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Abstract. Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash, with
security fixes and improvements to performance and functionality. It bridges the existing transparent
payment scheme used by Bitcoin with a shielded payment scheme secured by zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKs). It attempted to address the problem of mining
centralization by use of the Equihash memory-hard proof-of-work algorithm.

This specification defines the Zcash consensus protocol at launch; after the upgrade codenamed Over-
winter; and after the subsequent upgrade codenamed Sapling. It is a work in progress. Protocol
differences from Zerocash and Bitcoin are also explained.
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1 Introduction

Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash [BCGGMTV2014], with
security fixes and improvements to performance and functionality. It bridges the existing transparent payment
scheme used by Bitcoin [Nakamoto2008] with a shielded payment scheme secured by zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKs).

Changes from the original Zerocash are explained in §8 ‘Differences from the Zerocash paper’ on p. 92, and
highlighted in magenta throughout the document. Changes specific to the Overwinter upgrade are highlighted in
blue. Changes specific to the Sapling upgrade following Overwinter are highlighted in green. All of these are also
changes from Zerocash. The name Sprout is used for the Zcash protocol prior to Sapling (both before and after
Overwinter).

Technical terms for concepts that play an important rôle in Zcash are written in slanted text . Italics are used for
emphasis and for references between sections of the document.

The key words MUST, MUST NOT, SHOULD, SHOULD NOT, MAY, and RECOMMENDED in this document are to
be interpreted as described in [RFC-2119] when they appear in ALL CAPS. These words may also appear in this
document in lower case as plain English words, absent their normative meanings.

This specification is structured as follows:

• Notation — definitions of notation used throughout the document;

• Concepts — the principal abstractions needed to understand the protocol;

• Abstract Protocol — a high-level description of the protocol in terms of ideal cryptographic components;

• Concrete Protocol — how the functions and encodings of the abstract protocol are instantiated;

• Network Upgrades — the strategy for upgrading to Overwinter and then Sapling;

• Consensus Changes from Bitcoin — how Zcash differs from Bitcoin at the consensus layer, including the
Proof of Work;

• Differences from the Zerocash protocol — a summary of changes from the protocol in [BCGGMTV2014].

• Appendix: Circuit Design — details of how the Sapling circuit is defined as a quadratic constraint program.

• Appendix: Batching Optimizations — improvements to the efficiency of verifying multiple signatures and
proofs.

1.1 Caution

Zcash security depends on consensus. Should a program interacting with the Zcash network diverge from con-
sensus, its security will be weakened or destroyed. The cause of the divergence doesn’t matter: it could be a bug
in your program, it could be an error in this documentation which you implemented as described, or it could be
that you do everything right but other software on the network behaves unexpectedly. The specific cause will not
matter to the users of your software whose wealth is lost.

Having said that, a specification of intended behaviour is essential for security analysis, understanding of the
protocol, and maintenance of Zcash and related software. If you find any mistake in this specification, please file
an issue at https://github.com/zcash/zips/issues or contact <security@z.cash>.

1.2 High-level Overview

The following overview is intended to give a concise summary of the ideas behind the protocol, for an audience
already familiar with block chain-based cryptocurrencies such as Bitcoin. It is imprecise in some aspects and is
not part of the normative protocol specification. This overview applies to both Sprout and Sapling, differences in
the cryptographic constructions used notwithstanding.
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Value in Zcash is either transparent or shielded . Transfers of transparent value work essentially as in Bitcoin and
have the same privacy properties. Shielded value is carried by notes 2, which specify an amount and (indirectly) a
shielded payment address , which is a destination to which notes can be sent. As in Bitcoin, this is associated with a
private key that can be used to spend notes sent to the address; in Zcash this is called a spending key .

To each note there is cryptographically associated a note commitment . Once the transaction creating the note has
been mined, it is associated with a fixed note position in a tree of note commitments , and with a nullifier 2 unique
to that note . Computing the nullifier requires the associated private spending key (or the nullifier deriving key for
Sapling notes). It is infeasible to correlate the note commitment or note position with the corresponding nullifier
without knowledge of at least this key. An unspent valid note , at a given point on the block chain, is one for which
the note commitment has been publically revealed on the block chain prior to that point, but the nullifier has not.

A transaction can contain transparent inputs, outputs, and scripts, which all work as in Bitcoin [Bitcoin-Protocol].
It also includes JoinSplit descriptions , Spend descriptions , and Output descriptions . Together these describe
shielded transfers which take in shielded input notes , and/or produce shielded output notes . (For Sprout, each
JoinSplit description handles up to two shielded inputs and up to two shielded outputs . For Sapling, each shielded
input or shielded output has its own description.) It is also possible for value to be transferred between the
transparent and shielded domains.

The nullifiers of the input notes are revealed (preventing them from being spent again) and the commitments of the
output notes are revealed (allowing them to be spent in future). A transaction also includes computationally sound
zk-SNARK proofs and signatures, which prove that all of the following hold except with insignificant probability:

For each shielded input ,

• [Sapling onward] there is a revealed value commitment to the same value as the input note ;

• if the value is nonzero, some revealed note commitment exists for this note ;

• the prover knew the proof authorizing key of the note ;

• the nullifier and note commitment are computed correctly.

and for each shielded output ,

• [Sapling onward] there is a revealed value commitment to the same value as the output note ;

• the note commitment is computed correctly;

• it is infeasible to cause the nullifier of the output note to collide with the nullifier of any other note .

For Sprout, the JoinSplit statement also includes an explicit balance check. For Sapling, the value commitments
corresponding to the inputs and outputs are checked to balance (together with any net transparent input or output)
outside the zk-SNARK .

In addition, various measures (differing between Sprout and Sapling) are used to ensure that the transaction cannot
be modified by a party not authorized to do so.

Outside the zk-SNARK , it is checked that the nullifiers for the input notes had not already been revealed (i.e. they
had not already been spent).

A shielded payment address includes a transmission key for a “key-private” asymmetric encryption scheme.
Key-private means that ciphertexts do not reveal information about which key they were encrypted to, except to a
holder of the corresponding private key, which in this context is called the receiving key . This facility is used to
communicate encrypted output notes on the block chain to their intended recipient, who can use the receiving
key to scan the block chain for notes addressed to them and then decrypt those notes .

In Sapling, for each spending key there is a full viewing key that allows recognizing both incoming and outgoing
notes without having spend authority. This is implemented by an additional ciphertext in each Output description.

2 In Zerocash [BCGGMTV2014], notes were called “coins”, and nullifiers were called “serial numbers”.
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The basis of the privacy properties of Zcash is that when a note is spent, the spender only proves that some
commitment for it had been revealed, without revealing which one. This implies that a spent note cannot be linked
to the transaction in which it was created. That is, from an adversary’s point of view the set of possibilities for a
given note input to a transaction—its note traceability set— includes all previous notes that the adversary does
not control or know to have been spent.3 This contrasts with other proposals for private payment systems, such
as CoinJoin [Bitcoin-CoinJoin] or CryptoNote [vanSaberh2014], that are based on mixing of a limited number of
transactions and that therefore have smaller note traceability sets .

The nullifiers are necessary to prevent double-spending: each note on the block chain only has one valid nullifier ,
and so attempting to spend a note twice would reveal the nullifier twice, which would cause the second transaction
to be rejected.

2 Notation

B means the type of bit values, i.e. {0, 1}. BYY means the type of byte values, i.e. {0 .. 255}.
N means the type of nonnegative integers. N+ means the type of positive integers. Z means the type of integers.
Q means the type of rationals.

x ◦

◦ T is used to specify that x has type T . A cartesian product type is denoted by S × T , and a function type by
S → T . An argument to a function can determine other argument or result types.

The type of a randomized algorithm is denoted by S →R T . The domain of a randomized algorithm may be (),
indicating that it requires no arguments. Given f ◦

◦ S →R T and s ◦

◦ S, sampling a variable x ◦

◦ T from the output of f
applied to s is denoted by x ←R f(s).

Initial arguments to a function or randomized algorithm may be written as subscripts, e.g. if x ◦

◦ X , y ◦

◦ Y , and
f ◦

◦ X × Y → Z , then an invocation of f(x, y) can also be written fx(y).

{x ◦

◦ T | px}means the subset of x from T for which px (a boolean expression depending on x) holds.

T ⊆ U indicates that T is an inclusive subset or subtype of U . S ∪ T means the set union of S and T .

S ∩ T means the set intersection of S and T , i.e. {x ◦

◦ S | x ∈ T}.
S \ T means the set difference obtained by removing elements in T from S, i.e. {x ◦

◦ S | x /∈ T}.
x ◦

◦ T 7→ ex
◦

◦ U means the function of type T → U mapping formal parameter x to ex (an expression depending
on x). The types T and U are always explicit.

x ◦

◦ T 7→ 6=y ex
◦

◦ U means x ◦

◦ T 7→ ex
◦

◦ U ∪ {y} restricted to the domain {x ◦

◦ T | ex 6= y} and range U .

P
(

T
)

means the powerset of T .

T [ℓ], where T is a type and ℓ is an integer, means the type of sequences of length ℓ with elements in T . For example,
B

[ℓ] means the set of sequences of ℓ bits, and BYY[k] means the set of sequences of k bytes.

BYY[N] means the type of byte sequences of arbitrary length.

length(S) means the length of (number of elements in) S.

truncatek(S) means the sequence formed from the first k elements of S.

0x followed by a string of monospace hexadecimal digits means the corresponding integer converted from hexadec-
imal. [0x00]ℓ means the sequence of ℓ zero bytes.

“...” means the given string represented as a sequence of bytes in US-ASCII. For example, “abc” represents the
byte sequence [0x61, 0x62, 0x63].

3 We make this claim only for fully shielded transactions . It does not exclude the possibility that an adversary may use data present in
the cleartext of a transaction such as the number of inputs and outputs, or metadata-based heuristics such as timing, to make proba-
bilistic inferences about transaction linkage. For consequences of this in the case of partially shielded transactions , see [Peterson2017],
[Quesnelle2017], and [KYMM2018].
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[0]ℓ means the sequence of ℓ zero bits. [1]ℓ means the sequence of ℓ one bits.

a..b, used as a subscript, means the sequence of values with indices a through b inclusive. For example, a
new
pk,1..N

new

means the sequence [anew
pk,1, a

new
pk,2, ... a

new
pk,N

new ]. (For consistency with the notation in [BCGGMTV2014] and in [BK2016],
this specification uses 1-based indexing and inclusive ranges, notwithstanding the compelling arguments to the
contrary made in [EWD-831].)

{a .. b}means the set or type of integers from a through b inclusive.

[[ f(x) for x from a up to b ]] means the sequence formed by evaluating f on each integer from a to b inclusive, in
ascending order. Similarly, [[ f(x) for x from a down to b ]] means the sequence formed by evaluating f on each
integer from a to b inclusive, in descending order.

a || b means the concatenation of sequences a then b.

concatB(S) means the sequence of bits obtained by concatenating the elements of S viewed as bit sequences. If the
elements of S are byte sequences, they are converted to bit sequences with the most significant bit of each byte
first.

sorted(S) means the sequence formed by sorting the elements of S.

Fn means the finite field with n elements, and F
∗
n means its group under multiplication (which excludes 0).

Where there is a need to make the distinction, we denote the unique representative of a ◦

◦ Fn in the range {0 .. n− 1}
(or the unique representative of a ◦

◦ F
∗
n in the range {1 .. n− 1}) as a mod n. Conversely, we denote the element of Fn

corresponding to an integer k ◦

◦ Z as k (mod n). We also use the latter notation in the context of an equality k = k′

(mod n) as shorthand for k mod n = k′ mod n, and similarly k 6= k′ (mod n) as shorthand for k mod n 6= k′ mod n.
(When referring to constants such as 0 and 1 it is usually not necessary to make the distinction between field
elements and their representatives, since the meaning is normally clear from context.)

Fn[z] means the ring of polynomials over z with coefficients in Fn.

a + b means the sum of a and b. This may refer to addition of integers, rationals, finite field elements, or group
elements (see §4.1.8 ‘Represented Group’ on p. 25) according to context.

−a means the value of the appropriate integer, rational, finite field, or group type such that (−a) + a = 0 (or when a
is an element of a group G, (−a) + a = OG ), and a− b means a + (−b).

a · b means the product of multiplying a and b. This may refer to multiplication of integers, rationals, or finite field
elements according to context (this notation is not used for group elements).

a/b, also written a

b
, means the value of the appropriate integer, rational, or finite field type such that (a/b) · b = a.

a mod q, for a ◦

◦ N and q ◦

◦ N
+, means the remainder on dividing a by q. (This usage does not conflict with the notation

above for the unique representative of a field element.)

a⊕ b means the bitwise-exclusive-or of a and b, and aî b means the bitwise-and of a and b. These are defined on
integers or (equal-length) bit sequences according to context.

N
∑

i=1

ai means the sum of a1..N .
N
∏

i=1

ai means the product of a1..N .
N
⊕

i=1

ai means the bitwise exclusive-or of a1..N .

When N = 0 these yield the appropriate neutral element, i.e.
∑0

i=1
ai = 0,

∏0

i=1
ai = 1, and

⊕0

i=1
ai = 0 or the

all-zero bit sequence of length given by the type of a.
√
a
√

, where a ◦

◦ Fq , means the positive (i.e. in the range {0 ..
q − 1

2
}) square root of a in Fq . It is only used in cases where

the square root must exist.

b ? x : y means x when b = 1, or y when b = 0.

ab, for a an integer or finite field element and b ◦

◦ Z, means the result of raising a to the exponent b, i.e.

ab :=











∏b

i=1
a, if b ≥ 0

∏−b

i=1

1

a
, otherwise.
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The [k] P notation for scalar multiplication in a group is defined in §4.1.8 ‘Represented Group’ on p. 25.

The convention of affixing ⋆ to a variable name is used for variables that denote bit-sequence representations of
group elements.

The binary relations <, ≤, =, ≥, and > have their conventional meanings on integers and rationals, and are defined
lexicographically on sequences of integers.

floor(x) means the largest integer ≤ x. ceiling (x) means the smallest integer ≥ x.

bitlength(x), for x ◦

◦ N, means the smallest integer ℓ such that 2ℓ > x.

The symbol ⊥ is used to indicate unavailable information, or a failed decryption or validity check.

The following integer constants will be instantiated in §5.3 ‘Constants’ on p. 50:

MerkleDepth
Sprout, MerkleDepth

Sapling, Nold, Nnew, ℓvalue, ℓMerkleSprout, ℓMerkleSapling, ℓhSig, ℓPRFSprout, ℓPRFexpand,
ℓPRFnfSapling, ℓrcm, ℓSeed, ℓask

, ℓϕ, ℓsk, ℓd, ℓivk, ℓovk, ℓscalar, MAX_MONEY, SlowStartInterval, HalvingInterval,
MaxBlockSubsidy, NumFounderAddresses, PoWLimit, PoWAveragingWindow, PoWMedianBlockSpan,
PoWDampingFactor, and PoWTargetSpacing.

The bit sequence constants Uncommitted
Sprout

◦

◦ B
[ℓMerkleSprout] and Uncommitted

Sapling
◦

◦ B
[ℓMerkleSapling], and rational con-

stants FoundersFraction, PoWMaxAdjustDown, and PoWMaxAdjustUp will also be defined in that section.

We use the abbreviation “ctEdwards” to refer to complete twisted Edwards elliptic curves and coordinates (see
§5.4.8.3 ‘Jubjub’ on p. 68).
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3 Concepts

3.1 Payment Addresses and Keys

Users who wish to receive payments under this scheme first generate a random spending key . In Sprout this is
called ask and in Sapling it is called sk.

The following diagram depicts the relations between key components in Sprout and Sapling. Arrows point from a
component to any other component(s) that can be derived from it. Double lines indicate that the same component
is used in multiple abstractions.

[Sprout] The receiving key skenc, the incoming viewing key ivk = (apk, skenc), and the shielded payment address
addrpk = (apk, pkenc) are derived from ask, as described in §4.2.1 ‘Sprout Key Components’ on p. 28.

[Sapling onward] The spend authorizing key ask, proof authorizing key (ak, nsk), full viewing key (ak, nk, ovk),
incoming viewing key ivk, and each diversified payment address addrd = (d, pkd) are derived from sk, as described
in §4.2.2 ‘Sapling Key Components’ on p. 28.

The composition of shielded payment addresses , incoming viewing keys , full viewing keys , and spending keys is
a cryptographic protocol detail that should not normally be exposed to users. However, user-visible operations
should be provided to obtain a shielded payment address or incoming viewing key or full viewing key from a
spending key .

Users can accept payment from multiple parties with a single shielded payment address and the fact that these
payments are destined to the same payee is not revealed on the block chain, even to the paying parties. However if
two parties collude to compare a shielded payment address they can trivially determine they are the same. In the
case that a payee wishes to prevent this they should create a distinct shielded payment address for each payer.

[Sapling onward] Sapling provides a mechanism to allow the efficient creation of diversified payment addresses
with the same spending authority. A group of such addresses shares the same full viewing key and incoming
viewing key , and so creating as many unlinkable addresses as needed does not increase the cost of scanning the
block chain for relevant transactions .

12



Note: It is conventional in cryptography to refer to the key used to encrypt a message in an asymmetric encryption
scheme as the “public key ”. However, the public key used as the transmission key component of an address (pkenc

or pkd) need not be publically distributed; it has the same distribution as the shielded payment address itself. As
mentioned above, limiting the distribution of the shielded payment address is important for some use cases. This
also helps to reduce reliance of the overall protocol on the security of the cryptosystem used for note encryption (see
§4.16 ‘In-band secret distribution (Sprout)’ on p. 44 and §4.17 ‘In-band secret distribution (Sapling)’ on p. 45),
since an adversary would have to know pkenc or some pkd in order to exploit a hypothetical weakness in that
cryptosystem.

3.2 Notes

A note (denoted n) can be a Sprout note or a Sapling note . In either case it represents that a value v is spendable
by the recipient who holds the spending key corresponding to a given shielded payment address .

Let MAX_MONEY, ℓPRFSprout, ℓPRFnfSapling, and ℓd be as defined in §5.3 ‘Constants’ on p. 50.

Let NoteCommit
Sprout be as defined in §5.4.7.1 ‘Sprout Note Commitments’ on p. 63.

Let NoteCommit
Sapling be as defined in §5.4.7.2 ‘Windowed Pedersen commitments’ on p. 64.

Let KA
Sapling be as defined in §5.4.4.3 ‘Sapling Key Agreement’ on p. 59.

A Sprout note is a tuple (apk, v, ρ, rcm), where:

• apk
◦

◦ B
[ℓPRFSprout] is the paying key of the recipient’s shielded payment address ;

• v ◦

◦ {0 .. MAX_MONEY} is an integer representing the value of the note in zatoshi (1 ZEC = 108 zatoshi );

• ρ ◦

◦ B
[ℓPRFSprout] is used as input to PRF

nf
ask

to derive the nullifier of the note ;

• rcm ◦

◦ NoteCommit
Sprout.Trapdoor is a random commitment trapdoor as defined in §4.1.7 ‘Commitment’ on

p. 23.

Let Note
Sprout be the type of a Sprout note , i.e.

Note
Sprout := B

[ℓPRFSprout] × {0 .. MAX_MONEY} × B
[ℓPRFSprout] × NoteCommit

Sprout.Trapdoor.

A Sapling note is a tuple (d, pkd, v, rcm), where:

• d ◦

◦ B
[ℓd] is the diversifier of the recipient’s shielded payment address ;

• pkd
◦

◦ KA
Sapling.PublicPrimeOrder is the diversified transmission key of the recipient’s shielded payment address ;

• v ◦

◦ {0 .. MAX_MONEY} is an integer representing the value of the note in zatoshi ;

• rcm ◦

◦ NoteCommit
Sapling.Trapdoor is a random commitment trapdoor as defined in §4.1.7 ‘Commitment’ on

p. 23.

Let Note
Sapling be the type of a Sapling note , i.e.

Note
Sapling := B

[ℓd] × KA
Sapling.PublicPrimeOrder × {0 .. MAX_MONEY} × NoteCommit

Sapling.Trapdoor.

Creation of new notes is described in §4.6 ‘Sending Notes’ on p. 32. When notes are sent, only a commitment (see
§4.1.7 ‘Commitment’ on p. 23) to the above values is disclosed publically, and added to a data structure called the
note commitment tree . This allows the value and recipient to be kept private, while the commitment is used by the
zero-knowledge proof when the note is spent, to check that it exists on the block chain.
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A Sprout note commitment on a note n = (apk, v, ρ, rcm) is computed as

NoteCommitment
Sprout(n) = NoteCommit

Sprout
rcm (apk, v, ρ),

where NoteCommit
Sprout is instantiated in §5.4.7.1 ‘Sprout Note Commitments’ on p. 63.

Let DiversifyHash be as defined in §5.4.1.6 ‘DiversifyHash Hash Function’ on p. 53.

A Sapling note commitment on a note n = (d, pkd, v, rcm) is computed as

gd := DiversifyHash(d)

NoteCommitment
Sapling(n) :=

{

⊥, if gd = ⊥
NoteCommit

Sapling
rcm (reprJ(gd), reprJ(pkd), v), otherwise.

where NoteCommit
Sapling is instantiated in §5.4.7.2 ‘Windowed Pedersen commitments’ on p. 64.

Notice that the above definition of a Sapling note does not have a ρ field. There is in fact a ρ value associated with
each Sapling note , but this only be computed once its position in the note commitment tree is known (see §3.4
‘Transactions and Treestates’ on p. 15 and §3.7 ‘Note Commitment Trees’ on p. 17). We refer to the combination
of a note and its note position pos, as a positioned note .

For a positioned note , we can compute the value ρ as described in §4.14 ‘Note Commitments and Nullifiers’ on
p. 40.

A nullifier (denoted nf) is derived from the ρ value of a note and the recipient’s spending key ask or nullifier deriving
key nk. This computation uses a Pseudo Random Function (see §4.1.2 ‘Pseudo Random Functions’ on p. 19), as
described in §4.14 ‘Note Commitments and Nullifiers’ on p. 40.

A note is spent by proving knowledge of (ρ, ask) or (ρ, ak, nsk) in zero knowledge while publically disclosing its
nullifier nf , allowing nf to be used to prevent double-spending. In the case of Sapling, a spend authorization
signature is also required, in order to demonstrate knowledge of ask.

3.2.1 Note Plaintexts and Memo Fields

Transmitted notes are stored on the block chain in encrypted form, together with a representation of the note
commitment cm.

The note plaintexts in each JoinSplit description are encrypted to the respective transmission keys pk
new
enc,1..N

new .

Each Sprout note plaintext (denoted np) consists of

(v ◦

◦ {0 .. 2ℓvalue−1}, ρ ◦

◦ B
[ℓPRFSprout], rcm ◦

◦ NoteCommit
Sprout.Trapdoor, memo ◦

◦ BYY[512]).

[Sapling onward] The note plaintext in each Output description is encrypted to the diversified payment address
(d, pkd).

Each Sapling note plaintext (denoted np) consists of

(d ◦

◦ B
[ℓd], v ◦

◦ {0 .. 2ℓvalue−1}, rcm ◦

◦ BYY[32], memo ◦

◦ BYY[512]).

memo represents a 512-byte memo field associated with this note . The usage of the memo field is by agreement
between the sender and recipient of the note .

Other fields are as defined in §3.2 ‘Notes’ on p. 13.

Encodings are given in §5.5 ‘Encodings of Note Plaintexts and Memo Fields’ on p. 72. The result of encryption
forms part of a transmitted note(s) ciphertext . For further details, see §4.16 ‘In-band secret distribution (Sprout)’

on p. 44 and §4.17 ‘In-band secret distribution (Sapling)’ on p. 45.
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3.3 The Block Chain

At a given point in time, each full validator is aware of a set of candidate blocks . These form a tree rooted at the
genesis block , where each node in the tree refers to its parent via the hashPrevBlock block header field (see §7.5
‘Block Header’ on p. 84).

A path from the root toward the leaves of the tree consisting of a sequence of one or more valid blocks consistent
with consensus rules, is called a valid block chain.

Each block in a block chain has a block height . The block height of the genesis block is 0, and the block height of
each subsequent block in the block chain increments by 1.

In order to choose the best valid block chain in its view of the overall block tree, a node sums the work, as defined
in §7.6.5 ‘Definition of Work’ on p. 89, of all blocks in each valid block chain, and considers the valid block chain
with greatest total work to be best. To break ties between leaf blocks , a node will prefer the block that it received
first.

The consensus protocol is designed to ensure that for any given block height , the vast majority of nodes should
eventually agree on their best valid block chain up to that height.

3.4 Transactions and Treestates

Each block contains one or more transactions .

Transparent inputs to a transaction insert value into a transparent value pool associated with the transaction, and
transparent outputs remove value from this pool. As in Bitcoin, the remaining value in the pool is available to
miners as a fee.

Consensus rule: The remaining value in the transparent value pool MUST be nonnegative.

To each transaction there are associated initial treestates for Sprout and for Sapling. Each treestate consists of:

• a note commitment tree (§3.7 ‘Note Commitment Trees’ on p. 17);

• a nullifier set (§3.8 ‘Nullifier Sets’ on p. 17).

Validation state associated with transparent transfers , such as the UTXO (Unspent Transaction Output) set, is not
described in this document; it is used in essentially the same way as in Bitcoin.

An anchor is a Merkle tree root of a note commitment tree (either the Sprout tree or the Sapling tree). It uniquely
identifies a note commitment tree state given the assumed security properties of the Merkle tree’s hash function.
Since the nullifier set is always updated together with the note commitment tree , this also identifies a particular
state of the associated nullifier set .

In a given block chain, for each of Sprout and Sapling, treestates are chained as follows:

• The input treestate of the first block is the empty treestate .

• The input treestate of the first transaction of a block is the final treestate of the immediately preceding block .

• The input treestate of each subsequent transaction in a block is the output treestate of the immediately
preceding transaction.

• The final treestate of a block is the output treestate of its last transaction.

JoinSplit descriptions also have interstitial input and output treestates for Sprout, explained in the following section.
There is no equivalent of interstitial treestates for Sapling.
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3.5 JoinSplit Transfers and Descriptions

A JoinSplit description is data included in a transaction that describes a JoinSplit transfer , i.e. a shielded value
transfer. In Sprout, this kind of value transfer was the primary Zcash-specific operation performed by transactions .

A JoinSplit transfer spends Nold notes nold

1..N
old and transparent input v

old
pub, and creates Nnew notes nnew

1..N
new and trans-

parent output v
new
pub . It is associated with a JoinSplit statement instance (§4.15.1 ‘JoinSplit Statement (Sprout)’ on

p. 41), for which it provides a zk-SNARK proof .

Each transaction has a sequence of JoinSplit descriptions.

The total v
new
pub value adds to, and the total v

old
pub value subtracts from the transparent value pool of the containing

transaction.

The anchor of each JoinSplit description in a transaction refers to a Sprout treestate .

For each of the Nold shielded inputs , a nullifier is revealed. This allows detection of double-spends as described in
§3.8 ‘Nullifier Sets’ on p. 17.

For each JoinSplit description in a transaction, an interstitial output treestate is constructed which adds the note
commitments and nullifiers specified in that JoinSplit description to the input treestate referred to by its anchor .
This interstitial output treestate is available for use as the anchor of subsequent JoinSplit descriptions in the same
transaction. In general, therefore, the set of interstitial treestates associated with a transaction forms a tree in which
the parent of each node is determined by its anchor .

Interstitial treestates are necessary because when a transaction is constructed, it is not known where it will
eventually appear in a mined block . Therefore the anchors that it uses must be independent of its eventual position.

Consensus rules:

• The input and output values of each JoinSplit transfer MUST balance exactly.

• For the first JoinSplit description of a transaction, the anchor MUST be the output Sprout treestate of a
previous block .

• The anchor of each JoinSplit description in a transaction MUST refer to either some earlier block ’s final
Sprout treestate , or to the interstitial output treestate of any prior JoinSplit description in the same transaction.

3.6 Spend Transfers, Output Transfers, and their Descriptions

JoinSplit transfers are not used for Sapling notes . Instead, there is a separate Spend transfer for each shielded
input , and a separate Output transfer for each shielded output .

Spend descriptions and Output descriptions are data included in a transaction that describe Spend transfers and
Output transfers , respectively.

A Spend transfer spends a note nold. Its Spend description includes a Pedersen value commitment to the value of
the note . It is associated with an instance of a Spend statement (§4.15.2 ‘Spend Statement (Sapling)’ on p. 42) for
which it provides a zk-SNARK proof .

An Output transfer creates a note nnew. Similarly, its Output description includes a Pedersen value commitment to
the note value. It is associated with an instance of an Output statement (§4.15.3 ‘Output Statement (Sapling)’ on
p. 43) for which it provides a zk-SNARK proof .

Each transaction has a sequence of Spend descriptions and a sequence of Output descriptions .

To ensure balance, we use a homomorphic property of Pedersen commitments that allows them to be added and
subtracted, as elliptic curve points (§5.4.7.3 ‘Homomorphic Pedersen commitments’ on p. 64). The result of adding
two Pedersen value commitments , committing to values v1 and v2, is a new Pedersen value commitment that
commits to v1 + v2. Subtraction works similarly.
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Therefore, balance can be enforced by adding all of the value commitments for shielded inputs , subtracting all
of the value commitments for shielded outputs , and proving by use of a binding signature (as described in §4.12
‘Balance and Binding Signature (Sapling)’ on p. 37) that the result commits to a value consistent with the net
transparent value change. This approach allows all of the zk-SNARK statements to be independent of each other,
potentially increasing opportunities for precomputation.

A Spend description includes an anchor , which refers to the output Sapling treestate of a previous block . It also
reveals a nullifier , which allows detection of double-spends as described in §3.8 ‘Nullifier Sets’ on p. 17.

Non-normative note: Interstitial treestates are not necessary for Sapling, because a Spend transfer in a given
transaction cannot spend any of the shielded outputs of the same transaction. This is not an onerous restriction
because, unlike Sprout where each JoinSplit transfer must balance individually, in Sapling it is only necessary for
the whole transaction to balance.

Consensus rules:

• The transaction MUST balance as specified in §4.12 ‘Balance and Binding Signature (Sapling)’ on p. 37.

• The anchor of each Spend description MUST refer to some earlier block ’s final Sapling treestate .

3.7 Note Commitment Trees

A note commitment tree is an incremental Merkle tree of fixed depth used to store note commitments that JoinSplit
transfers or Spend transfers produce. Just as the unspent transaction output set (UTXO set) used in Bitcoin, it is
used to express the existence of value and the capability to spend it. However, unlike the UTXO set, it is not the job
of this tree to protect against double-spending, as it is append-only.

A root of a note commitment tree is associated with each treestate (§3.4 ‘Transactions and Treestates’ on p. 15).

Each node in the incremental Merkle tree is associated with a hash value of size ℓMerkleSprout or ℓMerkleSapling bits. The

layer numbered h, counting from layer 0 at the root , has 2h nodes with indices 0 to 2h − 1 inclusive. The hash

value associated with the node at index i in layer h is denoted M
h
i .

The index of a note’s commitment at the leafmost layer (MerkleDepth
Sprout,Sapling) is called its note position.

3.8 Nullifier Sets

Each full validator maintains a nullifier set logically associated with each treestate . As valid transactions containing
JoinSplit transfers or Spend transfers are processed, the nullifiers revealed in JoinSplit descriptions and Spend
descriptions are inserted into the nullifier set associated with the new treestate . Nullifiers are enforced to be
unique within a valid block chain, in order to prevent double-spends.

Consensus rule: A nullifier MUST NOT repeat either within a transaction, or across transactions in a valid block
chain. Sprout and Sapling nullifiers are considered disjoint, even if they have the same bit pattern.
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3.9 Block Subsidy and Founders’ Reward

Like Bitcoin, Zcash creates currency when blocks are mined. The value created on mining a block is called the
block subsidy . It is composed of a miner subsidy and a Founders’ Reward . As in Bitcoin, the miner of a block also
receives transaction fees .

The calculations of the block subsidy , miner subsidy , and Founders’ Reward depend on the block height , as defined
in §3.3 ‘The Block Chain’ on p. 15.

These calculations are described in §7.7 ‘Calculation of Block Subsidy and Founders’ Reward’ on p. 89.

3.10 Coinbase Transactions

The first (and only the first) transaction in a block is a coinbase transaction, which collects and spends any miner
subsidy and transaction fees paid by transactions included in this block . The coinbase transaction MUST also pay
the Founders’ Reward as described in §7.8 ‘Payment of Founders’ Reward’ on p. 90.

4 Abstract Protocol

4.1 Abstract Cryptographic Schemes

4.1.1 Hash Functions

Let MerkleDepth
Sprout, ℓMerkleSprout, MerkleDepth

Sapling, ℓMerkleSapling, ℓivk, ℓd, ℓSeed, ℓPRFSprout, ℓhSig, and Nold be as defined
in §5.3 ‘Constants’ on p. 50.

Let J, J(r), J(r)∗, rJ, and ℓJ be as defined in §5.4.8.3 ‘Jubjub’ on p. 68.

The functions MerkleCRH
Sprout

◦

◦ {0 .. MerkleDepth
Sprout − 1}×B

[ℓMerkleSprout]×B
[ℓMerkleSprout] → B

[ℓMerkleSprout] and (for Sapling),
MerkleCRH

Sapling
◦

◦ {0 .. MerkleDepth
Sapling − 1} × B

[ℓMerkleSapling] × B
[ℓMerkleSapling] → B

[ℓMerkleSapling] are hash functions used in
§4.8 ‘Merkle path validity’ on p. 35. MerkleCRH

Sapling is collision-resistant on all its arguments, and MerkleCRH
Sprout

is collision-resistant except on its first argument.

Both of these functions are instantiated in §5.4.1.3 ‘Merkle Tree Hash Function’ on p. 52.

hSigCRH ◦

◦ B
[ℓSeed] × B

[ℓPRFSprout][N
old

] × JoinSplitSig.Public → B
[ℓhSig] is a collision-resistant hash function used in §4.3

‘JoinSplit Descriptions’ on p. 30. It is instantiated in §5.4.1.4 ‘hSig Hash Function’ on p. 53.

EquihashGen ◦

◦ (n ◦

◦ N
+) × N

+ × BYY[N] × N
+ → B

[n] is another hash function, used in §7.6.1 ‘Equihash’ on p. 86 to
generate input to the Equihash solver. The first two arguments, representing the Equihash parameters n and k, are
written subscripted. It is instantiated in §5.4.1.9 ‘EquihashGenerator’ on p. 57.

CRH
ivk

◦

◦ B
[ℓJ]×B

[ℓJ] → {0 .. 2ℓivk−1} is a collision-resistant hash function used in §4.2.2 ‘Sapling Key Components’

on p. 28 to derive an incoming viewing key for a Sapling shielded payment address . It is also used in the Spend
statement (§4.15.2 ‘Spend Statement (Sapling)’ on p. 42) to confirm use of the correct keys for the note being
spent. It is instantiated in §5.4.1.5 ‘CRH

ivk
Hash Function’ on p. 53.

MixingPedersenHash ◦

◦ J× {0 .. rJ − 1} → J is a hash function used in §4.14 ‘Note Commitments and Nullifiers’ on
p. 40 to derive the unique ρ value for a Sapling note . It is also used in the Spend statement to confirm use of the
correct ρ value as an input to nullifier derivation. It is instantiated in §5.4.1.8 ‘Mixing Pedersen Hash Function’ on
p. 56.

DiversifyHash ◦

◦ B
[ℓd] → J

(r)∗ is a hash function instantiated in §5.4.1.6 ‘DiversifyHash Hash Function’ on p. 53, and
satisfying the Unlinkability security property described in that section. It is used to derive a diversified base from a
diversifier in §4.2.2 ‘Sapling Key Components’ on p. 28.
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4.1.2 Pseudo Random Functions

PRFx is a Pseudo Random Function keyed by x.

Let ℓask
, ℓϕ, ℓhSig, ℓPRFSprout, ℓsk, ℓovk, ℓPRFexpand, ℓPRFnfSapling, Nold, and Nnew be as defined in §5.3 ‘Constants’ on p. 50.

Let ℓJ and J⋆
(r) be as defined in §5.4.8.3 ‘Jubjub’ on p. 68.

Let Sym be as defined in §5.4.3 ‘Authenticated One-Time Symmetric Encryption’ on p. 58.

For Sprout, four independent PRFx are needed:

PRF
addr

◦

◦ B
[ℓask

] × BYY → B
[ℓPRFSprout]

PRF
nf

◦

◦ B
[ℓask

] × B
[ℓPRFSprout] → B

[ℓPRFSprout]

PRF
pk

◦

◦ B
[ℓask

] × {1..Nold} × B
[ℓhSig] → B

[ℓPRFSprout]

PRF
ρ

◦

◦ B
[ℓϕ] × {1..Nnew} × B

[ℓhSig] → B
[ℓPRFSprout]

These are used in §4.15.1 ‘JoinSplit Statement (Sprout)’ on p. 41; PRF
addr is also used to derive a shielded payment

address from a spending key in §4.2.1 ‘Sprout Key Components’ on p. 28.

For Sapling, three additional PRFx are needed:

PRF
expand

◦

◦ B
[ℓsk] × BYY[N] → BYY[ℓPRFexpand/8]

PRF
ock

◦

◦ BYY[ℓovk/8] × BYY[ℓJ/8] × BYY[ℓJ/8] × BYY[ℓJ/8] → Sym.K

PRF
nfSapling

◦

◦ J⋆
(r) × B

[ℓJ] → B
[ℓPRFnfSapling]

PRF
expand is used in §4.2.2 ‘Sapling Key Components’ on p. 28.

PRF
ock is used in §4.17 ‘In-band secret distribution (Sapling)’ on p. 45.

PRF
nfSapling is used in §4.15.2 ‘Spend Statement (Sapling)’ on p. 42.

All of these Pseudo Random Functions are instantiated in §5.4.2 ‘Pseudo Random Functions’ on p. 57.

Security requirements:

• Security definitions for Pseudo Random Functions are given in [BDJR2000, section 4].

• In addition to being Pseudo Random Functions , it is required that PRF
nf
x , PRF

addr
x , PRF

ρ

x, and PRF
nfSapling
x be

collision-resistant across all x — i.e. finding (x, y) 6= (x′, y′) such that PRF
nf
x (y) = PRF

nf

x
′(y′) should not be

feasible, and similarly for PRF
addr and PRF

ρ and PRF
nfSapling.

Non-normative note: PRF
nf was called PRF

sn in Zerocash [BCGGMTV2014].

4.1.3 Authenticated One-Time Symmetric Encryption

Let Sym be an authenticated one-time symmetric encryption scheme with keyspace Sym.K, encrypting plaintexts
in Sym.P to produce ciphertexts in Sym.C.

Sym.Encrypt ◦

◦ Sym.K× Sym.P→ Sym.C is the encryption algorithm.

Sym.Decrypt ◦

◦ Sym.K × Sym.C → Sym.P ∪ {⊥} is the decryption algorithm, such that for any K ∈ Sym.K and
P ∈ Sym.P, Sym.DecryptK(Sym.EncryptK(P)) = P. ⊥ is used to represent the decryption of an invalid ciphertext.

Security requirement: Sym must be one-time (INT-CTXT ∧ IND-CPA)-secure [BN2007]. “One-time” here means
that an honest protocol participant will almost surely encrypt only one message with a given key; however, the
adversary may make many adaptive chosen ciphertext queries for a given key.
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4.1.4 Key Agreement

A key agreement scheme is a cryptographic protocol in which two parties agree a shared secret, each using their
private key and the other party’s public key.

A key agreement scheme KA defines a type of public keys KA.Public, a type of private keys KA.Private, and a type of
shared secrets KA.SharedSecret. Optionally, it also defines a type KA.PublicPrimeOrder ⊆ KA.Public.

Optional: Let KA.FormatPrivate ◦

◦ B
[ℓPRFSprout] → KA.Private be a function to convert a bit string of length ℓPRFSprout to a

KA private key.

Let KA.DerivePublic ◦

◦ KA.Private×KA.Public→ KA.Public be a function that derives the KA public key corresponding
to a given KA private key and base point.

Let KA.Agree ◦

◦ KA.Private× KA.Public→ KA.SharedSecret be the agreement function.

Optional: Let KA.Base ◦

◦ KA.Public be a public base point.

Note: The range of KA.DerivePublic may be a strict subset of KA.Public.

Security requirements:

• KA.FormatPrivate must preserve sufficient entropy from its input to be used as a secure KA private key.

• The key agreement and the KDF defined in the next section must together satisfy a suitable adaptive security
assumption along the lines of [Bernstein2006, section 3] or [ABR1999, Definition 3].

More precise formalization of these requirements is beyond the scope of this specification.

4.1.5 Key Derivation

A Key Derivation Function is defined for a particular key agreement scheme and authenticated one-time symmetric
encryption scheme ; it takes the shared secret produced by the key agreement and additional arguments, and
derives a key suitable for the encryption scheme.

The inputs to the Key Derivation Function differ between the Sprout and Sapling KDFs:

KDF
Sprout takes as input an output index in {1..Nnew}, the value hSig, the shared Diffie-Hellman secret sharedSecret,

the ephemeral public key epk, and the recipient’s public transmission key pkenc. It is suitable for use with KA
Sprout

and derives keys for Sym.Encrypt.

KDF
Sprout

◦

◦ {1..Nnew} × B
[ℓhSig] × KA

Sprout.SharedSecret× KA
Sprout.Public× KA

Sprout.Public→ Sym.K

KDF
Sapling takes as input the shared Diffie-Hellman secret sharedSecret and the ephemeral public key epk. (It does

not have inputs taking the place of the output index, hSig, or pkenc.) It is suitable for use with KA
Sapling and derives

keys for Sym.Encrypt.

KDF
Sapling

◦

◦ KA
Sapling.SharedSecret× KA

Sapling.Public→ Sym.K

Security requirements:

• The asymmetric encryption scheme in §4.16 ‘In-band secret distribution (Sprout)’ on p. 44, constructed
from KA

Sprout, KDF
Sprout and Sym, is required to be IND-CCA2-secure and key-private .

• The asymmetric encryption scheme in §4.17 ‘In-band secret distribution (Sapling)’ on p. 45, constructed
from KA

Sapling, KDF
Sapling and Sym, is required to be IND-CCA2-secure and key-private .

Key privacy is defined in [BBDP2001].
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4.1.6 Signature

A signature scheme Sig defines:

• a type of signing keys Sig.Private;

• a type of verifying keys Sig.Public;

• a type of messages Sig.Message;

• a type of signatures Sig.Signature;

• a randomized signing key generation algorithm Sig.GenPrivate ◦

◦ () →R Sig.Private;

• an injective verifying key derivation algorithm Sig.DerivePublic ◦

◦ Sig.Private→ Sig.Public;

• a randomized signing algorithm Sig.Sign ◦

◦ Sig.Private× Sig.Message →R Sig.Signature;

• a verifying algorithm Sig.Verify ◦

◦ Sig.Public× Sig.Message× Sig.Signature→ B;

such that for any signing key sk ←R Sig.GenPrivate() and corresponding verifying key vk = Sig.DerivePublic(sk), and
any m ◦

◦ Sig.Message and s ◦

◦ Sig.Signature ←R Sig.Signsk(m), Sig.Verifyvk(m, s) = 1.

Zcash uses four signature schemes:

• one used for signatures that can be verified by script operations such as OP_CHECKSIG and OP_CHECKMULTISIG
as in Bitcoin;

• one called JoinSplitSig (instantiated in §5.4.5 ‘JoinSplit Signature’ on p. 60), which is used to sign transactions
that contain at least one JoinSplit description;

• [Sapling onward] one called SpendAuthSig (instantiated in §5.4.6.1 ‘Spend Authorization Signature’ on p. 63)
which is used to sign authorizations of Spend transfers ;

• [Sapling onward] one called BindingSig (instantiated in §5.4.6.2 ‘Binding Signature’ on p. 63), which is used
to enforce balance of Spend transfers and Output transfers , and to prevent their replay across transactions .

The following security property is needed for JoinSplitSig and BindingSig. Security requirements for SpendAuthSig are
defined in the next section, §4.1.6.1 ‘Signature with Re-Randomizable Keys’ on p. 22. An additional requirement
for BindingSig is defined in §4.1.6.2 ‘Signature with Private Key to Public Key Homomorphism’ on p. 23.

Security requirement: JoinSplitSig and BindingSig must be Strongly Unforgeable under (non-adaptive) Chosen
Message Attack (SU-CMA), as defined for example in [BDEHR2011, Definition 6].4 This allows an adversary to obtain
signatures on chosen messages, and then requires it to be infeasible for the adversary to forge a previously unseen
valid (message, signature) pair without access to the signing key.

Non-normative notes:

• We need separate signing key generation and verifying key derivation algorithms, rather than the more
conventional combined key pair generation algorithm Sig.Gen ◦

◦ () →R Sig.Private × Sig.Public, to support
the key derivation in §4.2.2 ‘Sapling Key Components’ on p. 28. This also simplifies some aspects of the
definitions of signature schemes with additional features in §4.1.6.1 ‘Signature with Re-Randomizable Keys’

on p. 22 and §4.1.6.2 ‘Signature with Private Key to Public Key Homomorphism’ on p. 23.

• A fresh signature key pair is generated for each transaction containing a JoinSplit description. Since each
key pair is only used for one signature (see §4.10 ‘Non-malleability (Sprout)’ on p. 36), a one-time signature
scheme would suffice for JoinSplitSig. This is also the reason why only security against non-adaptive chosen
message attack is needed. In fact the instantiation of JoinSplitSig uses a scheme designed for security under
adaptive attack even when multiple signatures are signed under the same key.

• [Sapling onward] The same remarks as above apply to BindingSig, except that the key is derived from the
randomness of value commitments . This results in the same distribution as of freshly generated key pairs, for
each transaction containing Spend descriptions or Output descriptions .

4 The scheme defined in that paper was attacked in [LM2017], but this has no impact on the applicability of the definition.
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• SU-CMA security requires it to be infeasible for the adversary, not knowing the private key, to forge a distinct
signature on a previously seen message. That is, JoinSplit signatures and binding signatures are intended to
be nonmalleable in the sense of [BIP-62].

4.1.6.1 Signature with Re-Randomizable Keys

A signature scheme with re-randomizable keys Sig is a signature scheme that additionally defines:

• a type of randomizers Sig.Random;

• a randomizer generator Sig.GenRandom ◦

◦ () →R Sig.Random;

• a private key randomization algorithm Sig.RandomizePrivate ◦

◦ Sig.Random× Sig.Private→ Sig.Private;

• a public key randomization algorithm Sig.RandomizePublic ◦

◦ Sig.Random× Sig.Public→ Sig.Public;

• a distinguished “identity” randomizer OSig.Random
◦

◦ Sig.Random

such that:

• for any α ◦

◦ Sig.Random, Sig.RandomizePrivateα
◦

◦ Sig.Private→ Sig.Private is injective and easily invertible;

• Sig.RandomizePrivateOSig.Random
is the identity function on Sig.Private.

• for any sk ◦

◦ Sig.Private,

Sig.RandomizePrivate(α, sk) : α ←R Sig.GenRandom()

is identically distributed to Sig.GenPrivate().

• for any sk ◦

◦ Sig.Private and α ◦

◦ Sig.Random,

Sig.RandomizePublic(α, Sig.DerivePublic(sk)) = Sig.DerivePublic(Sig.RandomizePrivate(α, sk)).

The following security requirement for such signature schemes is based on that given in [FKMSSS2016, section 3].
Note that we require Strong Unforgeability with Re-randomized Keys, not Existential Unforgeability with Re-
randomized Keys (the latter is called “Unforgeability under Re-randomized Keys” in [FKMSSS2016, Definition 8]).
Unlike the case for JoinSplitSig, we require security under adaptive chosen message attack with multiple messages
signed using a given key. (Although each note uses a different re-randomized key pair, the same original key pair
can be re-randomized for multiple notes , and also it can happen that multiple transactions spending the same
note are revealed to an adversary.)

Security requirement: Strong Unforgeability with Re-randomized Keys under adaptive Chosen Message At-
tack (SURK-CMA)

For any sk ◦

◦ Sig.Private, let

Osk
◦

◦ Sig.Message× Sig.Random→ Sig.Signature

be a signing oracle with state Q ◦

◦ P
(

Sig.Message× Sig.Signature
)

initialized to {} that records queried messages
and corresponding signatures.

Osk := var Q← {} in (m ◦

◦ Sig.Message, α ◦

◦ Sig.Random) 7→
let σ = Sig.SignSig.RandomizePrivate(α,sk)(m)

Q← Q ∪ {(m, σ)}
return σ ◦

◦ Sig.Signature.

For random sk ←R Sig.GenPrivate() and vk = Sig.DerivePublic(sk), it must be infeasible for an adversary given vk and
a new instance of Osk to find (m′, σ′, α′) such that Sig.Verify

Sig.RandomizePublic(α
′

,vk)(m
′, σ′) = 1 and (m′, σ′) 6∈ Osk.Q.
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Non-normative notes:

• The randomizer and key arguments to Sig.RandomizePrivate and Sig.RandomizePublic are swapped relative to
[FKMSSS2016, section 3].

• The requirement for the identity randomizer OSig.Random simplifies the definition of SURK-CMA by removing
the need for two oracles (because the oracle for original keys, called O1 in [FKMSSS2016], is a special case of
the oracle for randomized keys).

• Since Sig.RandomizePrivate(α, sk) : α ←R Sig.Random has an identical distribution to Sig.GenPrivate(), and since
Sig.DerivePublic is a deterministic function, the combination of a re-randomized public key and signature(s)
under that key do not reveal the key from which it was re-randomized.

• Since Sig.RandomizePrivateα is injective and easily invertible, knowledge of Sig.RandomizePrivate(α, sk) and α
implies knowledge of sk.

4.1.6.2 Signature with Private Key to Public Key Homomorphism

A signature scheme with key homomorphism Sig is a signature scheme that additionally defines:

• an abelian group on private keys, with operation ◦

◦ Sig.Private× Sig.Private→ Sig.Private and identity O ;

• an abelian group on public keys, with operation ◦

◦ Sig.Public× Sig.Public→ Sig.Public and identity O .

such that for any sk1..2
◦

◦ Sig.Private, Sig.DerivePublic(sk1 sk2) = Sig.DerivePublic(sk1) Sig.DerivePublic(sk2).

In other words, Sig.DerivePublic is an injective homomorphism from the private key group to the public key group.

For N ◦

◦ N
+,

•
N

i=1
ski means sk1 sk2 · · · skN;

•
N

i=1
vki means vk1 vk2 · · · vkN.

When N = 0 these yield the appropriate group identity, i.e.
0

i=1
ski = O and

0

i=1
vki = O .

sk means the private key such that ( sk) sk = O , and sk1 sk2 means sk1 ( sk2).

vk means the public key such that ( vk) vk = O , and vk1 vk2 means vk1 ( vk2).

With a change of notation from µ to Sig.DerivePublic, + to , and · to , this is similar to the definition of a “Signature
with Secret Key to Public Key Homomorphism” in [DS2016, Definition 13], except for an additional requirement for
the homomorphism to be injective.

Security requirement: For any sk1
◦

◦ Sig.Private, and an unknown sk2 ←R Sig.GenPrivate() chosen independently
of sk1, the distribution of sk1 sk2 is computationally indistinguishable from that of Sig.GenPrivate(). (Since

is an abelian group operation, this implies that for n ◦

◦ N
+,

n

i=1
ski is computationally indistinguishable from

Sig.GenPrivate() when at least one of sk1..n is unknown.)

4.1.7 Commitment

A commitment scheme is a function that, given a commitment trapdoor generated at random and an input, can be
used to commit to the input in such a way that:

• no information is revealed about it without the trapdoor (“hiding ”),

• given the trapdoor and input, the commitment can be verified to “open” to that input and no other (“binding ”).
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A commitment scheme COMM defines a type of inputs COMM.Input, a type of commitments COMM.Output, a type
of commitment trapdoors COMM.Trapdoor, and a trapdoor generator COMM.GenTrapdoor ◦

◦ () →R COMM.Trapdoor.

Let COMM ◦

◦ COMM.Trapdoor × COMM.Input → COMM.Output be a function satisfying the following security
requirements.

Security requirements:

• Computational hiding: For all x, x′
◦

◦ COMM.Input, the distributions {COMMr(x) | r ←R COMM.GenTrapdoor() }
and {COMMr(x′) | r ←R COMM.GenTrapdoor() } are computationally indistinguishable.

• Computational binding: It is infeasible to find x, x′
◦

◦ COMM.Input and r, r′
◦

◦ COMM.Trapdoor such that x 6= x′

and COMMr(x) = COMMr
′(x′).

Notes:

• COMM.GenTrapdoor need not produce the uniform distribution on COMM.Trapdoor. In that case, it is incorrect
to choose a trapdoor from the latter distribution.

• If it were only feasible to find x ◦

◦ COMM.Input and r, r′
◦

◦ COMM.Trapdoor such that r 6= r′ and COMMr(x) =
COMMr

′(x), this would not contradict the computational binding security requirement. (In fact, this is feasible

for NoteCommit
Sapling and ValueCommit because trapdoors are equivalent modulo rJ, and the range of a trapdoor

for those algorithms is {0 .. 2ℓscalar−1}where 2ℓscalar > rJ.)

Let ℓrcm, ℓMerkleSprout, ℓPRFSprout, and ℓvalue be as defined in §5.3 ‘Constants’ on p. 50.

Define NoteCommit
Sprout.Trapdoor := B

[ℓrcm] and NoteCommit
Sprout.Output := B

[ℓMerkleSprout].

Sprout uses a note commitment scheme

NoteCommit
Sprout

◦

◦ NoteCommit
Sprout.Trapdoor × B

[ℓPRFSprout] × {0 .. 2ℓvalue−1} × B
[ℓPRFSprout]

→ NoteCommit
Sprout.Output,

instantiated in §5.4.7.1 ‘Sprout Note Commitments’ on p. 63.

Let ℓscalar be as defined in §5.3 ‘Constants’ on p. 50.

Let J(r) and rJ be as defined in §5.4.8.3 ‘Jubjub’ on p. 68.

Define:

NoteCommit
Sapling.Trapdoor := {0 .. 2ℓscalar−1} and NoteCommit

Sapling.Output := J;

ValueCommit.Trapdoor := {0 .. 2ℓscalar−1} and ValueCommit.Output := J.

Sapling uses two additional commitment schemes:

NoteCommit
Sapling

◦

◦ NoteCommit
Sapling.Trapdoor × B

[ℓJ] × B
[ℓJ] × {0 .. 2ℓvalue−1} → NoteCommit

Sapling.Output

ValueCommit ◦

◦ ValueCommit.Trapdoor ×
{

− rJ−1

2 ..
rJ−1

2

}

→ ValueCommit.Output

NoteCommit
Sapling is instantiated in §5.4.7.2 ‘Windowed Pedersen commitments’ on p. 64, and ValueCommit is instan-

tiated in §5.4.7.3 ‘Homomorphic Pedersen commitments’ on p. 64.

Non-normative note: NoteCommit
Sapling and ValueCommit always return points in the subgroup J

(r). However,
we declare the type of these commitment outputs to be J because they are not directly checked to be in the
subgroup when ValueCommit outputs appear in Spend descriptions and Output descriptions , or when the cmu field
derived from a NoteCommit

Sapling appears in an Output description.
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4.1.8 Represented Group

A represented group G consists of:

• a subgroup order parameter rG
◦

◦ N
+, which must be prime;

• a cofactor parameter hG
◦

◦ N
+;

• a group G of order hG · rG, written additively with operation + ◦

◦ G ×G → G, and additive identity OG ;

• a bit-length parameter ℓG
◦

◦ N;

• a representation function reprG
◦

◦ G → B
[ℓG ] and an abstraction function abstG

◦

◦ B
[ℓG ] → G ∪ {⊥}, such that

abstG is the left inverse of reprG , i.e. for all P ∈ G, abstG(reprG(P )) = P , and for all S not in the image of reprG ,
abstG(S) = ⊥.

Define G
(r) as the order-rG subgroup of G, which is called a represented subgroup . Note that this includes OG . For

the set of points of order rG (which excludes OG ), we write G
(r)∗.

Define G⋆
(r)

:= {reprG(P ) ◦

◦ B
[ℓG ] | P ∈ G

(r)}.

For G ◦

◦ G we write −G for the negation of G, such that (−G) + G = OG . We write G−H for G + (−H).

We also extend the
∑

notation to addition on group elements.

For G ◦

◦ G and k ◦

◦ Z we write [k] G for scalar multiplication on the group, i.e.

[k] G :=







∑k

i=1
G, if k ≥ 0

∑−k

i=1
(−G), otherwise.

For G ◦

◦ G and a ◦

◦ FrG
, we may also write [a] G meaning [a mod rG] G as defined above. (This variant is not defined

for fields other than FrG
.)

4.1.9 Hash Extractor

A hash extractor for a represented group G is a function Extract
G

(r)
◦

◦ G
(r) → T for some type T , such that Extract

G
(r)

is injective on G
(r) (the subgroup of G of order rG).

Note: Unlike the representation function reprG , Extract
G

(r) need not have an efficiently computable left inverse.

4.1.10 Group Hash

Given a represented subgroup G
(r), a family of group hashes into the subgroup , denoted GroupHash

G
(r)

, consists of:

• a type GroupHash.URSType of Uniform Random Strings ;

• a type GroupHash.Input of inputs;

• a function GroupHash
G

(r)
◦

◦ GroupHash.URSType× GroupHash.Input→ G
(r).

In §5.4.8.5 ‘Group Hash into Jubjub’ on p. 70, we instantiate a family of group hashes into the Jubjub curve defined
by §5.4.8.3 ‘Jubjub’ on p. 68.
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Security requirement: For a randomly selected URS ◦

◦ GroupHash.URSType, it must be reasonble to model

GroupHash
G

(r)

URS (restricted to inputs for which it does not return ⊥) as a random oracle.

Non-normative notes:

• GroupHash
J

(r)∗

is used to obtain generators of the Jubjub curve for various purposes: the bases G and H
used in Sapling key generation, the Pedersen hash defined in §5.4.1.7 ‘Pedersen Hash Function’ on p. 54,
and the commitment schemes defined in §5.4.7.2 ‘Windowed Pedersen commitments’ on p. 64 and in §5.4.7.3
‘Homomorphic Pedersen commitments’ on p. 64.

The security property needed for these uses can alternatively be defined in the standard model as follows:

Discrete Logarithm Independence: For a randomly selected member GroupHash
G

(r)

URS of the family, it is infea-

sible to find a sequence of distinct inputs m1..n
◦

◦ GroupHash.Input
[n] and a sequence of nonzero x1..n

◦

◦ F
∗
rG

[n]

such that
∑n

i=1

(

[xi] GroupHash
G

(r)

URS(mi)

)

= OG .

• Under the Discrete Logarithm assumption on G
(r), a random oracle almost surely satisfies Discrete Logarithm

Independence.

• Discrete Logarithm Independence implies collision resistance, since a collision (m1, m2) for GroupHash
G

(r)

URS

trivially gives a discrete logarithm relation with x1 = 1 and x2 = −1. It is in fact stronger than collision
resistance.

• GroupHash
J

(r)∗

is also used to instantiate DiversifyHash in §5.4.1.6 ‘DiversifyHash Hash Function’ on p. 53. We
do not know how to prove the Unlinkability property defined in that section in the standard model, but in a

model where GroupHash
J

(r)∗

(restricted to inputs for which it does not return⊥) is taken as a random oracle, it
is implied by the Decisional Diffie-Hellman assumption on J

(r).

• URS is a Uniform Random String ; we choose it verifiably at random (see §5.9 ‘Randomness Beacon’ on p. 78),
after fixing the concrete group hash algorithm to be used. This mitigates the possibility that the group hash
algorithm could have been backdoored.

4.1.11 Represented Pairing

A represented pairing P consists of:

• a group order parameter rP
◦

◦ N
+ which must be prime;

• two represented subgroups P
(r)
1,2, both of order rP;

• a group P
(r)
T of order rP, written multiplicatively with operation · ◦

◦ P
(r)
T × P

(r)
T → P

(r)
T and group identity 1P;

• three generators PP1,2,T
of P(r)

1,2,T respectively;

• a pairing function êP
◦

◦ P
(r)
1 × P

(r)
2 → P

(r)
T satisfying:

– (Bilinearity) for all a, b ◦

◦ F
∗
r , P ◦

◦ P
(r)
1 , and Q ◦

◦ P
(r)
2 , êP([a] P, [b] Q)= êP(P, Q)a·b; and

– (Nondegeneracy) there does not exist P ◦

◦ P
(r)∗
1 such that for all Q ◦

◦ P
(r)
2 , êP(P, Q)= 1P.

4.1.12 Zero-Knowledge Proving System

A zero-knowledge proving system is a cryptographic protocol that allows proving a particular statement , dependent
on primary and auxiliary inputs , in zero knowledge — that is, without revealing information about the auxiliary
inputs other than that implied by the statement . The type of zero-knowledge proving system needed by Zcash is a
preprocessing zk-SNARK .
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A preprocessing zk-SNARK instance ZK defines:

• a type of zero-knowledge proving keys , ZK.ProvingKey;

• a type of zero-knowledge verifying keys , ZK.VerifyingKey;

• a type of primary inputs ZK.PrimaryInput;

• a type of auxiliary inputs ZK.AuxiliaryInput;

• a type of proofs ZK.Proof;

• a type ZK.SatisfyingInputs ⊆ ZK.PrimaryInput× ZK.AuxiliaryInput of inputs satisfying the statement ;

• a randomized key pair generation algorithm ZK.Gen ◦

◦ () →R ZK.ProvingKey × ZK.VerifyingKey;

• a proving algorithm ZK.Prove ◦

◦ ZK.ProvingKey × ZK.SatisfyingInputs→ ZK.Proof;

• a verifying algorithm ZK.Verify ◦

◦ ZK.VerifyingKey × ZK.PrimaryInput× ZK.Proof → B;

The security requirements below are supposed to hold with overwhelming probability for (pk, vk) ←R ZK.Gen().

Security requirements:

• Completeness: An honestly generated proof will convince a verifier: for any (x, w) ∈ ZK.SatisfyingInputs, if
ZK.Provepk(x, w) outputs π, then ZK.Verifyvk(x, π) = 1.

• Knowledge Soundness: For any adversary A able to find an x ◦

◦ ZK.PrimaryInput and proof π ◦

◦ ZK.Proof

such that ZK.Verifyvk(x, π) = 1, there is an efficient extractor EA such that if EA(vk, pk) returns w, then the
probability that (x, w) 6∈ ZK.SatisfyingInputs is insignificant.

• Statistical Zero Knowledge: An honestly generated proof is statistical zero knowledge. That is, there is a
feasible stateful simulator S such that, for all stateful distinguishers D, the following two probabilities are not
significantly different:

Pr









(x, w) ∈ ZK.SatisfyingInputs

D(π) = 1

∣

∣

∣

∣

∣

∣

∣

∣

(pk, vk) ←R ZK.Gen()

(x, w) ←R D(pk, vk)

π←R ZK.Provepk(x, w)









and Pr









(x, w) ∈ ZK.SatisfyingInputs

D(π) = 1

∣

∣

∣

∣

∣

∣

∣

∣

(pk, vk) ←R S()

(x, w) ←R D(pk, vk)

π←R S(x)









These definitions are derived from those in [BCTV2014b, Appendix C], adapted to state concrete security for a fixed
circuit, rather than asymptotic security for arbitrary circuits. (ZK.Prove corresponds to P , ZK.Verify corresponds
to V , and ZK.SatisfyingInputs corresponds toRC in the notation of that appendix.)

The Knowledge Soundness definition is a way to formalize the property that it is infeasible to find a new proof
π where ZK.Verifyvk(x, π) = 1 without knowing an auxiliary input w such that (x, w) ∈ ZK.SatisfyingInputs. Note
that Knowledge Soundness implies Soundness — i.e. the property that it is infeasible to find a new proof π where
ZK.Verifyvk(x, π) = 1 without there existing an auxiliary input w such that (x, w) ∈ ZK.SatisfyingInputs.

Non-normative note: The above properties do not include nonmalleability [DSDCOPS2001], and the design of
the protocol using the zero-knowledge proving system must take this into account.

Zcash uses two proving systems :

• BCTV14 (§5.4.9.1 ‘BCTV14’ on p. 70) is used with the BN-254 pairing (§5.4.8.1 ‘BN-254’ on p. 65), to prove
and verify the Sprout JoinSplit statement (§4.15.1 ‘JoinSplit Statement (Sprout)’ on p. 41) before Sapling
activation.

• Groth16 (§5.4.9.2 ‘Groth16’ on p. 71) is used with the BLS12-381 pairing (§5.4.8.2 ‘BLS12-381’ on p. 67), to prove
and verify the Sapling Spend statement (§4.15.2 ‘Spend Statement (Sapling)’ on p. 42) and Output statement
(§4.15.3 ‘Output Statement (Sapling)’ on p. 43). It is also used to prove and verify the JoinSplit statement
after Sapling activation.
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These specializations are: ZKJoinSplit for the Sprout JoinSplit statement (with BCTV14 and BN-254, or Groth16 and
BLS12-381); ZKSpend for the Sapling Spend statement ; and ZKOutput for the Sapling Output statement .

We omit key subscripts on ZKJoinSplit.Prove and ZKJoinSplit.Verify, taking them to be either the BCTV14 proving
key and verifying key defined in §5.7 ‘BCTV14 zk-SNARK Parameters’ on p. 77, or the sprout-groth16.params
Groth16 proving key and verifying key defined in §5.8 ‘Groth16 zk-SNARK Parameters’ on p. 77, according to
whether the proof appears in a block before or after Sapling activation.

We also omit subscripts on ZKSpend.Prove, ZKSpend.Verify, ZKOutput.Prove, and ZKOutput.Verify, taking them to be
the relevant Groth16 proving keys and verifying keys defined in §5.8 ‘Groth16 zk-SNARK Parameters’ on p. 77.

4.2 Key Components

4.2.1 Sprout Key Components

Let ℓask
be as defined in §5.3 ‘Constants’ on p. 50.

Let PRF
addr be a Pseudo Random Function, instantiated in §5.4.2 ‘Pseudo Random Functions’ on p. 57.

Let KA
Sprout be a key agreement scheme , instantiated in §5.4.4.1 ‘Sprout Key Agreement’ on p. 58.

A new Sprout spending key ask is generated by choosing a bit sequence uniformly at random from B
[ℓask

].

apk, skenc and pkenc are derived from ask as follows:

apk := PRF
addr
ask

(0)

skenc := KA
Sprout.FormatPrivate(PRF

addr
ask

(1))

pkenc := KA
Sprout.DerivePublic(skenc, KA

Sprout.Base).

4.2.2 Sapling Key Components

Let ℓPRFexpand, ℓsk, ℓovk, and ℓd be as defined in §5.3 ‘Constants’ on p. 50.

Let PRF
expand and PRF

ock be Pseudo Random Functions instantiated in §5.4.2 ‘Pseudo Random Functions’ on p. 57.

Let KA
Sapling be a key agreement scheme , instantiated in §5.4.4.3 ‘Sapling Key Agreement’ on p. 59.

Let CRH
ivk be a hash function, instantiated in §5.4.1.5 ‘CRH

ivk
Hash Function’ on p. 53.

Let DiversifyHash be a hash function, instantiated in §5.4.1.6 ‘DiversifyHash Hash Function’ on p. 53.

Let SpendAuthSig, instantiated in §5.4.6.1 ‘Spend Authorization Signature’ on p. 63, be a signature scheme with
re-randomizable keys .

Let reprJ, J
(r), J(r)∗, and J⋆

(r) be as defined in §5.4.8.3 ‘Jubjub’ on p. 68, and let FindGroupHash
J

(r)∗

be as defined in
§5.4.8.5 ‘Group Hash into Jubjub’ on p. 70.

Let LEBS2OSP ◦

◦ (ℓ ◦

◦ N) × B
[ℓ] → BYY[ceiling(ℓ/8)] and LEOS2IP ◦

◦ (ℓ ◦

◦ N | ℓ mod 8 = 0) × BYY[ℓ/8] → {0 .. 2ℓ−1} be as
defined in §5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 49.

DefineH := FindGroupHash
J

(r)∗

(“Zcash_H_”, “”).

Define ToScalar(x ◦

◦ BYY[ℓPRFexpand/8]) := LEOS2IPℓPRFexpand
(x) (mod rJ).
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A new Sapling spending key sk is generated by choosing a bit sequence uniformly at random from B
[ℓsk].

From this spending key , the spend authorizing key ask ◦

◦ F
∗
rJ

, the proof authorizing key nsk ◦

◦ FrJ
, and the outgoing

viewing key ovk ◦

◦ BYY[ℓovk/8] are derived as follows:

ask := ToScalar(PRF
expand
sk ([0]))

nsk := ToScalar(PRF
expand
sk ([1]))

ovk := truncate(ℓovk/8)(PRF
expand
sk ([2]))

If ask = 0, discard this key and repeat with a new sk.

ak ◦

◦ J
(r)∗, nk ◦

◦ J
(r), and the incoming viewing key ivk ◦

◦ {0 .. 2ℓivk−1} are then derived as:

ak := SpendAuthSig.DerivePublic(ask)

nk := [nsk]H
ivk := CRH

ivk
(

reprJ(ak), reprJ(nk)
)

.

If ivk = 0, discard this key and repeat with a new sk.

As explained in §3.1 ‘Payment Addresses and Keys’ on p. 12, Sapling allows the efficient creation of multiple di-
versified payment addresses with the same spending authority. A group of such addresses shares the same full
viewing key and incoming viewing key .

To create a new diversified payment address given an incoming viewing key ivk, repeatedly pick a diversifier d

uniformly at random from B
[ℓd] until gd = DiversifyHash(d) is not ⊥. Then calculate:

pkd := KA
Sapling.DerivePublic(ivk, gd).

The resulting diversified payment address is (d ◦

◦ B
[ℓd], pkd

◦

◦ KA
Sapling.PublicPrimeOrder).

For each spending key , there is also a default diversified payment address with a “random-looking” diversifier .
This allows an implementation that does not expose diversified addresses as a user-visible feature, to use a default
address that cannot be distinguished (without knowledge of the spending key ) from one with a random diversifier
as above.

Let first ◦

◦ (BYY→ T ∪ {⊥})→ T ∪ {⊥} be as defined in §5.4.8.5 ‘Group Hash into Jubjub’ on p. 70. Define:

CheckDiversifier(d ◦

◦ B
[ℓd]) :=

{

⊥, if DiversifyHash(d) = ⊥
d, otherwise

DefaultDiversifier(sk ◦

◦ B
[ℓsk]) := first

(

i ◦

◦ BYY 7→ CheckDiversifier(truncate(ℓd/8)(PRF
expand
sk ([3, i]))) ◦

◦ J
(r)∗ ∪ {⊥}

)

.

For a random spending key , DefaultDiversifier returns ⊥ with probability approximately 2−256; if this happens,
discard the key and repeat with a different sk.

Notes:

• The protocol does not prevent using the diversifier d to produce “vanity ” addresses that start with a meaningful
string when encoded in Bech32 (see §5.6.4 ‘Sapling Shielded Payment Addresses’ on p. 74). Users and
writers of software that generates addresses should be aware that this provides weaker privacy properties
than a randomly chosen diversifier , since a vanity address can obviously be distinguished, and might leak
more information than intended as to who created it.

• Similarly, address generators MAY encode information in the diversifier that can be recovered by the recipient
of a payment to determine which diversified payment address was used. It is RECOMMENDED that such
diversifiers be randomly chosen unique values used to index into a database, rather than directly encoding
the needed data.
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Non-normative notes:

• Assume that PRF
expand is a PRF with output range BYY[ℓPRFexpand/8], where 2ℓPRFexpand is large compared to rJ.

Define f ◦

◦ B
[ℓsk] × BYY[N] → FrJ

by fsk(t) := ToScalar(PRF
expand
sk (t)).

Then f is also a PRF , since LEOS2IPℓPRFexpand

◦

◦ BYY[ℓPRFexpand/8] → {0 .. 2ℓPRFexpand−1} is injective, and the bias intro-
duced by the reduction modulo rJ is small because §5.3 ‘Constants’ on p. 50 defines ℓPRFexpand as 512, while
rJ has length 252 bits.

It follows that the distribution of ask, i.e. PRF
expand
sk ([0]) : sk ←R B

[ℓsk], is computationally indistinguishable from
that of SpendAuthSig.GenPrivate() (defined in §5.4.6.1 ‘Spend Authorization Signature’ on p. 63).

• Similarly, the distribution of nsk, i.e. ToScalar(PRF
expand
sk ([1])) : sk ←R B

[ℓsk], is computationally indistinguishable

from the uniform distribution on FrJ
. Since nsk ◦

◦ FrJ
7→ reprJ([nsk]H) ◦

◦ J⋆
(r) is bijective, the distribution of

reprJ(nk)will be computationally indistinguishable from the uniform distribution on J⋆
(r) which is the keyspace

of PRF
nfSapling.

• The zcashd wallet generates diversifiers according to [ZIP-32] rather than using the default diversifier specified
above.

4.3 JoinSplit Descriptions

A JoinSplit transfer , as specified in §3.5 ‘JoinSplit Transfers and Descriptions’ on p. 16, is encoded in transactions
as a JoinSplit description.

Each transaction includes a sequence of zero or more JoinSplit descriptions . When this sequence is non-empty,
the transaction also includes encodings of a JoinSplitSig public verification key and signature.

Let ℓMerkleSprout, ℓPRFSprout, ℓSeed, Nold, Nnew, and MAX_MONEY be as defined in §5.3 ‘Constants’ on p. 50.

Let hSigCRH be as defined in §4.1.1 ‘Hash Functions’ on p. 18.

Let NoteCommit
Sprout be as defined in §4.1.7 ‘Commitment’ on p. 23.

Let KA
Sprout be as defined in §4.1.4 ‘Key Agreement’ on p. 20.

Let Sym be as defined in §4.1.3 ‘Authenticated One-Time Symmetric Encryption’ on p. 19.

Let ZKJoinSplit be as defined in §4.1.12 ‘Zero-Knowledge Proving System’ on p. 26.

A JoinSplit description consists of (vold
pub, v

new
pub , rt, nf

old

1..N
old , cm

new
1..N

new , epk, randomSeed, h
1..N

old , πZKJoinSplit, C
enc
1..N

new )
where

• v
old
pub

◦

◦ {0 .. MAX_MONEY} is the value that the JoinSplit transfer removes from the transparent value pool ;

• v
new
pub

◦

◦ {0 .. MAX_MONEY} is the value that the JoinSplit transfer inserts into the transparent value pool ;

• rt ◦

◦ B
[ℓMerkleSprout] is an anchor , as defined in §3.3 ‘The Block Chain’ on p. 15, for the output treestate of either a

previous block , or a previous JoinSplit transfer in this transaction.

• nf
old

1..N
old

◦

◦ B
[ℓPRFSprout][N

old
] is the sequence of nullifiers for the input notes ;

• cm
new
1..N

new ◦

◦ NoteCommit
Sprout.Output

[N
new

] is the sequence of note commitments for the output notes ;

• epk ◦

◦ KA
Sprout.Public is a key agreement public key, used to derive the key for encryption of the transmitted

notes ciphertext (§4.16 ‘In-band secret distribution (Sprout)’ on p. 44);

• randomSeed ◦

◦ B
[ℓSeed] is a seed that must be chosen independently at random for each JoinSplit description;

• h
1..N

old
◦

◦ B
[ℓPRFSprout][N

old
] is a sequence of tags that bind hSig to each ask of the input notes ;
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• πZKJoinSplit
◦

◦ ZKJoinSplit.Proof is a zk proof with primary input (rt, nf
old

1..N
old , cm

new
1..N

new , v
old
pub,vnew

pub , hSig, h
1..N

old) for
the JoinSplit statement defined in §4.15.1 ‘JoinSplit Statement (Sprout)’ on p. 41 (this is a BCTV14 proof
before Sapling activation, and a Groth16 proof after Sapling activation);

• C
enc
1..N

new ◦

◦ Sym.C[N
new

] is a sequence of ciphertext components for the encrypted output notes .

The ephemeralKey and encCiphertexts fields together form the transmitted notes ciphertext .

The value hSig is also computed from randomSeed, nf
old

1..N
old , and the joinSplitPubKey of the containing transaction:

hSig := hSigCRH(randomSeed, nf
old

1..N
old , joinSplitPubKey).

Consensus rules:

• Elements of a JoinSplit description MUST have the types given above (for example: 0 ≤ v
old
pub ≤ MAX_MONEY

and 0 ≤ v
new
pub ≤ MAX_MONEY).

• Either v
old
pub or v

new
pub MUST be zero.

• The proof πZKJoinSplit MUST be valid given a primary input formed from the relevant other fields and hSig — i.e.

ZKJoinSplit.Verify((rt, nf
old

1..N
old , cm

new
1..N

new , v
old
pub,vnew

pub , hSig, h
1..N

old), πZKJoinSplit) = 1.

4.4 Spend Descriptions

A Spend transfer , as specified in §3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’ on p. 16, is
encoded in transactions as a Spend description.

Each transaction includes a sequence of zero or more Spend descriptions .

Each Spend description is authorized by a signature, called the spend authorization signature .

Let ℓMerkleSapling and ℓPRFnfSapling be as defined in §5.3 ‘Constants’ on p. 50.

Let ValueCommit.Output be as defined in §4.1.7 ‘Commitment’ on p. 23.

Let SpendAuthSig be as defined in §4.13 ‘Spend Authorization Signature’ on p. 39.

Let ZKSpend be as defined in §4.1.12 ‘Zero-Knowledge Proving System’ on p. 26.

A Spend description consists of (cv, rt, nf, rk, πZKSpend, spendAuthSig) where

• cv ◦

◦ ValueCommit.Output is the value commitment to the value of the input note ;

• rt ◦

◦ B
[ℓMerkleSapling] is an anchor , as defined in §3.3 ‘The Block Chain’ on p. 15, for the output treestate of a previous

block ;

• nf ◦

◦ B
[ℓPRFnfSapling] is the nullifier for the input note ;

• rk ◦

◦ SpendAuthSig.Public is a randomized public key that should be used to verify spendAuthSig;

• πZKSpend
◦

◦ ZKSpend.Proof is a zero-knowledge proof with primary input (cv, rt, nf, rk) for the Spend statement
defined in §4.15.2 ‘Spend Statement (Sapling)’ on p. 42;

• spendAuthSig ◦

◦ SpendAuthSig.Signature is as specified in §4.13 ‘Spend Authorization Signature’ on p. 39.

Consensus rules:

• Elements of a Spend description MUST be canonical encodings of the types given above.

• cv and rk MUST NOT be of small order, i.e. [hJ] cv MUST NOT be OJ and [hJ] rk MUST NOT be OJ.

• The proof πZKSpend MUST be valid given a primary input formed from the other fields except spendAuthSig —
i.e. ZKSpend.Verify((cv, rt, nf, rk), πZKSpend) = 1.
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• Let SigHash be the SIGHASH transaction hash of this transaction, not associated with an input, as defined in
§4.9 ‘SIGHASH Transaction Hashing’ on p. 36 using SIGHASH_ALL.

The spend authorization signature MUST be a valid SpendAuthSig signature over SigHash using rk as the public
key — i.e. SpendAuthSig.Verifyrk(SigHash, spendAuthSig) = 1.

Non-normative note: The check that rk is not of small order is technically redundant with a check in the Spend
circuit , but it is simple and cheap to also check this outside the circuit.

4.5 Output Descriptions

An Output transfer , as specified in §3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’ on p. 16, is
encoded in transactions as an Output description.

Each transaction includes a sequence of zero or more Output descriptions . There are no signatures associated
with Output descriptions .

Let ValueCommit.Output be as defined in §4.1.7 ‘Commitment’ on p. 23.

Let KA
Sapling be as defined in §4.1.4 ‘Key Agreement’ on p. 20.

Let Sym be as defined in §4.1.3 ‘Authenticated One-Time Symmetric Encryption’ on p. 19.

Let ZKSpend be as defined in §4.1.12 ‘Zero-Knowledge Proving System’ on p. 26.

An Output description consists of (cv, cmu, epk, C
enc, C

out, πZKOutput) where

• cv ◦

◦ ValueCommit.Output is the value commitment to the value of the output note ;

• cmu
◦

◦ B
[ℓMerkleSapling] is the result of applying Extract

J
(r) (defined in §5.4.8.4 ‘Hash Extractor for Jubjub’ on p. 69)

to the note commitment for the output note ;

• epk ◦

◦ KA
Sapling.Public is a key agreement public key, used to derive the key for encryption of the transmitted

note ciphertext (§4.17 ‘In-band secret distribution (Sapling)’ on p. 45);

• C
enc

◦

◦ Sym.C is a ciphertext component for the encrypted output note ;

• C
out

◦

◦ Sym.C is a ciphertext component that allows the holder of a full viewing key to recover the recipient
diversified transmission key pkd and the ephemeral private key esk (and therefore the entire note plaintext );

• πZKOutput
◦

◦ ZKOutput.Proof is a zero-knowledge proof with primary input (cv, cmu, epk) for the Output state-
ment defined in §4.15.3 ‘Output Statement (Sapling)’ on p. 43.

Consensus rules:

• Elements of an Output description MUST be canonical encodings of the types given above.

• cv and epk MUST NOT be of small order, i.e. [hJ] cv MUST NOT be OJ and [hJ] epk MUST NOT be OJ.

• The proof πZKOutput MUST be valid given a primary input formed from the other fields except C
enc and C

out —
i.e. ZKSpend.Verify((cv, cmu, epk), πZKOutput) = 1.

4.6 Sending Notes

4.6.1 Sending Notes (Sprout)

In order to send Sprout shielded value, the sender constructs a transaction containing one or more JoinSplit
descriptions . This involves first generating a new JoinSplitSig key pair:

joinSplitPrivKey ←R JoinSplitSig.GenPrivate()

joinSplitPubKey := JoinSplitSig.DerivePublic(joinSplitPrivKey).
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For each JoinSplit description, the sender chooses randomSeed uniformly at random on B
[ℓSeed], and selects the input

notes . At this point there is sufficient information to compute hSig, as described in the previous section. The sender

also chooses ϕ uniformly at random on B
[ℓϕ]. Then it creates each output note with index i ◦

◦ {1..Nnew}:

• Choose uniformly random rcm
new
i ←R NoteCommit

Sprout.GenTrapdoor().

• Compute ρnew
i = PRF

ρ

ϕ(i, hSig).

• Compute cm
new
i = NoteCommit

Sprout

rcm
new
i

(anew
pk,i, v

new
i , ρnew

i ).

• Let npi = (vnew
i , ρnew

i , rcm
new
i , memoi).

np1..N
new are then encrypted to the recipient transmission keys pk

new
enc,1..N

new , giving the transmitted notes ciphertext

(epk, C
enc
1..N

new ), as described in §4.16 ‘In-band secret distribution (Sprout)’ on p. 44.

In order to minimize information leakage, the sender SHOULD randomize the order of the input notes and of the
output notes . Other considerations relating to information leakage from the structure of transactions are beyond
the scope of this specification.

After generating all of the JoinSplit descriptions , the sender obtains dataToBeSigned ◦

◦ BYY[N] as described in §4.10
‘Non-malleability (Sprout)’ on p. 36, and signs it with the private JoinSplit signing key :

joinSplitSig ←R JoinSplitSig.SignjoinSplitPrivKey(dataToBeSigned)

Then the encoded transaction including joinSplitSig is submitted to the network.

4.6.2 Sending Notes (Sapling)

In order to send Sapling shielded value, the sender constructs a transaction containing one or more Output
descriptions .

Let ValueCommit and NoteCommit
Sapling be as specified in §4.1.7 ‘Commitment’ on p. 23.

Let reprJ and hJ be as defined in §5.4.8.3 ‘Jubjub’ on p. 68.

Let ovk be an outgoing viewing key that is intended to be able to decrypt this payment. This may be one of:

• the outgoing viewing key for the address (or one of the addresses) from which the payment was sent;

• the outgoing viewing key for all payments associated with an “account ”, to be defined in [ZIP-32];

• ⊥, if the sender should not be able to decrypt the payment once it has deleted its own copy.

Note: Choosing ovk = ⊥ is useful if the sender prefers to obtain forward secrecy of the payment information
with respect to compromise of its own secrets.

For each Output description, the sender selects a value v
new and a destination Sapling shielded payment address

(d, pkd), and then performs the following steps:

• Check that pkd is of type KA
Sapling.PublicPrimeOrder, i.e. it is a valid ctEdwards point on the Jubjub curve (as

defined in §5.4.8.3 ‘Jubjub’ on p. 68) not equal to OJ, and [rJ] pkd = OJ.

• Calculate gd = DiversifyHash(d) and check that gd 6= ⊥.

• Choose independent uniformly random commitment trapdoors:

rcv
new ←R ValueCommit.GenTrapdoor()

rcm
new ←R NoteCommit

Sapling.GenTrapdoor()

• Calculate

cv
new := ValueCommitrcv

new (vnew)

cm
new := NoteCommit

Sapling

rcm
new (reprJ(gd), reprJ(pkd), v

new)
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• Let np = (d, v
new, rcm, memo), where rcm = LEBS2OSP256(I2LEBSP256(rcm

new)).

• Encrypt np to the recipient diversified transmission key pkd with diversified transmission base gd, and to
the outgoing viewing key ovk, giving the transmitted note ciphertext (epk, C

enc, C
out) as described in §4.17.1

‘Encryption (Sapling)’ on p. 46. This procedure also uses cv
new and cm

new to derive the outgoing cipher key .

• Generate a proof πZKOutput for the Output statement in §4.15.3 ‘Output Statement (Sapling)’ on p. 43.

• Return (cv
new, cm

new, epk, C
enc, C

out, πZKOutput).

In order to minimize information leakage, the sender SHOULD randomize the order of Output descriptions in a
transaction. Other considerations relating to information leakage from the structure of transactions are beyond the
scope of this specification. The encoded transaction is submitted to the network.

4.7 Dummy Notes

4.7.1 Dummy Notes (Sprout)

The fields in a JoinSplit description allow for Nold input notes , and Nnew output notes . In practice, we may wish to
encode a JoinSplit transfer with fewer input or output notes . This is achieved using dummy notes .

Let ℓask
and ℓPRFSprout be as defined in §5.3 ‘Constants’ on p. 50.

Let PRF
nf be as defined in §4.1.2 ‘Pseudo Random Functions’ on p. 19.

Let NoteCommit
Sprout.Trapdoor be as defined in §4.1.7 ‘Commitment’ on p. 23.

A dummy Sprout input note , with index i in the JoinSplit description, is constructed as follows:

• Generate a new uniformly random spending key a
old
sk,i ←R B

[ℓask
] and derive its paying key a

old
pk,i.

• Set v
old
i = 0.

• Choose uniformly random ρold
i ←R B

[ℓPRFSprout] and rcm
old
i ←R NoteCommit

Sprout.GenTrapdoor().

• Compute nf
old
i = PRF

nf

a
old
sk,i

(ρold
i ).

• Let pathi be a dummy Merkle path for the auxiliary input to the JoinSplit statement (this will not be checked).

• When generating the JoinSplit proof , set enforceMerklePathi to 0.

A dummy Sprout output note is constructed as normal but with zero value, and sent to a random shielded payment
address .

4.7.2 Dummy Notes (Sapling)

In Sapling there is no need to use dummy notes simply in order to fill otherwise unused inputs as in the case of a
JoinSplit description; nevertheless it may be useful for privacy to obscure the number of real shielded inputs from
Sapling notes .

Let ℓsk be as defined in §5.3 ‘Constants’ on p. 50.

Let rJ and reprJ be as defined in §5.4.8.3 ‘Jubjub’ on p. 68.

LetH be as defined in §4.2.2 ‘Sapling Key Components’ on p. 28.

Let PRF
nfSapling be as defined in §4.1.2 ‘Pseudo Random Functions’ on p. 19.

Let NoteCommit
Sapling.Trapdoor be as defined in §4.1.7 ‘Commitment’ on p. 23.
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A dummy Sapling input note is constructed as follows:

• Choose uniformly random sk ←R B
[ℓsk].

• Generate a new diversified payment address (d, pkd) for sk as described in §4.2.2 ‘Sapling Key Components’

on p. 28.

• Set v
old = 0, and set pos = 0.

• Choose uniformly random rcm ←R NoteCommit
Sapling.GenTrapdoor(). and nsk ←R FrJ

.

• Compute nk = [nsk]H and nk⋆ = reprJ(nk).

• Compute ρ = cm
old = NoteCommit

Sapling
rcm (reprJ(gd), reprJ(pkd), v

old).

• Compute nf
old = PRF

nfSapling
nk⋆ (reprJ(ρ)).

• Construct a dummy Merkle path path for use in the auxiliary input to the Spend statement (this will not be
checked, because v

old = 0).

As in Sprout, a dummy Sapling output note is constructed as normal but with zero value, and sent to a random
shielded payment address .

4.8 Merkle path validity

Let MerkleDepth be MerkleDepth
Sprout for the Sprout note commitment tree , or MerkleDepth

Sapling for the Sapling
note commitment tree . These constants are defined in §5.3 ‘Constants’ on p. 50.

Similarly, let MerkleCRH be MerkleCRH
Sprout for Sprout, or MerkleDepth

Sapling for Sapling.

The following discussion applies independently to the Sprout and Sapling note commitment trees .

Each node in the incremental Merkle tree is associated with a hash value , which is a bit sequence.

The layer numbered h, counting from layer 0 at the root , has 2h nodes with indices 0 to 2h − 1 inclusive.

Let M
h
i be the hash value associated with the node at index i in layer h.

The nodes at layer MerkleDepth are called leaf nodes . When a note commitment is added to the tree, it occupies
the leaf node hash value M

MerkleDepth
i for the next available i.

As-yet unused leaf nodes are associated with a distinguished hash value Uncommitted
Sprout or Uncommitted

Sapling. It
is assumed to be infeasible to find a preimage note n such that NoteCommitment

Sprout(n) = Uncommitted
Sprout. (No

similar assumption is needed for Sapling because we use a representation for Uncommitted
Sapling that cannot occur

as an output of NoteCommitment
Sapling.)

The nodes at layers 0 to MerkleDepth− 1 inclusive are called internal nodes , and are associated with MerkleCRH

outputs. Internal nodes are computed from their children in the next layer as follows: for 0 ≤ h < MerkleDepth and
0 ≤ i < 2h,

M
h
i := MerkleCRH(Mh+1

2i , M
h+1
2i+1).

A Merkle path from leaf node M
MerkleDepth
i in the incremental Merkle tree is the sequence

[[ M
h
sibling(h,i) for h from MerkleDepth down to 1 ]],

where

sibling(h, i) := floor

(

i

2
MerkleDepth−h

)

⊕ 1

Given such a Merkle path, it is possible to verify that leaf node M
MerkleDepth
i is in a tree with a given root rt = M

0
0.
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4.9 SIGHASH Transaction Hashing

Bitcoin and Zcash use signatures and/or non-interactive proofs associated with transaction inputs to authorize
spending. Because these signatures or proofs could otherwise be replayed in a different transaction, it is necessary
to “bind” them to the transaction for which they are intended. This is done by hashing information about the
transaction and (where applicable) the specific input, to give a SIGHASH transaction hash which is then used for
the spend authorization. The means of authorization differs between transparent inputs , inputs to Sprout JoinSplit
transfers , and Sapling Spend transfers , but (for a given transaction version) the same SIGHASH transaction hash
algorithm is used.

In the case of Zcash, the BCTV14 and Groth16 proving systems used are malleable, meaning that there is the
potential for an adversary who does not know all of the auxiliary inputs to a proof, to malleate it in order to create a
new proof involving related auxiliary inputs [DSDCOPS2001]. This can be understood as similar to a malleability
attack on an encryption scheme, in which an adversary can malleate a ciphertext in order to create an encryption of
a related plaintext, without knowing the original plaintext. Zcash has been designed to mitigate malleability attacks,
as described in §4.10 ‘Non-malleability (Sprout)’ on p. 36, §4.12 ‘Balance and Binding Signature (Sapling)’ on
p. 37, and §4.13 ‘Spend Authorization Signature’ on p. 39.

To provide additional flexibility when combining spend authorizations from different sources, Bitcoin defines sev-
eral SIGHASH types that cover various parts of a transaction [Bitcoin-SigHash]. One of these types is SIGHASH_ALL,
which is used for Zcash-specific signatures, i.e. JoinSplit signatures , spend authorization signatures , and binding
signatures . In these cases the SIGHASH transaction hash is not associated with a transparent input , and so the
input to hashing excludes all of the scriptSig fields in the non-Zcash-specific parts of the transaction.

In Zcash, all SIGHASH types are extended to cover the Zcash-specific fields nJoinSplit, vJoinSplit, and if present
joinSplitPubKey. These fields are described in §7.1 ‘Encoding of Transactions’ on p. 79. The hash does not cover
the field joinSplitSig. After Overwinter activation, all SIGHASH types are also extended to cover transaction
fields introduced in that upgrade, and similarly after Sapling activation.

The original SIGHASH algorithm defined by Bitcoin suffered from some deficiencies as described in [ZIP-143]; in
Zcash these are to be addressed by changing this algorithm as part of the Overwinter upgrade.

[Pre-Overwinter] The SIGHASH algorithm used prior to Overwinter activation, i.e. for version 1 and 2 transactions ,
will be defined in [ZIP-76] (to be written).

[Overwinter only, pre-Sapling ] The SIGHASH algorithm used after Overwinter activation and before Sapling
activation, i.e. for version 3 transactions , is defined in [ZIP-143].

[Sapling onward] The SIGHASH algorithm used after Sapling activation, i.e. for version 4 transactions , is defined
in [ZIP-243].

4.10 Non-malleability (Sprout)

Let dataToBeSigned be the hash of the transaction, not associated with an input, using the SIGHASH_ALL SIGHASH
type .

In order to ensure that a JoinSplit description is cryptographically bound to the transparent inputs and outputs
corresponding to v

new
pub and v

old
pub, and to the other JoinSplit descriptions in the same transaction, an ephemeral

JoinSplitSig key pair is generated for each transaction, and the dataToBeSigned is signed with the private signing key of
this key pair. The corresponding public verification key is included in the transaction encoding as joinSplitPubKey.

JoinSplitSig is instantiated in §5.4.5 ‘JoinSplit Signature’ on p. 60.

If nJoinSplit is zero, the joinSplitPubKey and joinSplitSig fields are omitted. Otherwise, a transaction has a
correct JoinSplit signature if and only if JoinSplitSig.VerifyjoinSplitPubKey(dataToBeSigned, joinSplitSig) = 1.
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Let hSig be computed as specified in §4.3 ‘JoinSplit Descriptions’ on p. 30.

Let PRF
pk be as defined in §4.1.2 ‘Pseudo Random Functions’ on p. 19.

For each i ∈ {1..Nold}, the creator of a JoinSplit description calculates hi = PRF
pk

a
old
sk,i

(i, hSig).

The correctness of h
1..N

old is enforced by the JoinSplit statement given in §4.15.1 ‘Non-malleability’ on p. 41. This

ensures that a holder of all of the a
old

sk,1..N
old for every JoinSplit description in the transaction has authorized the use

of the private signing key corresponding to joinSplitPubKey to sign this transaction.

4.11 Balance (Sprout)

In Bitcoin, all inputs to and outputs from a transaction are transparent. The total value of transparent outputs must
not exceed the total value of transparent inputs . The net value of transparent outputs minus transparent inputs is
transferred to the miner of the block containing the transaction; it is added to the miner subsidy in the coinbase
transaction of the block .

Zcash Sprout extends this by adding JoinSplit transfers . Each JoinSplit transfer can be seen, from the perspective
of the transparent value pool , as an input and an output simultaneously.

v
old
pub takes value from the transparent value pool and v

new
pub adds value to the transparent value pool . As a result, v

old
pub

is treated like an output value, whereas v
new
pub is treated like an input value.

Unlike original Zerocash [BCGGMTV2014], Zcash does not have a distinction between Mint and Pour operations.
The addition of v

old
pub to a JoinSplit description subsumes the functionality of both Mint and Pour.

Also, a difference in the number of real input notes does not by itself cause two JoinSplit descriptions to be
distinguishable.

As stated in §4.3 ‘JoinSplit Descriptions’ on p. 30, either v
old
pub or v

new
pub MUST be zero. No generality is lost because,

if a transaction in which both v
old
pub and v

new
pub were nonzero were allowed, it could be replaced by an equivalent

one in which min(vold
pub, v

new
pub ) is subtracted from both of these values. This restriction helps to avoid unnecessary

distinctions between transactions according to client implementation.

4.12 Balance and Binding Signature (Sapling)

Sapling adds Spend transfers and Output transfers to the transparent and JoinSplit transfers present in Sprout.
The net value of Spend transfers minus Output transfers in a transaction is called the balancing value , measured in
zatoshi as a signed integer v

balance.

v
balance is encoded explicitly in a transaction as the field valueBalance; see §7.1 ‘Encoding of Transactions’ on p. 79.

A positive balancing value takes value from the Sapling value pool and adds it to the transparent value pool . A
negative balancing value does the reverse. As a result, positive v

balance is treated like an input to the transparent

value pool , whereas negative v
balance is treated like an output from that pool.

Consistency of v
balance with the value commitments in Spend descriptions and Output descriptions is enforced by

the binding signature . This signature has a dual rôle in the Sapling protocol:

• To prove that the total value spent by Spend transfers , minus that produced by Output transfers , is consistent
with the v

balance field of the transaction;

• To prove that the signer knew the randomness used for the spend and output value commitments , in order
to prevent Output descriptions from being replayed by an adversary in a different transaction. (A Spend
description already cannot be replayed due to its spend authorization signature .)
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Instead of generating a key pair at random, we generate it as a function of the value commitments in the Spend
descriptions and Output descriptions of the transaction, and the balancing value .

Let J(r), J(r)∗, and rJ be as defined in §5.4.8.3 ‘Jubjub’ on p. 68.

Let ValueCommit, V , andR be as defined in §5.4.7.3 ‘Homomorphic Pedersen commitments’ on p. 64:

ValueCommit ◦

◦ ValueCommit.Trapdoor ×
{

− rJ−1

2 ..
rJ−1

2

}

→ ValueCommit.Output;

V ◦

◦ J
(r)∗ is the value base in ValueCommit;

R ◦

◦ J
(r)∗ is the randomness base in ValueCommit.

BindingSig, , and are instantiated in §5.4.6.2 ‘Binding Signature’ on p. 63. These and the derived notation ,
N

i=1
, , and

N

i=1
are specified in §4.1.6.2 ‘Signature with Private Key to Public Key Homomorphism’ on p. 23.

Suppose that the transaction has:

• n Spend descriptions with value commitments cv
old
1..n, committing to values v

old
1..n with randomness rcv

old
1..n;

• m Output descriptions with value commitments cv
new
1..m, committing to values v

new
1..m with randomness rcv

new
1..m;

• balancing value v
balance.

In a correctly constructed transaction, v
balance =

∑n

i=1
v

old
i −

∑m

j=1
v

new
j , but validators cannot check this directly

because the values are hidden by the commitments.

Instead, validators calculate the transaction binding verification key as:

bvk :=

(

n

i=1

cv
old
i

) (

m

j=1

cv
new
j

)

ValueCommit0

(

v
balance

)

.

(This key is not encoded explicitly in the transaction and must be recalculated.)

The signer knows rcv
old
1..n and rcv

new
1..m, and so can calculate the corresponding signing key as:

bsk :=

(

n

i=1

rcv
old
i

) (

m

j=1

rcv
new
j

)

.

In order to check for implementation faults, the signer SHOULD also check that

bvk = BindingSig.DerivePublic(bsk).

Let SigHash be the SIGHASH transaction hash as defined in [ZIP-243], not associated with an input, using the
SIGHASH type SIGHASH_ALL.

A validator checks balance by verifying that BindingSig.Verifybvk(SigHash, bindingSig) = 1.

We now explain why this works.

A binding signature proves knowledge of the discrete logarithm bsk of bvk with respect toR. That is, bvk = [bsk]R.
So the value 0 and randomness bsk is an opening of the Pedersen commitment bvk = ValueCommitbsk(0). By the
binding property of the Pedersen commitment , it is infeasible to find another opening of this commitment to a
different value.

Similarly, the binding property of the value commitments in the Spend descriptions and Output descriptions
ensures that an adversary cannot find an opening to more than one value for any of those commitments, i.e. we
may assume that v

old
1..n are determined by cv

old
1..n, and that v

new
1..m are determined by cv

new
1..m. We may also assume, from

Knowledge Soundness of Groth16, that the Spend proofs could not have been generated without knowing rcv
old
1..n

(mod rJ), and the Output proofs could not have been generated without knowing rcv
new
1..m (mod rJ).
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Using the fact that ValueCommitrcv(v) = [v]V [rcv]R, the expression for bvk above is equivalent to:

bvk =

[(

n

i=1

v
old
i

) (

m

j=1

v
new
j

)

v
balance

]

V
[(

n

i=1

rcv
old
i

) (

m

j=1

rcv
new
j

)]

R

= ValueCommitbsk

(

n
∑

i=1

v
old
i −

m
∑

j=1

v
new
j − v

balance

)

.

Let v
∗ =

n
∑

i=1

v
old
i −

m
∑

j=1

v
new
j − v

balance.

Suppose that v
∗ = v

bad 6= 0 (mod rJ). Then bvk = ValueCommitbsk(vbad). If the adversary were able to find the
discrete logarithm of this bvk with respect to R, say bsk

′ (as needed to create a valid binding signature), then
(vbad, bsk) and (0, bsk

′) would be distinct openings of bvk to different values, breaking the binding property of the
value commitment scheme .

The above argument shows only that v
∗ = 0 (mod rJ); in order to show that v

∗ = 0, we will also demonstrate that it

does not overflow
{

− rJ−1

2 ..
rJ−1

2

}

.

The Spend statements prove that all of v
old
1..n are in {0 .. 2ℓvalue−1}. Similarly the Output statements prove that all of

v
new
1..m are in {0 .. 2ℓvalue−1}. v

balance is encoded in the transaction as a signed two’s complement 64-bit integer in the
range {−263 .. 263 − 1}. ℓvalue is defined as 64, so v

∗ is in the range {−m · (264 − 1)− 263 + 1 .. n · (264 − 1) + 263}. The
maximum transaction size of 2 MB limits n to at most floor

(

2000000
384

)

= 5208 and m to at most floor
(

2000000
948

)

= 2109,

ensuring v
∗ ∈ {−38913406623490299131842 .. 96079866507916199586728}which is a subrange of

{

− rJ−1

2 ..
rJ−1

2

}

.

Thus checking the binding signature ensures that the transaction balances, without the individual values of the
Spend descriptions and Output descriptions being revealed.

In addition this proves that the signer, knowing the -sum of the value commitment randomnesses, authorized a
transaction with the given SIGHASH transaction hash by signing SigHash.

Note: The spender MAY reveal any strict subset of the value commitment randomnesses to other parties that are
cooperating to create the transaction. If all of the value commitment randomnesses are revealed, that could allow
replaying the Output descriptions of the transaction.

Non-normative note: The technique of checking signatures using a public key derived from a sum of Pedersen
commitments is also used in the Mimblewimble protocol [Jedusor2016]. The private key bsk acts as a “synthetic

blinding factor ”, in the sense that it is synthesized from the other blinding factors (trapdoors) rcv
old
1..n and rcv

new
1..m;

this technique is also used in Bulletproofs [Dalek-notes].

4.13 Spend Authorization Signature

SpendAuthSig is used in Sapling to prove knowledge of the spending key authorizing spending of an input note . It
is instantiated in §5.4.6.1 ‘Spend Authorization Signature’ on p. 63.

Knowledge of the spending key could have been proven directly in the Spend statement , similar to the check in
§4.15.1 ‘Spend authority’ on p. 41 that is part of the JoinSplit statement . The motivation for a separate signature is to
allow devices that are limited in memory and computational capacity, such as hardware wallets, to authorize a
Sapling shielded spend. Typically such devices cannot create, and may not be able to verify, zk-SNARK proofs for a
statement of the size needed using the BCTV14 or Groth16 proving systems.

The verifying key of the signature must be revealed in the Spend description so that the signature can be checked
by validators. To ensure that the verifying key cannot be linked to the shielded payment address or spending key
from which the note was spent, we use a signature scheme with re-randomizable keys . The Spend statement

39



proves that this verifying key is a re-randomization of the spend authorization address key ak with a randomizer
known to the signer. The spend authorization signature is over the SIGHASH transaction hash, so that it cannot be
replayed in other transactions .

Let SigHash be the SIGHASH transaction hash as defined in [ZIP-243], not associated with an input, using the
SIGHASH type SIGHASH_ALL.

Let ask be the spend authorization private key as defined in §4.2.2 ‘Sapling Key Components’ on p. 28.

For each Spend description, the signer chooses a fresh spend authorization randomizer α:

1. Choose α ←R SpendAuthSig.GenRandom().

2. Let rsk = SpendAuthSig.RandomizePrivate(α, ask).

3. Let rk = SpendAuthSig.DerivePublic(rsk).

4. Generate a proof πZKSpend of the Spend statement (§4.15.2 ‘Spend Statement (Sapling)’ on p. 42), with α in
the auxiliary input and rk in the primary input .

5. Let spendAuthSig = SpendAuthSig.Signrsk(SigHash).

The resulting spendAuthSig and πZKSpend are included in the Spend description.

Note: If the spender is computationally or memory-limited, step 4 (and only step 4) MAY be delegated to a
different party that is capable of performing the zk proof . In this case privacy will be lost to that party since it needs
ak and the proof authorizing key nsk; this allows also deriving the nk component of the full viewing key . Together
ak and nk are sufficient to recognize spent notes and to recognize and decrypt incoming notes . However, the other
party will not obtain spending authority for other transactions , since it is not able to create a spend authorization
signature by itself.

4.14 Note Commitments and Nullifiers

A transaction that contains one or more JoinSplit descriptions or Spend descriptions , when entered into the block
chain, appends to the note commitment tree with all constituent note commitments .

All of the constituent nullifiers are also entered into the nullifier set of the associated treestate . A transaction is not
valid if it would have added a nullifier to the nullifier set that already exists in the set (see §3.8 ‘Nullifier Sets’ on
p. 17).

In Sprout, each note has a ρ component.

In Sapling, each positioned note has an associated ρ value which is computed from its note commitment cm and
note position pos as follows:

ρ := MixingPedersenHash(cm, pos).

MixingPedersenHash is defined in §5.4.1.8 ‘Mixing Pedersen Hash Function’ on p. 56.

Let PRF
nf and PRF

nfSapling be as instantiated in §5.4.2 ‘Pseudo Random Functions’ on p. 57.

For a Sprout note , the nullifier is derived as PRF
nf
ask

(ρ), where ask is the spending key associated with the note .

For a Sapling note , the nullifier is derived as PRF
nfSapling
nk⋆ (ρ⋆), where nk⋆ is a representation of the nullifier deriving

key associated with the note and ρ⋆ = reprJ(ρ).
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4.15 Zk-SNARK Statements

4.15.1 JoinSplit Statement (Sprout)

Let ℓMerkleSprout, ℓPRFSprout, MerkleDepth
Sprout, ℓvalue, ℓask

, ℓϕ, ℓhSig, Nold, Nnew be as defined in §5.3 ‘Constants’ on p. 50.

Let PRF
addr, PRF

nf , PRF
pk, and PRF

ρ be as defined in §4.1.2 ‘Pseudo Random Functions’ on p. 19.

Let NoteCommit
Sprout be as defined in §4.1.7 ‘Commitment’ on p. 23, and let Note

Sprout and NoteCommitment
Sprout be

as defined in §3.2 ‘Notes’ on p. 13.

A valid instance of πZKJoinSplit assures that given a primary input :
(

rt ◦

◦ B
[ℓMerkleSprout],

nf
old

1..N
old

◦

◦ B
[ℓPRFSprout][N

old
],

cm
new
1..N

new ◦

◦ NoteCommit
Sprout.Output

[N
new

],

v
old
pub

◦

◦ {0 .. 2ℓvalue−1},
v

new
pub

◦

◦ {0 .. 2ℓvalue−1},
hSig

◦

◦ B
[ℓhSig],

h
1..N

old
◦

◦ B
[ℓPRFSprout][N

old
]),

the prover knows an auxiliary input :
(

path
1..N

old
◦

◦ B
[ℓMerkleSprout][MerkleDepth

Sprout
][N

old
],

pos
1..N

old
◦

◦ {0 .. 2MerkleDepth
Sprout

−1}[N
old

],

nold

1..N
old

◦

◦ Note
Sprout[N

old
],

a
old

sk,1..N
old

◦

◦ B
[ℓask

][N
old

],

nnew
1..N

new ◦

◦ Note
Sprout[N

new
],

ϕ ◦

◦ B
[ℓϕ],

enforceMerklePath
1..N

old
◦

◦ B
[N

old
]),

where:

for each i ∈ {1..Nold}: nold
i = (aold

pk,i, v
old
i , ρold

i , rcm
old
i );

for each i ∈ {1..Nnew}: nnew
i = (anew

pk,i, v
new
i , ρnew

i , rcm
new
i )

such that the following conditions hold:

Merkle path validity for each i ∈ {1..Nold} | enforceMerklePathi = 1: (pathi, posi) is a valid Merkle path (see §4.8
‘Merkle path validity’ on p. 35) of depth MerkleDepth

Sprout from NoteCommitment
Sprout(nold

i ) to the anchor rt.

Note: Merkle path validity covers conditions 1. (a) and 1. (d) of the NP statement in [BCGGMTV2014, section 4.2].

Merkle path enforcement for each i ∈ {1..Nold}, if v
old
i 6= 0 then enforceMerklePathi = 1.

Balance v
old
pub +

∑N
old

i=1
v

old
i = v

new
pub +

∑N
new

i=1
v

new
i ∈ {0 .. 2ℓvalue−1}.

Nullifier integrity for each i ∈ {1..Nold}: nf
old
i = PRF

nf

a
old
sk,i

(ρold
i ).

Spend authority for each i ∈ {1..Nold}: a
old
pk,i = PRF

addr

a
old
sk,i

(0).

Non-malleability for each i ∈ {1..Nold}: hi = PRF
pk

a
old
sk,i

(i, hSig).

Uniqueness of ρnew
i for each i ∈ {1..Nnew}: ρnew

i = PRF
ρ

ϕ(i, hSig).

Note commitment integrity for each i ∈ {1..Nnew}: cm
new
i = NoteCommitment

Sprout(nnew
i ).

For details of the form and encoding of proofs, see §5.4.9.1 ‘BCTV14’ on p. 70.
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4.15.2 Spend Statement (Sapling)

Let ℓMerkleSapling, ℓPRFnfSapling, and ℓscalar be as defined in §5.3 ‘Constants’ on p. 50.

Let ValueCommit and NoteCommit
Sapling be as specified in §4.1.7 ‘Commitment’ on p. 23.

Let SpendAuthSig be as defined in §5.4.6.1 ‘Spend Authorization Signature’ on p. 63.

Let J, J(r), reprJ, qJ, rJ, and hJ be as defined in §5.4.8.3 ‘Jubjub’ on p. 68.

Let Extract
J

(r)
◦

◦ J
(r) → B

[ℓMerkleSapling] be as defined in §5.4.8.4 ‘Hash Extractor for Jubjub’ on p. 69.

LetH be as defined in §4.2.2 ‘Sapling Key Components’ on p. 28.

A valid instance of πZKSpend assures that given a primary input :
(

rt ◦

◦ B
[ℓMerkleSapling],

cv
old

◦

◦ ValueCommit.Output,

nf
old

◦

◦ B
[ℓPRFnfSapling],

rk ◦

◦ SpendAuthSig.Public
)

,

the prover knows an auxiliary input :
(

path ◦

◦ B
[ℓMerkle][MerkleDepth

Sapling
],

pos ◦

◦ {0 .. 2MerkleDepth
Sapling

−1},
gd

◦

◦ J,

pkd
◦

◦ J,

v
old

◦

◦ {0 .. 2ℓvalue−1},
rcv

old
◦

◦ {0 .. 2ℓscalar−1},
cm

old
◦

◦ J,

rcm
old

◦

◦ {0 .. 2ℓscalar−1},
α ◦

◦ {0 .. 2ℓscalar−1},
ak ◦

◦ SpendAuthSig.Public,

nsk ◦

◦ {0 .. 2ℓscalar−1}
)

such that the following conditions hold:

Note commitment integrity cm
old = NoteCommit

Sapling

rcm
old (reprJ(gd), reprJ(pkd), v

old).

Merkle path validity Either v
old = 0; or (path, pos) is a valid Merkle path of depth MerkleDepth

Sapling, as defined
in §4.8 ‘Merkle path validity’ on p. 35, from cmu = Extract

J
(r)(cm

old) to the anchor rt.

Value commitment integrity cv
old = ValueCommit

rcv
old(vold).

Small order checks gd and ak are not of small order, i.e. [hJ] gd 6= OJ and [hJ] ak 6= OJ.

Nullifier integrity nf
old = PRF

nfSapling
nk⋆ (ρ⋆) where

nk⋆ = reprJ([nsk]H)

ρ⋆ = reprJ
(

MixingPedersenHash(cm
old, pos)

)

.

Spend authority rk = SpendAuthSig.RandomizePublic(α, ak).

Diversified address integrity pkd = [ivk] gd where

ivk = CRH
ivk(ak⋆, nk⋆)

ak⋆ = reprJ(ak).

For details of the form and encoding of Spend statement proofs, see §5.4.9.2 ‘Groth16’ on p. 71.
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Notes:

• Public and auxiliary inputs MUST be constrained to have the types specified. In particular, see §A.3.3.2
‘ctEdwards [de]compression and validation’ on p. 128, for required validity checks on compressed repre-
sentations of Jubjub curve points.

The ValueCommit.Output and SpendAuthSig.Public types also represent points, i.e. J.

• In the Merkle path validity check, each layer does not check that its input bit sequence is a canonical encoding
(in {0 .. rS − 1}) of the integer from the previous layer .

• It is not checked in the Spend statement that rk is not of small order. However, this is checked outside the
Spend statement , as specified in §4.4 ‘Spend Descriptions’ on p. 31.

• It is not checked that rcv
old < rJ or that rcm

old < rJ.

• SpendAuthSig.RandomizePublic(α, ak) = ak+[α]G. (G is as defined in §5.4.6.1 ‘Spend Authorization Signature’

on p. 63.)

4.15.3 Output Statement (Sapling)

Let ℓMerkleSapling, ℓPRFnfSapling, and ℓscalar be as defined in §5.3 ‘Constants’ on p. 50.

Let ValueCommit and NoteCommit
Sapling be as specified in §4.1.7 ‘Commitment’ on p. 23.

Let J, reprJ, and hJ be as defined in §5.4.8.3 ‘Jubjub’ on p. 68.

A valid instance of πZKOutput assures that given a primary input :
(

cv
new

◦

◦ ValueCommit.Output,

cmu
◦

◦ B
[ℓMerkleSapling],

epk ◦

◦ J
)

,

the prover knows an auxiliary input :

(gd
◦

◦ J,

pk⋆d
◦

◦ B
[ℓJ],

v
new

◦

◦ {0 .. 2ℓvalue−1},
rcv

new
◦

◦ {0 .. 2ℓscalar−1},
rcm

new
◦

◦ {0 .. 2ℓscalar−1},
esk ◦

◦ {0 .. 2ℓscalar−1})

such that the following conditions hold:

Note commitment integrity cmu = Extract
J

(r)

(

NoteCommit
Sapling

rcm
new (g⋆d, pk⋆d, v

new)
)

, where g⋆d = reprJ(gd).

Value commitment integrity cv
new = ValueCommitrcv

new (vnew).

Small order check gd is not of small order, i.e. [hJ] gd 6= OJ.

Ephemeral public key integrity epk = [esk] gd.

For details of the form and encoding of Output statement proofs, see §5.4.9.2 ‘Groth16’ on p. 71.
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Notes:

• Public and auxiliary inputs MUST be constrained to have the types specified. In particular, see §A.3.3.2
‘ctEdwards [de]compression and validation’ on p. 128, for required validity checks on compressed repre-
sentations of Jubjub curve points.

The ValueCommit.Output type also represents points, i.e. J.

• The validity of pk⋆d is not checked in this circuit.

• It is not checked that rcv
old < rJ or that rcm

old < rJ.

4.16 In-band secret distribution (Sprout)

In Sprout, the secrets that need to be transmitted to a recipient of funds in order for them to later spend, are v, ρ,
and rcm. A memo field (§3.2.1 ‘Note Plaintexts and Memo Fields’ on p. 14) is also transmitted.

To transmit these secrets securely to a recipient without requiring an out-of-band communication channel, the
transmission key pkenc is used to encrypt them. The recipient’s possession of the associated incoming viewing key
ivk is used to reconstruct the original note and memo field .

A single ephemeral public key is shared between encryptions of the Nnew shielded outputs in a JoinSplit description.
All of the resulting ciphertexts are combined to form a transmitted notes ciphertext .

For both encryption and decryption,

• let Sym be the scheme instantiated in §5.4.3 ‘Authenticated One-Time Symmetric Encryption’ on p. 58;

• let KDF
Sprout be the Key Derivation Function instantiated in §5.4.4.2 ‘Sprout Key Derivation’ on p. 59;

• let KA
Sprout be the key agreement scheme instantiated in §5.4.4.1 ‘Sprout Key Agreement’ on p. 58;

• let hSig be the value computed for this JoinSplit description in §4.3 ‘JoinSplit Descriptions’ on p. 30.

4.16.1 Encryption (Sprout)

Let KA
Sprout be the key agreement scheme instantiated in §5.4.4.1 ‘Sprout Key Agreement’ on p. 58.

Let pk
new
enc,1..N

new be the transmission keys for the intended recipient addresses of each new note .

Let np1..N
new be Sprout note plaintexts defined in §5.5 ‘Encodings of Note Plaintexts and Memo Fields’ on p. 72.

Then to encrypt:

• Generate a new KA
Sprout (public, private) key pair (epk, esk).

• For i ∈ {1..Nnew},
– Let P

enc
i be the raw encoding of npi.

– Let sharedSecreti := KA
Sprout.Agree(esk, pk

new
enc,i).

– Let K
enc
i := KDF

Sprout(i, hSig, sharedSecreti, epk, pk
new
enc,i).

– Let C
enc
i := Sym.EncryptK

enc
i

(Penc
i ).

The resulting transmitted notes ciphertext is (epk, C
enc
1..N

new ).

Note: It is technically possible to replace C
enc
i for a given note with a random (and undecryptable) dummy

ciphertext, relying instead on out-of-band transmission of the note to the recipient. In this case the ephemeral key
MUST still be generated as a random public key (rather than a random bit sequence) to ensure indistinguishability
from other JoinSplit descriptions . This mode of operation raises further security considerations, for example of
how to validate a Sprout note received out-of-band, which are not addressed in this document.
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4.16.2 Decryption (Sprout)

Let ivk = (apk, skenc) be the recipient’s incoming viewing key , and let pkenc be the corresponding transmission key
derived from skenc as specified in §4.2.1 ‘Sprout Key Components’ on p. 28.

Let cm
new
1..N

new be the note commitments of each output coin.

Then for each i ∈ {1..Nnew}, the recipient will attempt to decrypt that ciphertext component (epk, C
enc
i ) as follows:

let sharedSecreti = KA
Sprout.Agree(skenc, epk)

let K
enc
i = KDF

Sprout(i, hSig, sharedSecreti, epk, pkenc)

return DecryptNoteSprout(Kenc
i , C

enc
i , cm

new
i , apk).

DecryptNoteSprout(Kenc
i , C

enc
i , cm

new
i , apk) is defined as follows:

let P
enc
i = Sym.DecryptK

enc
i

(Cenc
i )

if P
enc
i = ⊥, return ⊥

extract npi = (vnew
i

◦

◦ {0 .. 2ℓvalue−1}, ρnew
i

◦

◦ B
[ℓPRFSprout], rcm

new
i

◦

◦ NoteCommit
Sprout.Trapdoor, memoi

◦

◦ BYY[512]) from
P

enc
i

if NoteCommitment
Sprout((apk, v

new
i , ρnew

i , rcm
new
i )) 6= cm

new
i , return ⊥, else return npi.

To test whether a note is unspent in a particular block chain also requires the spending key ask; the coin is unspent
if and only if nf = PRF

nf
ask

(ρ) is not in the nullifier set for that block chain.

Notes:

• The decryption algorithm corresponds to step 3 (b) i. and ii. (first bullet point) of the Receive algorithm shown
in [BCGGMTV2014, Figure 2].

• A note can change from being unspent to spent as a node’s view of the best valid block chain is extended by
new transactions . Also, block chain reorganizations can cause a node to switch to a different best valid block
chain that does not contain the transaction in which a note was output.

See §8.7 ‘In-band secret distribution’ on p. 96 for further discussion of the security and engineering rationale
behind this encryption scheme.

4.17 In-band secret distribution (Sapling)

In Sapling, the secrets that need to be transmitted to a recipient of funds in order for them to later spend, are d, v,
and rcm. A memo field (§3.2.1 ‘Note Plaintexts and Memo Fields’ on p. 14) is also transmitted.

To transmit these secrets securely to a recipient without requiring an out-of-band communication channel, the
diversified transmission key pkd is used to encrypt them. The recipient’s possession of the associated incoming
viewing key ivk is used to reconstruct the original note and memo field .

Unlike in a Sprout JoinSplit description, each Sapling shielded output is encrypted using a fresh ephemeral public
key.

For both encryption and decryption,

• let ℓovk be as defined in §5.3 ‘Constants’ on p. 50;

• let Sym be the scheme instantiated in §5.4.3 ‘Authenticated One-Time Symmetric Encryption’ on p. 58;

• let KDF
Sapling be the Key Derivation Function instantiated in §5.4.4.4 ‘Sapling Key Derivation’ on p. 60;

• let KA
Sapling be the key agreement scheme instantiated in §5.4.4.3 ‘Sapling Key Agreement’ on p. 59;

• let ℓJ and reprJ be as defined in §5.4.8.3 ‘Jubjub’ on p. 68;

• let Extract
J

(r) be as defined in §5.4.8.4 ‘Hash Extractor for Jubjub’ on p. 69;

• let PRF
ock be as instantiated in §5.4.2 ‘Pseudo Random Functions’ on p. 57.
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4.17.1 Encryption (Sapling)

Let pk
new
d

◦

◦ KA
Sapling.PublicPrimeOrder be the diversified transmission key for the intended recipient address of a

new Sapling note , and let g
new
d

◦

◦ KA
Sapling.PublicPrimeOrder be the corresponding diversified base computed as

DiversifyHash(d).

Since Sapling note encryption is used only in the context of §4.6.2 ‘Sending Notes (Sapling)’ on p. 33, we may
assume that g

new
d has already been calculated and is not ⊥.

Let ovk ◦

◦ BYY[ℓovk/8] ∪ {⊥} be as described in §4.6.2 ‘Sending Notes (Sapling)’ on p. 33, i.e. the outgoing viewing key
of the shielded payment address from which the note is being spent, or an outgoing viewing key associated with a
[ZIP-32] account, or ⊥.

Let np = (d, v, rcm, memo) be the Sapling note plaintext .

np is encoded as defined in §5.5 ‘Encodings of Note Plaintexts and Memo Fields’ on p. 72.

Let cv
new be the value commitment for the new note , and let cm

new be the note commitment .

Then to encrypt:

choose a uniformly random ephemeral private key esk ←R KA
Sapling.Private \ {0}

let epk = KA
Sapling.DerivePublic(esk, g

new
d )

let P
enc be the raw encoding of np

let sharedSecret = KA
Sapling.Agree(esk, pk

new
d )

let K
enc = KDF

Sapling(sharedSecret, epk)

let C
enc = Sym.EncryptK

enc(Penc)

if ovk = ⊥:

choose random ock ←R Sym.K and op ←R BYY[(ℓJ+256)/8]

else:

let cv = LEBS2OSPℓJ

(

reprJ(cv
new)
)

let cmu = LEBS2OSP256

(

Extract
J

(r)(cm
new)
)

let ephemeralKey = LEBS2OSPℓJ

(

reprJ(epk)
)

let ock = PRF
ock
ovk(cv, cmu, ephemeralKey)

let op = LEBS2OSPℓJ+256

(

reprJ(pk
new
d ) || I2LEBSP256(esk)

)

let C
out = Sym.Encryptock(op)

The resulting transmitted note ciphertext is (epk, C
enc, C

out).

Note: It is technically possible to replace C
enc for a given note with a random (and undecryptable) dummy

ciphertext, relying instead on out-of-band transmission of the note to the recipient. In this case the ephemeral key
MUST still be generated as a random public key (rather than a random bit sequence) to ensure indistinguishability
from other Output descriptions . This mode of operation raises further security considerations, for example of how
to validate a Sapling note received out-of-band, which are not addressed in this document.

4.17.2 Decryption using an Incoming Viewing Key (Sapling)

Let ivk ◦

◦ {0 .. 2ℓivk−1} be the recipient’s incoming viewing key , as specified in §4.2.2 ‘Sapling Key Components’ on
p. 28.

Let (epk, C
enc, C

out) be the transmitted note ciphertext from the Output description. Let cmu be that field of the
Output description (encoding the u-coordinate of the note commitment ).
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The recipient will attempt to decrypt the epk and C
enc components of the transmitted note ciphertext as follows:

let sharedSecret = KA
Sapling.Agree(ivk, epk)

let K
enc = KDF

Sapling(sharedSecret, epk)

let P
enc = Sym.DecryptK

enc(Cenc)

if P
enc = ⊥, return ⊥

extract np = (d ◦

◦ B
[ℓd], v ◦

◦ {0 .. 2ℓvalue−1}, rcm ◦

◦ BYY[32], memo ◦

◦ BYY[512]) from P
enc

let rcm = LEOS2IP256(rcm) and gd = DiversifyHash(d)

if rcm ≥ rJ or gd = ⊥, return ⊥
let pkd = KA

Sapling.DerivePublic(ivk, gd)

let cm
′
u = Extract

J
(r)

(

NoteCommit
Sapling

rcm
new (reprJ(gd), reprJ(pkd), v)

)

.

if LEBS2OSP256

(

cm
′
u

)

6= cmu, return ⊥, else return np.

A received Sapling note is necessarily a positioned note , and so its ρ value can immediately be calculated as
described in §4.14 ‘Note Commitments and Nullifiers’ on p. 40.

To test whether a Sapling note is unspent in a particular block chain also requires the nullifier deriving key nk⋆;
the coin is unspent if and only if nf = PRF

nfSapling
nk⋆

(

reprJ(ρ)
)

is not in the nullifier set for that block chain.

Note: A note can change from being unspent to spent as a node’s view of the best valid block chain is extended
by new transactions . Also, block chain reorganizations can cause a node to switch to a different best valid block
chain that does not contain the transaction in which a note was output.

4.17.3 Decryption using a Full Viewing Key (Sapling)

Let ovk ◦

◦ BYY[ℓovk/8] be the outgoing viewing key , as specified in §4.2.2 ‘Sapling Key Components’ on p. 28, that is to
be used for decryption. (If ovk = ⊥was used for encryption, the payment is not decryptable by this method.)

Let (epk, C
enc, C

out) be the transmitted note ciphertext , and let cv, cmu, and ephemeralKey be those fields of the
Output description (encoding the value commitment , the u-coordinate of the note commitment , and epk).

The outgoing viewing key holder will attempt to decrypt the transmitted note ciphertext as follows:

let ock = PRF
ock
ovk(cv, cmu, ephemeralKey)

let op = Sym.Decryptock(Cout)

if op = ⊥, return ⊥
extract (pk⋆d

◦

◦ B
[ℓJ], esk ◦

◦ BYY[32]) from op

let esk = LEOS2IP256(esk) and pkd = abstJ(pk⋆d)

if esk ≥ rJ or pkd /∈ KA
Sapling.PublicPrimeOrder, return ⊥

let sharedSecret = KA
Sapling.Agree(esk, pkd)

let K
enc = KDF

Sapling(sharedSecret, epk)

let P
enc = Sym.DecryptK

enc(Cenc)

if P
enc = ⊥, return ⊥

extract np = (d ◦

◦ B
[ℓd], v ◦

◦ {0 .. 2ℓvalue−1}, rcm ◦

◦ BYY[32], memo ◦

◦ BYY[512]) from P
enc

let rcm = LEOS2IP256(rcm) and gd = DiversifyHash(d)

if rcm ≥ rJ or gd = ⊥, return ⊥
if KA

Sapling.DerivePublic(esk, gd) 6= epk, return ⊥
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let cm
′
u = Extract

J
(r)

(

NoteCommit
Sapling

rcm
new (reprJ(gd), reprJ(pkd), v)

)

.

if LEBS2OSP256

(

cm
′
u

)

6= cmu, return ⊥, else return np.

Note: For a valid transaction it must be the case that ephemeralKey = LEBS2OSPℓJ

(

reprJ(epk)
)

.

4.18 Block Chain Scanning (Sprout)

The following algorithm can be used, given the block chain and a Sprout spending key ask, to obtain each note sent
to the corresponding shielded payment address , its memo field field, and its final status (spent or unspent).

Let ℓPRFSprout be as defined in §5.3 ‘Constants’ on p. 50.

Let Note
Sprout be as defined in §3.2 ‘Notes’ on p. 13.

Let ivk = (apk
◦

◦ B
[ℓPRFSprout], skenc

◦

◦ KA
Sprout.Private) be the incoming viewing key corresponding to ask, and let pkenc be

the associated transmission key , as specified in §4.2.1 ‘Sprout Key Components’ on p. 28.

Initialize ReceivedSet ◦

◦ P
(

Note
Sprout × BYY[512]) = {}.

Initialize SpentSet ◦

◦ P
(

Note
Sprout

)

= {}.
Initialize NullifierMap ◦

◦ B
[ℓPRFSprout] → Note

Sprout to the empty mapping.

For each transaction tx,

For each JoinSplit description in tx,

Let (epk, C
enc
1..N

new ) be the transmitted notes ciphertext of the JoinSplit description.

For i in 1..Nnew,

Attempt to decrypt the transmitted note ciphertext component (epk, C
enc
i ) using ivk with the

algorithm in §4.16.2 ‘Decryption (Sprout)’ on p. 45. If this succeeds giving np:

Extract n and memo ◦

◦ BYY[512] from np (taking the apk field of the note to be apk from ivk).

Add (n, memo) to ReceivedSet.

Calculate the nullifier nf of n using ask as described in §3.2 ‘Notes’ on p. 13.

Add the mapping nf → n to NullifierMap.

Let nf
1..N

old be the nullifiers of the JoinSplit description.

For i in 1..Nold,

If nfi is present in NullifierMap, add NullifierMap(nfi) to SpentSet.

Return (ReceivedSet, SpentSet).

4.19 Block Chain Scanning (Sapling)

In Sapling, block chain scanning requires only the nk and ivk key components, rather than a spending key as in
Sprout.

Typically, these components are derived from a full viewing key as described in §4.2.2 ‘Sapling Key Components’

on p. 28.

The following algorithm can be used, given the block chain and (nk ◦

◦ J
(r), ivk ◦

◦ {0 .. 2ℓivk−1}), to obtain each note
sent to the corresponding shielded payment address , its memo field field, and its final status (spent or unspent).

Let ℓPRFnfSapling be as defined in §5.3 ‘Constants’ on p. 50.

Let Note
Sapling be as defined in §3.2 ‘Notes’ on p. 13.
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Initialize ReceivedSet ◦

◦ P
(

Note
Sapling × BYY[512]) = {}.

Initialize SpentSet ◦

◦ P
(

Note
Sapling

)

= {}.
Initialize NullifierMap ◦

◦ B
[ℓPRFnfSapling] → Note

Sapling to the empty mapping.

For each transaction tx,

For each Output description in tx with note position pos,

Attempt to decrypt the transmitted note ciphertext components epk and C
enc using ivk with the algorithm

in §4.17.2 ‘Decryption using an Incoming Viewing Key (Sapling)’ on p. 46. If this succeeds giving np:

Extract n and memo ◦

◦ BYY[512] from np.

Add (n, memo) to ReceivedSet.

Calculate the nullifier nf of n using nk and pos as described in §3.2 ‘Notes’ on p. 13.

Add the mapping nf → n to NullifierMap.

For each Spend description in tx,

Let nf be the nullifier of the Spend description.

If nf is present in NullifierMap, add NullifierMap(nf) to SpentSet.

Return (ReceivedSet, SpentSet).

Non-normative notes:

• The above algorithm does not use the ovk key component, or the C
out transmitted note ciphertext component.

When scanning the whole block chain, these are indeed not necessary. The advantage of supporting decryption
using ovk as described in §4.17.3 ‘Decryption using a Full Viewing Key (Sapling)’ on p. 47, is that it allows
recovering information about the note plaintexts sent in a transaction from that transaction alone.

• When scanning only part of a block chain, it may be useful to augment the above algorithm with decryption
of C

out components for each transaction, in order to obtain information about notes that were spent in the
scanned period but received outside it.

• The above algorithm does not detect notes that were sent “out-of-band” or with incorrect transmitted note
ciphertexts . It is possible to detect whether such notes were spent only if their nullifiers are known.

5 Concrete Protocol

5.1 Caution

TODO: Explain the kind of things that can go wrong with linkage between abstract and concrete protocol. E.g. §8.5
‘Internal hash collision attack and fix’ on p. 94

5.2 Integers, Bit Sequences, and Endianness

All integers in Zcash-specific encodings are unsigned, have a fixed bit length, and are encoded in little-endian byte
order unless otherwise specified.

The following functions convert between sequences of bits, sequences of bytes, and integers:

• I2LEBSP ◦

◦ (ℓ ◦

◦ N) × {0 .. 2ℓ−1} → B
[ℓ], such that I2LEBSPℓ(x) is the sequence of ℓ bits representing x in

little-endian order;
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• I2BEBSP ◦

◦ (ℓ ◦

◦ N) × {0 .. 2ℓ−1} → B
[ℓ] such that I2BEBSPℓ(x) is the sequence of ℓ bits representing x in

big-endian order.

• LEBS2IP ◦

◦ (ℓ ◦

◦ N)× B
[ℓ] → {0 .. 2ℓ−1} such that LEBS2IPℓ(S) is the integer represented in little-endian order

by the bit sequence S of length ℓ.

• LEOS2IP ◦

◦ (ℓ ◦

◦ N | ℓ mod 8 = 0) × BYY[ℓ/8] → {0 .. 2ℓ−1} such that LEOS2IPℓ(S) is the integer represented in
little-endian order by the byte sequence S of length ℓ/8.

• LEBS2OSP ◦

◦ (ℓ ◦

◦ N)×B
[ℓ] → BYY[ceiling(ℓ/8)] defined as follows: pad the input on the right with 8 · ceiling (ℓ/8)− ℓ

zero bits so that its length is a multiple of 8 bits. Then convert each group of 8 bits to a byte value with the
least significant bit first, and concatenate the resulting bytes in the same order as the groups.

• LEOS2BSP ◦

◦ (ℓ ◦

◦ N | ℓ mod 8 = 0)× BYY[ceiling(ℓ/8)] → B
[ℓ] defined as follows: convert each byte to a group of 8

bits with the least significant bit first, and concatenate the resulting groups in the same order as the bytes.

In bit layout diagrams, each box of the diagram represents a sequence of bits. Diagrams are read from left-to-right,
with lines read from top-to-bottom; the breaking of boxes across lines has no significance. The bit length ℓ is
given explicitly in each box, except when it is obvious (e.g. for a single bit, or for the notation [0]ℓ representing the
sequence of ℓ zero bits, or for the output of LEBS2OSPℓ).

The entire diagram represents the sequence of bytes formed by first concatenating these bit sequences, and then
treating each subsequence of 8 bits as a byte with the bits ordered from most significant to least significant. Thus
the most significant bit in each byte is toward the left of a diagram. (This convention is used only in descriptions of
the Sprout design; in the Sapling additions, bit/byte sequence conversions are always specified explicitly.) Where
bit fields are used, the text will clarify their position in each case.

5.3 Constants

Define:

MerkleDepth
Sprout

◦

◦ N := 29

MerkleDepth
Sapling

◦

◦ N := 32

Nold
◦

◦ N := 2

Nnew
◦

◦ N := 2

ℓvalue
◦

◦ N := 64

ℓMerkleSprout
◦

◦ N := 256

ℓMerkleSapling
◦

◦ N := 255

ℓhSig
◦

◦ N := 256

ℓPRFSprout
◦

◦ N := 256

ℓPRFexpand
◦

◦ N := 512

ℓPRFnfSapling
◦

◦ N := 256

ℓrcm
◦

◦ N := 256

ℓSeed
◦

◦ N := 256

ℓask

◦

◦ N := 252

ℓϕ
◦

◦ N := 252

ℓsk
◦

◦ N := 256

ℓd
◦

◦ N := 88

ℓivk
◦

◦ N := 251

ℓovk
◦

◦ N := 256
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ℓscalar
◦

◦ N := 252

Uncommitted
Sprout

◦

◦ B
[ℓMerkleSprout] := [0]ℓMerkleSprout

Uncommitted
Sapling

◦

◦ B
[ℓMerkleSapling] := I2LEBSPℓMerkleSapling

(1)

MAX_MONEY ◦

◦ N := 2.1·1015 (zatoshi )

SlowStartInterval ◦

◦ N := 20000

HalvingInterval ◦

◦ N := 840000

MaxBlockSubsidy ◦

◦ N := 1.25·109 (zatoshi )

NumFounderAddresses ◦

◦ N := 48

FoundersFraction ◦

◦ Q := 1
5

PoWLimit ◦

◦ N :=

{

2243 − 1, for the production network

2251 − 1, for the test network

PoWAveragingWindow ◦

◦ N := 17

PoWMedianBlockSpan ◦

◦ N := 11

PoWMaxAdjustDown ◦

◦ Q := 32
100

PoWMaxAdjustUp ◦

◦ Q := 16
100

PoWDampingFactor ◦

◦ N := 4

PoWTargetSpacing ◦

◦ N := 150 (seconds).

5.4 Concrete Cryptographic Schemes

5.4.1 Hash Functions

5.4.1.1 SHA-256 and SHA256Compress Hash Functions

SHA-256 is defined by [NIST2015].

Zcash uses the full SHA-256 hash function to instantiate NoteCommitment
Sprout.

SHA-256 ◦

◦ BYY[N] → BYY[32]

[NIST2015] strictly speaking only specifies the application of SHA-256 to messages that are bit sequences, producing
outputs (“message digests”) that are also bit sequences. In practice, SHA-256 is universally implemented with a
byte-sequence interface for messages and outputs, such that the most significant bit of each byte corresponds to
the first bit of the associated bit sequence. (In the NIST specification “first” is conflated with “leftmost”.)

Zcash also uses the SHA-256 compression function, SHA256Compress. This operates on a single 512-bit block and
excludes the padding step specified in [NIST2015, section 5.1].

That is, the input to SHA256Compress is what [NIST2015, section 5.2] refers to as “the message and its padding”. The
Initial Hash Value is the same as for full SHA-256.

SHA256Compress is used to instantiate several Pseudo Random Functions and MerkleCRH
Sprout.

SHA256Compress ◦

◦ B
[512] → B

[256]

The ordering of bits within words in the interface to SHA256Compress is consistent with [NIST2015, section 3.1], i.e.
big-endian.
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5.4.1.2 BLAKE2 Hash Function

BLAKE2 is defined by [ANWW2013]. Zcash uses both the BLAKE2b and BLAKE2s variants.

BLAKE2b-ℓ(p, x) refers to unkeyed BLAKE2b-ℓ in sequential mode, with an output digest length of ℓ/8 bytes, 16-byte
personalization string p, and input x.

BLAKE2b is used to instantiate hSigCRH, EquihashGen, and KDF
Sprout. From Overwinter onward, it is used to compute

SIGHASH transaction hashes as specified in [ZIP-143], or as in [ZIP-243] after Sapling activation. For Sapling, it
is also used to instantiate PRF

expand, PRF
ock, KDF

Sapling, and in the RedJubjub signature scheme which instantiates
SpendAuthSig and BindingSig.

BLAKE2b-ℓ ◦

◦ BYY[16] × BYY[N] → BYY[ℓ/8]

Note: BLAKE2b-ℓ is not the same as BLAKE2b-512 truncated to ℓ bits, because the digest length is encoded in the
parameter block.

BLAKE2s-ℓ(p, x) refers to unkeyed BLAKE2s-ℓ in sequential mode, with an output digest length of ℓ/8 bytes, 8-byte
personalization string p, and input x.

BLAKE2s is used to instantiate PRF
nfSapling, CRH

ivk, and GroupHash
J

(r)∗

.

BLAKE2s-ℓ ◦

◦ BYY[8] × BYY[N] → BYY[ℓ/8]

5.4.1.3 Merkle Tree Hash Function

MerkleCRH
Sprout and MerkleCRH

Sapling are used to hash incremental Merkle tree hash values for Sprout and Sapling
respectively.

MerkleCRH
Sprout Hash Function

Let SHA256Compress be as specified in §5.4.1.1 ‘SHA-256 and SHA256Compress Hash Functions’ on p. 51.

MerkleCRH
Sprout

◦

◦ {0 .. MerkleDepth
Sprout − 1} × B

[ℓMerkleSprout] × B
[ℓMerkleSprout] → B

[ℓMerkleSprout] is defined as follows:

MerkleCRH
Sprout(layer, left, right) := SHA256Compress

(

256-bit left 256-bit right
)

.

Security requirement: SHA256Compress must be collision-resistant , and it must be infeasible to find a preimage
x such that SHA256Compress(x) = [0]256.

Notes:

• The layer argument does not affect the output.
• SHA256Compress is not the same as the SHA-256 function, which hashes arbitrary-length byte sequences.

MerkleCRH
Sapling Hash Function

Let PedersenHash be as specified in §5.4.1.7 ‘Pedersen Hash Function’ on p. 54.

MerkleCRH
Sapling

◦

◦ {0 .. MerkleDepth
Sapling − 1} × B

[ℓMerkleSapling] × B
[ℓMerkleSapling] → B

[ℓMerkleSapling] is defined as follows:

MerkleCRH
Sapling(layer, left, right) := PedersenHash(“Zcash_PH”, l || left || right)

where l = I2LEBSP6

(

MerkleDepth
Sapling − 1− layer

)

.

Security requirement: PedersenHash must be collision-resistant.

Note: The prefix l provides domain separation between inputs at different layers of the note commitment tree .
NoteCommit

Sapling, like PedersenHash, is defined in terms of PedersenHashToPoint, but using a prefix that cannot collide
with a layer prefix, as noted in §5.4.7.2 ‘Windowed Pedersen commitments’ on p. 64.
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5.4.1.4 hSig Hash Function

hSigCRH is used to compute the value hSig in §4.3 ‘JoinSplit Descriptions’ on p. 30.

hSigCRH(randomSeed, nf
old

1..N
old , joinSplitPubKey) := BLAKE2b-256(“ZcashComputehSig”, hSigInput)

where

hSigInput := 256-bit randomSeed 256-bit nf
old
1 ... 256-bit nf

old

N
old 256-bit joinSplitPubKey .

BLAKE2b-256(p, x) is defined in §5.4.1.2 ‘BLAKE2 Hash Function’ on p. 52.

Security requirement: BLAKE2b-256(“ZcashComputehSig”, x) must be collision-resistant on x.

5.4.1.5 CRH
ivk Hash Function

CRH
ivk is used to derive the incoming viewing key ivk for a Sapling shielded payment address . For its use when

generating an address see §4.2.2 ‘Sapling Key Components’ on p. 28, and for its use in the Spend statement see
§4.15.2 ‘Spend Statement (Sapling)’ on p. 42.

It is defined as follows:

CRH
ivk(ak⋆, nk⋆) := LEOS2IP256(BLAKE2s-256(“Zcashivk”, crhInput)) mod 2ℓivk

where

crhInput := LEBS2OSP256(ak⋆) LEBS2OSP256(nk⋆)

BLAKE2b-256(p, x) is defined in §5.4.1.2 ‘BLAKE2 Hash Function’ on p. 52.

Security requirement: LEOS2IP256(BLAKE2s-256(“Zcashivk”, x)) mod 2ℓivk must be collision-resistant on a 64-
byte input x. Note that this does not follow from collision resistance of BLAKE2s-256 (and the best possible concrete
security is that of a 251-bit hash rather than a 256-bit hash), but it is a reasonable assumption given the design,
structure, and cryptanalysis to date of BLAKE2s.

Non-normative note: BLAKE2s has a variable output digest length feature, but it does not support arbitrary
bit lengths, otherwise it would have been used rather than external truncation. However, the protocol-specific
personalization string together with truncation achieve essentially the same effect as using that feature.

5.4.1.6 DiversifyHash Hash Function

DiversifyHash is used to derive a diversified base from a diversifier in §4.2.2 ‘Sapling Key Components’ on p. 28.

Let GroupHash
J

(r)∗

and U be as defined in §5.4.8.5 ‘Group Hash into Jubjub’ on p. 70.

Define

DiversifyHash(d) := GroupHash
J

(r)∗

U

(

“Zcash_gd”, LEBS2OSPℓd
(d)
)

Security requirement: Unlinkability: Given two randomly selected shielded payment addresses from different
spend authorities, and a third shielded payment address which could be derived from either of those authorities,
such that the three addresses use different diversifiers , it is not possible to tell which authority the third address
was derived from.
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Non-normative notes:

• Suppose that GroupHash
J

(r)∗

(restricted to inputs for which it does not return ⊥) is modelled as a random
oracle from diversifiers to points of order rJ on the Jubjub curve . In this model, Unlinkability of DiversifyHash

holds under the Decisional Diffie-Hellman assumption on the prime-order subgroup of the Jubjub curve .

To prove this, consider the ElGamal encryption scheme [ElGamal1985] on this prime-order subgroup, re-
stricted to encrypting plaintexts encoded as the group identity OJ. (ElGamal was originally defined for F∗

p

but works in any prime-order group.) ElGamal public keys then have the same form as diversified payment

addresses . If we make the assumption above on GroupHash
J

(r)∗

, then generating a new diversified payment
address from a given address pk, gives the same distribution of (gd

′, pkd
′) pairs as the distribution of ElGamal

ciphertexts obtained by encrypting OJ under pk. TODO: check whether this is justified. Then, the definition
of key privacy (IK-CPA as defined in [BBDP2001, Definition 1]) for ElGamal corresponds to the definition of
Unlinkability for DiversifyHash. (IK-CCA corresponds to the potentially stronger requirement that DiversifyHash

remains Unlinkable when given Diffie-Hellman key agreement oracles for each of the candidate diversified
payment addresses .) So if ElGamal is key-private , then DiversifyHash is Unlinkable under the same conditions.
[BBDP2001, Appendix A] gives a security proof for key privacy (both IK-CPA and IK-CCA) of ElGamal under
the Decisional Diffie-Hellman assumption on the relevant group. (In fact the proof needed is the “small
modification” described in the last paragraph in which the generator is chosen at random for each key.)

• It is assumed (also for the security of other uses of the group hash, such as Pedersen hashes and commitments)
that the discrete logarithm of the output group element with respect to any other generator is unknown. This
assumption is justified if the group hash acts as a random oracle. Essentially, diversifiers act as handles to
unknown random numbers. (The group hash inputs used with different personalizations are in different
“namespaces”.)

• Informally, the random self-reducibility property of DDH implies that an adversary would gain no advantage
from being able to query an oracle for additional (gd, pkd) pairs with the same spend authority as an existing
shielded payment address , since they could also create such pairs on their own. This justifies only considering
two shielded payment addresses in the security definition.

TODO: FIXME This is not correct, because additional pairs don’t quite follow the same distribution as an address
with a valid diversifier. The security definition may need to be more complex to model this properly.

• An 88-bit diversifier cannot be considered cryptographically unguessable at a 128-bit security level; also,
randomly chosen diversifiers are likely to suffer birthday collisions when the number of choices approaches
244.

If most users are choosing diversifiers randomly (as recommended in §4.2.2 ‘Sapling Key Components’ on
p. 28), then the fact that they may accidentally choose diversifiers that collide (and therefore reveal the fact
that they are not derived from the same incoming viewing key ) does not appreciably reduce the anonymity
set.

In [ZIP-32] an 88-bit Pseudo Random Permutation, keyed differently for each node of the derivation tree, is
used to select new diversifiers . This resolves the potential problem, provided that the input to the Pseudo
Random Permutation does not repeat for a given node.

• If the holder of an incoming viewing key permits an adversary to ask for a new address for that incoming
viewing key with a given diversifier , then it can trivially break Unlinkability for the other diversified payment
addresses associated with the incoming viewing key (this does not compromise other privacy properties).
Implementations SHOULD avoid providing such a “chosen diversifier ” oracle.

5.4.1.7 Pedersen Hash Function

PedersenHash is an algebraic hash function with collision resistance (for fixed input length) derived from assumed
hardness of the Discrete Logarithm Problem on the Jubjub curve . It is based on the work of David Chaum, Ivan
Damgård, Jeroen van de Graaf, Jurjen Bos, George Purdy, Eugène van Heijst and Birgit Pfitzmann in [CDvdG1987],
[BCP1988] and [CvHP1991], and of Mihir Bellare, Oded Goldreich, and Shafi Goldwasser in [BGG1995], with optimiza-
tions for efficient instantiation in zk-SNARK circuits by Sean Bowe and Daira Hopwood.
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PedersenHash is used in the definitions of Pedersen commitments (§5.4.7.2 ‘Windowed Pedersen commitments’ on
p. 64), and of the hash function for the Sapling incremental Merkle tree (§5.4.1.3 ‘MerkleCRH

Sapling
Hash Function’

on p. 52).

Let J, J(r), OJ, qJ, rJ, aJ, and dJ be as defined in §5.4.8.3 ‘Jubjub’ on p. 68.

Let Extract
J

(r)
◦

◦ J
(r) → B

[ℓMerkleSapling] be as defined in §5.4.8.4 ‘Hash Extractor for Jubjub’ on p. 69.

Let FindGroupHash
J

(r)∗

be as defined in §5.4.8.5 ‘Group Hash into Jubjub’ on p. 70.

Let c := 63.

Define I ◦

◦ BYY[8] × N→ J
(r)∗ by:

ID
i := FindGroupHash

J
(r)∗
(

D, 32-bit i− 1
)

.

Define PedersenHashToPoint(D ◦

◦ BYY[8], M ◦

◦ B
[N

+
])→ J

(r) as follows:

Pad M to a multiple of 3 bits by appending zero bits, giving M ′.

Let n = ceiling
(

length(M ′)

3 · c

)

.

Split M ′ into n “segments” M1 .. n so that M ′ = concatB(M1 .. n), and each of M1 .. n−1 is of length 3·c bits. (Mn

may be shorter.)

Return
∑n

i=1
[〈Mi〉] ID

i
◦

◦ J
(r).

where 〈•〉 ◦

◦ B
[3·{1 .. c}] → {−rJ − 1

2
..

rJ − 1

2
} \ {0} is defined as:

Let ki = length(Mi)/3.

Split Mi into 3-bit “chunks” m1 .. ki
so that Mi = concatB(m1 .. ki

).

Write each mj as [sj
0, sj

1, sj
2], and let enc(mj) = (1− 2·sj

2) · (1 + sj
0 + 2·sj

1) ◦

◦ Z.

Let 〈Mi〉 =
∑ki

j=1
enc(mj) · 24·(j−1).

Finally, define PedersenHash ◦

◦ BYY[8] × B
[N

+
] → B

[ℓMerkleSapling] by:

PedersenHash(D, M) := Extract
J

(r)

(

PedersenHashToPoint(D, M)
)

.

See §A.3.3.9 ‘Pedersen hash’ on p. 133 for rationale and efficient circuit implementation of these functions.

Security requirement: PedersenHash and PedersenHashToPoint are required to be collision-resistant between
inputs of fixed length, for a given personalization input D. No other security properties commonly associated with
hash functions are needed.

Non-normative note: These hash functions are not collision-resistant for variable-length inputs.

Theorem 5.4.1. The encoding function 〈•〉 is injective.

Proof. We first check that the range of
ki
∑

j=1

enc(mj) · 24·(j−1) is a subset of the allowable range {−rJ − 1

2
..

rJ − 1

2
} \ {0}.

The range of this expression is a subset of {−∆ .. ∆} \ {0}where ∆ = 4 ·
c
∑

i=1

24·(i−1) = 4 · 24·c

15
.
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When c = 63, we have

4 · 24·c

15
= 0x444444444444444444444444444444444444444444444444444444444444444

rJ − 1

2
= 0x73EDA753299D7D483339D80809A1D8053341049E6640841684B872F6B7B965B

so the required condition is met. This implies that there is no “wrap around” and so
∑ki

j=1
enc(mj) · 24·(j−1) may be

treated as an integer expression.

enc is injective. In order to prove that 〈•〉 is injective, consider 〈•〉∆ ◦

◦ B
[3·{1 .. c}] → {0 .. 2·∆} such that 〈Mi〉∆ = 〈Mi〉+∆.

With ki and mj defined as above, we have 〈Mi〉∆ =
∑ki

j=1
enc

′(mj) · 24·(j−1) where enc
′(mj) = enc(mj) + 4 is in

{0 .. 8} and enc
′ is injective. Express this sum in hexadecimal; then each mj affects only one hex digit, and it is easy

to see that 〈•〉∆ is injective. Therefore so is 〈•〉.

Since the security proof from [BGG1995, Appendix A] depends only on the encoding being injective and its range not
including zero, the proof can be adapted straightforwardly to show that PedersenHashToPoint is collision-resistant
under the same assumptions and security bounds. Because Extract

J
(r) is injective, it follows that PedersenHash is

equally collision-resistant.

Theorem 5.4.2. Uncommitted
Sapling = I2LEBSPℓMerkleSapling

(1) is not in the range of PedersenHash.

Proof. By injectivity of I2LEBSPℓMerkleSapling
and definitions of PedersenHash and Extract

J
(r) , I2LEBSPℓMerkleSapling

(1) can be

in the range of PedersenHash only if there exist (D ◦

◦ BYY[8], M ◦

◦ B
[N

+
]) such that u(PedersenHashToPoint(D, M))= 1.

The latter can only be the affine-ctEdwards u-coordinate of a point in J. We show that there are no points in J with
affine-ctEdwards u-coordinate 1. Suppose for a contradiction that (u, v) ∈ J for u = 1 and some v

◦

◦ FrS
. By writing

the curve equation as v
2 = (1− aJ ·u2)/(1− dJ ·u2), and noting that 1− dJ ·u2 6= 0 because dJ is nonsquare, we have

v
2 = (1− aJ)/(1− dJ). The right-hand-side is a nonsquare in FrS

(for the Jubjub curve parameters), so there are no
solutions for v (contradiction).

5.4.1.8 Mixing Pedersen Hash Function

A mixing Pedersen hash is used to compute ρ from cm and pos in §4.14 ‘Note Commitments and Nullifiers’ on
p. 40. It takes as input a Pedersen commitment P , and hashes it with another input x.

Define J := FindGroupHash
J

(r)∗

(“Zcash_J_”, “”).

We define MixingPedersenHash ◦

◦ J× {0 .. rJ − 1} → J by:

MixingPedersenHash(P, x) := P + [x]J .

Security requirement: The function

(r, M, x) ◦

◦ {0 .. rJ − 1} × B
[N

+
] × {0 .. rJ − 1} 7→ MixingPedersenHash(WindowedPedersenCommitr(M), x) ◦

◦ J

must be collision-resistant on (r, M, x).

See §A.3.3.10 ‘Mixing Pedersen hash’ on p. 135 for efficient circuit implementation of this function.
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5.4.1.9 EquihashGenerator

EquihashGenn,k is a specialized hash function that maps an input and an index to an output of length n bits. It is
used in §7.6.1 ‘Equihash’ on p. 86.

Let powtag := 64-bit “ZcashPoW” 32-bit n 32-bit k .

Let powcount(g) := 32-bit g .

Let EquihashGenn,k(S, i) := Th+1 .. h+n, where

m := floor
(

512
n

)

;

h := (i− 1 mod m) · n;

T := BLAKE2b-(n ·m)
(

powtag, S || powcount(floor
(

i−1
m

)

)
)

.

Indices of bits in T are 1-based.

BLAKE2b-ℓ(p, x) is defined in §5.4.1.2 ‘BLAKE2 Hash Function’ on p. 52.

Security requirement: BLAKE2b-ℓ(powtag, x) must generate output that is sufficiently unpredictable to avoid
short-cuts to the Equihash solution process. It would suffice to model it as a random oracle.

Note: When EquihashGen is evaluated for sequential indices, as in the Equihash solving process (§7.6.1 ‘Equihash’

on p. 86), the number of calls to BLAKE2b can be reduced by a factor of floor
(

512
n

)

in the best case (which is a factor
of 2 for n = 200).

5.4.2 Pseudo Random Functions

PRF
addr, PRF

nf , PRF
pk, and PRF

ρ, described in §4.1.2 ‘Pseudo Random Functions’ on p. 19, are all instantiated using
the SHA-256 compression function defined in §5.4.1.1 ‘SHA-256 and SHA256Compress Hash Functions’ on p. 51:

PRF
addr
x (t) := SHA256Compress

(

1 1 0 0 252-bit x 8-bit t [0]248
)

PRF
nf
ask

(ρ) := SHA256Compress
(

1 1 1 0 252-bit ask 256-bit ρ
)

PRF
pk
ask

(i, hSig) := SHA256Compress
(

0 i-1 0 0 252-bit ask 256-bit hSig

)

PRF
ρ

ϕ(i, hSig) := SHA256Compress
(

0 i-1 1 0 252-bit ϕ 256-bit hSig

)

Security requirements:

• The SHA-256 compression function must be collision-resistant.

• The SHA-256 compression function must be a PRF when keyed by the bits corresponding to x, ask or ϕ in the
above diagrams, with input in the remaining bits.

Note: The first four bits –i.e. the most significant four bits of the first byte– are used to separate distinct uses of
SHA256Compress, ensuring that the functions are independent. As well as the inputs shown here, bits 1011 in this
position are used to distinguish uses of the full SHA-256 hash function; see §5.4.7.1 ‘Sprout Note Commitments’

on p. 63.

(The specific bit patterns chosen here were motivated by the possibility of future extensions that might have
increased Nold and/or Nnew to 3, or added an additional bit to ask to encode a new key type, or that would have
required an additional PRF . In fact since Sapling switches to non-SHA256Compress-based cryptographic primitives,
these extensions are unlikely to be necessary.)
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PRF
expand is used in §4.2.2 ‘Sapling Key Components’ on p. 28 to derive the spend authorizing key ask and the

proof authorizing key nsk.

It is instantiated using the BLAKE2b hash function defined in §5.4.1.2 ‘BLAKE2 Hash Function’ on p. 52:

PRF
expand
sk (t) := BLAKE2b-512(“Zcash_ExpandSeed”, LEBS2OSP256(sk) || t)

Security requirement: BLAKE2b-512(“Zcash_ExpandSeed”, LEBS2OSP256(sk) || t) must be a PRF for output range

BYY[ℓPRFexpand/8] when keyed by the bits corresponding to sk, with input in the bits corresponding to t.

PRF
ock is used in §4.17.1 ‘Encryption (Sapling)’ on p. 46 to derive the outgoing cipher key ock used to encrypt an

output ciphertext .

It is instantiated using the BLAKE2b hash function defined in §5.4.1.2 ‘BLAKE2 Hash Function’ on p. 52:

PRF
ock
ovk(cv, cmu, ephemeralKey) := BLAKE2b-256(“Zcash_Derive_ock”, ockInput)

where ockInput = LEBS2OSP256(ovk) 32-byte cv 32-byte cmu 32-byte ephemeralKey .

Security requirement: BLAKE2b-512(“Zcash_Derive_ock”, ockInput) must be a PRF for output range Sym.K (de-
fined in §5.4.3 ‘Authenticated One-Time Symmetric Encryption’ on p. 58) when keyed by the bits corresponding
to ovk, with input in the bits corresponding to cv, cmu, and ephemeralKey.

PRF
nfSapling is used to derive the nullifier for a Sapling note . It is instantiated using the BLAKE2s hash function

defined in §5.4.1.2 ‘BLAKE2 Hash Function’ on p. 52:

PRF
nfSapling
nk⋆ (ρ⋆) := BLAKE2s-256

(

“Zcash_nf”, LEBS2OSP256(nk⋆) LEBS2OSP256(ρ⋆)
)

.

Security requirement: BLAKE2s-256
(

“Zcash_nf”, LEBS2OSP256(nk⋆) LEBS2OSP256(ρ⋆)
)

must be a col-

lision-resistant PRF for output range BYY[32] when keyed by the bits corresponding to nk⋆, with input in the bits

corresponding to ρ⋆. Note that nk⋆ ◦

◦ J⋆
(r) is a representation of a point in the rJ-order subgroup of the Jubjub curve ,

and therefore is not uniformly distributed on B
[ℓJ]. J⋆

(r) is defined in §5.4.8.3 ‘Jubjub’ on p. 68.

5.4.3 Authenticated One-Time Symmetric Encryption

Let Sym.K := B
[256], Sym.P := BYY[N], and Sym.C := BYY[N].

Let Sym.EncryptK(P) be authenticated encryption using AEAD_CHACHA20_POLY1305 [RFC-7539] encryption of
plaintext P ∈ Sym.P, with empty “associated data", all-zero nonce [0]96, and 256-bit key K ∈ Sym.K.

Similarly, let Sym.DecryptK(C) be AEAD_CHACHA20_POLY1305 decryption of ciphertext C ∈ Sym.C, with empty
“associated data", all-zero nonce [0]96, and 256-bit key K ∈ Sym.K. The result is either the plaintext byte sequence,
or ⊥ indicating failure to decrypt.

Note: The “IETF" definition of AEAD_CHACHA20_POLY1305 from [RFC-7539] is used; this has a 32-bit block count
and a 96-bit nonce, rather than a 64-bit block count and 64-bit nonce as in the original definition of ChaCha20.

5.4.4 Key Agreement and Derivation

5.4.4.1 Sprout Key Agreement

KA
Sprout is a key agreement scheme as specified in §4.1.4 ‘Key Agreement’ on p. 20.

It is instantiated as Curve25519 key agreement, described in [Bernstein2006], as follows.
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Let KA
Sprout.Public and KA

Sprout.SharedSecret be the type of Curve25519 public keys (i.e. BYY[32]), and let KA
Sprout.Private

be the type of Curve25519 secret keys.

Let Curve25519(n, q) be the result of point multiplication of the Curve25519 public key represented by the byte se-
quence q by the Curve25519 secret key represented by the byte sequence n, as defined in [Bernstein2006, section 2].

Let KA
Sprout.Base := 9 be the public byte sequence representing the Curve25519 base point.

Let clampCurve25519(x) take a 32-byte sequence x as input and return a byte sequence representing a Curve25519

private key, with bits “clamped” as described in [Bernstein2006, section 3]: “clear bits 0, 1, 2 of the first byte, clear
bit 7 of the last byte, and set bit 6 of the last byte.” Here the bits of a byte are numbered such that bit b has numeric
weight 2b.

Define KA
Sprout.FormatPrivate(x) := clampCurve25519(x).

Define KA
Sprout.DerivePublic(n, q) := Curve25519(n, q).

Define KA
Sprout.Agree(n, q) := Curve25519(n, q).

5.4.4.2 Sprout Key Derivation

KDF
Sprout is a Key Derivation Function as specified in §4.1.5 ‘Key Derivation’ on p. 20.

It is instantiated using BLAKE2b-256 as follows:

KDF
Sprout(i, hSig, sharedSecreti, epk, pk

new
enc,i) := BLAKE2b-256(kdftag, kdfinput)

where:

kdftag := 64-bit “ZcashKDF” 8-bit i−1 [0]56

kdfinput := 256-bit hSig 256-bit sharedSecreti 256-bit epk 256-bit pk
new
enc,i .

BLAKE2b-256(p, x) is defined in §5.4.1.2 ‘BLAKE2 Hash Function’ on p. 52.

5.4.4.3 Sapling Key Agreement

KA
Sapling is a key agreement scheme as specified in §4.1.4 ‘Key Agreement’ on p. 20.

It is instantiated as Diffie-Hellman with cofactor multiplication on Jubjub as follows:

Let J, J(r), J(r)∗, and the cofactor hJ be as defined in §5.4.8.3 ‘Jubjub’ on p. 68.

Define KA
Sapling.Public := J.

Define KA
Sapling.PublicPrimeOrder := J

(r)∗.

Define KA
Sapling.SharedSecret := J

(r).

Define KA
Sapling.Private := FrJ

.

Define KA
Sapling.DerivePublic(sk, B) := [sk] B.

Define KA
Sapling.Agree(sk, P ) := [hJ · sk] P .
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5.4.4.4 Sapling Key Derivation

KDF
Sapling is a Key Derivation Function as specified in §4.1.5 ‘Key Derivation’ on p. 20.

It is instantiated using BLAKE2b-256 as follows:

KDF
Sapling(sharedSecret, epk) := BLAKE2b-256(“Zcash_SaplingKDF”, kdfinput).

where:

kdfinput := LEBS2OSP256

(

reprJ(sharedSecret)
)

LEBS2OSP256

(

reprJ(epk)
)

.

BLAKE2b-256(p, x) is defined in §5.4.1.2 ‘BLAKE2 Hash Function’ on p. 52.

5.4.5 JoinSplit Signature

JoinSplitSig is a signature scheme as specified in §4.1.6 ‘Signature’ on p. 21.

It is instantiated as Ed25519 [BDLSY2012], with the additional requirements that:

• S MUST represent an integer less than the prime ℓ = 2252 + 27742317777372353535851937790883648493;

• R MUST represent a point on the Ed25519 curve of order at least ℓ.

If these requirements are not met then the signature is considered invalid. Note that it is not required that the
encoding of the y-coordinate in R is less than 2255 − 19; also the order of the point represented by R is permitted
to be greater than ℓ.

Ed25519 is defined as using SHA-512 internally.

A valid Ed25519 public key is defined as a point of order ℓ on the Ed25519 curve, in the encoding specified by
[BDLSY2012]. Again, it is not required that the encoding of the y-coordinate of the public key is less than 2255 − 19.

The encoding of a signature is:

256-bit R 256-bit S

where R and S are as defined in [BDLSY2012]. The encoding of a public key is as defined in [BDLSY2012].

5.4.6 RedDSA and RedJubjub

RedDSA is a Schnorr-based signature scheme , optionally supporting key re-randomization as described in §4.1.6.1
‘Signature with Re-Randomizable Keys’ on p. 22. It also supports a Secret Key to Public Key Homomorphism as
described in §4.1.6.2 ‘Signature with Private Key to Public Key Homomorphism’ on p. 23. It is based on a scheme
from [FKMSSS2016, section 3], with some ideas from EdDSA [BJLSY2015].

RedJubjub is a specialization of RedDSA to the Jubjub curve (§5.4.8.3 ‘Jubjub’ on p. 68), using the BLAKE2b-512 hash
function.

The spend authorization signature scheme defined in §5.4.6.1 ‘Spend Authorization Signature’ on p. 63 is instan-
tiated by RedJubjub. The binding signature scheme BindingSig defined in §5.4.6.2 ‘Binding Signature’ on p. 63 is
instantiated by RedJubjub without use of key re-randomization.
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We first describe the scheme RedDSA over a general represented group . Its parameters are:

• a represented group G, which also defines a subgroup G
(r) of order rG, a cofactor hG, a group operation +, an

additive identity OG , a bit-length ℓG , a representation function reprG , and an abstraction function abstG , as
specified in §4.1.8 ‘Represented Group’ on p. 25;

• PG , a generator of G(r);

• a bit-length ℓH
◦

◦ N such that 2ℓH−128 ≥ rG and ℓH mod 8 = 0;

• a cryptographic hash function H ◦

◦ BYY[N] → BYY[ℓH/8].

Its associated types are defined as follows:

RedDSA.Message := BYY[N]

RedDSA.Signature := BYY[ceiling(ℓG/8) + ceiling(bitlength(rG)/8)]

RedDSA.Public := G

RedDSA.Private := FrG
.

RedDSA.Random := FrG
.

Define H
⊛

◦

◦ BYY[N] → FrG
by:

H
⊛(B) = LEOS2IPℓH

(

H(B)
)

(mod rG)

Define RedDSA.GenPrivate ◦

◦ () →R RedDSA.Private as:

Return sk ←R FrG
.

Define RedDSA.DerivePublic ◦

◦ RedDSA.Private→ RedDSA.Public by:

RedDSA.DerivePublic(sk) := [sk]PG .

Define RedDSA.GenRandom ◦

◦ () →R RedDSA.Random as:

Choose a byte sequence T uniformly at random on BYY[(ℓH+128)/8].

Return H
⊛(T ).

Define ORedDSA.Random := 0 (mod rG).

Define RedDSA.RandomizePrivate ◦

◦ RedDSA.Random× RedDSA.Private→ RedDSA.Private by:

RedDSA.RandomizePrivate(α, sk) := sk + α (mod rG).

Define RedDSA.RandomizePublic ◦

◦ RedDSA.Random× RedDSA.Public→ RedDSA.Public as:

RedDSA.RandomizePublic(α, vk) := vk + [α]PG .

Define RedDSA.Sign ◦

◦ (sk ◦

◦ RedDSA.Private)× (M ◦

◦ RedDSA.Message) →R RedDSA.Signature as:

Choose a byte sequence T uniformly at random on BYY[(ℓH+128)/8].

Let vk = LEBS2OSPℓG

(

reprG(RedDSA.DerivePublic(sk))
)

.

Let r = H
⊛(T || vk ||M).

Let R = [r]PG .

Let R = LEBS2OSPℓG

(

reprG(R)
)

.

Let S = (r + H
⊛(R || vk ||M) · sk) mod rG.

Let S = LEBS2OSPbitlength(rG)

(

I2LEBSPbitlength(rG)(S)
)

.

Return R ||S.
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Define RedDSA.Verify ◦

◦ (vk ◦

◦ RedDSA.Public)× (M ◦

◦ RedDSA.Message)× (σ ◦

◦ RedDSA.Signature)→ B as:

Let R be the first ceiling
(

ℓG/8
)

bytes of σ, and let S be the remaining ceiling (bitlength(rG)/8) bytes.

Let R = abstG
(

LEOS2BSPℓG
(R)
)

, and let S = LEOS2IP8·length(S)(S).

Let vk = LEBS2OSPℓG

(

reprG(vk)
)

.

Let c = H
⊛(R || vk ||M).

Return 1 if R 6= ⊥ and S < rG and [hG]
(

−[S]PG + R + [c] vk
)

= OG , otherwise 0.

Notes:

• The verification algorithm does not check that R is a point of order at least rG. It does check that R is the
canonical representation (as output by reprG ) of a point on the curve. This is different to Ed25519 as specified
in §5.4.5 ‘JoinSplit Signature’ on p. 60.

• Appendix §B.1 ‘RedDSA batch verification’ on p. 143 describes an optimization that MAY be used to speed up
verification of batches of RedDSA signatures.

Non-normative note: The randomization used in RedDSA.RandomizePrivate and RedDSA.RandomizePublic may
interact with other uses of additive properties of keys for Schnorr-based signature schemes. In the Zcash protocol,
such properties are used for binding signatures but not at the same time as key randomization. They are also used
in [ZIP-32] when deriving child extended keys, but this does not result in any practical security weakness as long as
the security recommendations of ZIP-32 are followed. If RedDSA is reused in other protocols making use of these
additive properties, careful analysis of potential interactions is required.

The two abelian groups specified in §4.1.6.2 ‘Signature with Private Key to Public Key Homomorphism’ on p. 23
are instantiated for RedDSA as follows:

• O := 0 (mod rG)

• sk1 sk2 := sk1 + sk2 (mod rG)

• O := OG

• vk1 vk2 := vk1 + vk2.

As required, RedDSA.DerivePublic is a group homomorphism:

RedDSA.DerivePublic(sk1 sk2) = [sk1 + sk2 (mod rG)]PG

= [sk1]PG + [sk2]PG (since PG has order rG)

= RedDSA.DerivePublic(sk1) RedDSA.DerivePublic(sk2).

A RedDSA public key vk can be encoded as a bit sequence reprG(vk) of length ℓG bits (or as a corresponding byte
sequence vk by then applying LEBS2OSPℓG

).

The scheme RedJubjub specializes RedDSA with:

• G := J as defined in §5.4.8.3 ‘Jubjub’ on p. 68;

• ℓH := 512;

• H(x) := BLAKE2b-512(“Zcash_RedJubjubH”, x) as defined in §5.4.1.2 ‘BLAKE2 Hash Function’ on p. 52.

The generator PG
◦

◦ G
(r) is left as an unspecified parameter, which is different between BindingSig and SpendAuthSig.

62



5.4.6.1 Spend Authorization Signature

Let RedJubjub be as defined in §5.4.6 ‘RedDSA and RedJubjub’ on p. 60.

Define G := FindGroupHash
J

(r)∗

(“Zcash_G_”, “”).

The spend authorization signature scheme , SpendAuthSig, is instantiated as RedJubjub with key re-randomization,
and with generator PG = G.

See §4.13 ‘Spend Authorization Signature’ on p. 39 for details on the use of this signature scheme .

Security requirement: SpendAuthSig must be a SURK-CMA secure signature scheme with re-randomizable keys
as defined in §4.1.6.1 ‘Signature with Re-Randomizable Keys’ on p. 22.

5.4.6.2 Binding Signature

Let RedJubjub be as defined in §5.4.6 ‘RedDSA and RedJubjub’ on p. 60.

LetR be the randomness base defined in §5.4.7.3 ‘Homomorphic Pedersen commitments’ on p. 64.

The binding signature scheme , BindingSig, is instantiated as RedJubjub without use of key re-randomization, and
with generator PG = R.

See §4.12 ‘Balance and Binding Signature (Sapling)’ on p. 37 for details on the use of this signature scheme .

Security requirement: BindingSig must be a SUF-CMA secure signature scheme with key homomorphism as
defined in §4.1.6.2 ‘Signature with Private Key to Public Key Homomorphism’ on p. 23. A signature must prove
knowledge of the discrete logarithm of the public key with respect to the baseR.

5.4.7 Commitment schemes

5.4.7.1 Sprout Note Commitments

The commitment scheme NoteCommit
Sprout specified in §4.1.7 ‘Commitment’ on p. 23 is instantiated using SHA-256

as follows:

NoteCommit
Sprout
rcm (apk, v, ρ) := SHA-256

(

1 0 1 1 0 0 0 0 256-bit apk 64-bit v 256-bit ρ 256-bit rcm
)

NoteCommit
Sprout.GenTrapdoor() generates the uniform distribution on NoteCommit

Sprout.Trapdoor.

Note: The leading byte of the SHA-256 input is 0xB0.

Security requirements:

• The SHA-256 compression function must be collision-resistant.

• The SHA-256 compression function must be a PRF when keyed by the bits corresponding to the position of
rcm in the second block of SHA-256 input, with input to the PRF in the remaining bits of the block and the
chaining variable.
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5.4.7.2 Windowed Pedersen commitments

§5.4.1.7 ‘Pedersen Hash Function’ on p. 54 defines a Pedersen hash construction. We construct “windowed ” Ped-
ersen commitments by reusing that construction, and adding a randomized point on the Jubjub curve (see §5.4.8.3
‘Jubjub’ on p. 68):

WindowedPedersenCommitr(s) := PedersenHashToPoint(“Zcash_PH”, s) + [r] FindGroupHash
J

(r)∗

(“Zcash_PH”, “r”)

See §A.3.5 ‘Windowed Pedersen Commitment’ on p. 136 for rationale and efficient circuit implementation of this
function.

The commitment scheme NoteCommit
Sapling specified in §4.1.7 ‘Commitment’ on p. 23 is instantiated as follows

using WindowedPedersenCommit:

NoteCommit
Sapling
rcm (g⋆d, pk⋆d, v) := WindowedPedersenCommitrcm

(

[1]6 || I2LEBSP64(v) || g⋆d || pk⋆d

)

NoteCommit
Sapling.GenTrapdoor() generates the uniform distribution on FrJ

.

Security requirements:

• WindowedPedersenCommit, and hence NoteCommit
Sapling, must be computationally binding and at least com-

putationally hiding commitment schemes .

(They are in fact unconditionally hiding commitment schemes .)

Notes:

• MerkleCRH
Sapling is also defined in terms of PedersenHashToPoint (see §5.4.1.3 ‘Merkle Tree Hash Function’ on

p. 52). The prefix [1]6 distinguishes the use of WindowedPedersenCommit in NoteCommit
Sapling from the layer

prefix used in MerkleCRH
Sapling. That layer prefix is a 6-bit little-endian encoding of an integer in the range

{0 .. MerkleDepth
Sapling − 1}; because MerkleDepth

Sapling < 64, it cannot collide with [1]6.

• The arguments to NoteCommit
Sapling are in a different order to their encodings in WindowedPedersenCommit.

There is no particularly good reason for this.

5.4.7.3 Homomorphic Pedersen commitments

The windowed Pedersen commitments defined in the preceding section are highly efficient, but they do not support
the homomorphic property we need when instantiating ValueCommit.

For more details on the use of this property, see §4.12 ‘Balance and Binding Signature (Sapling)’ on p. 37 and
§3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’ on p. 16.

In order to support this property, we also define “homomorphic ” Pedersen commitments as follows:

HomomorphicPedersenCommitrcv(D, v) := [v] FindGroupHash
J

(r)∗

(D, “v”)+ [rcv] FindGroupHash
J

(r)∗

(D, “r”)

ValueCommit.GenTrapdoor() generates the uniform distribution on FrJ
.

See §A.3.6 ‘Homomorphic Pedersen Commitment’ on p. 137 for rationale and efficient circuit implementation of
this function.

Define:

V := FindGroupHash
J

(r)∗

(“Zcash_cv”, “v”)

R := FindGroupHash
J

(r)∗

(“Zcash_cv”, “r”).
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The commitment scheme ValueCommit specified in §4.1.7 ‘Commitment’ on p. 23 is instantiated as follows using
HomomorphicPedersenCommit:

ValueCommitrcv(v) := HomomorphicPedersenCommitrcv(“Zcash_cv”, v).

which is equivalent to:

ValueCommitrcv(v) := [v]V + [rcv]R.

Security requirements:

• HomomorphicPedersenCommit must be a computationally binding and at least computationally hiding com-
mitment scheme , for a given personalization input D.

• ValueCommit must be a computationally binding and at least computationally hiding commitment scheme .

(They are in fact unconditionally hiding commitment schemes .)

5.4.8 Represented Groups and Pairings

5.4.8.1 BN-254

The represented pairing BN-254 is defined in this section.

Let qG := 21888242871839275222246405745257275088696311157297823662689037894645226208583.

Let rG := 21888242871839275222246405745257275088548364400416034343698204186575808495617.

Let bG := 3.

(qG and rG are prime.)

Let G(r)
1 be the group (of order rG) of rational points on a Barreto–Naehrig ([BN2005]) curve EG1

over FqG
with

equation y2 = x3 + bG. This curve has embedding degree 12 with respect to rG.

Let G(r)
2 be the subgroup of order rG in the sextic twist EG2

of EG1
over F

qG

2 with equation y2 = x3 + bG
ξ , where

ξ ◦

◦ FqG

2 .

We represent elements of F
qG

2 as polynomials a1 · t + a0
◦

◦ FqG
[t], modulo the irreducible polynomial t2 + 1; in this

representation, ξ is given by t + 9.

Let G(r)
T be the subgroup of rG

th roots of unity in F
∗
qG

12 , with multiplicative identity 1G.

Let êG be the optimal ate pairing (see [Vercauter2009] and [AKLGL2010, section 2]) of type G
(r)
1 ×G

(r)
2 → G

(r)
T .

For i ◦

◦ {1 .. 2}, let OGi
be the point at infinity (which is the additive identity) in G

(r)
i , and let G(r)∗

i := G
(r)
i \ {OGi

}.

Let PG1

◦

◦ G
(r)∗
1 := (1, 2).

Let PG2

◦

◦ G
(r)∗
2 := (11559732032986387107991004021392285783925812861821192530917403151452391805634 · t +

10857046999023057135944570762232829481370756359578518086990519993285655852781,

4082367875863433681332203403145435568316851327593401208105741076214120093531 · t +

8495653923123431417604973247489272438418190587263600148770280649306958101930).

PG1
and PG2

are generators of G(r)
1 and G

(r)
2 respectively.

Define I2BEBSP ◦

◦ (ℓ ◦

◦ N)× {0 .. 2ℓ−1} → B
[ℓ] as in §5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 49.
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For a point P ◦

◦ G
(r)∗
1 = (xP , yP ):

• The field elements xP and yP
◦

◦ Fq are represented as integers x and y ◦

◦ {0 .. q−1}.
• Let ỹ = y mod 2.

• P is encoded as 0 0 0 0 0 0 1 1-bit ỹ 256-bit I2BEBSP256(x) .

For a point P ◦

◦ G
(r)∗
2 = (xP , yP ):

• Define FE2IP ◦

◦ FqG
[t]/(t2 + 1)→ {0 .. qG

2−1} such that FE2IP(aw,1 · t + aw,0) = aw,1 · q + aw,0.

• Let x = FE2IP(xP ), y = FE2IP(yP ), and y′ = FE2IP(−yP ).

• Let ỹ =

{

1, if y > y′

0, otherwise.

• P is encoded as 0 0 0 0 1 0 1 1-bit ỹ 512-bit I2BEBSP512(x) .

Non-normative notes:

• Only the rG-order subgroups G(r)
2,T are used in the protocol, not their containing groups G2,T . Points in G

(r)∗
2

are always checked to be of order rG when decoding from external representation. (The group of rational

points G1 on EG1
/FqG

is of order rG so no subgroup checks are needed in that case, and elements of G(r)
T are

never represented externally.) The (r) superscripts on G
(r)
1,2,T are used for consistency with notation elsewhere

in this specification.

• The points at infinity OG1,2
never occur in proofs and have no defined encodings in this protocol.

• A rational point P 6= OG2
on the curve EG2

can be verified to be of order rG, and therefore in G
(r)∗
2 , by checking

that rG · P = OG2
.

• The use of big-endian order by I2BEBSP is different from the encoding of most other integers in this pro-

tocol. The encodings for G
(r)∗
1,2 are consistent with the definition of EC2OSP for compressed curve points

in [IEEE2004, section 5.5.6.2]. The LSB compressed form (i.e. EC2OSP-XL) is used for points in G
(r)∗
1 , and the

SORT compressed form (i.e. EC2OSP-XS) for points in G
(r)∗
2 .

• Testing y > y′ for the compression of G(r)∗
2 points is equivalent to testing whether (ay,1, ay,0) > (a−y,1, a−y,0)

in lexicographic order.

• Algorithms for decompressing points from the above encodings are given in [IEEE2000, Appendix A.12.8] for

G
(r)∗
1 , and [IEEE2004, Appendix A.12.11] for G(r)∗

2 .

When computing square roots in FqG
or F

qG

2 in order to decompress a point encoding, the implementation MUST

NOT assume that the square root exists, or that the encoding represents a point on the curve.
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5.4.8.2 BLS12-381

The represented pairing BLS12-381 is defined in this section. Parameters are taken from [Bowe2017].

Let qS := 4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787.

Let rS := 52435875175126190479447740508185965837690552500527637822603658699938581184513.

Let uS := −15132376222941642752.

Let bS := 4.

(qS and rS are prime.)

Let S(r)
1 be the subgroup of order rS of the group of rational points on a Barreto–Lynn–Scott ([BLS2002]) curve ES1

over FqS
with equation y2 = x3 + bS. This curve has embedding degree 12 with respect to rS.

Let S(r)
2 be the subgroup of order rS in the sextic twist ES2

of ES1
over F

qS

2 with equation y2 = x3 + 4(i + 1), where
i ◦

◦ FqS

2 .

We represent elements of F
qS

2 as polynomials a1 · t + a0
◦

◦ FqS
[t], modulo the irreducible polynomial t2 + 1; in this

representation, i is given by t.

Let S(r)
T be the subgroup of rS

th roots of unity in F
∗
qS

12 , with multiplicative identity 1S.

Let êS be the optimal ate pairing of type S
(r)
1 × S

(r)
2 → S

(r)
T .

For i ◦

◦ {1 .. 2}, let OSi
be the point at infinity in S

(r)
i , and let S(r)∗

i := S
(r)
i \ {OSi

}.

Let PS1

◦

◦ S
(r)∗
1 :=

(3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507,

13395065449444764730204713799419212215849338759383496204265437364165114239563335064727246553533665349923917564415691).

Let PS2

◦

◦ S
(r)∗
2 :=

(3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758 · t +

352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160,

927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582 · t +

1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905).

PS1
and PS2

are generators of S(r)
1 and S

(r)
2 respectively.

Define I2BEBSP ◦

◦ (ℓ ◦

◦ N)× {0 .. 2ℓ−1} → B
[ℓ] as in §5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 49.

For a point P ◦

◦ S
(r)∗
1 = (xP , yP ):

• The field elements xP and yP
◦

◦ FqS
are represented as integers x and y ◦

◦ {0 .. qS−1}.

• Let ỹ =

{

1, if y > qS − y

0, otherwise.

• P is encoded as 1 0 1-bit ỹ 381-bit I2BEBSP381(x) .
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For a point P ◦

◦ S
(r)∗
2 = (xP , yP ):

• Define FE2IPP ◦

◦ FqS
[t]/(t2 + 1)→ {0 .. qS−1}[2] such that FE2IPP(aw,1 · t + aw,0) = [aw,1, aw,0].

• Let x = FE2IPP(xP ), y = FE2IPP(yP ), and y′ = FE2IPP(−yP ).

• Let ỹ =

{

1, if y > y′ lexicographically

0, otherwise.

• P is encoded as 1 0 1-bit ỹ 381-bit I2BEBSP381(x1) 384-bit I2BEBSP384(x2) .

Non-normative notes:

• Only the rS-order subgroups S(r)
1,2,T are used in the protocol, not their containing groups S1,2,T . Points in S

(r)∗
1,2

are always checked to be of order rS when decoding from external representation. (Elements of S(r)
T are

never represented externally.) The (r) superscripts on S
(r)
1,2,T are used for consistency with notation elsewhere

in this specification.

• The points at infinity OS1,2
never occur in proofs and have no defined encodings in this protocol.

• In contrast to the corresponding BN-254 curve, ES1
over FqS

is not of prime order.

• A rational point P 6= OSi
on the curve ESi

for i ∈ {1, 2} can be verified to be of order rS, and therefore in S
(r)∗
i ,

by checking that rS · P = OSi
.

• The encodings for S(r)∗
1,2 are specific to Zcash.

• Algorithms for decompressing points from the encodings of S(r)∗
1,2 are defined analogously to those for G(r)∗

1,2 in
§5.4.8.1 ‘BN-254’ on p. 65, taking into account that the SORT compressed form (not the LSB compressed form)

is used for S(r)∗
1 .

When computing square roots in FqS
or F

qS

2 in order to decompress a point encoding, the implementation MUST

NOT assume that the square root exists, or that the encoding represents a point on the curve.

5.4.8.3 Jubjub

Sapling uses an elliptic curve designed to be efficiently implementable in zk-SNARK circuits , called “Jubjub”
[Carroll1876]. The represented group Jubjub of points on this curve is defined in this section.

A complete twisted Edwards elliptic curve , as defined in [BL2017, section 4.3.4], is an elliptic curve E over a non-
binary field Fq , parameterized by distinct a, d ◦

◦ Fq \ {0} such that a is square and d is nonsquare, with equation
E : a·u2 + v

2 = 1 + d·u2 ·v2. We use the abbreviation “ctEdwards” to refer to complete twisted Edwards elliptic
curves and coordinates.

Let qJ := rS, as defined in §5.4.8.2 ‘BLS12-381’ on p. 67.

Let rJ := 6554484396890773809930967563523245729705921265872317281365359162392183254199.

(qJ and rJ are prime.)

Let hJ := 8.

Let aJ := −1.

Let dJ := −10240/10241 (mod qJ).

Let J be the group of points (u, v) on a ctEdwards curve EJ over FqJ
with equation aJ ·u2 + v

2 = 1 + dJ ·u2 ·v2. The
zero point with coordinates (0, 1) is denoted OJ. J has order hJ ·rJ.
Let ℓJ := 256.
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Define I2LEBSP ◦

◦ (ℓ ◦

◦ N)× {0 .. 2ℓ−1} → B
[ℓ] as in §5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 49.

Define reprJ
◦

◦ J→ B
[ℓJ] such that reprJ(u, v)= I2LEBSP256

(

v + 2255 ·ũ
)

, where ũ = u mod 2.

Let abstJ
◦

◦ B
[ℓJ] → J ∪ {⊥} be the left inverse of reprJ such that if S is not in the range of reprJ, then abstJ(S)= ⊥.

Define J
(r) as the order-rJ subgroup of J. Note that this includesOJ. For the set of points of order rJ (which excludes

OJ), we write J
(r)∗.

Define J⋆
(r)

:= {reprJ(P ) ◦

◦ B
[ℓJ] | P ∈ J

(r)}.

Non-normative notes:

• The encoding of a compressed ctEdwards point used here is consistent with that used in EdDSA [BJLSY2015]
for public keys and the R element of a signature.

• [BJLSY2015, “Encoding and parsing curve points”] gives algorithms for decompressing points from the encod-
ing of J.

When computing square roots in FqJ
in order to decompress a point encoding, the implementation MUST NOT

assume that the square root exists, or that the encoding represents a point on the curve.

This specification requires “strict” parsing as defined in [BJLSY2015, “Encoding and parsing integers”].

Note that algorithms elsewhere in this specification that use Jubjub may impose other conditions on points, for
example that they have order at least rJ.

5.4.8.4 Hash Extractor for Jubjub

Let u((u, v))= u and let v((u, v))= v.

Define Extract
J

(r)
◦

◦ J
(r) → B

[ℓMerkleSapling] by

Extract
J

(r)(P ) := I2LEBSPℓMerkleSapling
(u(P )).

Facts: The point (0, 1) = OJ, and the point (0,−1) has order 2 in J. J(r) is of odd-prime order.

Lemma. Let P = (u, v) ∈ J
(r). Then (u,−v) /∈ J

(r).

Proof. If P = OJ then (u,−v) = (0,−1) /∈ J
(r). Else, P is of odd-prime order. Note that v 6= 0. (If v = 0 then a · u2 = 1,

and so applying the doubling formula gives [2] P = (0,−1), then [4] P = (0, 1) = OJ; contradiction since then

P would not be of odd-prime order.) Therefore, −v 6= v. Now suppose (u,−v) = Q is a point in J
(r). Then by

applying the doubling formula we have [2] Q = −[2] P . But also [2] (−P ) = −[2] P . Therefore either Q = −P (then
v(Q)= v(−P ); contradiction since −v 6= v), or doubling is not injective on J

(r) (contradiction since J
(r) is of odd

order [KvE2013]).

Theorem 5.4.3. u is injective on J
(r).

Proof. By writing the curve equation as v
2 = (1− a·u2)/(1− d·u2), and noting that the potentially exceptional case

1 − d·u2 = 0 does not occur for a ctEdwards curve, we see that for a given u there can be at most two possible
solutions for v, and that if there are two solutions they can be written as v and −v. In that case by the Lemma, at
most one of (u, v) and (u,−v) is in J

(r). Therefore, u is injective on points in J
(r).

Since I2LEBSPℓMerkleSapling
is injective, it follows that Extract

J
(r) is injective on J

(r).
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5.4.8.5 Group Hash into Jubjub

Let GroupHash.Input := BYY[8] × BYY[N], and let GroupHash.URSType := BYY[64].

(The input element with type BYY[8] is intended to act as a “personalization” parameter to distinguish uses of the
group hash for different purposes.)

Let URS be the MPC randomness beacon defined in §5.9 ‘Randomness Beacon’ on p. 78.

Let BLAKE2s-256 be as defined in §5.4.1.2 ‘BLAKE2 Hash Function’ on p. 52.

Let LEOS2IP be as defined in §5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 49.

Let J(r), J(r)∗, and abstJ be as defined in §5.4.8.3 ‘Jubjub’ on p. 68.

Let D ◦

◦ BYY[8] be an 8-byte domain separator, and let M ◦

◦ BYY[N] be the hash input.

The hash GroupHash
J

(r)∗

URS (D, M) ◦

◦ J
(r)∗ is calculated as follows:

let H = BLAKE2s-256(D, URS || M)

let P = abstJ(LEOS2BSP256(H))

if P = ⊥ then return ⊥
let Q = [hJ] P

if Q = OJ then return ⊥, else return Q.

Notes:

• The BLAKE2s-256 chaining variable after processing URS may be precomputed.

• The use of GroupHash
J

(r)∗

URS for DiversifyHash and to generate independent bases needs a random oracle (for

inputs on which GroupHash
J

(r)∗

URS does not return ⊥); here we show that it is sufficient to employ a simpler
random oracle instantiated by BLAKE2s-256 in the security analysis.

H ◦

◦ BYY[32] 7→6=⊥ abstJ(LEOS2BSP256(H)) ◦

◦ J is injective, and both it and its inverse are efficiently computable.

P ◦

◦ J 7→ 6=OJ
[hJ] P ◦

◦ J
(r)∗ is exactly hJ-to-1, and both it and its inverse relation are efficiently computable.

It follows that when
(

D ◦

◦ BYY[8], M ◦

◦ BYY[N]) 7→ BLAKE2s-256(D, URS || M) ◦

◦ BYY[32] is modelled as a random

oracle,
(

D ◦

◦ BYY[8], M ◦

◦ BYY[N]) 7→ 6=⊥ GroupHash
J

(r)∗

URS

(

D, M
)

◦

◦ J
(r)∗ also acts as a random oracle.

Define first ◦

◦ (BYY→ T ∪ {⊥})→ T ∪ {⊥} so that first(f) = f(i) where i is the least integer in BYY such that f(i) 6= ⊥,
or ⊥ if no such i exists.

Define FindGroupHash
J

(r)∗
(

D, M
)

:= first(i ◦

◦ BYY 7→ GroupHash
J

(r)∗

URS (D, M || [i]) ◦

◦ J
(r)∗ ∪ {⊥}).

Note: For random input, FindGroupHash
J

(r)∗

returns⊥with probability approximately 2−256. In the Zcash protocol,

most uses of FindGroupHash
J

(r)∗

are for constants and do not return ⊥; the only use that could potentially return ⊥
is in the computation of a default diversified payment address in §4.2.2 ‘Sapling Key Components’ on p. 28.

5.4.9 Zero-Knowledge Proving Systems

5.4.9.1 BCTV14

Before Sapling activation, Zcash uses zk-SNARKs generated by a fork of libsnark [Zcash-libsnark] with the BCTV14

proving system described in [BCTV2014a], which is a modification of the systems in [PHGR2013] and [BCGTV2013].

A BCTV14 proof consists of (πA
◦

◦ G
(r)∗
1 , π′

A
◦

◦ G
(r)∗
1 , πB

◦

◦ G
(r)∗
2 , π′

B
◦

◦ G
(r)∗
1 , πC

◦

◦ G
(r)∗
1 , π′

C
◦

◦ G
(r)∗
1 , πK

◦

◦ G
(r)∗
1 , πH

◦

◦ G
(r)∗
1 ).

It is computed as described in [BCTV2014a, Appendix B], using the pairing parameters specified in §5.4.8.1 ‘BN-254’

on p. 65.
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Note: Many details of the proving system are beyond the scope of this protocol document. For example, the
quadratic constraint program verifying the JoinSplit statement , or its translation to a Quadratic Arithmetic Program
[BCTV2014a, section 2.3], are not specified in this document. In 2015, Bryan Parno found a bug in this transla-
tion, which is corrected by the libsnark implementation5 [WCBTV2015] [Parno2015] [BCTV2014a, Remark 2.5]. In
practice it will be necessary to use the specific proving and verification keys that were generated for the Zcash
production block chain, given in §5.7 ‘BCTV14 zk-SNARK Parameters’ on p. 77, together with a proving system
implementation that is interoperable with the Zcash fork of libsnark , to ensure compatibility.

Vulnerability disclosure: BCTV14 is subject to a security vulnerability, separate from [Parno2015], that could
allow violation of Knowledge Soundness (and Soundness) [CVE-2019-7167] [SWB2019] [Gabizon2019]. The conse-
quence for Zcash is that balance violation could have occurred before activation of the Sapling network upgrade,
although there is no evidence of this having happened. Use of the vulnerability to produce false proofs is believed
to have been fully mitigated by activation of Sapling. The use of BCTV14 in Zcash is now limited to verifying proofs
that were made prior to the Sapling network upgrade.

Due to this issue, new forks of Zcash MUST NOT use BCTV14, and any other users of the Zcash protocol SHOULD
discontinue use of BCTV14 as soon as possible.

The vulnerability does not affect the Zero Knowledge property of the scheme (as described in any version of
[BCTV2014a] or as implemented in any version of libsnark that has been used in Zcash), even under subversion of
the parameter generation [BGG2017, Theorem 4.10].

Encoding of BCTV14 Proofs A BCTV14 proof is encoded by concatenating the encodings of its elements; for the
BN-254 pairing this is:

264-bit πA 264-bit π′
A 520-bit πB 264-bit π′

B 264-bit πC 264-bit π′
C 264-bit πK 264-bit πH

The resulting proof size is 296 bytes.

In addition to the steps to verify a proof given in [BCTV2014a, Appendix B], the verifier MUST check, for the encoding
of each element, that:

• the lead byte is of the required form;

• the remaining bytes encode a big-endian representation of an integer in {0 .. qS−1} or (in the case of πB )
{0 .. qS

2−1};

• the encoding represents a point in G
(r)∗
1 or (in the case of πB ) G(r)∗

2 , including checking that it is of order rG in
the latter case.

5.4.9.2 Groth16

After Sapling activation, Zcash uses zk-SNARKs with the proving system described in [BGM2017], which is a
modification of the system in [Groth2016]. An independent security proof of this system is given in [Maller2018].
These zk-SNARKs are used in transaction version 4 and later (§7.1 ‘Encoding of Transactions’ on p. 79) for proofs
both in Sprout JoinSplit descriptions , and in Sapling Spend descriptions and Output descriptions . They are
generated by the bellman library [Bowe-bellman].

A Groth16 proof consists of (πA
◦

◦ S
(r)∗
1 , πB

◦

◦ S
(r)∗
2 , πC

◦

◦ S
(r)∗
1 ). It is computed as described in [Groth2016, section 3.2],

using the pairing parameters specified in §5.4.8.2 ‘BLS12-381’ on p. 67. The proof elements are in a different order
to the presentation in [Groth2016].

5 Confusingly, the bug found by Bryan Parno was fixed in libsnark in 2015, but that fix was incompletely described in the May 2015 update
[BCTV2014a-old, Theorem 2.4]. It is described completely in [BCTV2014a, Theorem 2.4] and in [Gabizon2019].
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Note: The quadratic constraint programs verifying the Spend statement and Output statement are described
in Appendix A ‘Circuit Design’ on p. 123. However, many other details of the proving system are beyond the
scope of this protocol document. For example, certain details of the translations of the Spend statement and
Output statement to Quadratic Arithmetic Programs are not specified in this document. In practice it will be
necessary to use the specific proving and verification keys generated for the Zcash production block chain (see
§5.8 ‘Groth16 zk-SNARK Parameters’ on p. 77), and a proving system implementation that is interoperable with
the bellman library used by Zcash, to ensure compatibility.

Encoding of Groth16 Proofs A Groth16 proof is encoded by concatenating the encodings of its elements; for the
BLS12-381 pairing this is:

384-bit πA 768-bit πB 384-bit πC

The resulting proof size is 192 bytes.

In addition to the steps to verify a proof given in [Groth2016], the verifier MUST check, for the encoding of each
element, that:

• the leading bitfield is of the required form;

• the remaining bits encode a big-endian representation of an integer in {0 .. qS−1} or (in the case of πB ) two
integers in that range;

• the encoding represents a point in S
(r)∗
1 or (in the case of πB ) S(r)∗

2 , including checking that it is of order rS in
each case.

5.5 Encodings of Note Plaintexts and Memo Fields

As explained in §3.2.1 ‘Note Plaintexts and Memo Fields’ on p. 14, transmitted notes are stored on the block chain
in encrypted form.

The note plaintexts in a JoinSplit description are encrypted to the respective transmission keys pk
new
enc,1..N

new . Each
Sprout note plaintext (denoted np) consists of:

(v ◦

◦ {0 .. 2ℓvalue−1}, ρ ◦

◦ B
[ℓPRFSprout], rcm ◦

◦ NoteCommit
Sprout.Output, memo ◦

◦ BYY[512])

[Sapling onward] The note plaintext in each Output description is encrypted to the diversified transmission key
pkd. Each Sapling note plaintext (denoted np) consists of:

(d ◦

◦ B
[ℓd], v ◦

◦ {0 .. 2ℓvalue−1}, rcm ◦

◦ NoteCommit
Sapling.Output, memo ◦

◦ BYY[512])

memo is a 512-byte memo field associated with this note .

The usage of the memo field is by agreement between the sender and recipient of the note . The memo field
SHOULD be encoded either as:

• a UTF-8 human-readable string [Unicode], padded by appending zero bytes; or

• an arbitrary sequence of 512 bytes starting with a byte value of 0xF5 or greater, which is therefore not a valid
UTF-8 string.

In the former case, wallet software is expected to strip any trailing zero bytes and then display the resulting UTF-8
string to the recipient user, where applicable. Incorrect UTF-8-encoded byte sequences SHOULD be displayed as
replacement characters (U+FFFD).

In the latter case, the contents of the memo field SHOULD NOT be displayed. A start byte of 0xF5 is reserved for
use by automated software by private agreement. A start byte of 0xF6 followed by 511 0x00 bytes means “no memo”.
A start byte of 0xF6 followed by anything else, or a start byte of 0xF7 or greater, are reserved for use in future Zcash
protocol extensions.

Other fields are as defined in §3.2 ‘Notes’ on p. 13.
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The encoding of a Sprout note plaintext consists of:

8-bit 0x00 64-bit v 256-bit ρ 256-bit rcm memo (512 bytes)

• A byte, 0x00, indicating this version of the encoding of a Sprout note plaintext .

• 8 bytes specifying v.

• 32 bytes specifying ρ.

• 32 bytes specifying rcm.

• 512 bytes specifying memo.

The encoding of a Sapling note plaintext consists of:

8-bit 0x01 88-bit d 64-bit v 256-bit rcm memo (512 bytes)

• A byte, 0x01, indicating this version of the encoding of a Sapling note plaintext .

• 11 bytes specifying d.

• 8 bytes specifying v.

• 32 bytes specifying rcm.

• 512 bytes specifying memo.

5.6 Encodings of Addresses and Keys

This section describes how Zcash encodes shielded payment addresses , incoming viewing keys , and spending
keys .

Addresses and keys can be encoded as a byte sequence; this is called the raw encoding . This byte sequence can
then be further encoded using Base58Check. The Base58Check layer is the same as for upstream Bitcoin addresses
[Bitcoin-Base58].

For Sapling-specific key and address formats, Bech32 [BIP-173] is used instead of Base58Check. All conformance
requirements of BIP 173 apply except for the limit of 90 characters on an encoded Bech32 string (which does not
hold for Sapling viewing keys, for example), and requirements specific to Bitcoin’s Segwit addresses.

SHA-256 compression outputs are always represented as sequences of 32 bytes.

The language consisting of the following encoding possibilities is prefix-free.

5.6.1 Transparent Addresses

Transparent addresses are either P2SH (Pay to Script Hash) addresses [BIP-13] or P2PKH (Pay to Public Key Hash)
addresses [Bitcoin-P2PKH].

The raw encoding of a P2SH address consists of:

8-bit 0x1C 8-bit 0xBD 160-bit script hash

• Two bytes [0x1C, 0xBD], indicating this version of the raw encoding of a P2SH address on the production
network. (Addresses on the test network use [0x1C, 0xBA] instead.)

• 20 bytes specifying a script hash [Bitcoin-P2SH].
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The raw encoding of a P2PKH address consists of:

8-bit 0x1C 8-bit 0xB8 160-bit public key hash

• Two bytes [0x1C, 0xB8], indicating this version of the raw encoding of a P2PKH address on the production
network. (Addresses on the test network use [0x1D, 0x25] instead.)

• 20 bytes specifying a public key hash, which is a RIPEMD-160 hash [RIPEMD160] of a SHA-256 hash [NIST2015]
of a compressed ECDSA key encoding.

Notes:

• In Bitcoin a single byte is used for the version field identifying the address type. In Zcash two bytes are used.
For addresses on the production network, this and the encoded length cause the first two characters of the
Base58Check encoding to be fixed as “t3” for P2SH addresses, and as “t1” for P2PKH addresses. (This does
not imply that a transparent Zcash address can be parsed identically to a Bitcoin address just by removing
the “t”.)

• Zcash does not yet support Hierarchical Deterministic Wallet addresses [BIP-32].

5.6.2 Transparent Private Keys

These are encoded in the same way as in Bitcoin [Bitcoin-Base58], for both the production and test networks.

5.6.3 Sprout Shielded Payment Addresses

A Sprout shielded payment address consists of apk
◦

◦ B
[ℓPRFSprout] and pkenc

◦

◦ KA
Sprout.Public.

apk is a SHA-256 compression output. pkenc is a KA
Sprout.Public key (see §5.4.4.1 ‘Sprout Key Agreement’ on p. 58),

for use with the encryption scheme defined in §4.16 ‘In-band secret distribution (Sprout)’ on p. 44. These com-
ponents are derived from a spending key as described in §4.2.1 ‘Sprout Key Components’ on p. 28.

The raw encoding of a Sprout shielded payment address consists of:

8-bit 0x16 8-bit 0x9A 256-bit apk 256-bit pkenc

• Two bytes [0x16, 0x9A], indicating this version of the raw encoding of a Sprout shielded payment address on
the production network. (Addresses on the test network use [0x16, 0xB6] instead.)

• 32 bytes specifying apk.

• 32 bytes specifying pkenc, using the normal encoding of a Curve25519 public key [Bernstein2006].

Note: For addresses on the production network, the lead bytes and encoded length cause the first two characters
of the Base58Check encoding to be fixed as “zc”. For the test network, the first two characters are fixed as “zt”.

5.6.4 Sapling Shielded Payment Addresses

A Sapling shielded payment address consists of d ◦

◦ B
[ℓd] and pkd

◦

◦ KA
Sapling.PublicPrimeOrder.

pkd is an encoding of a KA
Sapling public key of type KA

Sapling.PublicPrimeOrder (see §5.4.4.3 ‘Sapling Key Agreement’

on p. 59), for use with the encryption scheme defined in §4.17 ‘In-band secret distribution (Sapling)’ on p. 45. d is
a sequence of 11 bytes. These components are derived as described in §4.2.2 ‘Sapling Key Components’ on p. 28.
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The raw encoding of a Sapling shielded payment address consists of:

LEBS2OSP88(d) LEBS2OSP256

(

reprJ(pkd)
)

• 11 bytes specifying d.

• 32 bytes specifying the compressed ctEdwards encoding of pkd (see §5.4.8.3 ‘Jubjub’ on p. 68).

When decoding the representation of pkd, the address is not valid if abstJ returns ⊥ or if the resulting pkd is not of
prime order.

For addresses on the production network, the Human-Readable Part is “zs”. For addresses on the test network, the
Human-Readable Part is “ztestsapling”.

5.6.5 Sprout Incoming Viewing Keys

An incoming viewing key consists of apk
◦

◦ B
[ℓPRFSprout] and skenc

◦

◦ KA
Sprout.Private.

apk is a SHA-256 compression output. skenc is a KA
Sprout.Private key (see §5.4.4.1 ‘Sprout Key Agreement’ on p. 58),

for use with the encryption scheme defined in §4.16 ‘In-band secret distribution (Sprout)’ on p. 44. These com-
ponents are derived from a spending key as described in §4.2.1 ‘Sprout Key Components’ on p. 28.

The raw encoding of an incoming viewing key consists of, in order:

8-bit 0xA8 8-bit 0xAB 8-bit 0xD3 256-bit apk 256-bit skenc

• Three bytes [0xA8, 0xAB, 0xD3], indicating this version of the raw encoding of a Zcash incoming viewing key
on the production network. (Addresses on the test network use [0xA8, 0xAC, 0x0C] instead.)

• 32 bytes specifying apk.

• 32 bytes specifying skenc, using the normal encoding of a Curve25519 private key [Bernstein2006].

skenc MUST be “clamped” using KA
Sprout.FormatPrivate as specified in §4.2.1 ‘Sprout Key Components’ on p. 28. That

is, a decoded incoming viewing key MUST be considered invalid if skenc 6= KA
Sprout.FormatPrivate(skenc).

KA
Sprout.FormatPrivate is defined in §5.4.4.1 ‘Sprout Key Agreement’ on p. 58.

Note: For addresses on the production network, the lead bytes and encoded length cause the first four characters
of the Base58Check encoding to be fixed as “ZiVK”. For the test network, the first four characters are fixed as “ZiVt”.

5.6.6 Sapling Incoming Viewing Keys

Let ℓivk be as defined in §5.3 ‘Constants’ on p. 50.

A Sapling incoming viewing key consists of ivk ◦

◦ {0 .. 2ℓivk−1}.

ivk is a KA
Sapling.Private key (restricted to ℓivk bits), derived as described in §4.2.2 ‘Sapling Key Components’ on

p. 28. It is used with the encryption scheme defined in §4.17 ‘In-band secret distribution (Sapling)’ on p. 45.
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The raw encoding of an incoming viewing key consists of:

256-bit ivk

• 32 bytes (little-endian) specifying ivk, padded with zeros in the most significant bits.

ivk MUST be in the range {0 .. 2ℓivk−1} as specified in §4.2.2 ‘Sapling Key Components’ on p. 28. That is, a decoded
incoming viewing key MUST be considered invalid if ivk is not in this range.

For incoming viewing keys on the production network, the Human-Readable Part is “zivks”. For incoming viewing
keys on the test network, the Human-Readable Part is “zivktestsapling”.

5.6.7 Sapling Full Viewing Keys

A Sapling full viewing key consists of ak ◦

◦ J
(r)∗, nk ◦

◦ J
(r), and ovk ◦

◦ BYY[ℓovk/8].

ak and nk are points on the Jubjub curve (see §5.4.8.3 ‘Jubjub’ on p. 68). They are derived as described in §4.2.2
‘Sapling Key Components’ on p. 28.

The raw encoding of a full viewing key consists of:

LEBS2OSP256

(

reprJ(ak)
)

LEBS2OSP256

(

reprJ(nk)
)

32-byte ovk

• 32 bytes specifying the compressed ctEdwards encoding of ak (see §5.4.8.3 ‘Jubjub’ on p. 68).

• 32 bytes specifying the compressed ctEdwards encoding of nk.

• 32 bytes specifying the outgoing viewing key ovk.

When decoding this representation, the key is not valid if abstJ returns ⊥ for either ak or nk, or if ak /∈ J
(r)∗, or if

nk /∈ J
(r).

For incoming viewing keys on the production network, the Human-Readable Part is “zviews”. For incoming viewing
keys on the test network, the Human-Readable Part is “zviewtestsapling”.

5.6.8 Sprout Spending Keys

A Sprout spending key consists of ask, which is a sequence of 252 bits (see §4.2.1 ‘Sprout Key Components’ on
p. 28).

The raw encoding of a Sprout spending key consists of:

8-bit 0xAB 8-bit 0x36 [0]4 252-bit ask

• Two bytes [0xAB, 0x36], indicating this version of the raw encoding of a Zcash spending key on the production
network. (Addresses on the test network use [0xAC, 0x08] instead.)

• 32 bytes: 4 zero padding bits and 252 bits specifying ask.

The zero padding occupies the most significant 4 bits of the third byte.
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Notes:

• If an implementation represents ask internally as a sequence of 32 bytes with the 4 bits of zero padding intact,
it will be in the correct form for use as an input to PRF

addr, PRF
nf , and PRF

pk without need for bit-shifting.
Future key representations may make use of these padding bits.

• For addresses on the production network, the lead bytes and encoded length cause the first two characters of
the Base58Check encoding to be fixed as “SK”. For the test network, the first two characters are fixed as “ST”.

5.6.9 Sapling Spending Keys

A Sapling spending key consists of sk ◦

◦ B
[ℓsk] (see §4.2.2 ‘Sapling Key Components’ on p. 28).

The raw encoding of a Sapling spending key consists of:

LEBS2OSP256(sk)

• 32 bytes specifying sk.

For spending keys on the production network, the Human-Readable Part is “secret-spending-key-main”. For
spending keys on the test network, the Human-Readable Part is “secret-spending-key-test”.

5.7 BCTV14 zk-SNARK Parameters

For the Zcash production block chain and testnet, the SHA-256 hashes of the proving key and verifying key for the
Sprout JoinSplit circuit , encoded in libsnark format, are:

8bc20a7f013b2b58970cddd2e7ea028975c88ae7ceb9259a5344a16bc2c0eef7 sprout-proving.key

4bd498dae0aacfd8e98dc306338d017d9c08dd0918ead18172bd0aec2fc5df82 sprout-verifying.key

These parameters were obtained by a multi-party computation described in [BGG-mpc] and [BGG2017]. They are
used only before Sapling activation. Due to the security vulnerability described in §5.4.9.1 ‘BCTV14’ on p. 70, it
is not recommended to use these parameters in new protocols, and it is recommended to stop using them in
protocols other than Zcash where they are currently used.

5.8 Groth16 zk-SNARK Parameters

bellman [Bowe-bellman] encodes the proving key and verifying key for a zk-SNARK circuit in a single parameters
file. The BLAKE2b-512 hashes of this file for the Sapling Spend circuit and Output circuit , and for the implementa-
tion of the Sprout JoinSplit circuit used after Sapling activation, are respectively:

8270785a1a0d0bc77196f000ee6d221c9c9894f55307bd9357c3f0105d31ca63
991ab91324160d8f53e2bbd3c2633a6eb8bdf5205d822e7f3f73edac51b2b70c sapling-spend.params

657e3d38dbb5cb5e7dd2970e8b03d69b4787dd907285b5a7f0790dcc8072f60b
f593b32cc2d1c030e00ff5ae64bf84c5c3beb84ddc841d48264b4a171744d028 sapling-output.params

e9b238411bd6c0ec4791e9d04245ec350c9c5744f5610dfcce4365d5ca49dfef
d5054e371842b3f88fa1b9d7e8e075249b3ebabd167fa8b0f3161292d36c180a sprout-groth16.params

These parameters were obtained by a multi-party computation described in [BGM2017].
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5.9 Randomness Beacon

Let URS := “096b36a5804bfacef1691e173c366a47ff5ba84a44f26ddd7e8d9f79d5b42df0”.

This value is used in the definition of GroupHash
J

(r)∗

in §5.4.8.5 ‘Group Hash into Jubjub’ on p. 70, and in the multi-
party computation to obtain the Sapling parameters given in §5.8 ‘Groth16 zk-SNARK Parameters’ on p. 77.

It is derived as described in [Bowe2018]:

• Take the hash of the Bitcoin block at height 514200 in RPC byte order [Bitcoin-Order], i.e. the big-endian
32-byte representation of 0x00000000000000000034b33e842ac1c50456abe5fa92b60f6b3dfc5d247f7b58.

• Apply SHA-256 242 times.

• Convert to a US-ASCII lowercase hexadecimal string.

Note: URS is a 64-byte US-ASCII string, i.e. the first byte is 0x30, not 0x09.

6 Network Upgrades

Zcash launched with a protocol revision that we call Sprout. A first network upgrade , called Overwinter, activated
on the production Zcash network on 26 June 2018 at block height 347500 [Swihart2018]. A second upgrade, called
Sapling, activated on the production network on 28 October 2018 at block height 419200 [Hamdon2018]. This
section summarizes the strategy for upgrading from Sprout to Overwinter to Sapling, and then to future upgrades.

The network upgrade mechanism is described in [ZIP-200]. The specifications of the Overwinter upgrade are
described in this document, [ZIP-201], [ZIP-202], [ZIP-203], and [ZIP-143]. The specifications of the Sapling upgrade
are described in this document, [ZIP-205], and [ZIP-243].

Each network upgrade is introduced as a “bilateral consensus rule change”. In this kind of upgrade,

• there is an activation block height at which the consensus rule change takes effect;

• blocks and transactions that are valid according to the post-upgrade rules are not valid before the upgrade
block height ;

• blocks and transactions that are valid according to the pre-upgrade rules are no longer valid at or after the
activation block height .

Full support for each network upgrade is indicated by a minimum version of the peer-to-peer protocol. At the
planned activation block height , nodes that support a given upgrade will disconnect from (and will not reconnect
to) nodes with a protocol version lower than this minimum. See [ZIP-201] for how this applies to the Overwinter
upgrade.

This ensures that upgrade-supporting nodes transition cleanly from the old protocol to the new protocol. Nodes
that do not support the upgrade will find themselves on a network that uses the old protocol and is fully partitioned
from the upgrade-supporting network. This allows us to specify arbitrary protocol changes that take effect at a
given block height .

Note, however, that a block chain reorganization across the upgrade activation block height is possible. In the case
of such a reorganization, blocks at a height before the activation block height will still be created and validated
according to the pre-upgrade rules, and upgrade-supporting nodes MUST allow for this.

78



7 Consensus Changes from Bitcoin

7.1 Encoding of Transactions

The Zcash transaction format is as follows:

Version Bytes Name Data Type Description

≥ 1 4 header uint32 Contains:
· fOverwintered flag (bit 31)
· version (bits 30 .. 0) – transaction version.

≥ 3 4 nVersionGroupId uint32 Version group ID (nonzero).

≥ 1 Varies tx_in_count compactSize uint Number of transparent inputs in this
transaction.

≥ 1 Varies tx_in tx_in Transparent inputs, encoded as in Bitcoin.

≥ 1 Varies tx_out_count compactSize uint Number of transparent outputs in this
transaction.

≥ 1 Varies tx_out tx_out Transparent outputs, encoded as in Bitcoin.

≥ 1 4 lock_time uint32 A Unix epoch time (UTC) or block height ,
encoded as in Bitcoin.

≥ 3 4 nExpiryHeight uint32 A block height in the range {1 .. 499999999}
after which the transaction will expire, or 0 to
disable expiry ([ZIP-203]).

≥ 4 8 valueBalance int64 The net value of Sapling Spend transfers
minus Output transfers .

≥ 4 Varies nShieldedSpend compactSize uint The number of Spend descriptions in
vShieldedSpend.

≥ 4 384·
nShieldedSpend

vShieldedSpend SpendDescription
[nShieldedSpend]

A sequence of Spend descriptions , each
encoded as in §7.3
‘Encoding of Spend Descriptions’ on p. 83.

≥ 4 Varies nShieldedOutput compactSize uint The number of Output descriptions in
vShieldedOutput.

≥ 4 948·
nShieldedOutput

vShieldedOutput OutputDescription
[nShieldedOutput]

A sequence of Output descriptions , each
encoded as in §7.4
‘Encoding of Output Descriptions’ on p. 83.

≥ 2 Varies nJoinSplit compactSize uint The number of JoinSplit descriptions in
vJoinSplit.

2 .. 3 1802·
nJoinSplit

vJoinSplit JSDescriptionBCTV14
[nJoinSplit]

A sequence of JoinSplit descriptions using
BCTV14 proofs, each encoded as in §7.2
‘Encoding of JoinSplit Descriptions’ on p. 82.

≥ 4 1698·
nJoinSplit

vJoinSplit JSDescriptionGroth16
[nJoinSplit]

A sequence of JoinSplit descriptions using
Groth16 proofs, each encoded as in §7.2
‘Encoding of JoinSplit Descriptions’ on p. 82.

≥ 2 † 32 joinSplitPubKey char[32] An encoding of a JoinSplitSig public
verification key.

≥ 2 † 64 joinSplitSig char[64] A signature on a prefix of the transaction
encoding, to be verified using
joinSplitPubKey.

≥ 4 ‡ 64 bindingSig char[64] A signature on the SIGHASH transaction hash,
to be verified as specified in §5.4.6.2
‘Binding Signature’ on p. 63.

† The joinSplitPubKey and joinSplitSig fields are present if and only if version ≥ 2 and nJoinSplit > 0. The
encoding of joinSplitPubKey and the data to be signed are specified in §4.10 ‘Non-malleability (Sprout)’ on p. 36.

‡ The bindingSig field is present if and only if version ≥ 4 and nShieldedSpend + nShieldedOutput > 0.
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Consensus rules:

• The transaction version number MUST be greater than or equal to 1.

• [Pre-Overwinter] The fOverwintered flag MUST NOT be set.

• [Overwinter onward] The fOverwintered flag MUST be set.

• [Overwinter onward] The version group ID MUST be recognized.

• [Overwinter only, pre-Sapling] The transaction version number MUST be 3 and the version group ID MUST
be 0x03C48270.

• [Sapling onward] The transaction version number MUST be 4 and the version group ID MUST be 0x892F2085.

• [Pre-Sapling] The encoded size of the transaction MUST be less than or equal to 100000 bytes.

• [Pre-Sapling] If version = 1 or nJoinSplit = 0, then tx_in_count MUST NOT be 0.

• [Sapling onward] At least one of tx_in_count, nShieldedSpend, and nJoinSplit MUST be nonzero.

• A transaction with one or more inputs from coinbase transactions MUST have no transparent outputs (i.e.
tx_out_count MUST be 0). Note that inputs from coinbase transactions include Founders’ Reward outputs.

• If version ≥ 2 and nJoinSplit > 0, then:
– joinSplitPubKey MUST represent a valid Ed25519 public key encoding (§5.4.5 ‘JoinSplit Signature’ on

p. 60).

– joinSplitSig MUST represent a valid signature under joinSplitPubKey of dataToBeSigned, as defined
in §4.10 ‘Non-malleability (Sprout)’ on p. 36.

• [Sapling onward] If version ≥ 4 and nShieldedSpend + nShieldedOutput > 0, then:
– let bvk and SigHash be as defined in §4.12 ‘Balance and Binding Signature (Sapling)’ on p. 37;

– bindingSig MUST represent a valid signature under the transaction binding verification key bvk of
SigHash — i.e. BindingSig.Verifybvk(SigHash, bindingSig) = 1.

• [Sapling onward] If version ≥ 4 and nShieldedSpend + nShieldedOutput = 0, then valueBalance MUST be 0.

• A coinbase transaction MUST NOT have any JoinSplit descriptions , Spend descriptions , or Output descrip-
tions .

• A transaction MUST NOT spend an output of a coinbase transaction (necessarily a transparent output) from
a block less than 100 blocks prior to the spend. Note that outputs of coinbase transactions include Founders’
Reward outputs.

• [Overwinter onward] nExpiryHeight MUST be less than or equal to 499999999.

• [Overwinter onward] If a transaction is not a coinbase transaction and its nExpiryHeight field is nonzero,
then it MUST NOT be mined at a block height greater than its nExpiryHeight.

• [Sapling onward] valueBalance MUST be in the range {−MAX_MONEY .. MAX_MONEY}.
• TODO: Other rules inherited from Bitcoin.

In addition, consensus rules associated with each JoinSplit description (§7.2 ‘Encoding of JoinSplit Descriptions’

on p. 82), each Spend description (§7.3 ‘Encoding of Spend Descriptions’ on p. 83), and each Output description
(§7.4 ‘Encoding of Output Descriptions’ on p. 83) MUST be followed.

Notes:

• Previous versions of this specification defined what is now the header field as a signed int32 field which was
required to be positive. The consensus rule that the fOverwintered flag MUST NOT be set before Overwinter
has activated, has the same effect.

• The semantics of transactions with transaction version number not equal to 1, 2, 3, or 4 is not currently defined.
Miners MUST NOT create blocks before the Overwinter activation block height containing transactions with
version other than 1 or 2.
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• The exclusion of transactions with transaction version number greater than 2 is not a consensus rule before
Overwinter activation. Such transactions may exist in the block chain and MUST be treated identically to
version 2 transactions .

• [Overwinter onward] Once Overwinter has activated, limits on the maximum transaction version number
are consensus rules.

• Note that a future upgrade might use any transaction version number or version group ID . It is likely that an
upgrade that changes the transaction version number or version group ID will also change the transaction
format, and software that parses transactions SHOULD take this into account.

• [Overwinter onward] The purpose of version group ID is to allow unambiguous parsing of “loose” transactions ,
independent of the context of a block chain. Code that parses transactions is likely to be reused between
block chain branches as defined in [ZIP-200], and in that case the fOverwintered and version fields alone
may be insufficient to determine the format to be used for parsing.

• A transaction version number of 2 does not have the same meaning as in Bitcoin, where it is associated with
support for OP_CHECKSEQUENCEVERIFY as specified in [BIP-68]. Zcash was forked from Bitcoin v0.11.2 and does
not currently support BIP 68.

The changes relative to Bitcoin version 1 transactions as described in [Bitcoin-Format] are:

• Transaction version 0 is not supported.

• A version 1 transaction is equivalent to a version 2 transaction with nJoinSplit = 0.

• The nJoinSplit, vJoinSplit, joinSplitPubKey, and joinSplitSig fields have been added.

• [Overwinter onward] The nVersionGroupId field has been added.

• [Sapling onward] The nShieldedSpend, vShieldedSpend, nShieldedOutput, vShieldedOutput, and bindingSig
fields have been added.

• In Zcash it is permitted for a transaction to have no transparent inputs, provided at least one of nJoinSplit,
nShieldedSpend, and nShieldedOutput are nonzero.

• A consensus rule limiting transaction size has been added. In Bitcoin there is a corresponding standard rule
but no consensus rule.

[Pre-Overwinter ] Software that creates transactions SHOULD use version 1 for transactions with no JoinSplit
descriptions .

81



7.2 Encoding of JoinSplit Descriptions

An abstract JoinSplit description, as described in §3.5 ‘JoinSplit Transfers and Descriptions’ on p. 16, is encoded
in a transaction as an instance of a JoinSplitDescription type as follows:

Bytes Name Data Type Description

8 vpub_old uint64 A value v
old
pub that the JoinSplit transfer removes from

the transparent value pool .

8 vpub_new uint64 A value v
new
pub that the JoinSplit transfer inserts into the

transparent value pool .

32 anchor char[32] A root rt of the Sprout note commitment tree at some
block height in the past, or the root produced by a
previous JoinSplit transfer in this transaction.

64 nullifiers char[32][Nold
] A sequence of nullifiers of the input notes nf

old

1..N
old .

64 commitments char[32][Nnew
] A sequence of note commitments for the output notes

cm
new
1..N

new .

32 ephemeralKey char[32] A Curve25519 public key epk.

32 randomSeed char[32] A 256-bit seed that must be chosen independently at
random for each JoinSplit description.

64 vmacs char[32][Nold
] A sequence of message authentication tags h

1..N
old

binding hSig to each ask of the JoinSplit description,
computed as described in §4.10
‘Non-malleability (Sprout)’ on p. 36.

296 † zkproof char[296] An encoding of the zero-knowledge proof πZKJoinSplit

(see §5.4.9.1 ‘BCTV14’ on p. 70).

192 ‡ zkproof char[192] An encoding of the zero-knowledge proof πZKJoinSplit

(see §5.4.9.2 ‘Groth16’ on p. 71).

1202 encCiphertexts char[601][Nnew
] A sequence of ciphertext components for the

encrypted output notes , C
enc
1..N

new .

† BCTV14 proofs are used when the transaction version is 2 or 3, i.e. before Sapling activation.

‡ Groth16 proofs are used when the transaction version is ≥ 4, i.e. after Sapling activation.

The ephemeralKey and encCiphertexts fields together form the transmitted notes ciphertext , which is computed
as described in §4.16 ‘In-band secret distribution (Sprout)’ on p. 44.

Consensus rules applying to a JoinSplit description are given in §4.3 ‘JoinSplit Descriptions’ on p. 30.
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7.3 Encoding of Spend Descriptions

Let LEBS2OSP be as defined in §5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 49.

Let reprJ and qJ be as defined in §5.4.8.3 ‘Jubjub’ on p. 68.

An abstract Spend description, as described in §3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’

on p. 16, is encoded in a transaction as an instance of a SpendDescription type as follows:

Bytes Name Data Type Description

32 cv char[32] A value commitment to the value of the input note ,
LEBS2OSP256

(

reprJ(cv)
)

.

32 anchor char[32] A root of the Sapling note commitment tree at some block
height in the past, LEBS2OSP256(rt).

32 nullifier char[32] The nullifier of the input note , LEBS2OSP256(nf).

32 rk char[32] The randomized public key for spendAuthSig,
LEBS2OSP256

(

reprJ(rk)
)

.

192 zkproof char[192] An encoding of the zero-knowledge proof πZKSpend (see §5.4.9.2
‘Groth16’ on p. 71).

64 spendAuthSig char[64] A signature authorizing this spend.

Consensus rule: LEOS2IP256(anchor) MUST be less than qJ.

Other consensus rules applying to a Spend description are given in §4.4 ‘Spend Descriptions’ on p. 31.

7.4 Encoding of Output Descriptions

Let LEBS2OSP be as defined in §5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 49.

Let reprJ and qJ be as in §5.4.8.3 ‘Jubjub’ on p. 68, and Extract
J

(r) as in §5.4.8.5 ‘Group Hash into Jubjub’ on p. 70.

An abstract Output description, described in §3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’

on p. 16, is encoded in a transaction as an instance of an OutputDescription type as follows:

Bytes Name Data Type Description

32 cv char[32] A value commitment to the value of the output note ,
LEBS2OSP256

(

reprJ(cv)
)

.

32 cmu char[32] The u-coordinate of the note commitment for the output note ,
LEBS2OSP256(cmu) where cmu = Extract

J
(r)(cm).

32 ephemeralKey char[32] An encoding of an ephemeral Jubjub public key,
LEBS2OSP256

(

reprJ(epk)
)

.

580 encCiphertext char[580] A ciphertext component for the encrypted output note , C
enc.

80 outCiphertext char[80] A ciphertext component for the encrypted output note , C
out.

192 zkproof char[192] An encoding of the zero-knowledge proof πZKOutput (see
§5.4.9.2 ‘Groth16’ on p. 71).

The ephemeralKey, encCiphertext, and outCiphertext fields together form the transmitted note ciphertext , which
is computed as described in §4.17 ‘In-band secret distribution (Sapling)’ on p. 45.
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Consensus rule: LEOS2IP256(cmu) MUST be less than qJ.

Other consensus rules applying to an Output description are given in §4.5 ‘Output Descriptions’ on p. 32.

7.5 Block Header

The Zcash block header format is as follows:

Bytes Name Data Type Description

4 nVersion int32 The block version number indicates which
set of block validation rules to follow. The
current and only defined block version
number for Zcash is 4.

32 hashPrevBlock char[32] A SHA-256d hash in internal byte order of the
previous block ’s header . This ensures no
previous block can be changed without also
changing this block ’s header .

32 hashMerkleRoot char[32] A SHA-256d hash in internal byte order. The
merkle root is derived from the hashes of all
transactions included in this block , ensuring
that none of those transactions can be
modified without modifying the header .

32 hashReserved /
hashFinalSaplingRoot

char[32] [Pre-Sapling] A reserved field which should
be ignored. [Sapling onward] The root
LEBS2OSP256(rt) of the Sapling note
commitment tree corresponding to the final
Sapling treestate of this block .

4 nTime uint32 The block time is a Unix epoch time (UTC)
when the miner started hashing the header
(according to the miner).

4 nBits uint32 An encoded version of the target threshold
this block ’s header hash must be less than or
equal to, in the same nBits format used by
Bitcoin. [Bitcoin-nBits]

32 nNonce char[32] An arbitrary field that miners can change to
modify the header hash in order to produce a
hash less than or equal to the target threshold .

3 solutionSize compactSize uint The size of an Equihash solution in bytes
(always 1344).

1344 solution char[1344] The Equihash solution.

A block consists of a block header and a sequence of transactions . How transactions are encoded in a block is part
of the Zcash peer-to-peer protocol but not part of the consensus protocol.

Let ThresholdBits be as defined in §7.6.3 ‘Difficulty adjustment’ on p. 87, and let PoWMedianBlockSpan be the con-
stant defined in §5.3 ‘Constants’ on p. 50.
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Consensus rules:

• The block version number MUST be greater than or equal to 4.

• For a block at block height height, nBits MUST be equal to ThresholdBits(height).

• The block MUST pass the difficulty filter defined in §7.6.2 ‘Difficulty filter’ on p. 87.

• solution MUST represent a valid Equihash solution as defined in §7.6.1 ‘Equihash’ on p. 86.

• nTime MUST be strictly greater than the median time of the previous PoWMedianBlockSpan blocks .

• The size of a block MUST be less than or equal to 2000000 bytes.

• [Sapling onward] hashFinalSaplingRoot MUST be LEBS2OSP256(rt) where rt is the root of the Sapling note
commitment tree for the final Sapling treestate of this block .

• TODO: Other rules inherited from Bitcoin.

In addition, a full validator MUST NOT accept blocks with nTime more than two hours in the future according to its
clock. This is not strictly a consensus rule because it is nondeterministic, and clock time varies between nodes.
Also note that a block that is rejected by this rule at a given point in time may later be accepted.

Notes:

• The semantics of blocks with block version number not equal to 4 is not currently defined. Miners MUST
NOT create such blocks .

• The exclusion of blocks with block version number greater than 4 is not a consensus rule; such blocks may
exist in the block chain and MUST be treated identically to version 4 blocks by full validators . Note that a
future upgrade might use block version number either greater than or less than 4. It is likely that such an
upgrade will change the block header and/or transaction format, and software that parses blocks SHOULD
take this into account.

• The nVersion field is a signed integer. (It was specified as unsigned in a previous version of this specification.)
A future upgrade might use negative values for this field, or otherwise change its interpretation.

• There is no relation between the values of the version field of a transaction, and the nVersion field of a block
header .

• Like other serialized fields of type compactSize uint, the solutionSize field MUST be encoded with the
minimum number of bytes (3 in this case), and other encodings MUST be rejected. This is necessary to avoid
a potential attack in which a miner could test several distinct encodings of each Equihash solution against the
difficulty filter, rather than only the single intended encoding.

• As in Bitcoin, the nTime field MUST represent a time strictly greater than the median of the timestamps of
the past PoWMedianBlockSpan blocks . The Bitcoin Developer Reference [Bitcoin-Block] was previously in
error on this point, but has now been corrected.

• There are no changes to the block version number or format for Overwinter.

• Although the block version number does not change for Sapling, the previously reserved (and ignored) field
hashReserved has been repurposed for hashFinalSaplingRoot. There are no other format changes.

The changes relative to Bitcoin version 4 blocks as described in [Bitcoin-Block] are:

• Block versions less than 4 are not supported.

• The hashReserved (or hashFinalSaplingRoot), solutionSize, and solution fields have been added.

• The type of the nNonce field has changed from uint32 to char[32].

• The maximum block size has been doubled to 2000000 bytes.

85



7.6 Proof of Work

Zcash uses Equihash [BK2016] as its Proof of Work. Motivations for changing the Proof of Work from SHA-256d
used by Bitcoin are described in [WG2016].

A block satisfies the Proof of Work if and only if:

• The solution field encodes a valid Equihash solution according to §7.6.1 ‘Equihash’ on p. 86.

• The block header satisfies the difficulty check according to §7.6.2 ‘Difficulty filter’ on p. 87.

7.6.1 Equihash

An instance of the Equihash algorithm is parameterized by positive integers n and k, such that n is a multiple of
k + 1. We assume k ≥ 3.

The Equihash parameters for the production and test networks are n = 200, k = 9.

Equihash is based on a variation of the Generalized Birthday Problem [AR2017]: given a sequence X1 .. N of n-bit

strings, find 2k distinct Xij
such that

⊕2
k

j=1
Xij

= 0.

In Equihash, N = 2
n

k+1 +1, and the sequence X1 .. N is derived from the block header and a nonce.

Let powheader := 32-bit nVersion 256-bit hashPrevBlock 256-bit hashMerkleRoot

256-bit hashReserved 32-bit nTime 32-bit nBits 256-bit nNonce

For i ∈ {1 .. N}, let Xi = EquihashGenn,k(powheader, i).

EquihashGen is instantiated in §5.4.1.9 ‘EquihashGenerator’ on p. 57.

Define I2BEBSP ◦

◦ (ℓ ◦

◦ N)× {0 .. 2ℓ−1} → B
[ℓ] as in §5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 49.

A valid Equihash solution is then a sequence i ◦

◦ {1 .. N}2
k

that satisfies the following conditions:

Generalized Birthday condition
2

k

⊕

j=1

Xij
= 0.

Algorithm Binding conditions

• For all r ∈ {1 .. k−1}, for all w ∈ {0 .. 2k−r−1} :
2

r

⊕

j=1

Xi
w·2

r
+j

has n·r
k+1 leading zeros; and

• For all r ∈ {1 .. k}, for all w ∈ {0 .. 2k−r−1} : i
w·2

r
+1..w·2

r
+2

r−1 < i
w·2

r
+2

r−1
+1..w·2

r
+2

r lexicographically.

Notes:

• This does not include a difficulty condition, because here we are defining validity of an Equihash solution
independent of difficulty.

• Previous versions of this specification incorrectly specified the range of r to be {1 .. k−1} for both parts of the
algorithm binding condition. The implementation in zcashd was as intended.

An Equihash solution with n = 200 and k = 9 is encoded in the solution field of a block header as follows:

I2BEBSP21(i1 − 1) I2BEBSP21(i2 − 1) · · · I2BEBSP21(i512 − 1)
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Recall from §5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 49 that bits in the above diagram are ordered
from most to least significant in each byte. For example, if the first 3 elements of i are [69, 42, 221], then the
corresponding bit array is:

I2BEBSP21(68) I2BEBSP21(41) I2BEBSP21(221 − 1)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8-bit 0 8-bit 2 8-bit 32 8-bit 0 8-bit 10 8-bit 127 8-bit 255 · · ·

and so the first 7 bytes of solution would be [0, 2, 32, 0, 10, 127, 255].

Note: I2BEBSP is big-endian, while integer field encodings in powheader and in the instantiation of EquihashGen

are little-endian. The rationale for this is that little-endian serialization of block headers is consistent with Bitcoin,
but little-endian ordering of bits in the solution encoding would require bit-reversal (as opposed to only shifting).

7.6.2 Difficulty filter

Let ToTarget be as defined in §7.6.4 ‘nBits conversion’ on p. 88.

Difficulty is defined in terms of a target threshold , which is adjusted for each block according to the algorithm
defined in §7.6.3 ‘Difficulty adjustment’ on p. 87.

The difficulty filter is unchanged from Bitcoin, and is calculated using SHA-256d on the whole block header
(including solutionSize and solution). The result is interpreted as a 256-bit integer represented in little-endian
byte order, which MUST be less than or equal to the target threshold given by ToTarget(nBits).

7.6.3 Difficulty adjustment

Zcash uses a difficulty adjustment algorithm based on DigiShield v3/v4 [DigiByte-PoW], with simplifications and
altered parameters, to adjust difficulty to target the desired block time . Unlike Bitcoin, the difficulty adjustment
occurs after every block .

PoWLimit, HalvingInterval, PoWAveragingWindow, PoWMaxAdjustDown, PoWMaxAdjustUp, PoWDampingFactor, and
PoWTargetSpacing are specified in section §5.3 ‘Constants’ on p. 50.

Let ToCompact and ToTarget be as defined in §7.6.4 ‘nBits conversion’ on p. 88.

Let nTime(height) be the value of the nTime field in the header of the block at block height height.

Let nBits(height) be the value of the nBits field in the header of the block at block height height.

Block header fields are specified in §7.5 ‘Block Header’ on p. 84.

Define:

mean(S) :=

∑length(S)

i=1
Si

length(S)

median(S) := sorted(S)ceiling((length(S)+1)/2)

bound
upper
lower (x) := max(lower, min(upper, x)))

trunc(x) :=

{

floor(x) , if x ≥ 0

−floor(−x) , otherwise

AveragingWindowTimespan := PoWAveragingWindow · PoWTargetSpacing

MinActualTimespan := floor(AveragingWindowTimespan · (1− PoWMaxAdjustUp))

MaxActualTimespan := floor(AveragingWindowTimespan · (1 + PoWMaxAdjustDown))

MedianTime(height ◦

◦ N) := median([[ nTime(i) for i from max(0, height− PoWMedianBlockSpan) up to height− 1 ]])
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ActualTimespan(height ◦

◦ N) := MedianTime(height)−MedianTime(height− PoWAveragingWindow)

ActualTimespanDamped(height ◦

◦ N) :=

AveragingWindowTimespan + trunc
(

ActualTimespan(height)− AveragingWindowTimespan

PoWDampingFactor

)

ActualTimespanBounded(height ◦

◦ N) := bound
MaxActualTimespan
MinActualTimespan (ActualTimespanDamped(height))

MeanTarget(height ◦

◦ N) :=











PoWLimit, if height ≤ PoWAveragingWindow

mean([[ToTarget(nBits(i)) for i from height−PoWAveragingWindow up to height−1]]),

otherwise.

The target threshold for a given block height height is then calculated as:

Threshold(height ◦

◦ N) :=















PoWLimit, if height = 0

min(PoWLimit, floor
(

MeanTarget(height)

AveragingWindowTimespan

)

· ActualTimespanBounded(height)),

otherwise

ThresholdBits(height ◦

◦ N) := ToCompact(Threshold(height)).

Notes:

• The convention used for the height parameters to the functions MedianTime, MeanTarget, ActualTimespan,
ActualTimespanDamped, ActualTimespanBounded, Threshold, and ThresholdBits is that these functions use only
information from blocks preceding the given block height .

• When the median function is applied to a sequence of even length (which only happens in the definition of
MedianTime during the first PoWAveragingWindow − 1 blocks of the block chain), the element that begins the
second half of the sequence is taken. This corresponds to the zcashd implementation, but was not specified
correctly in versions of this specification prior to 2019.0-beta-40.

On the test network from block height 299188 onward, the difficulty adjustment algorithm is changed to allow
minimum-difficulty blocks , as described in [ZIP-205]. This change does not apply to the production network.

7.6.4 nBits conversion

Deterministic conversions between a target threshold and a “compact" nBits value are not fully defined in the
Bitcoin documentation [Bitcoin-nBits], and so we define them here:

size(x) := ceiling
(

bitlength(x)

8

)

mantissa(x) := floor
(

x · 2563−size(x)
)

ToCompact(x) :=

{

mantissa(x) + 224 ·size(x), if mantissa(x) < 223

floor
(

mantissa(x)

256

)

+ 224 ·(size(x) + 1), otherwise

ToTarget(x) :=

{

0, if xî 223 = 223

(xî (223 − 1)) · 256floor(x/2
24)−3, otherwise.
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7.6.5 Definition of Work

As explained in §3.3 ‘The Block Chain’ on p. 15, a node chooses the “best” block chain visible to it by finding the
chain of valid blocks with the greatest total work.

Let ToTarget be as defined in §7.6.4 ‘nBits conversion’ on p. 88.

The work of a block with value nBits for the nBits field in its block header is defined as floor

(

2256

ToTarget(nBits) + 1

)

.

7.7 Calculation of Block Subsidy and Founders’ Reward

§3.9 ‘Block Subsidy and Founders’ Reward’ on p. 18 defines the block subsidy , miner subsidy , and Founders’
Reward . Their amounts in zatoshi are calculated from the block height using the formulae below. The constants
SlowStartInterval, HalvingInterval, MaxBlockSubsidy, and FoundersFraction are instantiated in §5.3 ‘Constants’ on p. 50.

SlowStartShift ◦

◦ N :=
SlowStartInterval

2

SlowStartRate ◦

◦ N :=
MaxBlockSubsidy

SlowStartInterval

Halving(height ◦

◦ N) := floor
(

height− SlowStartShift

HalvingInterval

)

BlockSubsidy(height ◦

◦ N) :=































SlowStartRate · height, if height <
SlowStartInterval

2

SlowStartRate · (height + 1), if SlowStartInterval

2
≤ height

and height < SlowStartInterval

floor
(

MaxBlockSubsidy

2Halving(height)

)

, otherwise

FoundersReward(height ◦

◦ N) :=

{

BlockSubsidy(height) · FoundersFraction, if Halving(height) < 1

0, otherwise

MinerSubsidy(height ◦

◦ N) := BlockSubsidy(height)− FoundersReward(height).
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7.8 Payment of Founders’ Reward

The Founders’ Reward is paid by a transparent output in the coinbase transaction, to one of NumFounderAddresses

transparent addresses, depending on the block height .

For the production network, FounderAddressList1..NumFounderAddresses is:

[ “t3Vz22vK5z2LcKEdg16Yv4FFneEL1zg9ojd”, “t3cL9AucCajm3HXDhb5jBnJK2vapVoXsop3”,
“t3fqvkzrrNaMcamkQMwAyHRjfDdM2xQvDTR”, “t3TgZ9ZT2CTSK44AnUPi6qeNaHa2eC7pUyF”,
“t3SpkcPQPfuRYHsP5vz3Pv86PgKo5m9KVmx”, “t3Xt4oQMRPagwbpQqkgAViQgtST4VoSWR6S”,
“t3ayBkZ4w6kKXynwoHZFUSSgXRKtogTXNgb”, “t3adJBQuaa21u7NxbR8YMzp3km3TbSZ4MGB”,
“t3K4aLYagSSBySdrfAGGeUd5H9z5Qvz88t2”, “t3RYnsc5nhEvKiva3ZPhfRSk7eyh1CrA6Rk”,
“t3Ut4KUq2ZSMTPNE67pBU5LqYCi2q36KpXQ”, “t3ZnCNAvgu6CSyHm1vWtrx3aiN98dSAGpnD”,
“t3fB9cB3eSYim64BS9xfwAHQUKLgQQroBDG”, “t3cwZfKNNj2vXMAHBQeewm6pXhKFdhk18kD”,
“t3YcoujXfspWy7rbNUsGKxFEWZqNstGpeG4”, “t3bLvCLigc6rbNrUTS5NwkgyVrZcZumTRa4”,
“t3VvHWa7r3oy67YtU4LZKGCWa2J6eGHvShi”, “t3eF9X6X2dSo7MCvTjfZEzwWrVzquxRLNeY”,
“t3esCNwwmcyc8i9qQfyTbYhTqmYXZ9AwK3X”, “t3M4jN7hYE2e27yLsuQPPjuVek81WV3VbBj”,
“t3gGWxdC67CYNoBbPjNvrrWLAWxPqZLxrVY”, “t3LTWeoxeWPbmdkUD3NWBquk4WkazhFBmvU”,
“t3P5KKX97gXYFSaSjJPiruQEX84yF5z3Tjq”, “t3f3T3nCWsEpzmD35VK62JgQfFig74dV8C9”,
“t3Rqonuzz7afkF7156ZA4vi4iimRSEn41hj”, “t3fJZ5jYsyxDtvNrWBeoMbvJaQCj4JJgbgX”,
“t3Pnbg7XjP7FGPBUuz75H65aczphHgkpoJW”, “t3WeKQDxCijL5X7rwFem1MTL9ZwVJkUFhpF”,
“t3Y9FNi26J7UtAUC4moaETLbMo8KS1Be6ME”, “t3aNRLLsL2y8xcjPheZZwFy3Pcv7CsTwBec”,
“t3gQDEavk5VzAAHK8TrQu2BWDLxEiF1unBm”, “t3Rbykhx1TUFrgXrmBYrAJe2STxRKFL7G9r”,
“t3aaW4aTdP7a8d1VTE1Bod2yhbeggHgMajR”, “t3YEiAa6uEjXwFL2v5ztU1fn3yKgzMQqNyo”,
“t3g1yUUwt2PbmDvMDevTCPWUcbDatL2iQGP”, “t3dPWnep6YqGPuY1CecgbeZrY9iUwH8Yd4z”,
“t3QRZXHDPh2hwU46iQs2776kRuuWfwFp4dV”, “t3enhACRxi1ZD7e8ePomVGKn7wp7N9fFJ3r”,
“t3PkLgT71TnF112nSwBToXsD77yNbx2gJJY”, “t3LQtHUDoe7ZhhvddRv4vnaoNAhCr2f4oFN”,
“t3fNcdBUbycvbCtsD2n9q3LuxG7jVPvFB8L”, “t3dKojUU2EMjs28nHV84TvkVEUDu1M1FaEx”,
“t3aKH6NiWN1ofGd8c19rZiqgYpkJ3n679ME”, “t3MEXDF9Wsi63KwpPuQdD6by32Mw2bNTbEa”,
“t3WDhPfik343yNmPTqtkZAoQZeqA83K7Y3f”, “t3PSn5TbMMAEw7Eu36DYctFezRzpX1hzf3M”,
“t3R3Y5vnBLrEn8L6wFjPjBLnxSUQsKnmFpv”, “t3Pcm737EsVkGTbhsu2NekKtJeG92mvYyoN” ]

For the test network, FounderAddressList1..NumFounderAddresses is:

[ “t2UNzUUx8mWBCRYPRezvA363EYXyEpHokyi”, “t2N9PH9Wk9xjqYg9iin1Ua3aekJqfAtE543”,
“t2NGQjYMQhFndDHguvUw4wZdNdsssA6K7x2”, “t2ENg7hHVqqs9JwU5cgjvSbxnT2a9USNfhy”,
“t2BkYdVCHzvTJJUTx4yZB8qeegD8QsPx8bo”, “t2J8q1xH1EuigJ52MfExyyjYtN3VgvshKDf”,
“t2Crq9mydTm37kZokC68HzT6yez3t2FBnFj”, “t2EaMPUiQ1kthqcP5UEkF42CAFKJqXCkXC9”,
“t2F9dtQc63JDDyrhnfpzvVYTJcr57MkqA12”, “t2LPirmnfYSZc481GgZBa6xUGcoovfytBnC”,
“t26xfxoSw2UV9Pe5o3C8V4YybQD4SESfxtp”, “t2D3k4fNdErd66YxtvXEdft9xuLoKD7CcVo”,
“t2DWYBkxKNivdmsMiivNJzutaQGqmoRjRnL”, “t2C3kFF9iQRxfc4B9zgbWo4dQLLqzqjpuGQ”,
“t2MnT5tzu9HSKcppRyUNwoTp8MUueuSGNaB”, “t2AREsWdoW1F8EQYsScsjkgqobmgrkKeUkK”,
“t2Vf4wKcJ3ZFtLj4jezUUKkwYR92BLHn5UT”, “t2K3fdViH6R5tRuXLphKyoYXyZhyWGghDNY”,
“t2VEn3KiKyHSGyzd3nDw6ESWtaCQHwuv9WC”, “t2F8XouqdNMq6zzEvxQXHV1TjwZRHwRg8gC”,
“t2BS7Mrbaef3fA4xrmkvDisFVXVrRBnZ6Qj”, “t2FuSwoLCdBVPwdZuYoHrEzxAb9qy4qjbnL”,
“t2SX3U8NtrT6gz5Db1AtQCSGjrpptr8JC6h”, “t2V51gZNSoJ5kRL74bf9YTtbZuv8Fcqx2FH”,
“t2FyTsLjjdm4jeVwir4xzj7FAkUidbr1b4R”, “t2EYbGLekmpqHyn8UBF6kqpahrYm7D6N1Le”,
“t2NQTrStZHtJECNFT3dUBLYA9AErxPCmkka”, “t2GSWZZJzoesYxfPTWXkFn5UaxjiYxGBU2a”,
“t2RpffkzyLRevGM3w9aWdqMX6bd8uuAK3vn”, “t2JzjoQqnuXtTGSN7k7yk5keURBGvYofh1d”,
“t2AEefc72ieTnsXKmgK2bZNckiwvZe3oPNL”, “t2NNs3ZGZFsNj2wvmVd8BSwSfvETgiLrD8J”,
“t2ECCQPVcxUCSSQopdNquguEPE14HsVfcUn”, “t2JabDUkG8TaqVKYfqDJ3rqkVdHKp6hwXvG”,
“t2FGzW5Zdc8Cy98ZKmRygsVGi6oKcmYir9n”, “t2DUD8a21FtEFn42oVLp5NGbogY13uyjy9t”,
“t2UjVSd3zheHPgAkuX8WQW2CiC9xHQ8EvWp”, “t2TBUAhELyHUn8i6SXYsXz5Lmy7kDzA1uT5”,
“t2Tz3uCyhP6eizUWDc3bGH7XUC9GQsEyQNc”, “t2NysJSZtLwMLWEJ6MH3BsxRh6h27mNcsSy”,
“t2KXJVVyyrjVxxSeazbY9ksGyft4qsXUNm9”, “t2J9YYtH31cveiLZzjaE4AcuwVho6qjTNzp”,
“t2QgvW4sP9zaGpPMH1GRzy7cpydmuRfB4AZ”, “t2NDTJP9MosKpyFPHJmfjc5pGCvAU58XGa4”,
“t29pHDBWq7qN4EjwSEHg8wEqYe9pkmVrtRP”, “t2Ez9KM8VJLuArcxuEkNRAkhNvidKkzXcjJ”,
“t2D5y7J5fpXajLbGrMBQkFg2mFN8fo3n8cX”, “t2UV2wr1PTaUiybpkV3FdSdGxUJeZdZztyt” ]
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Note: For the test network only, the addresses from index 4 onward have been changed from what was imple-
mented at launch. This reflects an upgrade on the test network, starting from block height 53127. [Zcash-Issue2113]

Each address representation in FounderAddressList denotes a transparent P2SH multisig address.

Let SlowStartShift and Halving be defined as in the previous section.

Define:

FounderAddressChangeInterval := ceiling
(

SlowStartShift + HalvingInterval

NumFounderAddresses

)

FounderAddressIndex(height ◦

◦ N) := 1 + floor
(

height

FounderAddressChangeInterval

)

FoundersRewardLastBlockHeight := SlowStartShift + HalvingInterval− 1 .

Let RedeemScriptHash(height ◦

◦ N) be the standard redeem script hash, as defined in [Bitcoin-Multisig], for the P2SH
multisig address with Base58Check form given by FounderAddressList FounderAddressIndex(height).

Consensus rule: A coinbase transaction for block height height ∈ {1 .. FoundersRewardLastBlockHeight} MUST
include at least one output that pays exactly FoundersReward(height) zatoshi with a standard P2SH script of the form
OP_HASH160 RedeemScriptHash(height) OP_EQUAL as its scriptPubKey.

Notes:

• No Founders’ Reward is required to be paid for height > FoundersRewardLastBlockHeight (i.e. after the first
halving), or for height = 0 (i.e. the genesis block ).

• The Founders’ Reward addresses are not treated specially in any other way, and there can be other outputs
to them, in coinbase transactions or otherwise. In particular, it is valid for a coinbase transaction with
height ∈ {1 .. FoundersRewardLastBlockHeight} to have other outputs, possibly to the same address, that do not
meet the criterion in the above consensus rule, as long as at least one output meets it.

• The assertion FounderAddressIndex(FoundersRewardLastBlockHeight) ≤ NumFounderAddresses holds, ensuring
that the Founders’ Reward address index remains in range for the whole period in which the Founders’
Reward is paid.

7.9 Changes to the Script System

The OP_CODESEPARATOR opcode has been disabled. This opcode also no longer affects the calculation of SIGHASH
transaction hashes .

7.10 Bitcoin Improvement Proposals

In general, Bitcoin Improvement Proposals (BIPs) do not apply to Zcash unless otherwise specified in this section.

All of the BIPs referenced below should be interpreted by replacing “BTC”, or “bitcoin” used as a currency unit, with
“ZEC”; and “satoshi” with “zatoshi”.

The following BIPs apply, otherwise unchanged, to Zcash: [BIP-11], [BIP-14], [BIP-31], [BIP-35], [BIP-37], [BIP-61].

The following BIPs apply starting from the Zcash genesis block , i.e. any activation rules or exceptions for particular
blocks in the Bitcoin block chain are to be ignored: [BIP-16], [BIP-30], [BIP-65], [BIP-66].

[BIP-34] applies to all blocks other than the Zcash genesis block (for which the “height in coinbase” was inadvertently
omitted).

[BIP-13] applies with the changes to address version bytes described in §5.6.1 ‘Transparent Addresses’ on p. 73.
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[BIP-111] applies from network protocol version 170004 onward; that is:

• references to protocol version 70002 are to be replaced by 170003;

• references to protocol version 70011 are to be replaced by 170004;

• the reference to protocol version 70000 is to be ignored (Zcash nodes have supported Bloom-filtered connec-
tions since launch).

8 Differences from the Zerocash paper

8.1 Transaction Structure

Zerocash introduces two new operations, which are described in the paper as new transaction types, in addition to
the original transaction type of the cryptocurrency on which it is based (e.g. Bitcoin).

In Zcash, there is only the original Bitcoin transaction type, which is extended to contain a sequence of zero or
more Zcash-specific operations.

This allows for the possibility of chaining transfers of shielded value in a single Zcash transaction, e.g. to spend a
shielded note that has just been created. (In Zcash, we refer to value stored in UTXOs as transparent , and value
stored in JoinSplit transfer output notes as shielded .) This was not possible in the Zerocash design without using
multiple transactions. It also allows transparent and shielded transfers to happen atomically — possibly under the
control of nontrivial script conditions, at some cost in distinguishability.

Computation of SIGHASH transaction hashes , as described in §4.9 ‘SIGHASH Transaction Hashing’ on p. 36,
was changed to clean up handling of an error case for SIGHASH_SINGLE, to remove the special treatment of
OP_CODESEPARATOR, and to include Zcash-specific fields in the hash [ZIP-76].

8.2 Memo Fields

Zcash adds a memo field sent from the creator of a JoinSplit description to the recipient of each output note . This
feature is described in more detail in §5.5 ‘Encodings of Note Plaintexts and Memo Fields’ on p. 72.

8.3 Unification of Mints and Pours

In the original Zerocash protocol, there were two kinds of transaction relating to shielded notes :

• a “Mint” transaction takes value from transparent UTXOs as input and produces a new shielded note as
output.

• a “Pour” transaction takes up to Nold shielded notes as input, and produces up to Nnew shielded notes and a
transparent UTXO as output.

Only “Pour” transactions included a zk-SNARK proof.

[Pre-Sapling] In Zcash, the sequence of operations added to a transaction (see §8.1 ‘Transaction Structure’ on
p. 92) consists only of JoinSplit transfers . A JoinSplit transfer is a Pour operation generalized to take a transparent
UTXO as input, allowing JoinSplit transfers to subsume the functionality of Mints. An advantage of this is that a Zcash
transaction that takes input from an UTXO can produce up to Nnew output notes , improving the indistinguishability
properties of the protocol. A related change conceals the input arity of the JoinSplit transfer : an unused (zero-value)
input is indistinguishable from an input that takes value from a note .

This unification also simplifies the fix to the Faerie Gold attack described below, since no special case is needed for
Mints.
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[Sapling onward] In Sapling, there are still no “Mint” transactions. Instead of JoinSplit transfers , there are Spend
transfers and Output transfers . These make use of Pedersen value commitments to represent the shielded values
that are transferred. Because these commitments are additively homomorphic, it is possible to check that all Spend
transfers and Output transfers balance; see §4.12 ‘Balance and Binding Signature (Sapling)’ on p. 37 for detail.
This reduces the granularity of the circuit, allowing a substantial performance improvement (orthogonal to other
Sapling circuit improvements) when the numbers of shielded inputs and outputs are significantly different. This
comes at the cost of revealing the exact number of shielded inputs and outputs, but dummy (zero-valued) outputs
are still possible.

8.4 Faerie Gold attack and fix

When a shielded note is created in Zerocash, the creator is supposed to choose a new ρ value at random. The
nullifier of the note is derived from its spending key (ask) and ρ. The note commitment is derived from the recipient
address component apk, the value v, and the commitment trapdoor rcm, as well as ρ. However nothing prevents
creating multiple notes with different v and rcm (hence different note commitments) but the same ρ.

An adversary can use this to mislead a note recipient, by sending two notes both of which are verified as valid by
Receive (as defined in [BCGGMTV2014, Figure 2]), but only one of which can be spent.

We call this a “Faerie Gold” attack — referring to various Celtic legends in which faeries pay mortals in what appears
to be gold, but which soon after reveals itself to be leaves, gorse blossoms, gingerbread cakes, or other less valuable
things [LG2004].

This attack does not violate the security definitions given in [BCGGMTV2014]. The issue could be framed as a
problem either with the definition of Completeness, or the definition of Balance:

• The Completeness property asserts that a validly received note can be spent provided that its nullifier does
not appear on the ledger. This does not take into account the possibility that distinct notes , which are validly
received, could have the same nullifier . That is, the security definition depends on a protocol detail –nullifiers–
that is not part of the intended abstract security property, and that could be implemented incorrectly.

• The Balance property only asserts that an adversary cannot obtain more funds than they have minted or
received via payments. It does not prevent an adversary from causing others’ funds to decrease. In a Faerie
Gold attack, an adversary can cause spending of a note to reduce (to zero) the effective value of another note
for which the adversary does not know the spending key , which violates an intuitive conception of global
balance.

These problems with the security definitions need to be repaired, but doing so is outside the scope of this specifi-
cation. Here we only describe how Zcash addresses the immediate attack.

It would be possible to address the attack by requiring that a recipient remember all of the ρ values for all notes they
have ever received, and reject duplicates (as proposed in [GGM2016]). However, this requirement would interfere
with the intended Zcash feature that a holder of a spending key can recover access to (and be sure that they are
able to spend) all of their funds, even if they have forgotten everything but the spending key .

[Sprout] Instead, Zcash enforces that an adversary must choose distinct values for each ρ, by making use of the
fact that all of the nullifiers in JoinSplit descriptions that appear in a valid block chain must be distinct. This is true
regardless of whether the nullifiers corresponded to real or dummy notes (see §4.7.1 ‘Dummy Notes (Sprout)’

on p. 34). The nullifiers are used as input to hSigCRH to derive a public value hSig which uniquely identifies the
transaction, as described in §4.3 ‘JoinSplit Descriptions’ on p. 30. (hSig was already used in Zerocash in a way that
requires it to be unique in order to maintain indistinguishability of JoinSplit descriptions ; adding the nullifiers
to the input of the hash used to calculate it has the effect of making this uniqueness property robust even if the
transaction creator is an adversary.)

[Sprout] The ρ value for each output note is then derived from a random private seed ϕ and hSig using PRF
ρ

ϕ. The
correct construction of ρ for each output note is enforced by §4.15.1 ‘Uniqueness of ρ

new
i ’ on p. 41 in the JoinSplit

statement .
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[Sprout] Now even if the creator of a JoinSplit description does not choose ϕ randomly, uniqueness of nullifiers
and collision resistance of both hSigCRH and PRF

ρ will ensure that the derived ρ values are unique, at least for any
two JoinSplit descriptions that get into a valid block chain. This is sufficient to prevent the Faerie Gold attack.

A variation on the attack attempts to cause the nullifier of a sent note to be repeated, without repeating ρ. However,
since the nullifier is computed as PRF

nf
ask

(ρ) (or PRF
nfSapling
nk (ρ⋆) for Sapling), this is only possible if the adver-

sary finds a collision across both inputs on PRF
nf (or PRF

nfSapling), which is assumed to be infeasible — see §4.1.2
‘Pseudo Random Functions’ on p. 19.

[Sprout ] Crucially, “nullifier integrity” is enforced whether or not the enforceMerklePathi flag is set for an input
note (§4.15.1 ‘Nullifier integrity’ on p. 41). If this were not the case then an adversary could perform the attack by
creating a zero-valued note with a repeated nullifier , since the nullifier would not depend on the value.

[Sprout] Nullifier integrity also prevents a “roadblock attack” in which the adversary sees a victim’s transaction,
and is able to publish another transaction that is mined first and blocks the victim’s transaction. This attack would
be possible if the public value(s) used to enforce uniqueness of ρ could be chosen arbitrarily by the transaction
creator: the victim’s transaction, rather than the adversary’s, would be considered to be repeating these values. In
the chosen solution that uses nullifiers for these public values, they are enforced to be dependent on spending
keys controlled by the original transaction creator (whether or not each input note is a dummy), and so a roadblock
attack cannot be performed by another party who does not know these keys.

[Sapling onward] In Sapling, uniqueness of ρ is ensured by making it dependent on the position of the note
commitment in the Sapling note commitment tree . Specifically, ρ = cm + [pos]J , where J is a generator inde-
pendent of the generators used in NoteCommit

Sapling. Therefore, ρ commits uniquely to the note and its position,
and this commitment is collision-resistant by the same argument used to prove collision resistance of Pedersen
hashes . Note that it is possible for two distinct Sapling positioned notes (having different ρ values and nullifiers ,
but different note positions) to have the same note commitment , but this causes no security problem. Roadblock
attacks are not possible because a given note position does not repeat for outputs of different transactions in the
same block chain.

8.5 Internal hash collision attack and fix

The Zerocash security proof requires that the composition of COMMrcm and COMMs is a computationally binding
commitment to its inputs apk, v, and ρ. However, the instantiation of COMMrcm and COMMs in section 5.1 of the
paper did not meet the definition of a binding commitment at a 128-bit security level. Specifically, the internal hash
of apk and ρ is truncated to 128 bits (motivated by providing statistical hiding security). This allows an attacker, with
a work factor on the order of 264, to find distinct pairs (apk, ρ) and (apk

′, ρ′) with colliding outputs of the truncated
hash, and therefore the same note commitment . This would have allowed such an attacker to break the Balance
property by double-spending notes , potentially creating arbitrary amounts of currency for themself [HW2016].

Zcash uses a simpler construction with a single hash evaluation for the commitment: SHA-256 for Sprout, and
PedersenHash for Sapling. The motivation for the nested construction in Zerocash was to allow Mint transactions
to be publically verified without requiring a zero-knowledge proof ([BCGGMTV2014, section 1.3, under step 3]).
Since Zcash combines “Mint” and “Pour” transactions into generalized JoinSplit transfers (for Sprout), or Spend
transfers and Output transfers (for Sapling), and each transfer always uses a zero-knowledge proof , Zcash does
not require the nesting. A side benefit is that this reduces the cost of computing the note commitments : for Sprout
it reduces the number of SHA256Compress evaluations needed to compute each note commitment from three to
two, saving a total of four SHA256Compress evaluations in the JoinSplit statement .

[Sprout] Note: Sprout note commitments are not statistically hiding, so for Sprout notes, Zcash does not support
the “everlasting anonymity” property described in [BCGGMTV2014, section 8.1], even when used as described in
that section. While it is possible to define a statistically hiding, computationally binding commitment scheme for
this use at a 128-bit security level, the overhead of doing so within the JoinSplit statement was not considered to
justify the benefits.

[Sapling onward] In Sapling, Pedersen commitments are used instead of SHA256Compress. These commitments
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are statistically hiding, and so “everlasting anonymity” is supported for Sapling notes under the same conditions as
in Zerocash (by the protocol, not necessarily by zcashd). Note that diversified payment addresses can be linked if
the discrete logarithm problem on the Jubjub curve can be broken.

8.6 Changes to PRF inputs and truncation

The format of inputs to the PRFs instantiated in §5.4.2 ‘Pseudo Random Functions’ on p. 57 has changed relative
to Zerocash. There is also a requirement for another PRF , PRF

ρ, which must be domain-separated from the others.

In the Zerocash protocol, ρold
i is truncated from 256 to 254 bits in the input to PRF

sn (which corresponds to PRF
nf

in Zcash). Also, hSig is truncated from 256 to 253 bits in the input to PRF
pk. These truncations are not taken into

account in the security proofs.

Both truncations affect the validity of the proof sketch for Lemma D.2 in the proof of Ledger Indistinguishability in
[BCGGMTV2014, Appendix D].

In more detail:

• In the argument relating H and a2, it is stated that in a2, “for each i ∈ {1, 2}, sni := PRF
sn
ask

(ρ) for a random
(and not previously used) ρ”. It is also argued that “the calls to PRF

sn
ask

are each by definition unique”. The latter
assertion depends on the fact that ρ is “not previously used”. However, the argument is incorrect because the
truncated input to PRF

sn
ask

, i.e. [ρ]254, may repeat even if ρ does not.

• In the same argument, it is stated that “with overwhelming probability, hSig is unique”. In fact what is required

to be unique is the truncated input to PRF
pk, i.e. [hSig]253 = [CRH(pksig)]253. In practice this value will be unique

under a plausible assumption on CRH provided that pksig is chosen randomly, but no formal argument for
this is presented.

Note that ρ is truncated in the input to PRF
sn but not in the input to COMMrcm, which further complicates the

analysis.

As further evidence that it is essential for the proofs to explicitly take any such truncations into account, consider a
slightly modified protocol in which ρ is truncated in the input to COMMrcm but not in the input to PRF

sn. In that
case, it would be possible to violate balance by creating two notes for which ρ differs only in the truncated bits.
These notes would have the same note commitment but different nullifiers , so it would be possible to spend the
same value twice.

[Sprout ] For resistance to Faerie Gold attacks as described in §8.4 ‘Faerie Gold attack and fix’ on p. 93, Zcash
depends on collision resistance of hSigCRH and PRF

ρ (instantiated using BLAKE2b-256 and SHA256Compress re-
spectively). Collision resistance of a truncated hash does not follow from collision resistance of the original hash,
even if the truncation is only by one bit. This motivated avoiding truncation along any path from the inputs to the
computation of hSig to the uses of ρ.

[Sprout] Since the PRFs are instantiated using SHA256Compress which has an input block size of 512 bits (of which
256 bits are used for the PRF input and 4 bits are used for domain separation), it was necessary to reduce the size of
the PRF key to 252 bits. The key is set to ask in the case of PRF

addr, PRF
nf , and PRF

pk, and to ϕ (which does not exist
in Zerocash) for PRF

ρ, and so those values have been reduced to 252 bits. This is preferable to requiring reasoning
about truncation, and 252 bits is quite sufficient for security of these cryptovalues.

Sapling uses Pedersen hashes and BLAKE2s where Sprout used SHA256Compress. Pedersen hashes can be efficiently
instantiated for arbitrary input lengths. BLAKE2s has an input block size of 512 bits, and uses a finalization flag rather
than padding of the last input block; it also supports domain separation via a personalization parameter distinct
from the input. Therefore, there is no need for truncation in the inputs to any of these hashes. Note however that
the output of CRH

ivk is truncated, requiring a security assumption on BLAKE2s truncated to 251 bits (see §5.4.1.5
‘CRH

ivk
Hash Function’ on p. 53).
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8.7 In-band secret distribution

Zerocash specified ECIES (referencing Certicom’s SEC 1 standard) as the encryption scheme used for the in-band
secret distribution. This has been changed to a key agreement scheme based on Curve25519 (for Sprout) or Jubjub

(for Sapling) and the authenticated encryption algorithm AEAD_CHACHA20_POLY1305. This scheme is still loosely
based on ECIES, and on the crypto_box_seal scheme defined in libsodium [libsodium-Seal].

The motivations for this change were as follows:

• The Zerocash paper did not specify the curve to be used. We believe that Curve25519 has significant side-
channel resistance, performance, implementation complexity, and robustness advantages over most other
available curve choices, as explained in [Bernstein2006]. For Sapling, the Jubjub curve was designed according
to a similar design process following the “Safe curves” criteria [BL-SafeCurves] [Hopwood2018]. This retains
Curve25519’s advantages while keeping shielded payment address sizes short, because the same public key
material supports both encryption and spend authentication.

• ECIES permits many options, which were not specified. There are at least –counting conservatively– 576
possible combinations of options and algorithms over the four standards (ANSI X9.63, IEEE Std 1363a-2004,
ISO/IEC 18033-2, and SEC 1) that define ECIES variants [MAEÁ2010].

• Although the Zerocash paper states that ECIES satisfies key privacy (as defined in [BBDP2001]), it is not
clear that this holds for all curve parameters and key distributions. For example, if a group of non-prime
order is used, the distribution of ciphertexts could be distinguishable depending on the order of the points
representing the ephemeral and recipient public keys. Public key validity is also a concern. Curve25519 (and
Jubjub) key agreement is defined in a way that avoids these concerns due to the curve structure and the
“clamping” of private keys (or explicit cofactor multiplication and point validation for Sapling).

• Unlike the DHAES/DHIES proposal on which it is based [ABR1999], ECIES does not require a representation
of the sender’s ephemeral public key to be included in the input to the KDF, which may impair the security
properties of the scheme. (The Std 1363a-2004 version of ECIES [IEEE2004] has a “DHAES mode” that allows
this, but the representation of the key input is underspecified, leading to incompatible implementations.)
The scheme we use for Sprout has both the ephemeral and recipient public key encodings –which are
unambiguous for Curve25519– and also hSig and a nonce as described below, as input to the KDF. For Sapling,
it is only possible to include the ephemeral public key encoding, but this is sufficient to retain the original
security properties of DHAES. Note that being able to break the Elliptic Curve Diffie-Hellman Problem on
Curve25519 or Jubjub (without breaking AEAD_CHACHA20_POLY1305 as an authenticated encryption scheme
or BLAKE2b-256 as a KDF) would not help to decrypt the transmitted notes ciphertext unless pkenc is known
or guessed.

• [Sprout] The KDF also takes a public seed hSig as input. This can be modeled as using a different “randomness
extractor” for each JoinSplit transfer , which limits degradation of security with the number of JoinSplit
transfers . This facilitates security analysis as explained in [DGKM2011] — see section 7 of that paper for a
security proof that can be applied to this construction under the assumption that single-block BLAKE2b-256 is
a “weak PRF ”. Note that hSig is authenticated, by the zk-SNARK proof , as having been chosen with knowledge

of a
old

sk,1..N
old , so an adversary cannot modify it in a ciphertext from someone else’s transaction for use in

a chosen-ciphertext attack without detection. (In Sapling, there is no equivalent to hSig, but the binding
signature and spend authorization signatures prevent such modifications.)

• [Sprout ] The scheme used by Sprout includes an optimization that reuses the same ephemeral key (with
different nonces) for the two ciphertexts encrypted in each JoinSplit description.

The security proofs of [ABR1999] can be adapted straightforwardly to the resulting scheme. Although DHAES as
defined in that paper does not pass the recipient public key or a public seed to the hash function H , this does not
impair the proof because we can consider H to be the specialization of our KDF to a given recipient key and seed.
(Passing the recipient public key to the KDF could in principle compromise key privacy , but not confidentiality of
encryption.) [Sprout] It is necessary to adapt the “HDH independence” assumptions and the proof slightly to take
into account that the ephemeral key is reused for two encryptions.
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Note that the 256-bit key for AEAD_CHACHA20_POLY1305 maintains a high concrete security level even under
attacks using parallel hardware [Bernstein2005] in the multi-user setting [Zaverucha2012]. This is especially neces-
sary because the privacy of Zcash transactions may need to be maintained far into the future, and upgrading the
encryption algorithm would not prevent a future adversary from attempting to decrypt ciphertexts encrypted before
the upgrade. Other cryptovalues that could be attacked to break the privacy of transactions are also sufficiently
long to resist parallel brute force in the multi-user setting: for Sprout, ask is 252 bits, and skenc is no shorter than ask.

8.8 Omission in Zerocash security proof

The abstract Zerocash protocol requires PRF
addr only to be a PRF ; it is not specified to be collision-resistant. This

reveals a flaw in the proof of the Balance property.

Suppose that an adversary finds a collision on PRF
addr such that a

1
sk and a

2
sk are distinct spending keys for the same

apk. Because the note commitment is to apk, but the nullifier is computed from ask (and ρ), the adversary is able to
double-spend the note, once with each ask. This is not detected because each spend reveals a different nullifier .
The JoinSplit statements are still valid because they can only check that the ask in the witness is some preimage of
the apk used in the note commitment .

The error is in the proof of Balance in [BCGGMTV2014, Appendix D.3]. For the “A violates Condition I” case, the
proof says:

“(i) If cm
old
1 = cm

old
2 , then the fact that sn

old
1 6= sn

old
2 implies that the witness a contains two distinct openings of

cm
old
1 (the first opening contains (aold

sk,1, ρold
1 ), while the second opening contains (aold

sk,2, ρold
2 )). This violates the

binding property of the commitment scheme COMM."

In fact the openings do not contain a
old
sk,i; they contain a

old
pk,i. (In Sprout cm

old
i opens directly to (aold

pk,i, v
old
i , ρold

i ), and in

Zerocash it opens to (vold
i , COMMs(a

old
pk,i, ρ

old
i ).)

A similar error occurs in the argument for the “A violates Condition II” case.

The flaw is not exploitable for the actual instantiations of PRF
addr in Zerocash and Sprout, which are collision-

resistant assuming that SHA256Compress is.

The proof can be straightforwardly repaired. The intuition is that we can rely on collision resistance of PRF
addr

(on both its arguments) to argue that distinctness of a
old
sk,1 and a

old
sk,2, together with constraint 1(b) of the JoinSplit

statement (see §4.15.1 ‘Spend authority’ on p. 41), implies distinctness of a
old
pk,1 and a

old
pk,2, therefore distinct openings

of the note commitment when Condition I or II is violated.

8.9 Miscellaneous

• The paper defines a note as ((apk, pkenc), v, ρ, rcm, s, cm), whereas this specification defines a Sprout note as
(apk, v, ρ, rcm). The instantiation of COMMs in section 5.1 of the paper did not actually use s, and neither does

the new instantiation of NoteCommit
Sprout in Sprout. pkenc is also not needed as part of a note : it is not an input

to NoteCommit
Sprout nor is it constrained by the Zerocash POUR statement or the Zcash JoinSplit statement .

cm can be computed from the other fields. (The definition of notes for Sapling is different again.)

• The length of proof encodings given in the paper is 288 bytes. [Sprout] This differs from the 296 bytes specified
in §5.4.9.1 ‘BCTV14’ on p. 70, because both the x-coordinate and compressed y-coordinate of each point
need to be represented. Although it is possible to encode a proof in 288 bytes by making use of the fact that
elements of Fq can be represented in 254 bits, we prefer to use the standard formats for points defined in
[IEEE2004]. The fork of libsnark used by Zcash uses this standard encoding rather than the less efficient
(uncompressed) one used by upstream libsnark . In Sapling, a customized encoding is used for BLS12-381

points in Groth16 proofs to minimize length.
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• The range of monetary values differs. In Zcash this range is {0 .. MAX_MONEY}, while in Zerocash it is
{0 .. 2ℓvalue−1}. (The JoinSplit statement still only directly enforces that the sum of amounts in a given JoinSplit
transfer is in the latter range; this enforcement is technically redundant given that the Balance property holds.)
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10 Change History

2019.0.3 2019-07-08

• Experimental support for building using LuaTEX and XeTEX.

• Add an Index.

2019.0.2 2019-06-18

• Correct a misstatement in the security argument in §4.12 ‘Balance and Binding Signature (Sapling)’ on
p. 37: binding for a commitment scheme does not imply that the commitment determines its randomness.
The rest of the security argument did not depend on this; it is simpler to rely of knowledge soundness of the
Spend and Output proofs.

• Give a definition for complete twisted Edwards elliptic curves in §5.4.8.3 ‘Jubjub’ on p. 68.

• Clarify that Theorem 5.4.2 on p. 56 depends on the parameters of the Jubjub curve .

• Ensure that this document builds correctly and without missing characters on recent versions of TEXLive.

• Update the Makefile to use Ghostscript for PDF optimization.

• Ensure that hyperlinks are preserved, and available as "Destination names" in URL fragments and links from
other PDF documents.

2019.0.1 2019-05-20

• No changes to Sprout or Sapling.

2019.0.0 2019-05-01

• Fix a specification error in the Founders’ Reward calculation during the slow start period.

• Correct an inconsistency in difficulty adjustment between the spec and zcashd implementation for the first
PoWAveragingWindow − 1 blocks of the block chain. This inconsistency was pointed out by NCC Group in
their Blossom specification audit.

2019.0-beta-39 2019-04-18

• Change author affiliations from “Zerocoin Electric Coin Company” to “Electric Coin Company”.

• Add acknowledgement to Mary Maller for the observation that diversified payment address unlinkability can
be proven in the same way as key privacy for ElGamal.

2019.0-beta-38 2019-04-18

• Correct the generators PS1
and PS2

for BLS12-381.

• Update README.rst to include Makefile targets for Blossom.

• Makefile updates:

– Fix a typo for the pvcblossom target.

– Update the pinned git hashes for sam2p and pdfsizeopt.
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2019.0-beta-37 2019-02-22

• The rule that miners SHOULD NOT mine blocks that chain to other blocks with a block version number
greater than 4, has been removed. This is because such blocks (mined nonconformantly) exist in the current
consensus chain on the production Zcash network.

• Clarify that Equihash is based on a variation of the Generalized Birthday Problem, and cite [AR2017].

• Update reference [BGG2017] (previously [BGG2016]).

• Clarify which transaction fields are added by Overwinter and Sapling.

• Correct the rule about when a transaction is permitted to have no transparent inputs.

• Explain the differences between the system in [Groth2016] and what we refer to as Groth16.

• Reference Mary Maller’s security proof for Groth16 [Maller2018].

• Correct [BGM2018] to [BGM2017].

• Fix a typo in §B.2 ‘Groth16 batch verification’ on p. 144 and clarify the costs of Groth16 batch verification.

• Add macros and Makefile support for building the Blossom specification.

2019.0-beta-36 2019-02-09

• Correct isis agora lovecruft’s name.

2019.0-beta-35 2019-02-08

• Cite [Gabizon2019] and acknowledge Ariel Gabizon.

• Correct [SBB2019] to [SWB2019].

• The [Gabizon2019] vulnerability affected Soundness of BCTV14 as well as Knowledge Soundness.

• Clarify the history of the [Parno2015] vulnerability and acknowledge Bryan Parno.

• Specify the difficulty adjustment change that occurred on the test network at block height 299188.

• Add Eirik Ogilvie-Wigley and Benjamin Winston to acknowledgements.

• Rename zk-SNARK Parameters sections to be named according to the proving system (BCTV14 or Groth16),
not the shielded protocol construction (Sprout or Sapling).

• In §6 ‘Network Upgrades’ on p. 78, say when Sapling activated.

2019.0-beta-34 2019-02-05

• Disclose a security vulnerability in BCTV14 that affected Sprout before activation of the Sapling network
upgrade (see §5.4.9.1 ‘BCTV14’ on p. 70).

• Rename PHGR13 to BCTV2014.

• Rename reference [BCTV2015] to [BCTV2014a], and [BCTV2014] to [BCTV2014b].

2018.0-beta-33 2018-11-14

• No changes to Sprout.

• Complete §A.4 ‘The Sapling Spend circuit’ on p. 139.

• Add §A.5 ‘The Sapling Output circuit’ on p. 142.
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• Change the description of window lookup in §A.3.3.7 ‘Fixed-base affine-ctEdwards scalar multiplication’

on p. 132 to match sapling-crypto.

• Describe 2-bit window lookup with conditional negation in §A.3.3.9 ‘Pedersen hash’ on p. 133.

• Fix or complete various calculations of constraint costs.

• Adjust the notation used for scalar multiplication in Appendix A to allow bit sequences as scalars.

2018.0-beta-32 2018-10-24

• No changes to Sprout.

• Correct the input to H
⊛ used to derive the nonce r in RedDSA.Sign, from T ||M to T || vk ||M . This matches

the sapling-crypto implementation; the specification of this input was unintentionally changed in version
2018.0-beta-20.

• Clarify the description of the Merkle path check in §A.3.4 ‘Merkle path check’ on p. 136.

2018.0-beta-31 2018-09-30

• No changes to Sprout.

• Correct some uses of rJ that should have been rS or q.

• Correct uses of LEOS2IPℓ in RedDSA.Verify and RedDSA.BatchVerify to ensure that ℓ is a multiple of 8 as
required.

• Minor changes to avoid clashing notation for Edwards curves EEdwards(a,d), Montgomery curves EMont(A,B),
and extractors EA.

• Correct a use of J that should have been M in the proof of Theorem A.3.4 on p. 130, and make a minor tweak
to the theorem statement (k2 6= ±k1 instead of k1 6= ±k2) to make the contradiction derived by the proof
clearer.

• Clarify notation in the proof of Theorem A.3.3 on p. 129.

• Address some of the findings of the QED-it report:

– Improved cross-referencing in §5.4.1.7 ‘Pedersen Hash Function’ on p. 54.

– Clarify the notes concerning domain separation of prefixes in §5.4.1.3 ‘MerkleCRH
Sapling

Hash Function’

on p. 52 and §5.4.7.2 ‘Windowed Pedersen commitments’ on p. 64.

– Correct the statement and proof of Theorem A.3.2 on p. 129.

• Add the QED-it report to the acknowledgements.

2018.0-beta-30 2018-09-02

• No changes to Sprout.

• Give an informal security argument for Unlinkability of diversified payment addresses based on reduction
to key privacy of ElGamal encryption, for which a security proof is given in [BBDP2001]. (This argument has
gaps which will be addressed in a future version.)

• Add a reference to [BGM2017] for the Sapling zk-SNARK parameters.

• Write §A.4 ‘The Sapling Spend circuit’ on p. 139 (draft).

• Add a reference to the ristretto_bulletproofs design notes [Dalek-notes] for the synthetic blinding factor
technique.
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• Ensure that the constraint costs in §A.3.3.1 ‘Checking that affine-ctEdwards coordinates are on the curve’

on p. 128 and §A.3.3.6 ‘Affine-ctEdwards nonsmall-order check’ on p. 131 accurately reflect the implementa-
tion in sapling-crypto.

• Minor correction to the non-normative note in §A.3.2.2 ‘Range check’ on p. 126.

• Clarify the non-normative note in §4.1.7 ‘Commitment’ on p. 23 about the definitions of ValueCommit.Output

and NoteCommit
Sapling.Output.

• Clarify that the signer of a spend authorization signature is supposed to choose the spend authorization
randomizer , α, itself. Only step 4 in the procedure in §4.13 ‘Spend Authorization Signature’ on p. 39 may
securely be delegated.

• Add a non-normative note to §5.4.6 ‘RedDSA and RedJubjub’ on p. 60 explaining that RedDSA key random-
ization may interact with other uses of additive properties of Schnorr keys.

• Add dates to Change History entries. (These are the dates of the git tags in local, i.e. UK, time.)

2018.0-beta-29 2018-08-15

• No changes to Sprout.

• Finish §A.3.2.2 ‘Range check’ on p. 126.

• Change §A.3.7 ‘BLAKE2s hashes’ on p. 137 to correct the constraint count and to describe batched equality
checks performed by the sapling-crypto implementation.

2018.0-beta-28 2018-08-14

• No changes to Sprout.

• Finish §A.3.7 ‘BLAKE2s hashes’ on p. 137.

• Minor corrections to §A.3.3.8 ‘Variable-base affine-ctEdwards scalar multiplication’ on p. 133.

2018.0-beta-27 2018-08-12

• Notational changes:

– Use a superscript (r) to mark the subgroup order, instead of a subscript.

– Use G
(r)∗ for the set of rG-order points in G.

– Mark the subgroup order in pairing groups, e.g. use G
(r)
1 instead of G1.

– Make the bit-representation indicator ⋆ an affix instead of a superscript.

• Clarify that when validating a Groth16 proof, it is necessary to perform a subgroup check for πA and πC as well
as for πB .

• Correct the description of Groth16 batch verification to explicitly take account of how verification depends on
primary inputs .

• Add Charles Rackoff, Rafail Ostrovsky, and Amit Sahai to the acknowledgements section for their work on
zero-knowledge proofs .
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2018.0-beta-26 2018-08-05

• No changes to Sprout.

• Add §B.2 ‘Groth16 batch verification’ on p. 144.

2018.0-beta-25 2018-08-05

• No changes to Sprout.

• Add the hashes of parameter files for Sapling.

• Add cross references for parameters and functions used in RedDSA batch verification.

• Makefile changes: name the PDF file for the Sprout version of the specification as sprout.pdf, and make
protocol.pdf link to the Sapling version.

2018.0-beta-24 2018-07-31

• No changes to Sprout.

• Add a missing consensus rule for version 4 transactions : if there are no Sapling spends or outputs, then
valueBalance MUST be 0.

2018.0-beta-23 2018-07-27

• No changes to Sprout.

• Update RedDSA verification to use cofactor multiplication. This is necessary in order for the output of batch
verification to match that of unbatched verification in all cases.

• Add §B.1 ‘RedDSA batch verification’ on p. 143.

2018.0-beta-22 2018-07-18

• No changes to Sprout.

• Update §6 ‘Network Upgrades’ on p. 78 to take account that Overwinter has activated.

• The recommendation for transactions without JoinSplit descriptions to be version 1 applies only before
Overwinter, not before Sapling.

• Complete the proof of Theorem A.3.5 on p. 134.

• Add a note about redundancy in the nonsmall-order checking of rk.

• Clarify the use of cv
new and cm

new, and the selection of outgoing viewing key , in sending Sapling notes.

• Delete the description of optimizations for the affine twisted Edwards nonsmall-order check, since the
Sapling circuit does not use them. Also clarify that some other optimizations are not used.

2018.0-beta-21 2018-06-22

• Remove the consensus rule “If nJoinSplit > 0, the transaction MUST NOT use SIGHASH types other than
SIGHASH_ALL.”, which was never implemented.

• Add section on signature hashing.

• Briefly describe the changes to computation of SIGHASH transaction hashes in Sprout.

• Clarify that interstitial treestates form a tree for each transaction containing JoinSplit descriptions .
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• Correct the description of P2PKH addresses in §5.6.1 ‘Transparent Addresses’ on p. 73 — they use a hash of a
compressed, not an uncompressed ECDSA key representation.

• Clarify the wording of the caveat3 about the claimed security of shielded transactions .

• Correct the definition of set difference (S \ T ).

• Add a note concerning malleability of zero-knowledge proofs .

• Clarify attribution of the Zcash protocol design.

• Acknowledge Alex Biryukov and Dmitry Khovratovich as the designers of Equihash.

• Acknowledge Shafi Goldwasser, Silvio Micali, Oded Goldreich, Rosario Gennaro, Bryan Parno, Jon Howell,
Craig Gentry, Mariana Raykova, and Jens Groth for their work on zero-knowledge proving systems.

• Acknowledge Tomas Sander and Amnon Ta–Shma for [ST1999].

• Acknowledge Kudelski Security’s audit.

• Use the more precise subgroup types G(r) and J
(r) in preference to G and J where applicable.

• Change the types of auxiliary inputs to the Spend statement and Output statement , to be more faithful to the
implementation.

• Rename the cm field of an Output description to cmu, reflecting the fact that it is a Jubjub curve u-coordinate.

• Add explicit consensus rules that the anchor field of a Spend description and the cmu field of an Output
description must be canonical encodings.

• Enforce that esk in outCiphertext is a canonical encoding.

• Add consensus rules that cv in a Spend description, and cv and epk in an Output description, are not of small
order. Exclude 0 from the range of esk when encrypting Sapling notes.

• Add a consensus rule that valueBalance is in the range {−MAX_MONEY .. MAX_MONEY}.
• Enforce stronger constraints on the types of key components pkd, ak, and nk.

• Correct the conformance rule for fOverwintered (it must not be set before Overwinter has activated, not
before Sapling has activated).

• Correct the argument that v
∗ is in range in §4.12 ‘Balance and Binding Signature (Sapling)’ on p. 37.

• Correct an error in the algorithm for RedDSA.Verify: the public key vk is given directly to this algorithm and
should not be computed from the unknown private key sk.

• Correct or improve the types of GroupHash
J

(r)∗

, FindGroupHash
J

(r)∗

, Extract
J

(r) , PRF
expand, PRF

ock, and CRH
ivk.

• Instantiate PRF
ock using BLAKE2b-256.

• Change the syntax of a commitment scheme to add COMM.GenTrapdoor. This is necessary because the
intended distribution of commitment trapdoors may not be uniform on all values that are acceptable trapdoor
inputs.

• Add notes on the purpose of outgoing viewing keys .

• Correct the encoding of a full viewing key (ovk was missing).

• Ensure that Sprout functions and values are given Sprout-specific types where appropriate.

• Improve cross-referencing.

• Clarify the use of BCTV14 vs Groth16 proofs in JoinSplit statements .

• Clarify that the
√
a
√

notation refers to the positive square root. (This matters for the conversion in §A.3.3.3
‘ctEdwards↔Montgomery conversion’ on p. 129.)

• Model the group hash as a random oracle. This appears to be unavoidable in order to allow proving unlink-
ability of DiversifyHash. Explain how this relates to the Discrete Logarithm Independence assumption used
previously, and justify this modelling by showing that it follows from treating BLAKE2s-256 as a random oracle

in the instantiation of GroupHash
J

(r)∗

.
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• Rename CRS (Common Random String) to URS (Uniform Random String ), to match the terminology adopted
at the first zkproof workshop held in Boston, Massachusetts on May 10–11, 2018.

• Generalize PRF
expand to accept an arbitrary-length input. (This specification does not use that generalization,

but [ZIP-32] does.)

• Change the notation for a multiplication constraint in Appendix A ‘Circuit Design’ on p. 123 to avoid potential
confusion with cartesian product.

• Clarify the wording of the abstract.

• Correct statements about which algorithms are instantiated by BLAKE2s and BLAKE2b.

• Add a note explaining which conformance requirements of [BIP-173] (defining Bech32) apply.

• Add the Jubjub bird image to the title page. This image has been edited from a scan of Peter Newell’s original
illustration (as it appeared in [Carroll1902]) to remove the background and Bandersnatch, and to restore the
bird’s clipped right wing.

• Change the light yellow background to white (indicating that this Overwinter and Sapling specification is no
longer a draft).

2018.0-beta-20 2018-05-22

• Add Michael Dixon and Andrew Poelstra to acknowledgements.

• Minor improvements to cross-references.

• Correct the order of arguments to RedDSA.RandomizePrivate and RedDSA.RandomizePublic.

• Correct a reference to RedDSA.RandomizePrivate that was intended to be RedDSA.RandomizePublic.

• Fix the description of the balancing value in §4.12 ‘Balance and Binding Signature (Sapling)’ on p. 37.

• Correct a type error in §5.4.8.5 ‘Group Hash into Jubjub’ on p. 70.

• Correct a type error in RedDSA.Sign in §5.4.6 ‘RedDSA and RedJubjub’ on p. 60.

• Ensure G is defined in §5.4.6.1 ‘Spend Authorization Signature’ on p. 63.

• Make the public key prefix part of the input to the hash function in RedDSA, not part of the message.

• Correct the statement about FindGroupHash
J

(r)∗

never returning ⊥.

• Correct an error in the computation of generators for Pedersen hashes .

• Change the order in which NoteCommit
Sapling commits to its inputs, to match the sapling-crypto implementa-

tion.

• Fail Sapling key generation if ivk = 0. (This has negligible probability.)

• Change the notation H
⋆ to H

⊛ in §5.4.6 ‘RedDSA and RedJubjub’ on p. 60, to avoid confusion with the ⋆ con-
vention for representations of group elements.

• cmu encodes only the u-coordinate of the note commitment , not the full curve point.

• rk is checked to be not of small order outside the Spend statement , not in the Spend statement .

• Change terminology describing constraint systems.

2018.0-beta-19 2018-04-23

• No changes to Sprout.

• Minor clarifications.
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2018.0-beta-18 2018-04-23

• No changes to Sprout.

• Clarify the security argument for balance in Sapling.

• Correct a subtle problem with the type of the value input to ValueCommit: although it is only directly used to
commit to values in {0 .. 2ℓvalue−1}, the security argument depends on a sum of commitments being binding

on
{

− rJ−1

2 ..
rJ−1

2

}

.

• Fix the loss of tightness in the use of PRF
nfSapling by specifying the keyspace more precisely.

• Correct type ambiguities for ρ.

• Specify the representation of i in group G2 of BLS12-381.

2018.0-beta-17 2018-04-21

• No changes to Sprout.

• Correct an error in the definition of DefaultDiversifier.

2018.0-beta-16 2018-04-21

• Explicitly note that outputs from coinbase transactions include Founders’ Reward outputs.

• The point represented by R in an Ed25519 signature is checked to not be of small order; this is not the same
as checking that it is of prime order ℓ.

• Specify support for [BIP-111] (the NODE_BLOOM service bit) in network protocol version 170004.

• Give references [Vercauter2009] and [AKLGL2010] for the optimal ate pairing.

• Give references for BLS [BLS2002] and BN [BN2005] curves.

• Define KA
Sprout.DerivePublic for Curve25519.

• Caveat the claim about note traceability set in §1.2 ‘High-level Overview’ on p. 7 and link to [Peterson2017]
and [Quesnelle2017].

• Do not require a generator as part of the specification of a represented group; instead, define it in the
represented pairing or scheme using the group.

• Refactor the abstract definition of a signature scheme to allow derivation of verifying keys independent of
key pair generation.

• Correct the explanation in §1.2 ‘High-level Overview’ on p. 7 to apply to Sapling.

• Add the definition of a private key to public key homomorphism for signature schemes .

• Remove the output index as an input to KDF
Sapling.

• Allow dummy Sapling input notes .

• Specify RedDSA and RedJubjub.

• Specify binding signatures and spend authorization signatures .

• Specify the randomness beacon.

• Add output ciphertexts and ock.

• Define DefaultDiversifier.

• Change the Spend circuit and Output circuit specifications to remove unintended differences from sapling-
crypto.

• Use hJ to refer to the Jubjub curve cofactor, rather than 8.
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• Correct an error in the y-coordinate formula for addition in §A.3.3.4 ‘Affine-Montgomery arithmetic’ on
p. 130 (the constraints were correct).

• Add acknowledgements for Brian Warner, Mary Maller, and the Least Authority audit.

• Makefile improvements.

2018.0-beta-15 2018-03-19

• Clarify the bit ordering of SHA-256.

• Drop _t from the names of representation types.

• Remove functions from the Sprout specification that it does not use.

• Updates to transaction format and consensus rules for Overwinter and Sapling.

• Add specification of the Output statement .

• Change MerkleDepth
Sapling from 29 to 32.

• Updates to Sapling construction, changing how the nullifier is computed and separating it from the random-
ized spend verifying key (rk).

• Clarify conversions between bit and byte sequences for sk, reprJ(ak), and reprJ(nk).

• Change the Makefile to avoid multiple reloads in PDF readers while rebuilding the PDF.

• Spacing and pagination improvements.

2018.0-beta-14 2018-03-11

• Only cosmetic changes to Sprout.

• Simplify FindGroupHash
J

(r)∗

to use a single-byte index.

• Changes to diversification for Pedersen hashes and Pedersen commitments .

• Improve security definitions for signatures.

2018.0-beta-13 2018-03-11

• Only cosmetic changes to Sprout.

• Change how (ask, nsk) are derived from the spending key sk to ensure they are on the full range of FrJ
.

• Change PRF
nr to produce output computationally indistinguishable from uniform on FrJ

.

• Change Uncommitted
Sapling to be a u-coordinate for which there is no point on the curve.

• Appendix A updates:

– categorize components into larger sections

– fill in the [de]compression and validation algorithm

– more precisely state the assumptions for inputs and outputs

– delete not-all-one component which is no longer needed

– factor out xor into its own component

– specify [un]packing more precisely; separate it from boolean constraints

– optimize checking for non-small order

– notation in variable-base multiplication algorithm.
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2018.0-beta-12 2018-03-06

• No changes to Sprout.

• Add references to Overwinter ZIPs and update the section on Overwinter/Sapling transitions.

• Add a section on re-randomizable signatures.

• Add definition of PRF
nr.

• Work-in-progress on Sapling statements .

• Rename “raw ” to “homomorphic ” Pedersen commitments .

• Add packing modulo the field size and range checks to Appendix A.

• Update the algorithm for variable-base scalar multiplication to what is implemented by sapling-crypto.

2018.0-beta-11 2018-02-26

• No changes to Sprout.

• Add sections on Spend descriptions and Output descriptions .

• Swap order of cv and rt in a Spend description for consistency.

• Fix off-by-one error in the range of ivk.

2018.0-beta-10 2018-02-26

• Split the descriptions of SHA-256 and SHA256Compress, and of BLAKE2, into their own sections. Specify
SHA256Compress more precisely.

• Add Tracy Hu to acknowledgements (for the idea of explicitly encoding the root of the Sapling note commit-
ment tree in block headers).

• Move bit/byte/integer conversion primitives into §5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 49.

• Refer to Overwinter and Sapling just as “upgrades” in the abstract, not as the next “minor version” and “major
version”.

• PRF
nr must be collision-resistant.

• Correct an error in the Pedersen hash specification.

• Use a named variable, c, for chunks per segment in the Pedersen hash specification, and change its value from
61 to 63. Add a proof justifying this value of c.

• Specify Pedersen commitments .

• Notation changes.

• Generalize the distinct-x criterion (Theorem A.3.4 on p. 130) to allow negative indices.

2018.0-beta-9 2018-02-10

• Specify the coinbase maturity rule, and the rule that coinbase transactions cannot contain JoinSplit descrip-
tions , Spend descriptions , or Output descriptions .

• Delay lifting the 100000-byte transaction size limit from Overwinter to Sapling.

• Improve presentation of the proof of injectivity for Extract
J

(r) .

• Specify GroupHash
J

(r)∗

.

• Specify Pedersen hashes .
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2018.0-beta-8 2018-02-08

• No changes to Sprout.

• Add instantiation of CRH
ivk.

• Add instantiation of a hash extractor for Jubjub.

• Make the background lighter and the Sapling green darker, for contrast.

2018.0-beta-7 2018-02-07

• Specify the 100000-byte limit on transaction size. (The implementation in zcashd was as intended.)

• Specify that 0xF6 followed by 511 zero bytes encodes an empty memo field .

• Reference security definitions for Pseudo Random Functions and Pseudo Random Generators .

• Rename clamp to bound and ActualTimespanClamped to ActualTimespanBounded in the difficulty adjustment
algorithm, to avoid a name collision with Curve25519 scalar “clamping”.

• Change uses of the term full node to full validator . A full node by definition participates in the peer-to-peer
network, whereas a full validator just needs a copy of the block chain from somewhere. The latter is what
was meant.

• Add an explanation of how Sapling prevents Faerie Gold and roadblock attacks.

• Sapling work in progress.

2018.0-beta-6 2018-01-31

• No changes to Sprout.

• Sapling work in progress, mainly on Appendix A ‘Circuit Design’ on p. 123.

2018.0-beta-5 2018-01-30

• Specify more precisely the requirements on Ed25519 public keys and signatures.

• Sapling work in progress.

2018.0-beta-4 2018-01-25

• No changes to Sprout.

• Update key components diagram for Sapling.

2018.0-beta-3 2018-01-22

• Explain how the chosen fix to Faerie Gold avoids a potential “roadblock” attack.

• Update some explanations of changes from Zerocash for Sapling.

• Add a description of the Jubjub curve .

• Add an acknowledgement to George Tankersley.

• Add an appendix on the design of the Sapling circuits at the quadratic constraint program level.
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2017.0-beta-2.9 2017-12-17

• Refer to skenc as a receiving key rather than as a viewing key.

• Updates for incoming viewing key support.

• Refer to Network Upgrade 0 as Overwinter.

2017.0-beta-2.8 2017-12-02

• Correct the non-normative note describing how to check the order of πB .

• Initial version of draft Sapling protocol specification.

2017.0-beta-2.7 2017-07-10

• Fix an off-by-one error in the specification of the Equihash algorithm binding condition. (The implementation
in zcashd was as intended.)

• Correct the types and consensus rules for transaction version numbers and block version numbers . (Again,
the implementation in zcashd was as intended.)

• Clarify the computation of hi in a JoinSplit statement .

2017.0-beta-2.6 2017-05-09

• Be more precise when talking about curve points and pairing groups.

2017.0-beta-2.5 2017-03-07

• Clarify the consensus rule preventing double-spends.

• Clarify what a note commitment opens to in §8.8 ‘Omission in Zerocash security proof’ on p. 97.

• Correct the order of arguments to COMM in §5.4.7.1 ‘Sprout Note Commitments’ on p. 63.

• Correct a statement about indistinguishability of JoinSplit descriptions .

• Change the Founders’ Reward addresses, for the test network only, to reflect the hard-fork upgrade described
in [Zcash-Issue2113].

2017.0-beta-2.4 2017-02-25

• Explain a variation on the Faerie Gold attack and why it is prevented.

• Generalize the description of the InternalH attack to include finding collisions on (apk, ρ) rather than just on ρ.

• Rename enforcei to enforceMerklePathi.

2017.0-beta-2.3 2017-02-12

• Specify the security requirements on the SHA-256 compression function in order for the scheme in §5.4.7.1
‘Sprout Note Commitments’ on p. 63 to be a secure commitment.

• Specify G2 more precisely.

• Explain the use of interstitial treestates in chained JoinSplit transfers .
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2017.0-beta-2.2 2017-02-11

• Give definitions of computational binding and computational hiding for commitment schemes.

• Give a definition of statistical zero knowledge.

• Reference the white paper on MPC parameter generation [BGG2017].

2017.0-beta-2.1 2017-02-06

• ℓMerkle is a bit length, not a byte length.

• Specify the maximum block size.

2017.0-beta-2 2017-02-04

• Add abstract and keywords.

• Fix a typo in the definition of nullifier integrity.

• Make the description of block chains more consistent with upstream Bitcoin documentation (referring to
“best“ chains rather than using the concept of a block chain view ).

• Define how nodes select a best valid block chain.

2016.0-beta-1.13 2017-01-20

• Specify the difficulty adjustment algorithm.

• Clarify some definitions of fields in a block header .

• Define PRF
addr in §4.2.1 ‘Sprout Key Components’ on p. 28.

2016.0-beta-1.12 2017-01-09

• Update the hashes of proving and verifying keys for the final Sprout parameters.

• Add cross references from shielded payment address and spending key encoding sections to where the key
components are specified.

• Add acknowledgements for Filippo Valsorda and Zaki Manian.

2016.0-beta-1.11 2016-12-19

• Specify a check on the order of πB in a zero-knowledge proof .

• Note that due to an oversight, the Zcash genesis block does not follow [BIP-34].

2016.0-beta-1.10 2016-10-30

• Update reference to the Equihash paper [BK2016]. (The newer version has no algorithmic changes, but the
section discussing potential ASIC implementations is substantially expanded.)

• Clarify the discussion of proof size in “Differences from the Zerocash paper”.
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2016.0-beta-1.9 2016-10-28

• Add Founders’ Reward addresses for the production network.

• Change “protected ” terminology to “shielded ”.

2016.0-beta-1.8 2016-10-04

• Revise the lead bytes for transparent P2SH and P2PKH addresses, and reencode the testnet Founders’ Reward
addresses.

• Add a section on which BIPs apply to Zcash.

• Specify that OP_CODESEPARATOR has been disabled, and no longer affects SIGHASH transaction hashes .

• Change the representation type of vpub_old and vpub_new to uint64. (This is not a consensus change be-
cause the type of v

old
pub and v

new
pub was already specified to be {0 .. MAX_MONEY}; it just better reflects the

implementation.)

• Correct the representation type of the block nVersion field to uint32.

2016.0-beta-1.7 2016-10-02

• Clarify the consensus rule for payment of the Founders’ Reward , in response to an issue raised by the NCC
audit.

2016.0-beta-1.6 2016-09-26

• Fix an error in the definition of the sortedness condition for Equihash: it is the sequences of indices that are
sorted, not the sequences of hashes.

• Correct the number of bytes in the encoding of solutionSize.

• Update the section on encoding of transparent addresses. (The precise prefixes are not decided yet.)

• Clarify why BLAKE2b-ℓ is different from truncated BLAKE2b-512.

• Clarify a note about SU-CMA security for signatures.

• Add a note about PRF
nf corresponding to PRF

sn in Zerocash.

• Add a paragraph about key length in §8.7 ‘In-band secret distribution’ on p. 96.

• Add acknowledgements for John Tromp, Paige Peterson, Maureen Walsh, Jay Graber, and Jack Gavigan.

2016.0-beta-1.5 2016-09-22

• Update the Founders’ Reward address list.

• Add some clarifications based on Eli Ben-Sasson’s review.

2016.0-beta-1.4 2016-09-19

• Specify the block subsidy , miner subsidy , and the Founders’ Reward .

• Specify coinbase transaction outputs to Founders’ Reward addresses.

• Improve notation (for example “·” for multiplication and “T [ℓ]” for sequence types) to avoid ambiguity.
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2016.0-beta-1.3 2016-09-16

• Correct the omission of solutionSize from the block header format.

• Document that compactSize uint encodings must be canonical.

• Add a note about conformance language in the introduction.

• Add acknowledgements for Solar Designer, Ling Ren and Alison Stevenson, and for the NCC Group and
Coinspect security audits.

2016.0-beta-1.2 2016-09-11

• Remove GeneralCRH in favour of specifying hSigCRH and EquihashGen directly in terms of BLAKE2b-ℓ.

• Correct the security requirement for EquihashGen.

2016.0-beta-1.1 2016-09-05

• Add a specification of abstract signatures.

• Clarify what is signed in the “Sending Notes” section.

• Specify ZK parameter generation as a randomized algorithm, rather than as a distribution of parameters.

2016.0-beta-1 2016-09-04

• Major reorganization to separate the abstract cryptographic protocol from the algorithm instantiations.

• Add type declarations.

• Add a “High-level Overview” section.

• Add a section specifying the zero-knowledge proving system and the encoding of proofs. Change the encoding
of points in proofs to follow IEEE Std 1363[a].

• Add a section on consensus changes from Bitcoin, and the specification of Equihash.

• Complete the “Differences from the Zerocash paper” section.

• Correct the Merkle tree depth to 29.

• Change the length of memo fields to 512 bytes.

• Switch the JoinSplit signature scheme to Ed25519, with consequent changes to the computation of hSig.

• Fix the lead bytes in shielded payment address and spending key encodings to match the implemented
protocol.

• Add a consensus rule about the ranges of v
old
pub and v

new
pub .

• Clarify cryptographic security requirements and added definitions relating to the in-band secret distribution.

• Add various citations: the “Fixing Vulnerabilities in the Zcash Protocol” and “Why Equihash?” blog posts,
several crypto papers for security definitions, the Bitcoin whitepaper, the CryptoNote whitepaper, and several
references to Bitcoin documentation.

• Reference the extended version of the Zerocash paper rather than the Oakland proceedings version.

• Add JoinSplit transfers to the Concepts section.

• Add a section on Coinbase Transactions.

• Add acknowledgements for Jack Grigg, Simon Liu, Ariel Gabizon, jl777, Ben Blaxill, Alex Balducci, and Jake
Tarren.

• Fix a Makefile compatibility problem with the escaping behaviour of echo.
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• Switch to biber for the bibliography generation, and add backreferences.

• Make the date format in references more consistent.

• Add visited dates to all URLs in references.

• Terminology changes.

2016.0-alpha-3.1 2016-05-20

• Change main font to Quattrocento.

2016.0-alpha-3 2016-05-09

• Change version numbering convention (no other changes).

2.0-alpha-3 2016-05-06

• Allow anchoring to any previous output treestate in the same transaction, rather than just the immediately
preceding output treestate .

• Add change history.

2.0-alpha-2 2016-04-21

• Change from truncated BLAKE2b-512 to BLAKE2b-256.

• Clarify endianness, and that uses of BLAKE2b are unkeyed.

• Minor correction to what SIGHASH types cover.

• Add “as intended for the Zcash release of summer 2016" to title page.

• Require PRF
addr to be collision-resistant (see §8.8 ‘Omission in Zerocash security proof’ on p. 97).

• Add specification of path computation for the incremental Merkle tree .

• Add a note in §4.15.1 ‘Merkle path validity’ on p. 41 about how this condition corresponds to conditions in
the Zerocash paper.

• Changes to terminology around keys.

2.0-alpha-1 2016-03-30

• First version intended for public review.
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Appendices

A Circuit Design

A.1 Quadratic Constraint Programs

Sapling defines two circuits, Spend and Output, each implementing an abstract statement described in §4.15.2
‘Spend Statement (Sapling)’ on p. 42 and §4.15.3 ‘Output Statement (Sapling)’ on p. 43 respectively. It also adds
a Groth16 circuit for the JoinSplit statement described in §4.15.1 ‘JoinSplit Statement (Sprout)’ on p. 41.

At the next lower level, each circuit is defined in terms of a quadratic constraint program (specifying a Rank 1
Constraint System), as detailed in this section. In the BCTV14 or Groth16 proving systems, this program is translated
to a Quadratic Arithmetic Program [BCTV2014a, section 2.3] [WCBTV2015]. The circuit descriptions given here are
necessary to compute witness elements for each circuit, as well as the proving and verification keys.

Let FrS
be the finite field over which Jubjub is defined, as given in §5.4.8.3 ‘Jubjub’ on p. 68.

A quadratic constraint program consists of a set of constraints over variables in FrS
, each of the form:

(

A
) (

B
)

=
(

C
)

where
(

A
)

,
(

B
)

, and
(

C
)

are linear combinations of variables and constants in FrS
.

Here and · both represent multiplication in the field FrS
, but we use for multiplications corresponding to gates

of the circuit, and · for multiplications by constants in the terms of a linear combination. should not be confused
with ×which is defined as cartesian product in §2 ‘Notation’ on p. 9.
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A.2 Elliptic curve background

The Sapling circuits make use of a complete twisted Edwards elliptic curve (“ctEdwards curve”) Jubjub, defined in
§5.4.8.3 ‘Jubjub’ on p. 68, and also a Montgomery elliptic curve M that is birationally equivalent to Jubjub. Following
the notation in [BL2017] we use (u, v) for affine coordinates on the ctEdwards curve, and (x, y) for affine coordinates
on the Montgomery curve.

A point P is normally represented by two FrS
variables, which we name as (P u, P v ) for an affine-ctEdwards point,

for instance.

The implementations of scalar multiplication require the scalar to be represented as a bit sequence. We there-
fore allow the notation [k⋆] P meaning [LEBS2IPlength(k⋆)(k⋆)] P . There will be no ambiguity because variables
representing bit sequences are named with a ⋆ suffix.

The Montgomery curve M has parameters AM = 40962 and BM = 1. We use an affine representation of this curve
with the formula:

BM ·y2 = x3 + AM ·x2 + x

Usually, elliptic curve arithmetic over prime fields is implemented using some form of projective coordinates,
in order to reduce the number of expensive inversions required. In the circuit, it turns out that a division can
be implemented at the same cost as a multiplication, i.e. one constraint. Therefore it is beneficial to use affine
coordinates for both curves.

We define the following types representing affine-ctEdwards and affine-Montgomery coordinates respectively:

AffineCtEdwardsJubjub := (u ◦

◦ FrS
)× (v

◦

◦ FrS
) : aJ ·u2 + v

2 = 1 + dJ ·u2 ·v2

AffineMontJubjub := (x ◦

◦ FrS
)× (y ◦

◦ FrS
) : BM ·y2 = x3 + AM ·x2 + x

We also define a type representing compressed, not necessarily valid, ctEdwards coordinates:

CompressedCtEdwardsJubjub := (ũ ◦

◦ B)× (v
◦

◦ FrS
)

See §5.4.8.3 ‘Jubjub’ on p. 68 for how this type is represented as a byte sequence in external encodings.

We use affine Montgomery arithmetic in parts of the circuit because it is more efficient, in terms of the number of
constraints, than affine-ctEdwards arithmetic.

An important consideration when using Montgomery arithmetic is that the addition formula is not complete, that
is, there are cases where it produces the wrong answer. We must ensure that these cases do not arise.

We will need the theorem below about y-coordinates of points on Montgomery curves.

Fact: AM

2 − 4 is a nonsquare in FrS
.

Theorem A.2.1. Let P = (x, y) be a point other than (0, 0) on a Montgomery curve EMont(A,B) over Fr , such that

A2 − 4 is a nonsquare in Fr . Then y 6= 0.

Proof. Substituting y = 0 into the Montgomery curve equation gives 0 = x3 + A · x2 + x = x · (x2 + A · x + 1). So
either x = 0 or x2 + A ·x + 1 = 0. Since P 6= (0, 0), the case x = 0 is excluded. In the other case, complete the square
for x2 + A · x + 1 = 0 to give the equivalent (2 · x + A)2 = A2 − 4. The left-hand side is a square, so if the right-hand
side is a nonsquare, then there are no solutions for x.
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A.3 Circuit Components

Each of the following sections describes how to implement a particular component of the circuit, and counts the
number of constraints required. Some components make use of others; the order of presentation is “bottom-up”.

It is important for security to ensure that variables intended to be of boolean type are boolean-constrained; and
for efficiency that they are boolean-constrained only once. We explicitly state for the boolean inputs and outputs
of each component whether they are boolean-constrained by the component, or are assumed to have been
boolean-constrained separately.

Affine coordinates for elliptic curve points are assumed to represent points on the relevant curve, unless otherwise
specified.

In this section, variables have type FrS
unless otherwise specified. In contrast to most of this document, we use

zero-based indexing in order to more closely match the implementation.

A.3.1 Operations on individual bits

A.3.1.1 Boolean constraints

A boolean constraint b ∈ B can be implemented as:
(

1− b
) (

b
)

=
(

0
)

A.3.1.2 Conditional equality

The constraint “either a = 0 or b = c” can be implemented as:
(

a
) (

b− c
)

=
(

0
)

A.3.1.3 Selection constraints

A selection constraint (b ? x : y) = z, where b ◦

◦ B has been boolean-constrained, can be implemented as:
(

b
) (

y − x
)

=
(

y − z
)

A.3.1.4 Nonzero constraints

Since only nonzero elements of FrS
have a multiplicative inverse, the assertion a 6= 0 can be implemented by

witnessing the inverse, ainv = a−1 (mod rS):
(

ainv

) (

a
)

=
(

1
)

This technique comes from [SVPBABW2012, Appendix D.1].

Non-normative note: A global optimization allows to use a single inverse computation outside the circuit for
any number of nonzero constraints. Suppose that we have n variables (or linear combinations) that are supposed

to be nonzero: a0 .. n−1. Multiply these together (using n−1 constraints) to give a∗ =
∏n−1

i=0
ai; then, constrain a∗ to

be nonzero. This works because the product a∗ is nonzero if and only if all of a0 .. n−1 are nonzero. However, the
Sapling circuit does not use this optimization.
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A.3.1.5 Exclusive-or constraints

An exclusive-or operation a⊕ b = c, where a, b ◦

◦ B are already boolean-constrained, can be implemented in one
constraint as:
(

2·a
) (

b
)

=
(

a + b− c
)

This automatically boolean-constrains c. Its correctness can be seen by checking the truth table of (a, b).

A.3.2 Operations on multiple bits

A.3.2.1 [Un]packing modulo rS

Let n ◦

◦ N
+ be a constant. The operation of converting a field element, a ◦

◦ FrS
, to a sequence of boolean variables

b0 .. n−1
◦

◦ B
[n] such that a =

∑n−1

i=0
bi · 2i (mod rS), is called “unpacking ”. The inverse operation is called “packing ”.

In the quadratic constraint program these are the same operation (but see the note about canonical representation
below). We assume that the variables b0 .. n−1 are boolean-constrained separately.

We have a mod rS =

(

n−1
∑

i=0

bi · 2i

)

mod rS =

(

n−1
∑

i=0

bi · (2i mod rS)

)

mod rS.

This can be implemented in one constraint:
(

n−1
∑

i=0

bi · (2i mod rS)

)

(

1
)

=
(

a
)

Notes:

• The bit length n is not limited by the field element size.

• Since the constraint has only a trivial multiplication, it is possible to eliminate it by merging it into the boolean
constraint of one of the output bits, expressing that bit as a linear combination of the others and a. However,
this optimization requires substitutions that would interfere with the modularity of the circuit implementation
(for a saving of only one constraint per unpacking operation), and so we do not use it for the Sapling circuit.

• In the case n = 255, for a < 2255 − rS there are two possible representations of a ◦

◦ FrS
as a sequence of 255

bits, corresponding to I2LEBSP255(a) and I2LEBSP255(a + rS). This is a potential hazard, but it may or may not
be necessary to force use of the canonical representation I2LEBSP255(a), depending on the context in which
the [un]packing operation is used. We therefore do not consider this to be part of the [un]packing operation
itself.

A.3.2.2 Range check

Let n ◦

◦ N
+ be a constant, and let a =

∑n−1

i=0
ai · 2i

◦

◦ N. Suppose we want to constrain a ≤ c for some constant

c =
∑n−1

i=0
ci · 2i

◦

◦ N.

Without loss of generality we can assume that cn−1 = 1, because if it were not then we would decrease n accordingly.

Note that since a and c are provided in binary representation, their bit length n is not limited by the field element
size. We do not assume that the bits a0 .. n−1 are already boolean-constrained.

Define Πm =
∏n−1

i=m
(ci = 0 ∨ ai = 1) for m ∈ {0 .. n− 1}. Notice that for any m < n− 1 such that cm = 0, we have

Πm = Πm+1, and so it is only necessary to allocate separate variables for the Πm such that m < n− 1 and cm = 1.
Furthermore if cn−2 .. 0 has t > 0 trailing 1 bits, then we do not need to allocate variables for Π0 .. t−1 because those
variables will not be used below.
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More explicitly:

Let Πn−1 = an−1.

For i from n− 2 down to t,

• if ci = 0, then let Πi = Πi+1;

• if ci = 1, then constrain
(

Πi+1

) (

ai

)

=
(

Πi

)

.

Then we constrain the ai as follows:

For i from n− 1 down to 0,

• if ci = 0, constrain
(

1−Πi+1 − ai

) (

ai

)

=
(

0
)

;

• if ci = 1, boolean-constrain ai as in §A.3.1.1 ‘Boolean constraints’ on p. 125.

Note that the constraints corresponding to zero bits of c are in place of boolean constraints on bits of ai.

This costs n + k constraints, where k is the number of non-trailing 1 bits in cn−2 .. 0.

Theorem A.3.1. Assume c0 .. n−1
◦

◦ B
[n] and cn−1 = 1. Define Am :=

∑n−1

i=m
ai · 2i and Cm :=

∑n−1

i=m
ci · 2i. For

any m ∈ {0 .. n− 1}, Am ≤ Cm iff the restriction of the above constraint system to i ∈ {m .. n− 1} is satisfied.
Furthermore the system at least boolean-constrains a0 .. n−1.

Proof. For i ∈ {0 .. n− 1} such that ci = 1, the corresponding ai are unconditionally boolean-constrained. This
implies that the system constrains Πi ∈ B for all i ∈ {0 .. n− 1}. For i ∈ {0 .. n− 1} such that ci = 0, the constraint
(

1−Πi+1 − ai

) (

ai

)

=
(

0
)

constrains ai to be 0 if Πi+1 = 1, otherwise it constrains ai ∈ B. So all of a0 .. n−1 are
at least boolean-constrained.

To prove the rest of the theorem we proceed by induction on decreasing m, i.e. taking successively longer prefixes
of the big-endian binary representations of a and c.

Base case m = n− 1: since cn−1 = 1, the constraint system has just one boolean constraint on an−1, which fulfils
the theorem since An−1 ≤ Cn−1 is always satisfied.

Inductive case m < n− 1:

• If Am+1 > Cm+1, then by the inductive hypothesis the constraint system must fail, which fulfils the theorem
regardless of the value of am.

• If Am+1 ≤ Cm+1, then by the inductive hypothesis the constraint system restricted to i ∈ {m + 1 .. n− 1}
succeeds. We have Πm+1 =

∏n−1

i=m+1
(ci = 0 ∨ ai = 1) =

∏n−1

i=m+1
(ai ≥ ci).

– If Am+1 = Cm+1, then ai = ci for all i ∈ {m + 1 .. n− 1} and so Πm+1 = 1. Also Am ≤ Cm iff am ≤ cm.
When cm = 1, only a boolean constraint is added for am which fulfils the theorem.
When cm = 0, am is constrained to be 0 which fulfils the theorem.

– If Am+1 < Cm+1, then it cannot be the case that ai ≥ ci for all i ∈ {m + 1 .. n− 1}, so Πm+1 = 0.
This implies that the constraint on am is always equivalent to a boolean constraint, which fulfils the
theorem because Am ≤ Cm must be true regardless of the value of am.

This covers all cases.

Correctness of the full constraint system follows by taking m = 0 in the above theorem.

The algorithm in §A.3.3.2 ‘ctEdwards [de]compression and validation’ on p. 128 uses range checks with c = rS− 1
to validate compressed ctEdwards points. In that case n = 255 and k = 132, so the cost of each such range check is
387 constraints.
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Non-normative note: It is possible to optimize the computation of Πt .. n−2 further. Notice that Πm is only used
when m is the index of the last bit of a run of 1 bits in c. So for each such run of 1 bits cm .. m+N−2 of length N − 1,

it is sufficient to compute an N-ary AND of am .. m+N−2 and Πm+N−1: R =
∏N−1

i=0
Xi. This can be computed in 3

constraints for any N ; boolean-constrain the output R, and then add constraints
(

N −
∑N−1

i=0
Xi

)

(

inv
)

=
(

1−R
)

to enforce that
∑N−1

i=0
Xi 6= N when R = 0;

(

N −
∑N−1

i=0
Xi

)

(

R
)

=
(

0
)

to enforce that
∑N−1

i=0
Xi = N when R = 1.

where inv is witnessed as
(

N −
∑N−1

i=0
Xi

)

−1 if R = 0 or is unconstrained otherwise. (Since N < rS, the sums cannot
overflow.)

In fact the last constraint is not needed in this context because it is sufficient to compute an upper bound on each
Πm (i.e. it does not benefit a malicious prover to witness R = 1 when the result of the AND should be 0). So the
cost of computing Π variables for an arbitrarily long run of 1 bits can be reduced to 2 constraints. For example, for
c = rS − 1 the overall cost would be reduced to 255 + 68 = 323 constraints.

These optimizations are not used in Sapling.

A.3.3 Elliptic curve operations

A.3.3.1 Checking that affine-ctEdwards coordinates are on the curve

To check that (u, v) is a point on the ctEdwards curve, the Sapling circuit uses 4 constraints:
(

u
) (

u
)

=
(

uu
)

(

v

) (

v

)

=
(

vv

)

(

uu
) (

vv

)

=
(

uuvv

)

(

aJ ·uu + vv

) (

1
)

=
(

1 + dJ ·uuvv

)

Non-normative note: The last two constraints can be combined into
(

dJ ·uu
) (

vv

)

=
(

aJ ·uu + vv− 1
)

. The
Sapling circuit does not use this optimization.

A.3.3.2 ctEdwards [de]compression and validation

Define DecompressValidate ◦

◦ CompressedCtEdwardsJubjub→ AffineCtEdwardsJubjub as follows:

DecompressValidate(ũ, v) :

// Prover supplies the u-coordinate.

Let u ◦

◦ FrS
.

// §A.3.3.1 ‘Checking that affine-ctEdwards coordinates are on the curve’ on p. 128.

Check that (u, v) is a point on the ctEdwards curve.

// §A.3.2.1 ‘[Un]packing modulo rS’ on p. 126.

Unpack u to
∑254

i=0
ui · 2i, equating ũ with u0.

// §A.3.2.2 ‘Range check’ on p. 126.

Check that
∑254

i=0
ui · 2i ≤ rS − 1.

Return (u, v).

128



This costs 4 constraints for the curve equation check, 1 constraint for the unpacking, and 387 constraints for the
range check (as computed in §A.3.2.2 ‘Range check’ on p. 126) for a total of 392 constraints. The cost of the range
check includes boolean-constraining u0 .. 254.

The same quadratic constraint program is used for compression and decompression.

Note: The point-on-curve check could be omitted if (u, v) were already known to be on the curve. However, the
Sapling circuit never omits it; this provides a consistency check on the elliptic curve arithmetic.

A.3.3.3 ctEdwards↔Montgomery conversion

Define CtEdwardsToMont ◦

◦ AffineCtEdwardsJubjub→ AffineMontJubjub as follows:

CtEdwardsToMont(u, v) =
(

1 + v

1− v

,
√
−40964
√ · 1 + v

(1− v) · u

)

[1− v 6= 0 and u 6= 0]

Define MontToCtEdwards ◦

◦ AffineMontJubjub→ AffineCtEdwardsJubjub as follows:

MontToCtEdwards(x, y) =
(√
−40964
√ · x

y
,

x− 1

x + 1

)

[x + 1 6= 0 and y 6= 0]

Either of these conversions can be implemented by the same quadratic constraint program:
(

y
) (

u
)

=
(√
−40964
√

· x
)

(

x + 1
) (

v

)

=
(

x− 1
)

The above conversions should only be used if the input is guaranteed to be a point on the relevant curve. If that is
the case, the theorems below enumerate all exceptional inputs that may violate the side-conditions.

Theorem A.3.2. Let (u, v) be an affine point on a ctEdwards curve EctEdwards(a,d). Then the only points with u = 0 or
1− v = 0 are (0, 1) = OJ, and (0,−1) of order 2.

Proof. The curve equation is a·u2 + v
2 = 1 + d·u2 ·v2 with a 6= d (see [BBJLP2008, Definition 2.1]). By substituting

u = 0 we obtain v = ±1, and by substituting v = 1 and using a 6= d we obtain u = 0.

Theorem A.3.3. Let (x, y) be an affine point on a Montgomery curve EMont(A,B) over Fr with parameters A and B

such that A2 − 4 is a nonsquare in Fr , that is birationally equivalent to a ctEdwards curve. Then x + 1 6= 0, and the
only point (x, y) with y = 0 is (0, 0) of order 2.

Proof. That the only point with y = 0 is (0, 0) is proven by Theorem A.2.1 on p. 124.

If x+1 = 0, then subtituting x = −1 into the Montgomery curve equation gives B ·y2 = x3 +A ·x2 +x = A−2. So in
that case y2 = (A−2)/B. The right-hand-side is equal to the parameter d of a particular ctEdwards curve birationally
equivalent to the Montgomery curve (see [BL2017, section 4.3.5]). For all ctEdwards curves, d is nonsquare, so this
equation has no solutions for y, hence x + 1 6= 0.

(When the theorem is applied with EMont(A,B) = M defined in §A.2 ‘Elliptic curve background’ on p. 124, the
ctEdwards curve referred to in the proof is an isomorphic rescaling of the Jubjub curve .)
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A.3.3.4 Affine-Montgomery arithmetic

The incomplete affine-Montgomery addition formulae given in [BL2017, section 4.3.2] are:

x3 = BM ·λ2 −AM − x1 − x2

y3 = (x1 − x3)·λ− y1

where λ =







3·x2
1 + 2·AM ·x1 + 1

2·BM ·y1

, if x1 = x2

y2 − y1

x2 − x1

, otherwise.

The following theorem helps to determine when these incomplete addition formulae can be safely used:

Theorem A.3.4. Let Q be a point of odd-prime order s on a Montgomery curve M = EMont(AM,BM) over FrS
. Let k1 .. 2

be integers in
{

− s−1
2 .. s−1

2

}

\ {0}. Let Pi = [ki] Q = (xi, yi) for i ∈ {1 .. 2}, with k2 6= ±k1. Then the non-unified
addition constraints
(

x2 − x1

) (

λ
)

=
(

y2 − y1

)

(

BM ·λ
) (

λ
)

=
(

AM + x1 + x2 + x3

)

(

x1 − x3

) (

λ
)

=
(

y3 + y1

)

implement the affine-Montgomery addition P1 + P2 = (x3, y3) for all such P1 .. 2.

Proof. The given constraints are equivalent to the Montgomery addition formulae under the side condition that
x1 6= x2. (Note that neither Pi can be the zero point since k1 .. 2 6= 0 (mod s).) Assume for a contradiction that
x1 = x2. For any P1 = [k1] Q, there can be only one other point −P1 with the same x-coordinate. (This follows
from the fact that the curve equation determines ±y as a function of x.) But −P1 = [−1] [k1] Q = [−k1] Q. Since
k ◦

◦

{

− s−1
2 .. s−1

2

}

7→ [k] Q ◦

◦ M is injective and k1 .. 2 are in
{

− s−1
2 .. s−1

2

}

, then k2 = ±k1 (contradiction).

The conditions of this theorem are called the distinct-x criterion.

In particular, if k1 .. 2 are integers in
{

1 .. s−1
2

}

then it is sufficient to require k2 6= k1, since that implies k2 6= ±k1.

Affine-Montgomery doubling can be implemented as:
(

x
) (

x
)

=
(

xx
)

(

2·BM ·y
) (

λ
)

=
(

3·xx + 2·AM ·x + 1
)

(

BM ·λ
) (

λ
)

=
(

AM + 2·x + x3

)

(

x− x3

) (

λ
)

=
(

y3 + y
)

This doubling formula is valid when y 6= 0, which is the case when (x, y) is not the point (0, 0) (the only point of
order 2), as proven in Theorem A.2.1 on p. 124.

A.3.3.5 Affine-ctEdwards arithmetic

Formulae for affine-ctEdwards addition are given in [BBJLP2008, section 6]. With a change of variable names to
match our convention, the formulae for (u1, v1) + (u2, v2) = (u3, v3) are:

u3 =
u1 ·v2 + v1 ·u2

1 + dJ ·u1 ·u2 ·v1 ·v2

v3 =
v1 ·v2 − aJ ·u1 ·u2

1− dJ ·u1 ·u2 ·v1 ·v2
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We use an optimized implementation found by Daira Hopwood making use of an observation by Bernstein and
Lange in [BL2017, last paragraph of section 4.5.2]:
(

u1 + v1

) (

v2 − aJ ·u2

)

=
(

T
)

(

u1

) (

v2

)

=
(

A
)

(

v1

) (

u2

)

=
(

B
)

(

dJ ·A
) (

B
)

=
(

C
)

(

1 + C
) (

u3

)

=
(

A + B
)

(

1− C
) (

v3

)

=
(

T −A + aJ ·B
)

The correctness of this implementation can be seen by expanding T −A + aJ ·B:

T −A + aJ ·B = (u1 + v1) · (v2 − aJ ·u2)− u1 ·v2 + aJ ·v1 ·u2

= v1 ·v2 − aJ ·u1 ·u2 + u1 ·v2 − aJ ·v1 ·u2 − u1 ·v2 + aJ ·v1 ·u2

= v1 ·v2 − aJ ·u1 ·u2

The above addition formulae are “unified”, that is, they can also be used for doubling. Affine-ctEdwards doubling
[2] (u, v) = (u3, v3) can also be implemented slightly more efficiently as:
(

u + v

) (

v− aJ ·u
)

=
(

T
)

(

u
) (

v

)

=
(

A
)

(

dJ ·A
) (

A
)

=
(

C
)

(

1 + C
) (

u3

)

=
(

2·A
)

(

1− C
) (

v3

)

=
(

T + (aJ − 1)·A
)

This implementation is obtained by specializing the addition formulae to (u, v) = (u1, v1) = (u2, v2) and observing
that u · v = A = B.

A.3.3.6 Affine-ctEdwards nonsmall-order check

In order to avoid small-subgroup attacks, we check that certain points used in the circuit are not of small order. In
practice the Sapling circuit uses this in combination with a check that the coordinates are on the curve (§A.3.3.1
‘Checking that affine-ctEdwards coordinates are on the curve’ on p. 128), so we combine the two operations.

The Jubjub curve has a large prime-order subgroup with a cofactor of 8. To check for a point P of order 8 or less,
the Sapling circuit doubles three times (as in §A.3.3.5 ‘Affine-ctEdwards arithmetic’ on p. 130) and checks that the
resulting u-coordinate is not 0 (as in §A.3.1.4 ‘Nonzero constraints’ on p. 125).

On a ctEdwards curve, only the zero point OJ, and the unique point of order 2 at (0,−1) have zero u-coordinate.
The point of order 2 cannot occur as the result of three doublings. So this u-coordinate check rejects only OJ.

The total cost, including the curve check, is 4 + 3 · 5 + 1 = 20 constraints.

Note: This does not ensure that the point is in the prime-order subgroup.
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Non-normative notes:

• It would have been sufficient to do two doublings rather than three, because the check that the u-coordinate
is nonzero would reject both OJ and the point of order 2.

• It is possible to reduce the cost to 8 constraints by eliminating the redundant constraint in the curve point
check (as mentioned in §A.3.3.1 ‘Checking that affine-ctEdwards coordinates are on the curve’ on p. 128);
merging the first doubling with the curve point check; and then optimizing the second doubling based on the
fact that we only need to check whether the resulting u-coordinate is zero. The Sapling circuit does not use
these optimizations.

A.3.3.7 Fixed-base affine-ctEdwards scalar multiplication

If the base point B is fixed for a given scalar multiplication [k] B, we can fully precompute window tables for each
window position.

It is most efficient to use 3-bit fixed windows. Since the length of rJ is 252 bits, we need 84 windows.

Express k in base 8, i.e. k =
83
∑

i=0

ki ·8i.

Then [k] B =
83
∑

i=0

w(B, i, ki), where w(B, i, ki) = [ki ·8i] B.

We precompute all of w(B, i, s) for i ∈ {0 .. 83}, s ∈ {0 .. 7}.
To look up a given window entry w(B, i, s) = (us, vs), where s = 4·s2 + 2·s1 + s0, we use:
(

s1

) (

s2

)

=
(

sî
)

(

s0

) (

− u0 ·sî + u0 ·s2 + u0 ·s1 − u0 + u2 ·sî− u2 ·s1 + u4 ·sî− u4 ·s2 − u6 ·sî
+ u1 ·sî− u1 ·s2 − u1 ·s1 + u1 − u3 ·sî + u3 ·s1 − u5 ·sî + u5 ·s2 + u7 ·sî

)

=
(

us − u0 ·sî + u0 ·s2 + u0 ·s1 − u0 + u2 ·sî− u2 ·s1 + u4 ·sî− u4 ·s2 − u6 ·sî
)

(

s0

) (

− v0 ·sî + v0 ·s2 + v0 ·s1 − v0 + v2 ·sî− v2 ·s1 + v4 ·sî− v4 ·s2 − v6 ·sî
+ v1 ·sî− v1 ·s2 − v1 ·s1 + v1 − v3 ·sî + v3 ·s1 − v5 ·sî + v5 ·s2 + v7 ·sî

)

=
(

vs − v0 ·sî + v0 ·s2 + v0 ·s1 − v0 + v2 ·sî− v2 ·s1 + v4 ·sî− v4 ·s2 − v6 ·sî
)

For a full-length (252-bit) scalar this costs 3 constraints for each of 84 window lookups, plus 6 constraints for each
of 83 ctEdwards additions (as in §A.3.3.5 ‘Affine-ctEdwards arithmetic’ on p. 130), for a total of 750 constraints.

Fixed-base scalar multiplication is also used in two places with shorter scalars:

• §A.3.6 ‘Homomorphic Pedersen Commitment’ on p. 137 uses a 64-bit scalar for the v input to ValueCommit,
requiring 22 windows at a cost of 3·22− 1 + 6·21 = 191 constraints;

• §A.3.3.10 ‘Mixing Pedersen hash’ on p. 135 uses a 32-bit scalar for the pos input to MixingPedersenHash, requir-
ing 11 windows at a cost of 3·11− 1 + 6·10 = 92 constraints.

None of these costs include the cost of boolean-constraining the scalar.

Non-normative notes:

• It would be more efficient to use arithmetic on the Montgomery curve, as in §A.3.3.9 ‘Pedersen hash’ on
p. 133. However since there are only three instances of fixed-base scalar multiplication in the Spend circuit

and two in the Output circuit 6, the additional complexity was not considered justified for Sapling.

• For the multiplications with 64-bit and 32-bit scalars, the scalar is padded to a multiple of 3 bits with zeros.
This causes the computation of sî in the lookup for the most significant window to be optimized out, which is
where the “− 1” comes from in the above cost calculations. No further optimization is done for this lookup.

6 A Pedersen commitment uses fixed-base scalar multiplication as a subcomponent.
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A.3.3.8 Variable-base affine-ctEdwards scalar multiplication

When the base point B is not fixed, the method in the preceding section cannot be used. Instead we use a naïve
double-and-add method.

Given k =
∑250

i=0
ki ·2i, we calculate R = [k] B using:

// Basei = [2i] B

let Base0 = B

let Acc
u
0 = k0 ? Base

u
0 : 0

let Acc
v

0 = k0 ? Base
v

0 : 1

for i from 1 up to 250:

let Basei = [2] Basei−1

// select Basei or OJ depending on the bit ki

let Addend
u
i = ki ? Base

u
i : 0

let Addend
v

i = ki ? Base
v

i : 1

let Acci = Acci−1 + Addendi

let R = Acc250.

This costs 5 constraints for each of 250 ctEdwards doublings, 6 constraints for each of 250 ctEdwards additions, and
2 constraints for each of 251 point selections, for a total of 3252 constraints.

Non-normative note: It would be more efficient to use 2-bit fixed windows, and/or to use arithmetic on the
Montgomery curve in a similar way to §A.3.3.9 ‘Pedersen hash’ on p. 133. However since there are only two instances
of variable-base scalar multiplication in the Spend circuit and one in the Output circuit , the additional complexity
was not considered justified for Sapling.

A.3.3.9 Pedersen hash

The specification of the Pedersen hashes used in Sapling is given in §5.4.1.7 ‘Pedersen Hash Function’ on p. 54. It is
based on the scheme from [CvHP1991, section 5.2] –for which a tighter security reduction to the Discrete Logarithm
Problem was given in [BGG1995]– but tailored to allow several optimizations in the circuit implementation.

Pedersen hashes are the single most commonly used primitive in the Sapling circuits. MerkleDepth
Sapling Pedersen

hash instances are used in the Spend circuit to check a Merkle path to the note commitment of the note being
spent. We also reuse the Pedersen hash implementation to construct the commitment scheme NoteCommit

Sapling.

This motivates considerable attention to optimizing this circuit implementation of this primitive, even at the cost of
complexity.

First, we use a windowed scalar multiplication algorithm with signed digits. Each 3-bit message chunk corresponds
to a window; the chunk is encoded as an integer from the set Digits = {−4 .. 4} \ {0}. This allows a more efficient
lookup of the window entry for each chunk than if the set {1 .. 8} had been used, because a point can be conditionally
negated using only a single constraint.

Next, we optimize the cost of point addition by allowing as many additions as possible to be performed on the
Montgomery curve. An incomplete Montgomery addition costs 3 constraints, in comparison with a ctEdwards
addition which costs 6 constraints.

However, we cannot do all additions on the Montgomery curve because the Montgomery addition is incomplete.
In order to be able to prove that exceptional cases do not occur, we need to ensure that the distinct-x criterion
from §A.3.3.4 ‘Affine-Montgomery arithmetic’ on p. 130 is met. This requires splitting the input into segments (each
using an independent generator), calculating an intermediate result for each segment, and then converting to the
ctEdwards curve and summing the intermediate results using ctEdwards addition.
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Abstracting away the changes of curve, this calculation can be written as:

PedersenHashToPoint(D, M) =
N
∑

j=1

[〈Mj〉] ID
j

where 〈•〉 and ID
j are defined as in §5.4.1.7 ‘Pedersen Hash Function’ on p. 54.

We have to prove that:

• the Montgomery-to-ctEdwards conversions can be implemented without exceptional cases;

• the distinct-x criterion is met for all Montgomery additions within a segment.

The proof of Theorem 5.4.1 on p. 55 showed that all indices of addition inputs are in the range
{

−rJ − 1

2
..

rJ − 1

2

}

\{0}.

Because the ID
j (which are outputs of GroupHash

J
(r)∗

) are all of prime order, and 〈Mj〉 6= 0 (mod rJ), it is guaranteed

that all of the terms [〈Mj〉] ID
j to be converted to ctEdwards form are of prime order. From Theorem A.3.3 on p. 129,

we can infer that the conversions will not encounter exceptional cases.

We also need to show that the indices of addition inputs are all distinct disregarding sign.

Theorem A.3.5. For all disjoint nonempty subsets S and S′ of {1 .. c}, all m ∈ B
[3][c], and all Θ ∈ {−1, 1}:

∑

j∈S

enc(mj) · 24·(j−1) 6= Θ ·
∑

j
′

∈S
′

enc(mj
′) · 24·(j

′

−1).

Proof. Suppose for a contradiction that S, S′, m, Θ is a counterexample. Taking the multiplication by Θ on the right
hand side inside the summation, we have:

∑

j∈S

enc(mj) · 24·(j−1) =
∑

j
′

∈S
′

Θ · enc(mj
′) · 24·(j

′

−1).

Define enc
′

◦

◦ {−1, 1} × B
[3] → {0 .. 8} \ {4} as enc

′
θ(mi) := 4 + θ · enc(mi).

Let ∆ = 4 ·
∑c

i=1
24·(i−1) as in the proof of Theorem 5.4.1 on p. 55. By adding ∆ to both sides, we get

∑

j∈S

enc
′
1(mj) · 24·(j−1) +

∑

j∈{1 .. c}\S

4 · 24·(j−1) =
∑

j
′

∈S
′

enc
′
Θ(mj

′) · 24·(j
′

−1) +
∑

j
′

∈{1 .. c}\S
′

4 · 24·(j
′

−1)

where all of the enc
′
1(mj) and enc

′
Θ(mj

′) are in {0 .. 8} \ {4}.

Each term on the left and on the right affects the single hex digit indexed by j and j′ respectively. Since S and S′

are disjoint subsets of {1 .. c} and S is nonempty, S ∩ ({1 .. c} \ S′) is nonempty. Therefore the left hand side has at
least one hex digit not equal to 4 such that the corresponding right hand side digit is 4; contradiction.

This implies that the terms in the Montgomery addition –as well as any intermediate results formed from adding a
distinct subset of terms– have distinct indices disregarding sign, hence distinct x-coordinates by Theorem A.3.4 on
p. 130. (We make no assumption about the order of additions.)

We now describe the subcircuit used to process each chunk, which contributes most of the constraint cost of the
hash. This subcircuit is used to perform a lookup of a Montgomery point in a 2-bit window table, conditionally
negate the result, and add it to an accumulator holding another Montgomery point.

Suppose that the bits of the chunk, [s0, s1, s2], are already boolean-constrained.

We aim to compute C = A + [(1− 2 · s2) · (1 + s0 + 2 · s1)] P for some fixed base point P and accumulated sum A.

We first compute sî = s0 î s1:
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(

s0

) (

s1

)

=
(

sî
)

Let (xk, yk) = [k] P for k ∈ {1 .. 4}. Define each coordinate of (xS , yR) = [1 + s0 + 2 · s1] P as a linear combination
of s0, s1, and sî:

let xS = x1 + (x2 − x1) · s0 + (x3 − x1) · s1 + (x4 + x1 − x2 − x3) · sî
let yR = y1 + (y2 − y1) · s0 + (y3 − y1) · s1 + (y4 + y1 − y2 − y3) · sî

We implement the conditional negation as
(

2 · yR

) (

s2

)

=
(

yR − yS

)

. After substitution of yR this becomes:
(

2 · (y1 + (y2 − y1) · s0 + (y3 − y1) · s1 + (y4 + y1 − y2 − y3) · sî)
) (

s2

)

=
(

y1 + (y2 − y1) · s0 + (y3 − y1) · s1 + (y4 + y1 − y2 − y3) · sî− yS

)

Then we substitute xS into the Montgomery addition constraints from §A.3.3.4 ‘Affine-Montgomery arithmetic’

on p. 130, as follows:
(

x1 + (x2 − x1) · s0 + (x3 − x1) · s1 + (x4 + x1 − x2 − x3) · sî− xA

) (

λ
)

=
(

yS − yA

)

(

BM ·λ
) (

λ
)

=
(

AM + xA + x1 + (x2 − x1) · s0 + (x3 − x1) · s1 + (x4 + x1 − x2 − x3) · sî + xC

)

(

xA − xC

) (

λ
)

=
(

yC + yA

)

(In the sapling-crypto implementation, linear combinations are first-class values, so these substitutions do not
need to be done “by hand”.)

For the first addition in each segment, both sides are looked up and substituted into the Montgomery addition, so
the first lookup takes only 2 constraints.

When these hashes are used in the circuit, the first 6 bits of the input are fixed. For example, in the Merkle tree
hashes they represent the layer number. This would allow a precomputation for the first two windows, but that
optimization is not done in Sapling.

The cost of a Pedersen hash over ℓ bits (where ℓ includes the fixed bits) is as follows. The number of chunks is
c = ceiling

(

ℓ

3

)

and the number of segments is n = ceiling
(

ℓ

3 · 63

)

.

The cost is then:

• 2·c constraints for the lookups;

• 3·(c− n) constraints for incomplete additions on the Montgomery curve;

• 2·n constraints for Montgomery-to-ctEdwards conversions;

• 6·(n− 1) constraints for ctEdwards additions;

for a total of 5·c + 5·n− 6 constraints. This does not include the cost of boolean-constraining inputs.

In particular,

• for the Merkle tree hashes ℓ = 516, so c = 172, n = 3, and the cost is 869 constraints;

• when a Pedersen hash is used to implement part of a Pedersen commitment for NoteCommit
Sapling (§5.4.7.2

‘Windowed Pedersen commitments’ on p. 64), ℓ = 6 + ℓvalue + 2·ℓJ = 582, c = 194, and n = 4, so the cost of the
hash alone is 984 constraints.

A.3.3.10 Mixing Pedersen hash

A mixing Pedersen hash is used to compute ρ from cm and pos in §4.14 ‘Note Commitments and Nullifiers’ on
p. 40. It takes as input a Pedersen commitment P , and hashes it with another input x.

Let J be as defined in §5.4.1.8 ‘Mixing Pedersen Hash Function’ on p. 56.
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We define MixingPedersenHash ◦

◦ {0 .. rJ − 1} × J→ J by:

MixingPedersenHash(P, x) := P + [x]J .

This costs 92 constraints for a scalar multiplication (§A.3.3.7 ‘Fixed-base affine-ctEdwards scalar multiplication’

on p. 132), and 6 constraints for a ctEdwards addition (§A.3.3.5 ‘Affine-ctEdwards arithmetic’ on p. 130), for a total
of 98 constraints.

A.3.4 Merkle path check

Checking each layer of a Merkle authentication path, as described in §4.8 ‘Merkle path validity’ on p. 35, requires
to:

• boolean-constrain the path bit specifying whether the previous node is a left or right child;

• conditionally swap the previous-layer and sibling hashes (as Fr elements) depending on the path bit;

• unpack the left and right hash inputs to two sequences of 255 bits;

• compute the Merkle hash for this node.

The unpacking need not be canonical in the sense discussed in §A.3.2.1 ‘[Un]packing modulo rS’ on p. 126; that is,
it is not necessary to ensure that the left or right inputs to the hash represent integers in the range {0 .. rS − 1}.
Since the root of the Merkle tree is calculated outside the circuit using the canonical representations, and since the
Pedersen hashes are collision-resistant on arbitrary bit-sequence inputs, an attempt by an adversarial prover to
use a non-canonical input would result in the wrong root being calculated, and the overall path check would fail.

For each layer, the cost is 1 + 2·255 boolean constraints, 2 constraints for the conditional swap (implemented as
two selection constraints), and 869 constraints for the Merkle hash (§A.3.3.9 ‘Pedersen hash’ on p. 133), for a total of
1380 constraints.

Non-normative note: The conditional swap (a0, a1) 7→ (c0, c1) could be implemented in only one constraint by
substituting c1 = a0 + a1 − c0 into the uses of c1. The Sapling circuit does not use this optimization.

A.3.5 Windowed Pedersen Commitment

We construct windowed Pedersen commitments by reusing the Pedersen hash implementation described in
§A.3.3.9 ‘Pedersen hash’ on p. 133, and adding a randomized point:

WindowedPedersenCommitr(s) = PedersenHashToPoint(“Zcash_PH”, s) + [r] FindGroupHash
J

(r)∗

(“Zcash_PH”, “r”)

This can be implemented in:

• 5·c + 5·n − 6 constraints for the Pedersen hash applied to ℓ = 6 + length(s) bits, where c = ceiling
(

ℓ

3

)

and

n = ceiling
(

ℓ

3 · 63

)

;

• 750 constraints for the fixed-base scalar multiplication;

• 6 constraints for the final ctEdwards addition.

When WindowedPedersenCommit is used to instantiate NoteCommit
Sapling, the cost of the Pedersen hash is 984 con-

straints as calculated in §A.3.3.9 ‘Pedersen hash’ on p. 133, and so the total cost in that case is 1740 constraints. This
does not include the cost of boolean-constraining the input s or the randomness r.
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A.3.6 Homomorphic Pedersen Commitment

The windowed Pedersen commitments defined in the preceding section are highly efficient, but they do not
support the homomorphic property we need when instantiating ValueCommit.

In order to support this property, we also define homomorphic Pedersen commitments as follows:

HomomorphicPedersenCommitrcv(D, v) = [v] FindGroupHash
J

(r)∗

(D, “v”) + [rcv] FindGroupHash
J

(r)∗

(D, “r”)

In the case that we need for ValueCommit, v has 64 bits7. This value is given as a bit representation, which does not
need to be constrained equal to an integer.

ValueCommit can be implemented in:

• 750 constraints for the 252-bit fixed-base multiplication by rcv;

• 191 constraints for the 64-bit fixed-base multiplication by v;

• 6 constraints for the ctEdwards addition

for a total cost of 947 constraints. This does not include the cost to boolean-constrain the input v or randomness
rcv.

A.3.7 BLAKE2s hashes

BLAKE2s is defined in [ANWW2013]. Its main subcomponent is a “G function”, defined as follows:

G ◦

◦ {0 .. 9} × {0 .. 232−1}[4] → {0 .. 232−1}[4]

G(a, b, c, d, x, y) = (a′′, b′′, c′′, d′′) where

a′ = (a + b + x) mod 232

d′ = (d⊕ a′)≫ 16

c′ = (c + d′) mod 232

b′ = (b⊕ c′)≫ 12

a′′ = (a′ + b′ + y) mod 232

d′′ = (d′ ⊕ a′′)≫ 8

c′′ = (c′ + d′′) mod 232

b′′ = (b′ ⊕ c′′)≫ 7

The following table is used to determine which message words the x and y arguments to G are selected from:

σ0 = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ]

σ1 = [ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 ]

σ2 = [ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 ]

σ3 = [ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 ]

σ4 = [ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 ]

σ5 = [ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 ]

σ6 = [ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 ]

σ7 = [ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 ]

σ8 = [ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 ]

σ9 = [ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 ]

7 It would be sufficient to use 51 bits, which accomodates the range {0 .. MAX_MONEY}, but the Sapling circuit uses 64.
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The Initialization Vector is defined as:

IV ◦

◦ {0 .. 232−1}[8] := [ 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A

0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 ]

The full hash function applied to an 8-byte personalization string and a single 64-byte block, in sequential mode
with 32-byte output, can be expressed as follows.

Define BLAKE2s-256 ◦

◦ (p ◦

◦ BYY[8])× (x ◦

◦ BYY[64])→ BYY[32] as:

let PB ◦

◦ BYY[32] = [32, 0, 1, 1] || [0x00]20 || p
let [ t0, t1, f0, f1 ] ◦

◦ {0 .. 232−1}[4] = [ 0, 0, 0, 0xFFFFFFFF, 0 ]

let h ◦

◦ {0 .. 232−1}[8] = [[ LEOS2IP32(PB4·i .. 4·i + 3)⊕ IVi for i from 0 up to 7 ]]

let v ◦

◦ {0 .. 232−1}[16] = h || [ IV0, IV1, IV2, IV3, t0 ⊕ IV4, t1 ⊕ IV5, f0 ⊕ IV6, f1 ⊕ IV7 ]

let m ◦

◦ {0 .. 232−1}[16] = [[ LEOS2IP32(x4·i .. 4·i + 3) for i from 0 up to 15 ]]

for r from 0 up to 9:
set (v0, v4, v8, v12) := G(v0, v4, v8, v12, mσr,0

, mσr,1
)

set (v1, v5, v9, v13) := G(v1, v5, v9, v13, mσr,2
, mσr,3

)

set (v2, v6, v10, v14) := G(v2, v6, v10, v14, mσr,4
, mσr,5

)

set (v3, v7, v11, v15) := G(v3, v7, v11, v15, mσr,6
, mσr,7

)

set (v0, v5, v10, v15) := G(v0, v5, v10, v15, mσr,8
, mσr,9

)

set (v1, v6, v11, v12) := G(v1, v6, v11, v12, mσr,10
, mσr,11

)

set (v2, v7, v8, v13) := G(v2, v7, v8, v13, mσr,12
, mσr,13

)

set (v3, v4, v9, v14) := G(v3, v4, v9, v14, mσr,14
, mσr,15

)

return LEBS2OSP256(concatB([[ I2LEBSP32(hi ⊕ vi ⊕ vi+8) for i from 0 up to 7 ]]))

In practice the message and output will be expressed as bit sequences. In the Sapling circuit, the personalization
string will be constant for each use.

Each 32-bit exclusive-or is implemented in 32 constraints, one for each bit position a ⊕ b = c as in §A.3.1.5
‘Exclusive-or constraints’ on p. 126.

Additions not involving a message word, i.e. (a + b) mod 232 = c, are implemented using 33 constraints and a 33-bit

equality check: constrain 33 boolean variables c0 .. 32, and then check
∑i=31

i=0
(ai + bi) · 2i =

∑i=32

i=0
ci · 2i.

Additions involving a message word, i.e. (a + b + m) mod 232 = c, are implemented using 34 constraints and a 34-bit

equality check: constrain 34 boolean variables c0 .. 33, and then check
∑i=31

i=0
(ai + bi + mi) · 2i =

∑i=33

i=0
ci · 2i.

For each addition, only c0 .. 31 are used subsequently.

The equality checks are batched; as many sets of 33 or 34 boolean variables as will fit in a FrS
field element are

equated together using one constraint. This allows 7 such checks per constraint.

Each G evaluation requires 262 constraints:

• 4 · 32 = 128 constraints for ⊕ operations;

• 2 · 33 = 66 constraints for 32-bit additions not involving message words (excluding equality checks);

• 2 · 34 = 68 constraints for 32-bit additions involving message words (excluding equality checks).
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The overall cost is 21262 constraints:

• 10 · 8 · 262 = 20960 constraints for 80 G evaluations, excluding equality checks;

• ceiling
(

10 · 8 · 4
7

)

= 46 constraints for equality checks;

• 8 · 32 = 256 constraints for final vi ⊕ vi+8 operations (the hi words are constants so no additional constraints
are required to exclusive-or with them).

This cost includes boolean-constraining the hash output bits (done implicitly by the final ⊕ operations), but not the
message bits.

Non-normative notes:

• The equality checks could be eliminated entirely by substituting each check into a boolean constraint for c0,
for instance, but this optimization is not done in Sapling.

• It should be clear that BLAKE2s is very expensive in the circuit compared to elliptic curve operations. This is
primarily because it is inefficient to use FrS

elements to represent single bits. However Pedersen hashes do
not have the necessary cryptographic properties for the two cases where the Spend circuit uses BLAKE2s.
While it might be possible to use variants of functions with low circuit cost such as MiMC [AGRRT2017], it
was felt that they had not yet received sufficient cryptanalytic attention to confidently use them for Sapling.

A.4 The Sapling Spend circuit

The Sapling Spend statement is defined in §4.15.2 ‘Spend Statement (Sapling)’ on p. 42.

The primary input is

(

rt ◦

◦ B
[ℓMerkleSapling],

cv
old

◦

◦ ValueCommit.Output,

nf
old

◦

◦ B
[ℓPRFnfSapling],

rk ◦

◦ SpendAuthSig.Public
)

,

which is encoded as 8 FrS
elements (starting with the fixed element 1 required by Groth16):

[1,u(rk), v(rk),u(cv
old), v(cv

old), LEBS2IPℓMerkleSapling
(rt) , LEBS2IP251

(

nf
old
0 .. 250

)

, LEBS2IP5

(

nf
old
251 .. 255

)

]

The auxiliary input is

(

path ◦

◦ B
[ℓMerkle][MerkleDepth

Sapling
],

pos ◦

◦ {0 .. 2MerkleDepth
Sapling

−1},
gd

◦

◦ J,

pkd
◦

◦ J,

v
old

◦

◦ {0 .. 2ℓvalue−1},
rcv

old
◦

◦ {0 .. 2ℓscalar−1},
cm

old
◦

◦ J,

rcm
old

◦

◦ {0 .. 2ℓscalar−1},
α ◦

◦ {0 .. 2ℓscalar−1},
ak ◦

◦ SpendAuthSig.Public,

nsk ◦

◦ {0 .. 2ℓscalar−1}
)

.
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ValueCommit.Output and SpendAuthSig.Public are of type J, so we have cv
old, cm

old, rk, gd, pkd, and ak that represent
Jubjub curve points. However,

• cv
old will be constrained to an output of ValueCommit;

• cm
old will be constrained to an output of NoteCommit

Sapling;

• rk will be constrained to [α]G + ak;

• pkd will be constrained to [ivk] gd

so cv
old, cm

old, rk, and pkd do not need to be explicitly checked to be on the curve.

In addition, nk⋆ and ρ⋆ used in Nullifier integrity are compressed representations of Jubjub curve points. TODO:
explain why these are implemented as §A.3.3.2 ‘ctEdwards [de]compression and validation’ on p. 128 even though
the statement spec doesn’t explicitly say to do validation.

Therefore we have gd, ak, nk, and ρ that need to be constrained to valid Jubjub curve points as described in §A.3.3.2
‘ctEdwards [de]compression and validation’ on p. 128.
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In order to aid in comparing the implementation with the specification, we present the checks needed in the order
in which they are implemented in the sapling-crypto code:

Check Implements Cost Reference

ak is on the curve TODO: FIXME also
decompressed below

ak ◦

◦ SpendAuthSig.Public 4 §A.3.3.1 on p. 128

ak is not small order Small order checks 16 §A.3.3.6 on p. 131

α⋆ ◦

◦ B
[ℓscalar] α ◦

◦ {0 .. 2ℓscalar−1} 252 §A.3.1.1 on p. 125

α′ = [α⋆]G Spend authority 750 §A.3.3.7 on p. 132

rk = α′ + ak 6 §A.3.3.5 on p. 130

inputize rk TODO: not ccteddecom-
pressvalidate => wrong count

rk ◦

◦ SpendAuthSig.Public 392? §A.3.3.2 on p. 128

nsk⋆ ◦

◦ B
[ℓscalar] nsk ◦

◦ {0 .. 2ℓscalar−1} 252 §A.3.1.1 on p. 125

nk = [nsk⋆]H Nullifier integrity 750 §A.3.3.7 on p. 132

ak⋆ = reprJ(ak ◦

◦ J) Diversified address integrity 392 §A.3.3.2 on p. 128

nk⋆ = reprJ(nk)TODO: spec doesn’t
say to validate nk since it’s calculated

Nullifier integrity 392 §A.3.3.2 on p. 128

ivk⋆ = I2LEBSP251

(

CRH
ivk(ak, nk)

)

† Diversified address integrity 21262 §A.3.7 on p. 137

gd is on the curve gd
◦

◦ J 4 §A.3.3.1 on p. 128

gd is not small order Small order checks 16 §A.3.3.6 on p. 131

pkd = [ivk⋆] gd Diversified address integrity 3252 §A.3.3.8 on p. 133

v⋆
old

◦

◦ B
[64]

v
old

◦

◦ {0 .. 264−1} 64 §A.3.1.1 on p. 125

rcv⋆ ◦

◦ B
[ℓscalar] rcv ◦

◦ {0 .. 2ℓscalar−1} 252 §A.3.1.1 on p. 125

cv = ValueCommitrcv(vold) Value commitment integrity 947 §A.3.6 on p. 137

inputize cv ?

rcm⋆ ◦

◦ B
[ℓscalar] rcm ◦

◦ {0 .. 2ℓscalar−1} 252 §A.3.1.1 on p. 125

cm = NoteCommit
Sapling
rcm (gd, pkd, v

old) Note commitment integrity 1740 §A.3.5 on p. 136

cmu = Extract
J

(r)(cm) Merkle path validity 0

rt
′ is the root of a Merkle tree with

leaf cmu, and authentication path
(path, pos⋆)

32 · 1380 §A.3.4 on p. 136

pos⋆ = I2LEBSP
MerkleDepth

Sapling (pos) 1 §A.3.2.1 on p. 126

if v
old 6= 0 then rt

′ = rt 1 §A.3.1.2 on p. 125

inputize rt ?

ρ = MixingPedersenHash(cm
old, pos) Nullifier integrity 98 §A.3.3.10 on p. 135

ρ⋆ = reprJ(ρ)TODO: spec doesn’t say
to validate ρ since it’s calculated

392 §A.3.3.2 on p. 128

nf
old = PRF

nfSapling
nk⋆ (ρ⋆) 21262 §A.3.7 on p. 137

pack nf
old
0 .. 250 and nf

old
251 .. 255 into two

FrS
inputs

input encoding 2 §A.3.2.1 on p. 126
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† This is implemented by taking the output of BLAKE2s-256 as a bit sequence and dropping the most significant
5 bits, not by converting to an integer and back to a bit sequence as literally specified.

Note: The implementation represents α⋆, nsk⋆, ivk⋆, rcm⋆, rcv⋆, and v⋆
old as bit sequences rather than integers.

A.5 The Sapling Output circuit

The Sapling Output statement is defined in §4.15.3 ‘Output Statement (Sapling)’ on p. 43.

The primary input is
(

cv
new

◦

◦ ValueCommit.Output,

cmu
◦

◦ B
[ℓMerkleSapling],

epk ◦

◦ J
)

,

which is encoded as 6 FrS
elements (starting with the fixed element 1 required by Groth16):

[1,u(cv
new), v(cv

new),u(epk), v(epk), LEBS2IPℓMerkleSapling
(cmu)]

The auxiliary input is

(gd
◦

◦ J,

pk⋆d
◦

◦ B
[ℓJ],

v
new

◦

◦ {0 .. 2ℓvalue−1},
rcv

new
◦

◦ {0 .. 2ℓscalar−1},
rcm

new
◦

◦ {0 .. 2ℓscalar−1},
esk ◦

◦ {0 .. 2ℓscalar−1})

ValueCommit.Output is of type J, so we have cv
new, epk, and gd that represent Jubjub curve points. However,

• cv
new will be constrained to an output of ValueCommit;

• epk will be constrained to [esk] gd

so cv
new and epk do not need to be explicitly checked to be on the curve.

Therefore we have only gd that needs to be constrained to a valid Jubjub curve point as described in §A.3.3.2
‘ctEdwards [de]compression and validation’ on p. 128.

Note: pk⋆d is not checked to be a valid compressed representation of a Jubjub curve point.
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In order to aid in comparing the implementation with the specification, we present the checks needed in the order
in which they are implemented in the sapling-crypto code:

Check Implements Cost Reference

v⋆
old

◦

◦ B
[64]

v
old

◦

◦ {0 .. 264−1} 64 §A.3.1.1 on p. 125

rcv⋆ ◦

◦ B
[ℓscalar] rcv ◦

◦ {0 .. 2ℓscalar−1} 252 §A.3.1.1 on p. 125

cv = ValueCommitrcv(vold) Value commitment integrity 947 §A.3.6 on p. 137

inputize cv ?

g⋆d = reprJ(gd
◦

◦ J) Note commitment integrity 392 §A.3.3.2 on p. 128

gd is not small order Small order checks 16 §A.3.3.6 on p. 131

esk⋆ ◦

◦ B
[ℓscalar] esk ◦

◦ {0 .. 2ℓscalar−1} 252 §A.3.1.1 on p. 125

epk = [esk⋆] gd Ephemeral public key integrity 3252 §A.3.3.8 on p. 133

inputize epk ?

pk⋆d
◦

◦ B
[ℓJ] pk⋆d

◦

◦ B
[ℓJ] 256 §A.3.1.1 on p. 125

rcm⋆ ◦

◦ B
[ℓscalar] rcm ◦

◦ {0 .. 2ℓscalar−1} 252 §A.3.1.1 on p. 125

cm = NoteCommit
Sapling
rcm (gd, pkd, v

old) Note commitment integrity 1740 §A.3.5 on p. 136

pack inputs ?

Note: The implementation represents esk⋆, pk⋆d, rcm⋆, rcv⋆, and v⋆
old as bit sequences rather than integers.

B Batching Optimizations

B.1 RedDSA batch verification

The reference verification algorithm for RedDSA signatures is defined in §5.4.6 ‘RedDSA and RedJubjub’ on p. 60.

Let the RedDSA parameters G (defining a subgroup G
(r) of order rG, a cofactor hG, a group operation +, an additive

identity OG , a bit-length ℓG , a representation function reprG , and an abstraction function abstG ); PG
◦

◦ G; ℓH
◦

◦ N;

H ◦

◦ BYY[N] → BYY[ℓH/8]; and the derived hash function H
⊛

◦

◦ BYY[N] → FrG
be as defined in that section.

Implementations MAY alternatively use the optimized procedure described in this section to perform faster
verification of a batch of signatures, i.e. to determine whether all signatures in a batch are valid. Its input is a
sequence of N signature batch entries , each of which is a (public key, message, signature) triple.

Let LEOS2BSP, LEOS2IP, and LEBS2OSP be as defined in §5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 49.

Define RedDSA.BatchEntry := RedDSA.Public× RedDSA.Message× RedDSA.Signature.
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Define RedDSA.BatchVerify ◦

◦ (entry0 .. N−1
◦

◦ RedDSA.BatchEntry
[N ])→ B as:

For each j ∈ {0 .. N − 1}:
Let (vkj , Mj , σj) = entryj .

Let Rj be the first ceiling
(

ℓG/8
)

bytes of σj , and let Sj be the remaining ceiling (bitlength(rG)/8) bytes.

Let Rj = abstG
(

LEOS2BSPℓG
(Rj)

)

, and let Sj = LEOS2IP8·length(Sj)(Sj).

Let vkj = LEBS2OSPℓG

(

reprG(vkj)
)

.

Let cj = H
⊛(Rj || vkj ||Mj).

Choose random zj
◦

◦ F
∗
rG
←R {1 .. 2128 − 1}.

Return 1 if

• for all j ∈ {0 .. N − 1}, Rj 6= ⊥ and Sj < rG; and

• [hG]
([

∑N−1

j=0
(zj · Sj) (mod rG)

]

PG +
∑N−1

j=0

(

[zj] Rj + [zj · cj (mod rG)] vkj

)

)

= OG ,

otherwise 0.

The zj values MUST be chosen independently of the signature batch entries .

The performance benefit of this approach arises partly from replacing the per-signature scalar multiplication of
the base PG with one such multiplication per batch, and partly from using an efficient algorithm for multiscalar
multiplication such as Pippinger’s method [Bernstein2001] or the Bos–Coster method [deRooij1995], as explained
in [BDLSY2012, section 5].

Note: Spend authorization signatures (§5.4.6.1 ‘Spend Authorization Signature’ on p. 63) and binding signatures
(§5.4.6.2 ‘Binding Signature’ on p. 63) use different bases PG . It is straightforward to adapt the above procedure to

handle multiple bases; there will be one
[

∑

j
(zj · Sj) (mod rG)

]

P term for each base P . The benefit of this relative

to using separate batches is that the multiscalar multiplication can be extended across a larger batch.

B.2 Groth16 batch verification

The reference verification algorithm for Groth16 proofs is defined in §5.4.9.2 ‘Groth16’ on p. 71.

Let qS, rS, S(r)
1,2,T , S(r)∗

1,2,T , PS1,2,T
, 1S, and êS be as defined in §5.4.8.2 ‘BLS12-381’ on p. 67.

Define MillerLoopS
◦

◦ S
(r)
1 × S

(r)
2 → S

(r)
T and FinalExpS

◦

◦ S
(r)
T → S

(r)
T to be the Miller loop and final exponentiation

respectively of the êS pairing computation, so that:

êS(P, Q)= FinalExpS(MillerLoopS(P, Q))

where FinalExpS(R)= Rt for some fixed t.

Define Groth16S.Proof := S
(r)∗
1 × S

(r)∗
2 × S

(r)∗
1 .

A Groth16S proof consists of a tuple (πA, πB , πC) ◦

◦ Groth16S.Proof .

Verification of a single Groth16S proof against an instance encoded as a0 .. ℓ
◦

◦ FrS

[ℓ+1] requires checking the equation

êS(πA, πB) = êS(πC , ∆) · êS
(

∑ℓ

i=0
[ai] Ψi, Γ

)

· Y

where ∆ = [δ]PS2
, Γ = [γ]PS2

, Y = [α·β]PST
, and Ψi =

[

β ·ui(x) + α·vi(x) + wi(x)

γ

]

PS1
for i ∈ {0 .. ℓ} are elements of

the verification key, as described (with slightly different notation) in [Groth2016, section 3.2].
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This can be written as:

êS(πA,−πB) · êS(πC , ∆) · êS
(

∑ℓ

i=0
[ai] Ψi, Γ

)

· Y = 1S.

Raising to the power of random z 6= 0 gives:

êS([z] πA,−πB)· êS([z] πC , ∆)· êS
(

∑ℓ

i=0
[z · ai] Ψi, Γ

)

· Y z = 1S.

This justifies the following optimized procedure for performing faster verification of a batch of Groth16S proofs.
Implementations MAY use this procedure to determine whether all proofs in a batch are valid.

Define Groth16S.BatchEntry := Groth16S.Proof × Groth16S.PrimaryInput.

Define Groth16S.BatchVerify ◦

◦ (entry0 .. N−1
◦

◦ Groth16S.BatchEntry
[N ])→ B as:

For each j ∈ {0 .. N − 1}:
Let ((πj,A, πj,B , πj,C), aj, 0 .. ℓ) = entryj .

Choose random zj
◦

◦ F
∗
rS
←R {1 .. 2128 − 1}.

Let AccumAB =
∏N−1

j=0
MillerLoopS

(

[zj] πj,A,−πj,B

)

.

Let Accum∆ =
∑N−1

j=0
[zj] πj,C .

Let AccumΓ,i =
∑N−1

j=0
(zj · aj,i) (mod rS) for i ∈ {0 .. ℓ}.

Let AccumY =
∑N−1

j=0
zj (mod rS).

Return 1 if

FinalExpS

(

AccumAB ·MillerLoopS

(

Accum∆, ∆
)

·MillerLoopS

(

∑ℓ

i=0
[AccumΓ,i] Ψi, Γ

)

)

· Y AccumY = 1S,

otherwise 0.

The zj values MUST be chosen independently of the proof batch entries .

The performance benefit of this approach arises from computing two of the three Miller loops, and the final
exponentation, per batch instead of per proof. For the multiplications by zj , an efficient algorithm for multiscalar
multiplication such as Pippinger’s method [Bernstein2001] or the Bos–Coster method [deRooij1995] may be used.

Note: Spend proofs (of the statement in §4.15.2 ‘Spend Statement (Sapling)’ on p. 42) and output proofs (of
the statement in §4.15.3 ‘Output Statement (Sapling)’ on p. 43) use different verification keys, with different
parameters ∆, Γ, Y , and Ψ0 .. ℓ. It is straightforward to adapt the above procedure to handle multiple verification
keys; the accumulator variables Accum∆, AccumΓ,i, and AccumY are duplicated, with one term in the verification
equation for each variable, while AccumAB is shared.

Neglecting multiplications in S
(r)
T and FrS

, and other trivial operations, the cost of batched verification is therefore

• for each proof: the cost of decoding the proof representation to the form Groth16S.Proof , which requires

three point decompressions and three subgroup checks (two for S(r)∗
1 and one for S(r)∗

2 );

• for each successfully decoded proof: a Miller loop; and a 128-bit scalar multiplication by zj in S
(r)
1 ;

• for each verification key: two Miller loops; an exponentiation in S
(r)
T ; a multiscalar multiplication in S

(r)
1 with

N 128-bit scalars to compute Accum∆; and a multiscalar multiplication in S
(r)
1 with ℓ + 1 255-bit scalars to

compute
∑ℓ

i=0
[AccumΓ,i] Ψi;

• one final exponentiation.

145



Index

account, 33

activation block height, 78, 80

ALL CAPS, 7

anchor, 15, 16, 17, 30, 31, 41, 42

authenticated one-time symmetric encryption, 19, 20

auxiliary input, 26, 27, 34–36, 40–44, 104

balancing value, 37, 38, 105

bellman, 71, 72, 77

best valid block chain, 15, 45, 47, 111

bilateral consensus rule change, 78

binding (commitment scheme), 23

binding signature, 17, 22, 36, 37, 38, 39, 62, 96, 106

binding signature scheme, 60, 63

Bitcoin, 1, 7, 8, 15, 17, 18, 21, 36, 37, 73, 74, 78–81, 84–87,
91, 92, 98, 111, 113

block, 15–18, 28, 30, 31, 37, 78, 80, 84–89, 91, 99, 100, 111,
112

block chain, 7–9, 12–14, 15, 40, 45, 47–49, 71, 72, 77, 81,
85, 88, 89, 91, 94, 99, 109, 111

block chain reorganization, 45, 47, 78

block chain view, 111

block header, 15, 84–87, 89, 108, 111, 113

block height, 15, 18, 78–80, 82, 83, 85, 87–91, 100

block subsidy, 18, 89, 112

block time, 84, 87

block version number, 84, 85, 100, 110

Blossom, 99, 100

branch, 81

Bulletproofs, 39

chunks, 55

coinbase transaction, 18, 37, 80, 90, 91, 106, 108, 112

coins, 8

commitment scheme, 23, 24, 64, 65, 104, 133

commitment trapdoor, 13, 23, 24, 104

complete twisted Edwards elliptic curve, 11, 68, 99, 124

consensus rule change, 78

CryptoNote, 9, 113

Decentralized Anonymous Payment scheme, 1, 7

default diversified payment address, 29, 70

distinct-x criterion, 108, 130, 133, 134

diversified base, 18, 46, 53

diversified payment address, 12, 14, 29, 35, 54, 95, 98,
99, 101

diversified transmission base, 34

diversified transmission key, 13, 32, 34, 45, 46, 72

diversifier, 13, 18, 29, 30, 53, 54

dummy, 34, 35, 93

Equihash, 1, 18, 57, 84–86, 98, 100, 104, 110–113

family of group hashes into a subgroup, 25

Founders’ Reward, 18, 80, 89–91, 99, 106, 110, 112

full node, 109

full validator, 15, 17, 85, 109

full viewing key, 8, 12, 29, 32, 40, 48, 76, 104

genesis block, 15, 91, 111

group hash, 70

hash extractor, 25

hash function, 15, 18, 28, 54, 55, 57, 58, 61, 96, 105

hash value (of a Merkle tree node), 17, 35, 52

header, 84, 87

hiding (commitment scheme), 23

homomorphic, 64

homomorphic Pedersen commitment, 137

Human-Readable Part, 75–77

incoming viewing key, 12, 18, 29, 44–46, 48, 53, 54, 73,
75, 76, 110

incremental Merkle tree, 17, 35, 52, 55, 114

index (of a Merkle tree node), 17, 35

internal node (of a Merkle tree), 35

JoinSplit circuit, 77

JoinSplit description, 8, 14, 15, 16, 17, 21, 30–34, 36, 37,
40, 44, 45, 48, 71, 72, 79–82, 92–94, 96, 103, 108,
110

JoinSplit proof, 34

JoinSplit signature, 22, 36, 113

JoinSplit signing key, 33

JoinSplit statement, 8, 16, 27, 28, 31, 34, 37, 39, 71, 93, 94,
97, 98, 104, 110, 123

JoinSplit transfer, 16, 17, 30, 34, 36, 37, 82, 92–94, 96, 98,
110, 113

Jubjub curve, 25, 26, 33, 43, 44, 54, 56, 58, 60, 64, 76, 95,
96, 99, 104, 106, 109, 129, 131, 140, 142

key agreement scheme, 20, 28, 44, 45, 58, 59

Key Derivation Function, 20, 44, 45, 59, 60

146



key privacy, 8, 20, 54, 96, 98, 99, 101

layer (of a Merkle tree), 17, 35, 43

leaf node (of a Merkle tree), 35

libsnark (Zcash fork), 70, 71, 77, 97

linear combination, 123, 125

loose, 81

MAY, 7, 29, 39, 40, 62, 143, 145

memo field, 14, 44, 45, 48, 72, 92, 109, 113

Merkle path, 34, 35, 41, 42, 133

Mimblewimble, 39

miner subsidy, 18, 37, 89, 112

Montgomery elliptic curve, 124

MUST, 7, 15–18, 31, 32, 37, 43, 44, 46, 60, 71, 72, 75, 76,
78, 80, 81, 83–85, 87, 91, 103, 144, 145

MUST NOT, 7, 17, 31, 32, 66, 68, 69, 71, 80, 85, 103

network upgrade, 78

node (of a Merkle tree), 17, 35

nonmalleability (of proofs), 27

nonmalleability (of signatures), 22

note, 8, 9, 13, 14, 16, 18, 22, 24, 30–35, 37, 39, 40, 44–49,
58, 72, 82, 83, 92–95, 97, 106, 133

note commitment, 8, 14, 16, 17, 30, 32, 35, 40, 45–47, 82,
83, 93–95, 97, 105, 110, 133

note commitment tree, 13–15, 17, 35, 40, 52, 82–85, 94,
108

note plaintext, 14, 32, 44, 46, 49, 72, 73

note position, 8, 14, 17, 40, 49, 94

note traceability set, 9, 106

nullifier, 8, 9, 13, 14, 16, 17, 18, 30, 31, 40, 48, 49, 58, 82,
83, 93–95, 97, 98, 107, 111

nullifier deriving key, 8, 14, 40, 47

nullifier set, 15, 17, 40, 45, 47

one-time (authenticated symmetric encryption), 19

one-time (signature scheme), 21

open (a commitment), 23

outgoing cipher key, 34, 58

outgoing viewing key, 29, 33, 34, 46, 47, 76, 103, 104

output ciphertext, 58, 106

Output circuit, 77, 106, 132, 133

Output description, 8, 14, 16, 21, 24, 32–34, 37–39, 46,
47, 49, 71, 72, 79, 80, 83, 84, 104, 108

Output statement, 16, 27, 28, 32, 34, 39, 43, 72, 104, 107

Output transfer, 16, 21, 32, 37, 79, 93, 94

Overwinter, 1, 7, 36, 52, 78, 80, 81, 85, 100, 103–105,
108, 110

packing, 126

paying key, 13, 34

Pedersen commitment, 16, 38, 39, 55, 56, 64, 94, 107,
108, 135

Pedersen hash, 26, 56, 64, 94, 95, 105, 107, 108, 133, 135,
136

Pedersen value commitment, 16, 93

positioned note, 14, 40, 47, 94

preprocessing zk-SNARK, 26, 27

primary input, 26, 27, 31, 32, 40–43, 102

proof authorizing key, 8, 12, 29, 40, 58

proof batch entry, 145

proving key, 28, 77

proving system, 27, 70–72

Pseudo Random Function, 14, 19, 28, 30, 51, 57, 58, 63,
95, 97, 109

Pseudo Random Permutation, 54

public key, 13

Quadratic Arithmetic Program, 71, 72, 123

quadratic constraint program, 7, 71, 72, 109, 123, 126,
129

randomized spend verifying key, 107

Rank 1 Constraint System, 123

raw encoding, 73

receiving key, 8, 12, 110

RECOMMENDED, 7, 29

represented group, 25, 61, 68, 106

represented pairing, 26, 65, 67, 106

represented subgroup, 25, 26

root (of a Merkle tree), 17, 35, 82–85

Sapling, 1, 7, 8, 12–21, 24, 26–29, 31, 33–37, 39, 40, 45–48,
50, 52, 53, 55, 57, 58, 68, 70–85, 92–101,
103–110, 123–126, 128, 129, 131–133, 135–139, 142

segments, 55

serial numbers, 8

SHA-256 compression function, 51, 57, 63, 73–75, 110

SHA-256 hash function, 51

SHA-256d, 84, 86, 87

shielded, 8, 16, 32, 33, 92, 93

shielded input, 8, 16, 17, 34

shielded note, 92, 93

shielded output, 8, 16, 17, 44, 45

shielded payment address, 8, 12, 13, 18, 19, 33–35, 39,
46, 48, 53, 54, 73–75, 96, 111, 113

shielded transfer, 8

147



SHOULD, 7, 33, 34, 38, 54, 71, 72, 81, 85

SHOULD NOT, 7, 72, 100

SIGHASH, 36

SIGHASH transaction hash, 32, 36, 38–40, 52, 79, 91,
92, 103, 112

SIGHASH type, 36, 38, 40, 103, 114

signature batch entry, 143, 144

signature scheme, 21, 22–23, 52, 60, 63, 106

signature scheme with key homomorphism, 23, 63

signature scheme with re-randomizable keys, 22, 28,
39, 63

slanted text, 7

spend authorization address key, 40

spend authorization private key, 40

spend authorization randomizer, 40, 102

spend authorization signature, 14, 31, 32, 36, 37, 40, 96,
102, 106

spend authorization signature scheme, 60, 63

spend authorizing key, 12, 29, 58

Spend circuit, 32, 77, 106, 132, 133, 139

Spend description, 8, 16, 17, 21, 24, 31, 37–40, 49, 71, 79,
80, 83, 104, 108

Spend statement, 16, 18, 27, 28, 31, 35, 39, 40, 42, 43, 53,
72, 104, 105

Spend transfer, 16, 17, 21, 31, 36, 37, 79, 93, 94

spending key, 8, 12, 13–14, 19, 28, 29, 34, 39, 40, 45, 48,
73–77, 93, 94, 97, 107, 111, 113

Sprout, 7, 8, 12–17, 19, 20, 24, 27, 28, 32, 34–37, 40, 44,
45, 48, 50, 52, 71–74, 76–78, 82, 93–97, 99–109

statement, 17, 26, 27, 39, 41, 97, 108, 123, 139, 142, 145

synthetic blinding factor, 39

target threshold, 84, 87, 88

transaction, 8, 9, 12, 15, 16–18, 21, 22, 30–34, 36–40, 45,
47–49, 78–85, 92–94, 100, 103, 104, 108, 109,
114

transaction binding verification key, 38, 80

transaction fee, 18

transaction version number, 36, 71, 79–82, 110

transmission key, 8, 13, 14, 20, 33, 44, 45, 48, 72

transmitted note(s) ciphertext, 14, 30–34, 44, 46–49, 82,
83, 96

transparent, 8, 16, 17, 36, 74, 79–81, 90–92, 100, 112

transparent address, 73

transparent input, 15, 36, 37

transparent output, 15, 37

transparent transfer, 15

transparent value pool, 15, 16, 30, 37, 82

trapdoor (of a commitment), 23

treestate, 15, 16–17, 30, 31, 40, 84, 85, 103, 110, 114

Uniform Random String, 25, 26, 105

unpacking, 126

unspent transaction output set, 17

valid block chain, 15, 17, 93, 94

valid Equihash solution, 85, 86

value commitment, 8, 17, 21, 31, 32, 37–39, 46, 47, 83

value commitment scheme, 39

value pool (Sapling), 37

vanity, 29

verifying key, 28, 77

version group ID, 80, 81

weak PRF, 96

windowed, 64

windowed Pedersen commitment, 136, 137

zatoshi, 13, 37, 51, 89, 91

zcashd, 30, 86, 88, 95, 99, 109, 110

ZEC, 13

zero-knowledge proof, 13, 31, 32, 82, 83, 94, 102, 104, 111

zero-knowledge proving key, 27

zero-knowledge proving system, 26, 27, 113

zero-knowledge verifying key, 27

Zerocash, 1, 7, 8, 19, 37, 92–98, 109, 111–114

zk proof, 31, 40

zk-SNARK, 1, 7, 8, 17, 70, 71, 92, 101

zk-SNARK circuit, 54, 68, 77

zk-SNARK proof, 16, 39, 96

148


	Contents
	1 Introduction
	1.1 Caution
	1.2 High-level Overview

	2 Notation
	3 Concepts
	3.1 Payment Addresses and Keys
	3.2 Notes
	3.2.1 Note Plaintexts and Memo Fields

	3.3 The Block Chain
	3.4 Transactions and Treestates
	3.5 JoinSplit Transfers and Descriptions
	3.6 Spend Transfers, Output Transfers, and their Descriptions
	3.7 Note Commitment Trees
	3.8 Nullifier Sets
	3.9 Block Subsidy and Founders' Reward
	3.10 Coinbase Transactions

	4 Abstract Protocol
	4.1 Abstract Cryptographic Schemes
	4.1.1 Hash Functions
	4.1.2 Pseudo Random Functions
	4.1.3 Authenticated One-Time Symmetric Encryption
	4.1.4 Key Agreement
	4.1.5 Key Derivation
	4.1.6 Signature
	4.1.6.1 Signature with Re-Randomizable Keys
	4.1.6.2 Signature with Private Key to Public Key Homomorphism

	4.1.7 Commitment
	4.1.8 Represented Group
	4.1.9 Hash Extractor
	4.1.10 Group Hash
	4.1.11 Represented Pairing
	4.1.12 Zero-Knowledge Proving System

	4.2 Key Components
	4.2.1 Sprout Key Components
	4.2.2 Sapling Key Components

	4.3 JoinSplit Descriptions
	4.4 Spend Descriptions
	4.5 Output Descriptions
	4.6 Sending Notes
	4.6.1 Sending Notes (Sprout)
	4.6.2 Sending Notes (Sapling)

	4.7 Dummy Notes
	4.7.1 Dummy Notes (Sprout)
	4.7.2 Dummy Notes (Sapling)

	4.8 Merkle path validity
	4.9 SIGHASH Transaction Hashing
	4.10 Non-malleability (Sprout)
	4.11 Balance (Sprout)
	4.12 Balance and Binding Signature (Sapling)
	4.13 Spend Authorization Signature
	4.14 Note Commitments and Nullifiers
	4.15 Zk-SNARK Statements
	4.15.1 JoinSplit Statement (Sprout)
	4.15.2 Spend Statement (Sapling)
	4.15.3 Output Statement (Sapling)

	4.16 In-band secret distribution (Sprout)
	4.16.1 Encryption (Sprout)
	4.16.2 Decryption (Sprout)

	4.17 In-band secret distribution (Sapling)
	4.17.1 Encryption (Sapling)
	4.17.2 Decryption using an Incoming Viewing Key (Sapling)
	4.17.3 Decryption using a Full Viewing Key (Sapling)

	4.18 Block Chain Scanning (Sprout)
	4.19 Block Chain Scanning (Sapling)

	5 Concrete Protocol
	5.1 Caution
	5.2 Integers, Bit Sequences, and Endianness
	5.3 Constants
	5.4 Concrete Cryptographic Schemes
	5.4.1 Hash Functions
	5.4.1.1 SHA-256 and SHA256Compress Hash Functions
	5.4.1.2 BLAKE2 Hash Function
	5.4.1.3 Merkle Tree Hash Function
	5.4.1.4 hSig Hash Function
	5.4.1.5 CRHivk Hash Function
	5.4.1.6 DiversifyHash Hash Function
	5.4.1.7 Pedersen Hash Function
	5.4.1.8 Mixing Pedersen Hash Function
	5.4.1.9 EquihashGenerator

	5.4.2 Pseudo Random Functions
	5.4.3 Authenticated One-Time Symmetric Encryption
	5.4.4 Key Agreement and Derivation
	5.4.4.1 Sprout Key Agreement
	5.4.4.2 Sprout Key Derivation
	5.4.4.3 Sapling Key Agreement
	5.4.4.4 Sapling Key Derivation

	5.4.5 JoinSplit Signature
	5.4.6 RedDSA and RedJubjub
	5.4.6.1 Spend Authorization Signature
	5.4.6.2 Binding Signature

	5.4.7 Commitment schemes
	5.4.7.1 Sprout Note Commitments
	5.4.7.2 Windowed Pedersen commitments
	5.4.7.3 Homomorphic Pedersen commitments

	5.4.8 Represented Groups and Pairings
	5.4.8.1 BN-254
	5.4.8.2 BLS12-381
	5.4.8.3 Jubjub
	5.4.8.4 Hash Extractor for Jubjub
	5.4.8.5 Group Hash into Jubjub

	5.4.9 Zero-Knowledge Proving Systems
	5.4.9.1 BCTV14
	5.4.9.2 Groth16


	5.5 Encodings of Note Plaintexts and Memo Fields
	5.6 Encodings of Addresses and Keys
	5.6.1 Transparent Addresses
	5.6.2 Transparent Private Keys
	5.6.3 Sprout Shielded Payment Addresses
	5.6.4 Sapling Shielded Payment Addresses
	5.6.5 Sprout Incoming Viewing Keys
	5.6.6 Sapling Incoming Viewing Keys
	5.6.7 Sapling Full Viewing Keys
	5.6.8 Sprout Spending Keys
	5.6.9 Sapling Spending Keys

	5.7 BCTV14 zk-SNARK Parameters
	5.8 Groth16 zk-SNARK Parameters
	5.9 Randomness Beacon

	6 Network Upgrades
	7 Consensus Changes from Bitcoin
	7.1 Encoding of Transactions
	7.2 Encoding of JoinSplit Descriptions
	7.3 Encoding of Spend Descriptions
	7.4 Encoding of Output Descriptions
	7.5 Block Header
	7.6 Proof of Work
	7.6.1 Equihash
	7.6.2 Difficulty filter
	7.6.3 Difficulty adjustment
	7.6.4 nBits conversion
	7.6.5 Definition of Work

	7.7 Calculation of Block Subsidy and Founders' Reward
	7.8 Payment of Founders' Reward
	7.9 Changes to the Script System
	7.10 Bitcoin Improvement Proposals

	8 Differences from the Zerocash paper
	8.1 Transaction Structure
	8.2 Memo Fields
	8.3 Unification of Mints and Pours
	8.4 Faerie Gold attack and fix
	8.5 Internal hash collision attack and fix
	8.6 Changes to PRF inputs and truncation
	8.7 In-band secret distribution
	8.8 Omission in Zerocash security proof
	8.9 Miscellaneous

	9 Acknowledgements
	10 Change History
	11 References
	Appendices
	A Circuit Design
	A.1 Quadratic Constraint Programs
	A.2 Elliptic curve background
	A.3 Circuit Components
	A.3.1 Operations on individual bits
	A.3.1.1 Boolean constraints
	A.3.1.2 Conditional equality
	A.3.1.3 Selection constraints
	A.3.1.4 Nonzero constraints
	A.3.1.5 Exclusive-or constraints

	A.3.2 Operations on multiple bits
	A.3.2.1 [Un]packing modulo rS
	A.3.2.2 Range check

	A.3.3 Elliptic curve operations
	A.3.3.1 Checking that affine-ctEdwards coordinates are on the curve
	A.3.3.2 ctEdwards [de]compression and validation
	A.3.3.3 ctEdwards ↔ Montgomery conversion
	A.3.3.4 Affine-Montgomery arithmetic
	A.3.3.5 Affine-ctEdwards arithmetic
	A.3.3.6 Affine-ctEdwards nonsmall-order check
	A.3.3.7 Fixed-base affine-ctEdwards scalar multiplication
	A.3.3.8 Variable-base affine-ctEdwards scalar multiplication
	A.3.3.9 Pedersen hash
	A.3.3.10 Mixing Pedersen hash

	A.3.4 Merkle path check
	A.3.5 Windowed Pedersen Commitment
	A.3.6 Homomorphic Pedersen Commitment
	A.3.7 BLAKE2s hashes

	A.4 The Sapling Spend circuit
	A.5 The Sapling Output circuit

	B Batching Optimizations
	B.1 RedDSA batch verification
	B.2 Groth16 batch verification

	Index

