay-
ment address or viewing key from a spending key.

Users can accept payment from multiple parties with a single payment address addrpk and the fact that these
payments are destined to the same payee is not revealed on the block chain, even to the paying parties. However
if two parties collude to compare a payment address they can trivially determine they are the same. In the case
that a payee wishes to prevent this they should create a distinct payment address for each payer.

Note: It is conventional in cryptography to refer to the key used to encrypt a message in an asymmetric encryp-
tion scheme as the “public key”. However, the public key used as the transmission key component of an address
(pkenc) need not be publically distributed; it has the same distribution as the payment address itself. As men-
tioned above, limiting the distribution of the payment address is important for some use cases. This also helps
to reduce reliance of the overall protocol on the security of the cryptosystem used for note encryption (see §4.5
‘In-band secret distribution’ on p. 16), since an adversary would have to know pkenc in order to exploit a hypothet-
ical weakness in that cryptosystem.

3.2 Notes

A note (denoted n) is a tuple (apk, v, ρ, r) which represents that a value v is spendable by the recipient who holds
the spending key ask corresponding to apk, as described in the previous section.

• apk is a sequence of `PRF bits representing the paying key of the recipient.

• v is an integer in the range 0 ≤ v ≤ MAX MONEY representing the value of the note in zatoshi (1 ZEC = 108

zatoshi ).

• ρ is a sequence of `PRF bytes, which is used as input to PRFnf
ask to obtain the note ’s nulli�er.

• r is a commitment trapdoor.

r is randomly generated by the sender. ρ is generated from a random seed ϕ using PRFρϕ. Only a commitment to
these values is disclosed publicly, which allows the tokens r and ρ to blind the value and recipient except to those
who possess these tokens.

3.2.1 Note Commitments

The underlying v and apk are blinded with ρ and r. The resulting hash cm = NoteCommitment(n).

NoteCommitment is required to be a computationally binding and hiding commitment scheme.
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3.2.2 Nulli�ers

A nulli�er (denoted nf) is derived from the ρ component of a note as PRFnf
ask (ρ). A note is spent by proving knowl-

edge of ρ and ask in zero knowledge while disclosing its nulli�er nf , allowing nf to be used to prevent double-
spending.

3.2.3 Note Plaintexts and Memo Fields

Transmitted notes are stored on the block chain in encrypted form, together with a note commitment cm.

The note plaintexts in a JoinSplit description are encrypted to the respective transmission keys pknew
enc,1..Nnew , and

the result forms part of a transmitted notes ciphertext (see §4.5 ‘In-band secret distribution’ on p. 16 for further
details).

Each note plaintext (denoted np) consists of (v, ρ, r,memo).

The �rst three of these �elds are as de�ned earlier.

memo represents a memo �eld associated with this note . The usage of the memo �eld is by agreement between
the sender and recipient of the note .

3.3 Transactions, Blocks, and the Block Chain

At a given point in time, the block chain view of each full node consists of a sequence of one or more valid blocks .
Each block consists of a sequence of one or more transactions . To each transaction there is associated an initial
treestate , which consists of a note commitment tree (§ 3.5 ‘Note Commitment Tree’ on p. 9), nulli�er set (§ 3.6
‘Nullifier Set’ on p. 9), and data structures associated with Bitcoin such as the UTXO (Unspent Transaction Output)
set.

Inputs to a transaction insert value into a value pool , and outputs remove value from this pool. As in Bitcoin, the
remaining value in the pool is available to miners as a fee.

An anchor is a Merkle tree root of a note commitment tree . It uniquely identi�es a note commitment tree state
given the assumed security properties of the Merkle tree’s hash function. Since the nulli�er set is always updated
together with the note commitment tree , this also identi�es a particular state of the nulli�er set .

In a given node’s block chain view, treestates are chained as follows:

• The input treestate of the �rst block is the empty treestate .

• The input treestate of the �rst transaction of a block is the �nal treestate of the immediately preceding block .

• The input treestate of each subsequent transaction in a block is the output treestate of the immediately
preceding transaction.

• The �nal treestate of a block is the output treestate of its last transaction.

Daira: JoinSplit descriptions also have input and output treestates.

We rely on Bitcoin-style consensus for full nodes to eventually converge on their views of valid blocks , and there-
fore of the sequence of treestates in those blocks .

3.4 JoinSplit Operations and Descriptions

A JoinSplit description is data included in a transaction that describes a JoinSplit operation, i.e. a con�dential value
transfer. This kind of value transfer is the primary Zcash-speci�c operation performed by transactions ; it uses, but
should not be confused with, the JoinSplit circuit used for the zk-SNARK proof and veri�cation.
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A JoinSplit operation spends Nold notes nold
1..Nold and transparent input vold

pub, and creates Nnew notes nnew
1..Nnew and

transparent output vnew
pub .

Each transaction is associated with a sequence of JoinSplit descriptions .

The inputs and outputs of each JoinSplit operation MUST balance exactly. The total vnew
pub value adds to, and the

total vold
pub value subtracts from the value pool of the containing transaction.

TODO: Describe the interaction of transparent value flows with the JoinSplit description’s vold
pub and vnew

pub .

The anchor of each JoinSplit description in a transaction must refer to either some earlier block ’s �nal treestate ,
or to the output treestate of any prior JoinSplit description in the same transaction.

These conditions act as constraints on the blocks that a full node will accept into its block chain view.

3.5 Note Commitment Tree

cm1

?

rt

cm2 cm3 cm4 cm5 ?

The note commitment tree is an incremental Merkle tree of �xed depth used to store note commitments that
JoinSplit operations produce. Just as the unspent transaction output set (UTXO) used in Bitcoin, it is used to express
the existence of value and the capability to spend it. However, unlike the UTXO, it is not the job of this tree to protect
against double-spending, as it is append-only.

Blocks in the block chain are associated (by all nodes) with the root of this tree after all of its constituent JoinSplit
descriptions ’ note commitments have been entered into the note commitment tree associated with the previous
block . Daira: Make this more precise.

Each node in the incremental Merkle tree is associated with a hash value of size `Merkle bytes. The layer numbered
h, counting from layer 0 at the root , has 2h nodes with indices 0 to 2h−1 inclusive. The hash value associated with
the node at index i in layer h is denoted Mh

i .

3.6 Nulli�er Set

Each full node maintains a nulli�er set alongside the note commitment tree and UTXO set. As valid transactions
containing JoinSplit operations are processed, the nulli�ers revealed in JoinSplit descriptions are inserted into
this nulli�er set .

If a JoinSplit description reveals a nulli�er that already exists in the full node ’s block chain view, the containing
transaction will be rejected, since it would otherwise result in a double-spend.
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3.7 Coinbase Transactions

The �rst transaction in a block must be a coinbase transaction, which should collect and spend any block reward
and transaction fees paid by transactions included in this block.

3.7.1 Block Subsidy and Transaction Fees

TODO: Describe money supply curve. TODO: Miner’s reward = transaction fees + block subsidy - founder’s reward

3.7.2 Coinbase outputs

TODO: Coinbase maturity rule. TODO: Any tx with a coinbase input must have no transparent outputs (vout).

4 Abstract Protocol

4.1 Abstract Cryptographic Functions

4.1.1 Hash Functions

MerkleCRH ◦
◦ B`Merkle × B`Merkle → B`Merkle is a collision-resistant hash function used in §4.4.2 ‘Merkle root validity’

on p. 13. It is instantiated in §5.3.1 ‘Merkle Tree Hash Function’ on p. 18.

GeneralCRH ◦
◦ (` ◦

◦ 8{1 .. 64}) × B8? → B` is another collision-resistant hash function. The �rst (subscripted) argu-
ment indicates the output length in bits. It is used in §4.4.1 ‘Computation of hSig’ on p. 13 and §7.2.1 ‘Equihash’ on
p. 26, and instantiated in §5.3.2 ‘General Hash Function’ on p. 18.

4.1.2 Pseudo Random Functions

PRFx is a Pseudo Random Function keyed by x. Four independent PRFx are needed in our protocol:

PRFaddr ◦
◦ B`ask × {0 .. 255} → B`PRF

PRFnf ◦
◦ B`ask × B`PRF → B`PRF

PRFpk ◦
◦ B`ask × B`General → B`PRF

PRFρ ◦
◦ B`ϕ × B`General → B`PRF

These are used in § 4.4.6 ‘JoinSplit Circuit’ on p. 15; PRFaddr is also used to derive a payment address from a
spending key in §4.2 ‘Key Components’ on p. 11. They are instantiated in §5.3.3 ‘Pseudo Random Functions’ on
p. 18.

Security requirement: In addition to being Pseudo Random Functions , it is required that PRFnf
x , PRFaddr

x , and
PRFρx be collision-resistant across all x — i.e. it should not be feasible to �nd (x, y) , (x′, y′) such that PRFnf

x (y) =
PRFnf

x′ (y
′), and similarly for PRFaddr and PRFρ.

4.1.3 Authenticated One-Time Symmetric Encryption

Let Sym be an authenticated one-time symmetric encryption scheme with keyspace Sym.K, encrypting plaintexts
in Sym.P to produce ciphertexts in Sym.C.

Sym.Encrypt ◦
◦ Sym.K× Sym.P→ Sym.C is the encryption algorithm.
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Sym.Decrypt ◦
◦ Sym.K × Sym.C → Sym.P ∪ {⊥} is the corresponding decryption algorithm, such that for any

K ∈ Sym.K and P ∈ Sym.P, Sym.DecryptK(Sym.EncryptK(P)) = P. ⊥ is used to represent the decryption of an
invalid ciphertext.

Security requirement: Sym must be one-time (INT-CTXT ∧ IND-CPA)-secure. “One-time” here means that an
honest protocol participant will almost surely encrypt only one message with a given key; however, the attacker
may make many adaptive chosen ciphertext queries for a given key. The security notions INT-CTXT and IND-CPA
are as de�ned in [BN2007].

4.1.4 Key Agreement

A key agreement scheme is a cryptographic protocol in which two parties agree a shared secret, each using their
private key and the other party’s public key.

A key agreement scheme KA de�nes a type of public keys KA.Public, a type of private keys KA.Private, and a type
of shared secrets KA.SharedSecret.

Let KA.FormatPrivate ◦
◦ B`PRF → KA.Private be a function that converts a bit string of length `PRF to a KA private

key.

Let KA.DerivePublic ◦
◦ KA.Private → KA.Public be a function that derives the KA public key corresponding to a

given KA public key.

Let KA.Agree ◦
◦ KA.Private× KA.Public→ KA.SharedSecret be the agreement function.

Security requirement: KA.FormatPrivate must preserve suf�cient entropy from its input to be used as a secure
KA private key. TODO: requirements on security of key agreement and KDF

4.1.5 Key Derivation

A Key Derivation Function is de�ned for a particular key agreement scheme and authenticated one-time symmet-
ric encryption scheme ; it takes the shared secret produced by the key agreement and additional arguments, and
derives a key suitable for the encryption scheme.

Let KDF ◦
◦ {1..Nnew} × B`General × KA.SharedSecret × KA.Public × KA.Public → Sym.K be a Key Derivation Function

suitable for use with KA, deriving keys for Sym.Encrypt.

Security requirement: For any T = (i ∈ {1..Nnew}, hSig ∈ B`General , pknew
enc,i ∈ KA.Public),

(epk,KDF(i, hSig,KA.Agree(esk, pknew
enc,), epk, pknew

enc,)) must be computationally indistinguishable between dif-
ferent skenc ∈ KA.Private,

where epk = KA.DerivePublic(esk) and pknew
enc, = KA.DerivePublic(skenc).

This is necessary to ensure that the composition of KA, KDF and Sym as given in §4.5 ‘In-band secret distribution’
on p. 16 is a key-private asymmetric encryption scheme. The property of key privacy is de�ned in [BBDP2001].

4.1.6 Signatures

TODO:

4.2 Key Components

ask is 252 bits. apk, skenc, and pkenc, are each 256 bits.
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Let KA be a key agreement scheme , instantiated in §5.3.5 ‘Key Agreement’ on p. 19.

A new spending key ask is generated by sampling a bit string uniformly at random from B`ask .

apk, skenc and pkenc are derived from ask as follows:

apk := PRFaddr
ask (0)

skenc := KA.FormatPrivate(PRFaddr
ask (1))

pkenc := KA.DerivePublic(skenc)

where

• Curve25519(n, q) performs point multiplication of the Curve25519 public key represented by the byte se-
quence q by the Curve25519 secret key represented by the byte sequence n, as de�ned in [Bern2006, section
2];

• 9 is the public byte sequence representing the Curve25519 base point;

• clampCurve25519(x) takes a 32-byte sequence x as input and returns a byte sequence representing a Curve25519
private key, with bits “clamped” as described in [Bern2006, section 3]: “clear bits 0, 1, 2 of the �rst byte, clear
bit 7 of the last byte, and set bit 6 of the last byte.” Here the bits of a byte are numbered such that bit b has
numeric weight 2b.

4.3 Note Components

• apk is a 32-byte paying key of the recipient.

• v is a 64-bit unsigned integer representing the value of the note in zatoshi (1 ZEC = 108 zatoshi ).

• ρ is a 32-byte PRFnf
ask preimage.

• r is a 32-byte commitment trapdoor.

4.4 JoinSplit Operations and Descriptions

A JoinSplit description is data included in a transaction that describes a JoinSplit operation, as described in §3.4
‘JoinSplit Operations and Descriptions’ on p. 8.

Zcash transactions have the following additional �elds:

Bytes Name Data Type Description

Varies nJoinSplit compactSize uint The number of JoinSplit de-
scriptions in vJoinSplit.

1802 × nJoinSplit vJoinSplit JoinSplitDescription
[nJoinSplit]

The sequence of JoinSplit de-
scriptions in this transaction.

32 † joinSplitPubKey char[32] An encoding of a JoinSplitSigAlg
public veri�cation key.

64 † joinSplitSig char[64] A signature on a pre�x of the
transaction encoding, to be ver-
i�ed using joinSplitPubKey.

† The joinSplitPubKey and joinSplitSig �elds are present if and only if nJoinSplit > 0.

The encoding of joinSplitPubKey and the data to be signed are speci�ed in §4.4.3 ‘Non-malleability’ on p. 14.
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Each JoinSplitDescription consists of:

Bytes Name Data Type Description

8 vpub old int64 t A value vold
pub that the JoinSplit operation removes from

the value pool.

8 vpub new int64 t A value vnew
pub that the JoinSplit operation inserts into

the value pool.

32 anchor char[32] A merkle root rt of the note commitment tree at some
block height in the past, or the merkle root produced
by a previous JoinSplit operation in this transaction.
Sean: We need to be more specific here.

64 nullifiers char[32][Nold] A sequence of nulli�ers of the input notes nfold
1..Nold .

64 commitments char[32][Nnew]. A sequence of note commitments for the output
notes cmnew

1..Nnew .

32 ephemeralKey char[32] A Curve25519 public key epk.

32 randomSeed char[32] A 256-bit seed that must be chosen independently at
random for each JoinSplit description.

64 vmacs char[32][Nold] A sequence of message authentication tags h1..Nold

that bind hSig to each ask of the JoinSplit description.

296 zkproof char[296] An encoding of the zero-knowledge proof πJoinSplit
(§6.2 ‘Encoding of Zero-Knowledge Proofs’ on p. 24).

1202 encCiphertexts char[601][Nnew] A sequence of ciphertext components for the en-
crypted output notes , Cenc

1..Nnew .

The ephemeralKey and encCiphertexts �elds together form the transmitted notes ciphertext .

Consensus rule: 0 ≤ vold
pub ≤ MAX MONEY, and 0 ≤ vnew

pub ≤ MAX MONEY.

Consensus rule: Either vold
pub or vnew

pub MUST be zero.

TODO: Describe case where there are fewer than Nold real input notes.

4.4.1 Computation of hSig

Given a JoinSplit description containing the �elds randomSeed and nullifiers = nfold
1..Nold , and embedded in a

transaction containing the �eld joinSplitPubKey, we compute hSig for that JoinSplit description as follows:

hSigInput := 256-bit randomSeed 256-bit nfold
1 ... 256-bit nfold

Nold
256-bit

joinSplitPubKey
hSig := GeneralCRH256(“ZcashComputehSig”, hSigInput)

4.4.2 Merkle root validity

Daira: This paragraph is confusing and only describes one aspect of validity. A JoinSplit description is valid if rt is
a note commitment tree root found in either the blockchain or a merkle root produced by inserting the note
commitments of a previous JoinSplit description in the transaction to the note commitment tree identi�ed by
that previous JoinSplit description’s anchor.
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The depth of the note commitment tree is d.

Each node in the incremental Merkle tree is associated with a hash value , which is a byte sequence. The layer
numbered h, counting from layer 0 at the root , has 2h nodes with indices 0 to 2h − 1 inclusive.

Let Mh
i be the hash value associated with the node at index i in layer h.

The nodes at layer d are called leaf nodes . When a note commitment is added to the tree, it occupies the leaf node
hash value Md

i for the next available i. As-yet unused leaf nodes are associated with a distinguished hash value
Uncommitted. It is assumed to be infeasible to �nd a preimage note n such that NoteCommitment(n) = Uncommitted.

The nodes at layers 0 to d − 1 inclusive are called internal nodes , and are associated with MerkleCRH outputs.
Internal nodes are computed from their children in the next layer as follows: for 0 ≤ h < d and 0 ≤ i < 2h,

Mh
i := MerkleCRH(Mh+1

2i ,Mh+1
2i+1).

A path from leaf node Md
i in the incremental Merkle tree is the sequence

[Mh
sibling(h,i) for h from d down to 1],

where

sibling(h, i) = floor
(

i
2d−h

)
⊕ 1

Given such a path, it is possible to verify that leaf node Md
i is in a tree with a given root rt = M0

0.

4.4.3 Non-malleability

Bitcoin de�nes several SIGHASH types that cover various parts of a transaction. In Zcash, all of these SIGHASH
types are extended to cover the Zcash-speci�c �elds nJoinSplit, vJoinSplit, and (if present) joinSplitPubKey.
They do not cover the �eld joinSplitSig.

Consensus rule: If nJoinSplit > 0, the transaction MUST NOT use SIGHASH types other than SIGHASH ALL.

Let dataToBeSigned be the hash of the transaction using the SIGHASH ALL SIGHASH type . This excludes all of the
scriptSig �elds in the non-Zcash-speci�c parts of the transaction.

In order to ensure that a JoinSplit description is cryptographically bound to the transparent inputs and outputs
corresponding to vnew

pub and vold
pub, and to the other JoinSplit descriptions in the same transaction, an ephemeral

JoinSplitSigAlg key pair is generated for each transaction, and the dataToBeSigned is signed with the private sign-
ing key of this key pair. The corresponding public veri�cation key is included in the transaction encoding as
joinSplitPubKey.

JoinSplitSigAlg is instantiated as Ed25519 [BDL+2012], with the additional requirement that S (the integer repre-
sented by S) must be less than the prime ` = 2252 + 27742317777372353535851937790883648493, otherwise the
signature is considered invalid. Ed25519 is de�ned as using SHA-512 internally.

If nJoinSplit is zero, the joinSplitPubKey and joinSplitSig �elds are omitted. Otherwise, a transaction has
a correct JoinSplit signature if joinSplitSig can be veri�ed as an encoding of a signature on dataToBeSigned as
speci�ed above, using the Ed25519 public key encoded as joinSplitPubKey.

The encoding of a signature is:

256-bit R 256-bit S

where R and S are as de�ned in [BDL+2012].

The encoding of a public key is as de�ned in [BDL+2012].

The condition enforced by the JoinSplit circuit speci�ed in §4.4.6 ‘Non-malleability’ on p. 16 ensures that a holder
of all of aold

sk,1..Nold for each JoinSplit description has authorized the use of the private signing key corresponding to
joinSplitPubKey to sign this transaction.
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4.4.4 Balance

A JoinSplit operation can be seen, from the perspective of the transaction, as an input and an output simultane-
ously. vold

pub takes value from the value pool and vnew
pub adds value to the value pool. As a result, vold

pub is treated like an
output value, whereas vnew

pub is treated like an input value.

Note: Unlike original Zerocash [BCG+2014], Zcash does not have a distinction between Mint and Pour operations.
The addition of vold

pub to a JoinSplit description subsumes the functionality of both Mint and Pour. Also, JoinSplit
descriptions are indistinguishable regardless of the number of real input notes .

As stated in §4.4 ‘JoinSplit Operations and Descriptions’ on p. 12, either vold
pub or vnew

pub MUST be zero. No generality

is lost because, if a transaction in which both vold
pub and vnew

pub were nonzero were allowed, it could be replaced by

an equivalent one in which min(vold
pub, vnew

pub ) is subtracted from both of these values. This restriction helps to avoid
unnecessary distinctions between transactions according to client implementation.

4.4.5 Note Commitments and Nulli�ers

A transaction that contains one or more JoinSplit descriptions , when entered into the blockchain, appends to the
note commitment tree with all constituent note commitments . All of the constituent nulli�ers are also entered
into the nulli�er set of the block chain view and mempool . A transaction is not valid if it attempts to add a nulli�er
to the nulli�er set that already exists in the set.

4.4.6 JoinSplit Circuit

A valid instance of πJoinSplit assures that given a primary input :

(rt, nfold
1..Nold , cmnew

1..Nnew , vold
pub, vnew

pub , hSig, h1..Nold ),

there exists a witness of auxiliary input :

(path1..Nold ,nold
1..Nold , aold

sk,1..Nold ,nnew
1..Nnew ,ϕ)

where:

for each i ∈ {1..Nold}: nold
i = (aold

pk,i, vold
i , ρold

i , rold
i );

for each i ∈ {1..Nnew}: nnew
i = (anew

pk,i, vnew
i , ρnew

i , rnew
i )

such that the following conditions hold:

Merkle path validity for each i ∈ {1..Nold} | vold
i , 0: pathi must be a valid path of depth d, as de�ned in § 3.5

‘Note Commitment Tree’ on p. 9, from NoteCommitment(nold
i ) to note commitment tree root rt.

Note: Merkle path validity covers both conditions 1. (a) and 1. (d) of the NP statement given in [BCG+2014, section
4.2].

Balance vold
pub +

Nold∑
i=1

vold
i = vnew

pub +
Nnew∑
i=1

vnew
i .

Nulli�er integrity for each i ∈ {1..Nnew}: nfold
i = PRFnf

aold
sk,i

(ρold
i ).

Spend authority for each i ∈ {1..Nold}: aold
pk,i = PRFaddr

aold
sk,i

(0).

15



Non-malleability for each i ∈ {1..Nold}: hi = PRFpk
aold

sk,i

(i, hSig).

Uniqueness of ρnew
i for each i ∈ {1..Nnew}: ρnew

i = PRFρϕ(i, hSig).

Commitment integrity for each i ∈ {1..Nnew}: cmnew
i = NoteCommitment(nnew

i ).

For details of the form and encoding of proofs, see §6 ‘Zero-Knowledge Proving System’ on p. 22.

4.5 In-band secret distribution

In order to transmit the secret v, ρ, and r (necessary for the recipient to later spend) and also a memo �eld to the
recipient without requiring an out-of-band communication channel, the transmission key pkenc is used to encrypt
these secrets. The recipient’s possession of the associated key tuple (ask, skenc, addrpk) is used to reconstruct the
original note and memo �eld .

All of the resulting ciphertexts are combined to form a transmitted notes ciphertext .

4.5.1 Encryption

Let Sym.EncryptK(P) be authenticated encryption using AEAD CHACHA20 POLY1305 [RFC-7539] encryption of
plaintext P ∈ Sym.P, with empty “associated data”, all-zero nonce [0]96, and 256-bit key K ∈ Sym.K.

Similarly, let Sym.DecryptK(C) be AEAD CHACHA20 POLY1305 decryption of ciphertext C ∈ Sym.C, with empty
“associated data”, all-zero nonce [0]96, and 256-bit key K ∈ Sym.K. The result is either the plaintext byte sequence,
or⊥ indicating failure to decrypt.

Let pknew
enc,1..Nnew be the Curve25519 public keys for the intended recipient addresses of each new note , and let

np1..Nnew be the note plaintexts as de�ned in § 5.6 ‘Note Plaintexts and Memo Fields’ on p. 20. Let hSig be the
value computed in § 4.4.1 ‘Computation of hSig’ on p. 13. Let KDF be the Key Derivation Function instantiated in
§5.3.6 ‘Key Derivation’ on p. 20.

Then to encrypt:

• Generate a new Curve25519 (public, private) key pair (epk, esk).

• For i ∈ {1..Nnew},
– Let Penc

i be the raw encoding of npi.

– Let dhsecreti := Curve25519(esk, pknew
enc,i).

– Let Kenc
i := KDF(i, hSig, dhsecreti, epk, pknew

enc,i).

– Let Cenc
i := Sym.EncryptKenc

i
(Penc

i ).

The resulting transmitted notes ciphertext is (epk,Cenc
1..Nnew ).

4.5.2 Decryption by a Recipient

Let addrpk = (apk, pkenc) be the recipient’s payment address , and let skenc be the recipient’s viewing key. Let hSig be
the value computed in §4.4.1 ‘Computation of hSig’ on p. 13. Let cmnew

1..Nnew be the note commitments of each output
coin. Then for each i ∈ {1..Nnew}, the recipient will attempt to decrypt that ciphertext component as follows:

• Let dhsecreti := Curve25519(skenc, epk).

• Let Kenc
i := KDF(i, hSig, dhsecreti, epk, pknew

enc,i).
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• Return DecryptNote(Kenc
i ,Cenc

i , cmnew
i , apk).

DecryptNote(Kenc
i ,Cenc

i , cmnew
i , apk) is de�ned as follows:

• Let Penc
i := Sym.DecryptKenc

i
(Cenc

i ).

• If Penc
i = ⊥, return ⊥.

• Extract npi = (vnew
i , ρnew

i , rnew
i ,memoi) from Penc

i .

• If NoteCommitment((apk, vnew
i , ρnew

i , rnew
i )) , cmnew

i , return ⊥, else return npi.

Note: This corresponds to step 3 (b) i. and ii. (�rst bullet point) of the Receive algorithm shown in [BCG+2014, Figure
2].

To test whether a note is unspent in a particular block chain view also requires the spending key ask; the coin is
unspent if and only if nf = PRFnf

ask (ρ) is not in the nulli�er set for that block chain view.

Notes:

• A note can change from being unspent to spent on a given block chain view, as transactions are added to that
view. Also, blockchain reorganisations can cause the transaction in which a note was output to no longer be
on the consensus blockchain.

• The nonce parameter to AEAD CHACHA20 POLY1305 is not used.

• The “IETF” de�nition of AEAD CHACHA20 POLY1305 from [RFC-7539] is used; this uses a 32-bit block count
and a 96-bit nonce, rather than a 64-bit block count and 64-bit nonce as in the original de�nition of ChaCha20.

See § 8.7 ‘In-band secret distribution’ on p. 29 for further discussion of the security and engineering rationale
behind this encryption scheme.

5 Concrete Protocol

5.1 Integers, Bit Sequences, and Endianness

All integers in Zcash-specific encodings are unsigned, have a �xed bit length, and are encoded in little-endian
byte order unless otherwise specified.

In bit layout diagrams, each box of the diagram represents a sequence of bits. Diagrams are read from left-to-right,
with lines read from top-to-bottom; the breaking of boxes across lines has no signi�cance. The bit length is given
explicitly in each box, except for the case of a single bit, or for the notation [0]n which represents the sequence of
n zero bits.

The entire diagram represents the sequence of bytes formed by �rst concatenating these bit sequences, and then
treating each subsequence of 8 bits as a byte with the bits ordered from most significant to least significant.
Thus the most significant bit in each byte is toward the left of a diagram. Where bit �elds are used, the text will
clarify their position in each case.

5.2 Constants

De�ne:

d = 32

Nold = 2
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Nnew = 2

`Merkle = 256

`General = 256

`PRF = 256

`ask = 252

`ϕ = 252

Uncommitted = [0]`Merkle

MAX MONEY = 2.1× 1015.

5.3 Concrete Cryptographic Functions

5.3.1 Merkle Tree Hash Function

MerkleCRH is used to hash incremental Merkle tree hash values . It is instantiated by the SHA-256 compression
function, which takes a 512-bit block and produces a 256-bit hash. [NIST2015]

MerkleCRH(left, right) := SHA256Compress
(

256-bit left 256-bit right
)

.

Note: SHA256Compress is not the same as the SHA-256 function, which hashes arbitrary-length sequences.

Security requirement: SHA256Compress must be collision-resistant, and it must be infeasible to �nd a preimage
x such that SHA256Compress(x) = [0]256.

5.3.2 General Hash Function

GeneralCRH` is a collision-resistant hash function, producing outputs of length ` ◦
◦ 8{1 .. 64} bits. It is used in §4.4.1

‘Computation of hSig’ on p. 13 and §7.2.1 ‘Equihash’ on p. 26.

GeneralCRH`(p, x) is instantiated by unkeyed BLAKE2b-`, that is, BLAKE2b as de�ned in [ANWW2013], with an
output digest length of `/8 bytes, 16-byte personalization string p, and input x.

Note: BLAKE2b-` is not the same as BLAKE2b-512 truncated to ` bits.

Security requirement: BLAKE2b-`(p, x) must be collision-resistant, for any ` and p used in the protocol.

5.3.3 Pseudo Random Functions

The four independent PRFs described in §4.1.2 ‘Pseudo Random Functions’ on p. 10 are all instantiated using the
SHA-256 compression function:
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PRFaddr
x (t) := SHA256Compress

(
1 1 0 0 252-bit x 8-bit t [0]248

)
PRFnf

ask (ρ) := SHA256Compress
(

1 1 1 0 252-bit ask 256-bit ρ
)

PRFpk
ask (i, hSig) := SHA256Compress

(
0 i-1 0 0 252-bit ask 256-bit hSig

)
PRFρϕ(i, hSig) := SHA256Compress

(
0 i-1 1 0 252-bit ϕ 256-bit hSig

)

Security requirements:

• The SHA-256 compression function must be collision-resistant.

• The SHA-256 compression function must be a PRF when keyed by the bits corresponding to x, ask orϕ in the
above diagrams, with input in the remaining bits.

Note: The �rst four bits –i.e. the most signi�cant four bits of the �rst byte– are used to distinguish different uses of
SHA256Compress, ensuring that the functions are independent. In addition to the inputs shown here, the bits 1011
in this position are used to distinguish uses of the full SHA-256 hash function — see § 5.5 ‘Note Commitments’
on p. 20. (The speci�c bit patterns chosen here are motivated by the possibility of future extensions that either
increase Nold and/or Nnew to 3, or that add an additional bit to ask to encode a new key type, or that require an
additional PRF.)

5.3.4 Authenticated One-Time Symmetric Encryption

Let Sym be an authenticated one-time symmetric encryption scheme with keyspace Sym.K, encrypting plaintexts
in Sym.P to produce ciphertexts in Sym.C.

Sym.Encrypt ◦
◦ Sym.K× Sym.P→ Sym.C is the encryption algorithm.

Sym.Decrypt ◦
◦ Sym.K × Sym.C → Sym.P ∪ {⊥} is the corresponding decryption algorithm, such that for any

K ∈ Sym.K and P ∈ Sym.P, Sym.DecryptK(Sym.EncryptK(P)) = P. ⊥ is used to represent the decryption of an
invalid ciphertext.

Security requirement: Sym must be one-time (INT-CTXT ∧ IND-CPA)-secure. “One-time” here means that an
honest protocol participant will almost surely encrypt only one message with a given key; however, the attacker
may make many adaptive chosen ciphertext queries for a given key. The security notions INT-CTXT and IND-CPA
are as de�ned in [BN2007].

5.3.5 Key Agreement

A key agreement scheme is a cryptographic protocol in which two parties agree a shared secret, each using their
private key and the other party’s public key.

A key agreement scheme KA de�nes a type of public keys KA.Public, a type of private keys KA.Private, and a type
of shared secrets KA.SharedSecret.

Let KA.FormatPrivate ◦
◦ B`PRF → KA.Private be a function that converts a bit string of length `PRF to a KA private

key.

Let KA.DerivePublic ◦
◦ KA.Private → KA.Public be a function that derives the KA public key corresponding to a

given KA public key.

Let KA.Agree ◦
◦ KA.Private× KA.Public→ KA.SharedSecret be the agreement function.
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Security requirement: KA.FormatPrivate must preserve suf�cient entropy from its input to be used as a secure
KA private key. TODO: requirements on security of key agreement and KDF

where

• Curve25519(n, q) performs point multiplication of the Curve25519 public key represented by the byte se-
quence q by the Curve25519 secret key represented by the byte sequence n, as de�ned in [Bern2006, section
2];

• 9 is the public byte sequence representing the Curve25519 base point;

• clampCurve25519(x) takes a 32-byte sequence x as input and returns a byte sequence representing a Curve25519
private key, with bits “clamped” as described in [Bern2006, section 3]: “clear bits 0, 1, 2 of the �rst byte, clear
bit 7 of the last byte, and set bit 6 of the last byte.” Here the bits of a byte are numbered such that bit b has
numeric weight 2b.

5.3.6 Key Derivation

The Key Derivation Function speci�ed in § 4.1.5 ‘Key Derivation’ on p. 11 is instantiated using BLAKE2b-256 as
follows:

KDF(i, hSig, dhsecreti, epk, pknew
enc,i) := BLAKE2b-256(kdftag, kdfinput)

where:

kdftag := 64-bit “ZcashKDF” 8-bit i−1 [0]56

kdfinput := 256-bit hSig 256-bit dhsecreti 256-bit epk 256-bit pknew
enc,i .

5.3.7 Signatures

TODO:

5.4 Note Components

• apk is a 32-byte paying key of the recipient.

• v is a 64-bit unsigned integer representing the value of the note in zatoshi (1 ZEC = 108 zatoshi ).

• ρ is a 32-byte PRFnf
ask preimage.

• r is a 32-byte commitment trapdoor.

5.5 Note Commitments

The underlying v and apk are blinded with ρ and r using the collision-resistant hash function SHA256. The resulting
hash cm = NoteCommitment(n).

cm := SHA256
(

1 0 1 1 0 0 0 0 256-bit apk 64-bit v 256-bit ρ 256-bit r
)

Note: The leading byte of the SHA256 input is 0xB0.

5.6 Note Plaintexts and Memo Fields

Transmitted notes are stored on the blockchain in encrypted form, together with a note commitment cm.
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The note plaintexts associated with a JoinSplit description are encrypted to the respective transmission keys
pknew

enc,1..Nnew , and the result forms part of a transmitted notes ciphertext (see § 4.5 ‘In-band secret distribution’
on p. 16 for further details).

Each note plaintext (denoted np) consists of (v, ρ, r,memo).

The �rst three of these �elds are as de�ned earlier. memo is a 512-byte memo �eld associated with this note .

The usage of the memo �eld is by agreement between the sender and recipient of the note . The memo �eld
SHOULD be encoded either as:

• a UTF-8 human-readable string [Unicode], padded by appending zero bytes; or

• an arbitrary sequence of 512 bytes starting with a byte value of 0xF5 or greater, which is therefore not a valid
UTF-8 string.

In the former case, wallet software is expected to strip any trailing zero bytes and then display the resulting UTF-8
string to the recipient user, where applicable. Incorrect UTF-8-encoded byte sequences should be displayed as
replacement characters (U+FFFD).

In the latter case, the contents of the memo �eld SHOULD NOT be displayed. A start byte of 0xF5 is reserved
for use by automated software by private agreement. A start byte of 0xF6 or greater is reserved for use in future
Zcash protocol extensions.

The encoding of a note plaintext consists of, in order:

8-bit 0x00 64-bit v 256-bit ρ 256-bit r memo (512 bytes)

• A byte, 0x00, indicating this version of the encoding of a note plaintext .

• 8 bytes specifying v.

• 32 bytes specifying ρ.

• 32 bytes specifying r.

• 512 bytes specifying memo.

5.7 Encodings of Addresses and Keys

This section describes how Zcash encodes payment addresses , viewing keys , and spending keys .

Addresses and keys can be encoded as a byte sequence; this is called the raw encoding . This byte sequence can
then be further encoded using Base58Check. The Base58Check layer is the same as for upstream Bitcoin addresses
[Bitcoin-Base58].

SHA-256 compression outputs are always represented as sequences of 32 bytes.

The language consisting of the following encoding possibilities is pre�x-free.

5.7.1 Transparent Payment Addresses

These are encoded in the same way as in Bitcoin [Bitcoin-Base58].

5.7.2 Transparent Private Keys

These are encoded in the same way as in Bitcoin [Bitcoin-Base58].
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5.7.3 Protected Payment Addresses

A payment address consists of apk and pkenc. apk is a SHA-256 compression output. pkenc is a Bern2006 public key,
for use with the encryption scheme de�ned in §4.5 ‘In-band secret distribution’ on p. 16.

The raw encoding of a payment address consists of:

8-bit 0x16 8-bit 0x9A 256-bit apk 256-bit pkenc

• Two bytes [0x16,0x9A], indicating this version of the raw encoding of a Zcash payment address on the
production network. (Addresses on the test network use [0x14,0x51] instead.)

• 256 bits specifying apk.

• 256 bits specifying pkenc, using the normal encoding of a Curve25519 public key [Bern2006].

5.7.4 Spending Keys

A spending key consists of ask, which is a sequence of 252 bits.

The raw encoding of a spending key consists of, in order:

8-bit 0xAB 8-bit 0x36 [0]4 252-bit ask

• Two bytes [0xAB,0x36], indicating this version of the raw encoding of a Zcash spending key on the pro-
duction network. (Addresses on the test network use [0xB1,0xEB] instead.)

• 4 zero padding bits.

• 252 bits specifying ask.

The zero padding occupies the most signi�cant 4 bits of the third byte.

Note: If an implementation represents ask internally as a sequence of 32 bytes with the 4 bits of zero padding
intact, it will be in the correct form for use as an input to PRFaddr, PRFnf , and PRFpk without need for bit-shifting.
Future key representations may make use of these padding bits.

6 Zero-Knowledge Proving System

Zcash uses zk-SNARKs generated by its fork of libsnark [libsnark-fork] with the proving system described in
[BCTV2015], which is a re�nement of the system in [PGHR2013].

The pairing implementation is ALT BN128.

Let q = 21888242871839275222246405745257275088696311157297823662689037894645226208583.

Let r = 21888242871839275222246405745257275088548364400416034343698204186575808495617.

Let b = 3.

(q and r are prime.)

The pairing is of type G1 × G2 → GT , where:

• G1 is a Barreto–Naehrig curve over Fq with equation y2 = x3 + b.
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• G2 is a twisted Barreto-Naehrig curve over Fq2 with equation y2 = x3 + b/xi. We represent elements of Fq2 as
polynomials a1t + a0 ◦

◦ Fq[t], modulo the irreducible polynomial t2 + 1.

• GT is Fq12 .

Let P1 ◦
◦ G1 = (1, 2).

Let P2 ◦
◦ G2 = (11559732032986387107991004021392285783925812861821192530917403151452391805634 t +

10857046999023057135944570762232829481370756359578518086990519993285655852781,
4082367875863433681332203403145435568316851327593401208105741076214120093531 t +
8495653923123431417604973247489272438418190587263600148770280649306958101930).

The curves G1 and G2 both have prime order r, and so P1 and P2 are generators of G1 and G2 respectively.

A proof consists of a tuple (πA
◦
◦ G1, π

′
A

◦
◦ G1, πB

◦
◦ G2, π

′
B

◦
◦ G1, πC

◦
◦ G1, π

′
C

◦
◦ G1, πK

◦
◦ G1, πH

◦
◦ G1). It is

computed as described in [BCTV2015, Appendix B].

Note: Many details of the proving system are beyond the scope of this protocol document. For example, the
Rank 1 Constraint System corresponding to the JoinSplit circuit is not speci�ed here. In practice it will be nec-
essary to use the speci�c proving and veri�cation keys generated for the Zcash production block chain, and a
proving system implementation that is interoperable with the Zcash fork of libsnark , to ensure compatibility.

6.1 Encoding of Points

De�ne I2OSP ◦
◦

(k ◦
◦ N) × {0 .. 256k−1} → {0 .. 255}k such that I2OSP`(n) is the sequence of ` bytes representing n

in big-endian order.

For a point P ◦
◦ G1 = (xP , yP ):

• The �eld elements xP and yP
◦
◦ Fq are represented as integers x and y ◦

◦ {0 .. q−1}.

• Let ỹ = y mod 2.

• P is encoded as 0 0 0 0 0 0 1 1-bit ỹ 256-bit I2OSP32(x) .

For a point P ◦
◦ G2 = (xP , yP ):

• A �eld element w ◦
◦ Fq2 is represented as a polynomial aw,1t+ aw,0 ◦

◦ Fq[t] modulo t2 + 1. De�ne FE2IP ◦
◦ Fq2 →

{0 .. q2−1} such that FE2IP(w) = aw,1q + aw,0.

• Let x = FE2IP(xP ), y = FE2IP(yP ), and y′ = FE2IP(−yP ).

• Let ỹ =

{
1, if y > y′

0, otherwise.

• P is encoded as 0 0 0 0 1 0 1 1-bit ỹ 512-bit I2OSP64(x) .

Non-normative notes:

• The use of big-endian byte order is different from the encoding of other integers in this protocol. The above
encodings are consistent with the de�nition of EC2OSP for compressed curve points in [IEEE2004, section
5.5.6.2]. The LSB compressed form (i.e. EC2OSP-XL) is used for points onG1, and the SORT compressed form
(i.e. EC2OSP-XS) for points on G2.

• Testing y > y′ for the compression of G2 points is equivalent to testing whether (ay,1, ay,0) > (a−y,1, a−y,0)
in lexicographic order.

• Algorithms for decompressing points from the above encodings are given in [IEEE2000, Appendix A.12.8]
for G1, and [IEEE2004, Appendix A.12.11] for G2.
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When computing square roots in Fq or Fq2 in order to decompress a point encoding, the implementation MUST
NOT assume that the square root exists, or that the encoding represents a point on the curve.

6.2 Encoding of Zero-Knowledge Proofs

A proof is encoded by concatenating the encodings of its elements:

264-bit πA 264-bit π′A 520-bit πB 264-bit π′B 264-bit πC 264-bit π′C 264-bit πK 264-bit πH

The resulting proof size is 296 bytes.

In addition to the steps to verify a proof given in [BCTV2015, Appendix B], the veri�er MUST check, for the encoding
of each element, that:

• the lead byte is of the required form;

• the remaining bytes encode a big-endian representation of an integer in {0 .. q−1} or (in the case of πB )
{0 .. q2−1};

• the encoding represents a point on the relevant curve.

7 Consensus Changes from Bitcoin

7.1 Block Headers

The Zcash block header format is as follows:
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Bytes Name Data Type Description

4 nVersion int32 t The block version number indicates which set
of block validation rules to follow. The cur-
rent and only de�ned block version number for
Zcash is 4.

32 hashPrevBlock char[32] A SHA-256d hash in internal byte order of the
previous block ’s header. This ensures no previ-
ous block can be changed without also chang-
ing this block ’s header.

32 hashMerkleRoot char[32] A SHA-256d hash in internal byte order. The
merkle root is derived from the hashes of all
transactions included in this block , ensuring
that none of those transactions can be modi-
�ed without modifying the header.

32 hashReserved char[32] A reserved �eld which should be ignored.

4 nTime uint32 t The block time is a Unix epoch time when the
miner started hashing the header (according to
the miner). This MUST be greater than or equal
to the median time of the previous 11 blocks.
TODO: has this changed? A full node MUST
NOT accept blocks with headers more than two
hours in the future according to its clock.

4 nBits uint32 t An encoded version of the target threshold this
block ’s header hash must be less than or equal
to, in the same nBits format used by Bitcoin.
[Bitcoin-nBits]

32 nNonce char[32] An arbitrary �eld miners change to modify the
header hash in order to produce a hash below
the target threshold.

1344 nSolution char[1344] The Equihash solution, which MUST be valid
according to §7.2.1 ‘Equihash’ on p. 26.

The changes relative to Bitcoin version 4 blocks as described in [Bitcoin-Block] are:

• The block version number MUST be 4. Previous versions are not supported. Software that parses blocks
MUST NOT assume, when an encoded block starts with an nVersion �eld representing a value other than 4
(e.g. future versions potentially introduced by hard forks), that it will be parseable according to this format.

• The hashReserved and nSolution �elds have been added.

• The type of the nNonce �eld has changed from uint32 t to char[32].

7.2 Proof of Work

Zcash uses Equihash [BK2016] as its Proof of Work. Motivations for changing the Proof of Work from SHA-256d
used by Bitcoin are described in [WG2016].

A block satis�es the Proof of Work if and only if:

• The nSolution �eld encodes a valid Equihash solution according to §7.2.1 ‘Equihash’ on p. 26.

• The block header satis�es the dif�culty check according to §7.2.2 ‘Difficulty filter’ on p. 27.
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7.2.1 Equihash

An instance of the Equihash algorithm is parameterized by positive integers n and k, such that n is a multiple of
k + 1. We assume k ≥ 3.

The Equihash parameters for the production network are n = 200, k = 9. TODO: These may not be final.

The Generalized Birthday Problem is de�ned as follows: given a sequence X1..N of n-bit strings, �nd 2k distinct

Xij such that
2k⊕

j=1
Xij = 0.

In Equihash, N = 2 n
k+1+1, and the sequence X1..N is derived from the block header and a nonce:

Let powtag := 64-bit “ZcashPoW” 32-bit n 32-bit k .

Let powinput(g) := 32-bit nVersion 256-bit hashPrevBlock 256-bit hashMerkleRoot

256-bit hashReserved 32-bit nTime 32-bit nBits

256-bit nNonce 32-bit g

Let ` := n
k+1 + 1.

Let m := floor
(512

n

)
.

Let T := concatB([GeneralCRHnm(powtag, powinput(g)) for g from 0 up to ceiling
(

N
m

)
− 1]).

For h ∈ {1 .. N}, let Xh = Tn(h−1)+1..nh.

(In other words, the bit sequence T is split into N subsequences of n bits. Indices of bits in T are 1-based.)

De�ne I2BSP ◦
◦

(u ◦
◦ N)×{0 .. 2u−1} → Bu such that I2BSPu(x) is the sequence of ubits representing x in big-endian

order.

De�ne BS2IP ◦
◦

(u ◦
◦ N) ×Bu → {0 .. 2u−1} such that BS2IPu is the inverse of I2BSPu.

De�ne Ξr (a, b) := BS2IP2r−1`(concatB(Xia..b
)).

A valid Equihash solution is then a sequence i ◦
◦ {1 .. N}2

k
that satis�es the following conditions:

Generalized Birthday condition
2k⊕

j=1
Xij = 0.

Algorithm Binding conditions For all r ∈ {1 .. k−1}, for all w ∈ {0 .. 2k−r−1}:

•
2r⊕

j=1
Xiw2r+j

has nr
k+1 leading zeroes; and

• Ξr (w2r + 1, w2r + 2r−1) < Ξr (w2r + 2r−1 + 1, w2r + 2r).

Note: This does not include a dif�culty condition, because here we are de�ning validity of an Equihash solution
independent of dif�culty.

An Equihash solution with n = 200 and k = 9 is encoded in the nSolution �eld of a block header as follows:

I2BSP21(i1 − 1) I2BSP21(i2 − 1) · · · I2BSP21(i512 − 1)

Recall from § 5.1 ‘Integers, Bit Sequences, and Endianness’ on p. 17 that bits in the above diagram are ordered
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from most to least signi�cant in each byte. For example, if the �rst 3 elements of i are [69, 42, 221], then the corre-
sponding bit array is:

I2BSP21(68) I2BSP21(41) I2BSP21(221 − 1)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8-bit 0 8-bit 2 8-bit 32 8-bit 0 8-bit 10 8-bit 127 8-bit 255 · · ·

and so the �rst 7 bytes of nSolution would be [0, 2, 32, 0, 10, 127, 255].

Note: I2BSP and BS2IP are big-endian, while the encoding of integer �elds in powtag and powinput is little-endian.
The rationale for this is that little-endian serialization of block headers is consistent with Bitcoin, but using little-
endian ordering of bits in the solution encoding would require bit-reversal (as opposed to only shifting). The com-
parison of Ξr values obtained by a big-endian conversion is equivalent to lexicographic comparison as speci�ed
in [BK2016, section IV A].

7.2.2 Dif�culty �lter

The dif�culty �lter is unchanged from Bitcoin, and is calculated using SHA-256d on the whole block header (in-
cluding nSolution).

7.2.3 Dif�culty adjustment

Zcash uses a dif�culty adjustment algorithm based on DigiShield v3/v4, with simpli�cations and altered parame-
ters, to adjust dif�culty to target the desired 2.5-minute block time. Unlike Bitcoin, the dif�culty adjustment occurs
after every block.

TODO: Describe the algorithm.

8 Differences from the Zerocash paper

8.1 Transaction Structure

Zerocash introduces two new operations, which are described in the paper as new transaction types, in addition
to the original transaction type of the cryptocurrency on which it is based (e.g. Bitcoin).

In Zcash, there is only the original Bitcoin transaction type, which is extended to contain a sequence of zero or
more Zcash-speci�c operations.

This allows for the possibility of chaining transfers of protected value in a single Zcash transaction, e.g. to spend a
protected note that has just been created. (In Zcash, we refer to value stored in UTXOs as “transparent”, and value
stored in JoinSplit operation output notes as “protected”.) This was not possible in the Zerocash design without
using multiple transactions. It also allows transparent and protected transfers to happen atomically — possibly
under the control of nontrivial script conditions, at some cost in distinguishability.

TODO: Describe changes to signing.

8.2 Uni�cation of Mints and Pours

In the original Zerocash protocol, there were two kinds of transaction relating to protected notes :

• a “Mint” transaction takes value from transparent UTXOs as input and produces a new protected note as
output.
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• a “Pour” transaction takes up to Nold protected notes as input, and produces up to Nnew protected notes and
a transparent UTXO as output.

Only “Pour” transactions included a zk-SNARK proof.

In Zcash, the sequence of operations added to a transaction (described in §8.1 ‘Transaction Structure’ on p. 27)
consists only of JoinSplit operations . A JoinSplit operation is a Pour operation generalized to take a transparent
UTXO as input, allowing JoinSplit operations to subsume the functionality of Mints. An advantage of this is that
a Zcash transaction that takes input from an UTXO can produce up to Nnew output notes , improving the indis-
tinguishability properties of the protocol. A related change conceals the input arity of the JoinSplit operation: an
unused (zero-value) input is indistinguishable from an input that takes value from a note .

This uni�cation also simpli�es the �x to the Faerie Gold attack described below, since no special case is needed
for Mints.

8.3 Memo Fields

Zcash adds a memo �eld sent from the creator of a JoinSplit description to the recipient of each output note . This
feature is described in more detail in §5.6 ‘Note Plaintexts and Memo Fields’ on p. 20.

8.4 Faerie Gold attack and �x

When a protected note is created in Zerocash, the creator is supposed to choose a new ρ value at random. The
nulli�er of the note is derived from its spending key (ask) and ρ. The note commitment is derived from the recipient
address component apk, the value v, and the commitment trapdoor r, as well as ρ. However nothing prevents
creating multiple notes with different v and r (hence different note commitments) but the same ρ.

An adversary can use this to mislead a note recipient, by sending two notes both of which are veri�ed as valid by
Receive (as de�ned in [BCG+2014, Figure 2]), but only one of which can be spent.

We call this a “Faerie Gold” attack — referring to various Celtic legends in which faeries pay mortals in what appears
to be gold, but which soon after reveals itself to be leaves, gorse blossoms, gingerbread cakes, or other less valuable
things [LG2004].

This attack does not violate the security de�nitions given in [BCG+2014]. The issue could be framed as a problem
either with the de�nition of Completeness, or the de�nition of Balance:

• The Completeness property asserts that a validly received note can be spent provided that its nulli�er does
not appear on the ledger. This does not take into account the possibility that distinct notes , which are
validly received, could have the same nulli�er. That is, the security de�nition depends on a protocol de-
tail –nulli�ers– that is not part of the intended abstract security property, and that could be implemented
incorrectly.

• The Balance property only asserts that an adversary cannot obtain more funds than they have minted or
received via payments. It does not prevent an adversary from causing others’ funds to decrease. In a Faerie
Gold attack, an adversary can cause spending of a note to reduce (to zero) the effective value of another
note for which the attacker does not know the spending key, which violates an intuitive conception of global
balance.

These problems with the security de�nitions need to be repaired, but doing so is outside the scope of this speci-
�cation. Here we only describe how Zcash addresses the immediate attack.

It would be possible to address the attack by requiring that a recipient remember all of the ρ values for all notes they
have ever received, and reject duplicates (as proposed in [GGM2016]). However, this requirement would interfere
with the intended Zcash feature that a holder of a spending key can recover access to (and be sure that they are
able to spend) all of their funds, even if they have forgotten everything but the spending key.

Instead, Zcash enforces that an adversary must choose distinct values for each ρ, by making use of the fact that all of
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the nulli�ers in JoinSplit descriptions that appear in a valid block chain view must be distinct. This is true regardless
of whether the nulli�ers corresponded to real or dummy notes. The nulli�ers are used as input to BLAKE2b-256 to
derive a public value hSig which uniquely identi�es the transaction, as described in §4.4.1 ‘Computation of hSig’ on
p. 13. (hSig was already used in Zerocash in a way that requires it to be unique in order to maintain indistinguisha-
bility of JoinSplit descriptions ; adding the nulli�ers to the input of the hash used to calculate it has the effect of
making this uniqueness property robust even if the transaction creator is an adversary.)

The ρ value for each output note is then derived from a random private seed ϕ and hSig using PRFρϕ. The correct
construction of ρ for each output note is enforced by the circuit (see §4.4.6 ‘Uniqueness of ρnew

i ’ on p. 16).

Now even if the creator of a JoinSplit description does not choose ϕ randomly, uniqueness of nulli�ers and col-
lision resistance of both BLAKE2b-256 and PRFρ will ensure that the derived ρ values are unique, at least for any
two JoinSplit descriptions that get into a valid block chain view. This is suf�cient to prevent the Faerie Gold attack.

8.5 Internal hash collision attack and �x

The Zerocash security proof requires that the composition of COMMr and COMMs is a computationally binding
commitment to its inputs apk, v, and ρ. However, the instantiation of COMMr and COMMs in section 5.1 of the paper
did not meet the de�nition of a binding commitment at a 128-bit security level. Speci�cally, the internal hash of
apk and ρ is truncated to 128 bits (motivated by providing statistical hiding security). This allows an attacker, with
a work factor on the order of 264, to �nd distinct values of ρ with colliding outputs of the truncated hash, and
therefore the same note commitment . This would have allowed such an attacker to break the balance property
by double-spending notes , potentially creating arbitrary amounts of currency for themself [HW2016].

Zcash uses a simpler construction with a single SHA-256 evaluation for the commitment. The motivation for the
nested construction in Zerocash was to allow Mint transactions to be publically veri�ed without requiring a ZK
proof (as described under step 3 in [BCG+2014, section 1.3]). Since Zcash combines “Mint” and “Pour” transactions
into a generalized JoinSplit operation which always uses a ZK proof, it does not require the nesting. A side bene�t
is that this reduces the number of SHA256Compress evaluations needed to compute each note commitment from
three to two, saving a total of four SHA256Compress evaluations in the JoinSplit circuit .

Note: Zcash note commitments are not statistically hiding, so Zcash does not support the “everlasting anonymity”
property described in [BCG+2014, section 8.1], even when used as described in that section. While it is possible to
de�ne a statistically hiding, computationally binding commitment scheme for this use at a 128-bit security level,
the overhead of doing so within the circuit was not considered to justify the bene�ts.

8.6 Changes to PRF inputs and truncation

...

The need for collision resistance of CRH truncated to 253 bits was not explicitly stated in the Zerocash paper; this
does not follow from collision resistance of CRH.

8.7 In-band secret distribution

Zerocash speci�ed ECIES (referencing Certicom’s SEC 1 standard) as the encryption scheme used for the in-band
secret distribution. This has been changed to a scheme based on Curve25519 key agreement, and the authenti-
cated encryption algorithm AEAD CHACHA20 POLY1305. This scheme is still loosely based on ECIES, and on the
crypto box seal scheme de�ned in libsodium [libsodium-Seal].

The motivations for this change were as follows:

• The Zerocash paper did not specify the curve to be used. We believe that Curve25519 has signi�cant side-
channel resistance, performance, implementation complexity, and robustness advantages over most other
available curve choices, as explained in [Bern2006].
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• ECIES permits many options, which were not speci�ed. There are at least –counting conservatively– 576
possible combinations of options and algorithms over the four standards (ANSI X9.63, IEEE Std 1363a-2004,
ISO/IEC 18033-2, and SEC 1) that de�ne ECIES variants [MAEA2010].

• Although the Zerocash paper states that ECIES satis�es key privacy (as de�ned in [BBDP2001]), it is not clear
that this holds for all curve parameters and key distributions. For example, if a group of non-prime order
is used, the distribution of ciphertexts could be distinguishable depending on the order of the points rep-
resenting the ephemeral and recipient public keys. Public key validity is also a concern. Curve25519 key
agreement is de�ned in a way that avoids these concerns due to the curve structure and the “clamping” of
private keys.

• Unlike the DHAES/DHIES proposal on which it is based [ABR1999], ECIES does not require a representation
of the sender’s ephemeral public key to be included in the input to the KDF, which may impair the security
properties of the scheme. (The Std 1363a-2004 version of ECIES [IEEE2004] has a “DHAES mode” that allows
this, but the representation of the key input is underspeci�ed, leading to incompatible implementations.)
The scheme we use has both the ephemeral and recipient public key encodings –which are unambiguous
for Curve25519– and also hSig and a nonce as described below, as input to the KDF. Note that because pkenc
is included in the KDF input, being able to break the Elliptic Curve Dif�e-Hellman Problem on Curve25519
(without breaking AEAD CHACHA20 POLY1305 as an authenticated encryption scheme or BLAKE2b-256 as
a KDF) would not help to decrypt the transmitted notes ciphertext unless pkenc is known or guessed.

• The KDF also takes a public seed hSig as input. This can be modeled as using a different “randomness extrac-
tor” for each JoinSplit operation, which limits degradation of security with the number of JoinSplit operations .
This facilitates security analysis as explained in [DGKM2011] — see section 7 of that paper for a security proof
that can be applied to this construction under the assumption that single-block BLAKE2b-256 is a “weak
PRF”. Note that hSig is authenticated, by the ZK proof, as having been chosen with knowledge of aold

sk,1..Nold , so
an adversary cannot modify it in a ciphertext from someone else’s transaction for use in a chosen-ciphertext
attack without detection.

• The scheme used by Zcash includes an optimization that uses the same ephemeral key (with different nonces)
for the two ciphertexts encrypted in each JoinSplit description.

8.8 Omission in Zerocash security proof

The abstract Zerocash protocol requires PRFaddr only to be a PRF; it is not speci�ed to be collision-resistant. This
reveals a �aw in the proof of the Balance property.

Suppose that an adversary �nds a collision on PRFaddr such that a1
sk and a2

sk are distinct spending keys for the same
apk. Because the note commitment is to apk, but the nulli�er is computed from ask (and ρ), the adversary is able to
double-spend the note, once with each ask. This is not detected because each spend reveals a different nulli�er.
The JoinSplit statements are still valid because they can only check that the ask in the witness is some preimage of
the apk used in the note commitment .

The error is in the proof of Balance in [BCG+2014, Appendix D.3]. For the “A violates Condition I” case, the proof
says:

“(i) If cmold
1 = cmold

2 , then the fact that snold
1 , snold

2 implies that the witness a contains two distinct openings of
cmold

1 (the �rst opening contains (aold
sk,1, ρ

old
1 ), while the second opening contains (aold

sk,2, ρ
old
2 )). This violates the

binding property of the commitment scheme COMM.”

In fact the openings do not contain aold
sk,i; they contain aold

pk,i.

A similar error occurs in the argument for the “A violates Condition II” case.

The �aw is not exploitable for the actual instantiations of PRFaddr in Zerocash and Zcash, which are collision-
resistant assuming that SHA256Compress is.

The proof can be straightforwardly repaired. The intuition is that we can rely on collision resistance of PRFaddr

(on both its arguments) to argue that distinctness of aold
sk,1 and aold

sk,2, together with constraint 1(b) of the JoinSplit
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statement (see §4.4.6 ‘Spend authority’ on p. 15), implies distinctness of aold
pk,1 and aold

pk,2, therefore distinct openings
of the note commitment when Condition I or II is violated.

8.9 Miscellaneous

• The paper de�nes a note as a tuple (apk, v, ρ, r, s, cm), whereas this speci�cation de�nes it as (apk, v, ρ, r). The
instantiation of COMMs in section 5.1 of the paper did not actually use s, and neither does the new instantiation
of NoteCommitment in Zcash. cm can be computed from the other �elds.

• The length of proof encodings given in the paper is 288 bytes. This differs from the 296 bytes speci�ed in
§6.2 ‘Encoding of Zero-Knowledge Proofs’ on p. 24, because the paper did not take into account the need to
encode compressed y-coordinates. The fork of libsnark used by Zcash uses a different format to upstream
libsnark , in order to follow [IEEE2004].
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• Add various citations: the “Fixing Vulnerabilities in the Zcash Protocol” and “Why Equihash?” blog posts,
several crypto papers for security de�nitions, and the Bitcoin whitepaper.
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