
Zcash Protocol Specification

Sean Bowe — Daira Hopwood — Taylor Hornby

December 23, 2015

1 Introduction

Zcash is an implementation of the decentralized anonymous payment (DAP) scheme Zerocash with minor adjust-
ments to terminology, functionality and performance. It bridges the existing value transfer scheme used by Bitcoin
with an anonymous payment scheme protected by zero-knowledge succinct non-interactive arguments of knowledge
(zk-SNARKs). Sean: I want to make sure we add citations here for the original paper

2 Concepts

2.1 Integers and Endianness

Abstractly, integers have a signedness (signed or unsigned), and a bit length. The limits are the same as for the
usual two’s complement system. All integers in the publicly-visible Zcash protocol are encoded in big endian two’s
complement.

If unspecified, curve points, field elements, etc., are encoded according to the crypto libraries the Zcash imple-
mentation uses.

2.2 Cryptographic Functions

CRH is a collision-resistant hash function. In Zcash , the SHA-256 compression function is used which takes a
512-bit block and produces a 256-bit hash. This is different from the SHA-256 function, which hashes arbitrary-length
strings.

PRFx is a pseudo-random function seeded by x. Three independent PRFx are needed in our scheme: PRFaddr
x ,

PRFsn
x , and PRFpki

x . It is required that PRFsn
x be collision-resistant in order to prevent a double-spending attack Eli:

I don’t see how to use a collision to double spend. If anything, a collision in PRFpki
x seems more usable to double spend

Sean: If you could create two ρ such that there is a collision you could spend the same bucket twice. The original paper
makes the claim that this must be collision resistant. In Zcash , the SHA-256 compression function is used to seed
all three of these functions. The bits 00, 01 and 10 are included (respectively) within the blocks that are hashed,
ensuring that the functions are independent.

apk = PRFaddr
ask

(0) = CRH *
,

256 bit ask 0 0 0254 +
-

sn = PRFsn
ask

(ρ) = CRH *
,

256 bit ask 0 1 254 bit truncated ρ +
-

hi = PRFpki
ask (hSig) = CRH *

,
256 bit ask 1 0 i 253 bit truncated hSig +

-

1



2.3 Confidential Address Key Pair

A key pair (addrpk, addrsk) is generated by users who wish to receive coins under this scheme. The public addrpk
is called a protected address and is a tuple (apk, pkenc) which are the public components of a spend authority key pair
(apk, ask) and a key-private encryption key pair (pkenc, skenc). The private addrsk is called a protected address secret
and is a tuple (ask, skenc) which are the respective private components of the aforementioned spend authority and
key-private encryption key pairs.

Although users can accept payment from multiple parties with a single addrpk without either party being aware,
it is still recommended to generate a new address for each expected transaction to maximize privacy in the event
that multiple sending parties are compromised or collude.

2.4 Buckets

A bucket (denoted b) is a tuple (v, apk, r, ρ) which represents that a value v is spendable by the recipient who
holds the spend authority key pair (apk, ask) such that apk = PRFaddr

ask
(0). r and ρ are randomly generated tokens by

the sender. Only a hash of these values is disclosed publicly, which allows these random tokens to blind the value
and recipient except to those who possess these tokens.

In-band secret distribution In order to send the secret v, r and ρ to the recipient (necessary for the recipient
to later spend) without requiring an out-of-band communication channel, the key-private encryption public key pkenc
is used to encrypt these secrets to form an transmitted bucket ciphertext. The recipient’s possession of the associated
(addrpk, addrsk) (which contains both apk and skenc) is used to reconstruct the original bucket.

Bucket commitments The underlying v and apk are blinded with r and ρ using the collision-resistant hash
function CRH in a multi-layered process. The resulting hash bm = BucketCommitment(b).

InternalH := CRH *
,

256 bit apk 256 bit ρ +
-

k := CRH *
,

256 bit r 256 bit InternalH +
-

bm := CRH *
,

64 bit v 192 bit padding 256 bit k +
-

Serials A serial number (denoted sn) equals PRFsn
ask

(ρ). Buckets are spent by proving knowledge of ρ and ask
in zero-knowledge while disclosing sn, allowing sn to be used to prevent double-spending.

2



2.5 Bucket Commitment Tree

bm1

?

rt

bm2 bm3 bm4 bm5 ?

The bucket commitment tree is an incremental merkle tree of depth d used to store bucket commitments that
transactions produce. Just as the unspent transaction output set (UTXO) used in Bitcoin proper, it is used to express
the existence of value and the capability to spend it. However, unlike the UTXO, it is not the job of this tree to
protect against double-spending, as it is append-only.

Blocks in the blockchain are associated (by all nodes) with the root of this tree after all of its constituent
transactions’ bucket commitments have been entered into the tree associated with the previous block.

2.6 Spent Serials Map

Eli: Would be good to formally define the structure of a transaction, similar to the way a bucket is defined (as a
quadruple). Transactions insert Eli: a tx is just a string, so it doesn’t insert anything. Rather, nodes process tx’s and the
“good” ones lead to the addition of serials to the spent serials map. serials into a spent serials map which is maintained
alongside the UTXO by all nodes. Transactions that attempt to insert a serial into this map that already exists
within it are invalid as they are attempting to double-spend. Eli: After defining transaction, one should define what a
legal tx is (this definition depends on a particular blockchain) and only then can one talk about “attempts” of transactions,
and insertions of serial numbers into the spent serials map.

2.7 Bitcoin Transactions

Eli: Please formally define what a tx is. I don’t think it’s merely a sequence of inputs and outputs. The outputs are
probably buckets (as defined above) and maybe the inputs are, too. Perhaps one should talk about a tx-bucket (which is
unhidden) and a tx which is mostly hashed-stuff + a SNARK) Bitcoin transactions consist of a vector Eli: sequence?
vector implies “vector space” which doens’t exist here of inputs (vin) and a vector of outputs (vout). Inputs and
outputs are associated with a value Eli: assuing a tx-bucket is a pair of sequences — an input-sequence and an output-
sequence, and each sequence is a sequence of buckets, one should define the in-value of the tx-bucket as the sum of values
in the in-buckets (ditto for out-value) and the remaining value is their difference. The total value of the outputs must
not exceed the total value of the inputs.

Value pool Transaction inputs insert value into a value pool, and transaction outputs remove value from this
pool. The remaining value in the pool is available to miners as a fee.

3 Pour Transactions (PourTx)

Eli: Hmm, I think things are starting to get confused here, let’s try to clarify the theory/crypto. Informally, buckets and
transactions are data, whereas Pour is best thought of as a circuit that outputs either 1 (“true”) or 0 (“false”). The
theory of SNARKs (as supported by libsnark) is such that if the circuit outputs “true” then you can generate a SNARK
for that set of inputs, and otherwise you can’t (its cryptographically infeasible to do so). So we should describe formally

3



what the inputs to the Pour circuit are, and then define the computation preformed by the Pour circuit, i.e., describe how
it decides whether to output 0 or 1. More below

PourTxs are the primary operations Eli: In the academic paper, a Pour is a circuit (that defines an NP-language),
and that circuit is the most crucial part of the construction. So if you want to use “Pour” to describe the algorithm that
generates a tx, you’ll be (i) deviating from the academic paper in a rather confusing way and (ii) you still need to define
the “Pour-circuit” which is at the heart of the construction performed by transactions that interact with our scheme.
In principle, it is the action of spending NOld buckets bold and creating NNew buckets bnew. Zcash transactions have
an additional field vpour, which is a vector of PourTxs. Each PourTx consists of: Eli: reached here

vpub old which is a value vpubold that the pour removes from the value pool.

vpub new which is a value vpubnew that the pour inserts into the value pool.

anchor which is a merkle root rt of the bucket commitment tree at some block height in the past, or the merkle
root produced by a previous pour in this transaction. Sean: We need to be more specific here.

scriptSig which is a Bitcoin script which creates conditions for acceptance of a PourTx in a transaction. The
SHA256Compress hash of this value is hSig.

scriptPubKey which is a Bitcoin script used to satisfy the conditions of the scriptSig.

serials which is an NOld size vector of serials snold
1 , snold

2 , ..., snold
NOld

.

commitments which is a NNew size vector of bucket commitments bmnew1 , bmnew2 , ..., bmnewNNew
.

bucketCiphertexts which is a NNew size vector each element of which is a transmitted bucket ciphertext.

vmacs which is a NOld size vector of message authentication codes h which bind hSig to each ask of the PourTx.

zkproof which is the zero-knowledge proof πPOUR.

Merkle root validity A PourTx is valid if rt is a bucket commitment tree root found in either the blockchain
or a merkle root produced by inserting the bucket commitments of a previous PourTx in the transaction to the bucket
commitment tree identified by that previous PourTx’s anchor.

Non-malleability A PourTx is valid if the script formed by appending scriptPubKey to scriptSig returns
true. The scriptSig is cryptographically bound to πPOUR.

Balance A PourTx can be seen, from the perspective of the transaction, as an input and an output simultane-
ously. vpub old takes value from the value pool and vpub new adds value to the value pool. As a result, vpub old

is treated like an output value, whereas vpub new is treated like an input value.

Commitments and Serials Transactions which contain PourTxs, when entered into the blockchain, append to
the bucket commitment tree with all constituent bucket commitments. All of the constituent serials are also entered
into the spent serials map of the blockchain and mempool. Transactions are not valid if they attempt to add a serial
to the spent serials map that already exists.

3.1 πPOUR

In Zcash , NOld and NNew are both 2.

A valid instance of πPOUR assures that given a primary input (rt, snold
1 , snold

2 , bmnew1 , bmnew2 , vpubold, vpubnew,
hSig, h1, h2), a witness of auxiliary input (path1, path2, bold

1 , bold
2 , ask

old
1 , ask

old
2 , bnew

1 , bnew
2 ) exists, where:

for each i ∈ {1, 2}: bold
i = (voldi , apk

old
i , roldi , ρoldi )

for each i ∈ {1, 2}: bnew
i = (vnewi , apk

new
i , rnewi , ρnewi ).

The following conditions hold:

4



Merkle path validity for each i ∈ {1, 2} | voldi , 0: pathi must be a valid path of depth d from
BucketCommitment(bold

i ) to bucket commitment merkle tree root rt.

Balance vpubold + vold1 + vold2 = vpubnew + vnew1 + vnew2 .

Serial integrity for each i ∈ {1, 2}: PRFsn
ask

old
i

(ρoldi ) = snold
i .

Spend authority for each i ∈ {1, 2}: apk
old
i = PRFaddr

ask
old
i

(0).

Non-malleability for each i ∈ {1, 2}: hi = PRFpki−1
ask

old
i

(hSig)

Commitment integrity for each i ∈ {1, 2}: bmnewi = BucketCommitment(bnew
i )

4 Encoding addresses, private keys, buckets, and pours

This section describes how Zcash encodes public addresses, private keys, buckets, and pours.
Addresses, keys, and buckets, can be encoded as a byte string; this is called the raw encoding. This byte string can

then be further encoded using Base58Check. The Base58Check layer is the same as for upstream Bitcoin addresses.
SHA-256 compression function outputs are always represented as strings of 32 bytes.
The language consisting of the following encoding possibilities is prefix-free.

4.1 Cleartext Public Addresses

TBD. Identical to Bitcoin?

4.2 Cleartext Private Keys

TBD. Identical to Bitcoin?

4.3 Protected Public Addresses

A protected address consists of apk and pkenc. apk is a SHA-256 compression function output. pkenc is an encryption
public key (currently ECIES, but this may change to Curve25519/crypto box), which is an elliptic curve point.

4.3.1 Raw Encoding

The raw encoding of a protected address consists of:

0x92 apk (32 bytes) A 33-byte encoding of pkenc

• A byte, 0x92, indicating this version of the raw encoding of a Zcash public address.

• 32 bytes specifying apk.

• An encoding of pkenc: The byte 0x01, followed by 32 bytes representing the x coordinate of the elliptic curve
point according to the FE20SP primitive specified in section 5.5.4 of IEEE Std 1363-2000. [Non-normative
note: Since the curve is over a prime field, this is just the 32-byte big-endian representation of the x coordinate.
The overall encoding matches the EC20SP-X primitive specified in section 5.5.6.3 of IEEE Std 1363a-2004.]

TODO: check that this lead byte is distinct from other Bitcoin stuff, and produces ‘z’ as the
Base58Check leading character.

TODO: what about the network version byte?

5



4.4 Protected Address Secrets

A protected address secret consists of ask and skenc. ask is a SHA-256 compression function output. skenc is an
encryption private key (currently ECIES), which is an integer.

4.4.1 Raw Encoding

The raw encoding of a protected address secret consists of, in order:

0x93 ask (32 bytes) skenc (32 bytes)

• A byte 0x93 indicating this version of the raw encoding of a Zcash private key.

• 32 bytes specifying ask.

• 32 bytes specifying a big-endian encoding of skenc.

TODO: check that this lead byte is distinct from other Bitcoin stuff, and produces ‘z’ as the
Base58Check leading character.

TODO: what about the network version byte?

4.5 Buckets

Transmitted buckets are stored on the blockchain in encrypted form, together with a bucket commitmentbm.
A transmitted bucket ciphertext is an ECIES key-private encryption of a transmitted bucket plaintextto a key-

private encryptionkey pkenc.
A transmitted bucket plaintextconsists of (v, ρ, r), where:

• v is a 64-bit unsigned integer representing the value of the bucket in zatoshi.

• ρ is a 32-byte PRFsn
ask

seed.

• r is a 32-byte COMM trapdoor.

Note that the value s described as being part of a bucket/coin in the Zerocash paper is not encoded because it
is fixed to zero.

4.6 Raw Encoding

The raw encoding of a transmitted bucket plaintextconsists of, in order:

0x00 v (8 bytes, big endian) ρ (32 bytes) r (32 bytes)

• A byte 0x00 indicating this version of the raw encoding of a transmitted bucket plaintext.

• 8 bytes specifying a big-endian encoding of v.

• 32 bytes specifying ρ.

• 32 bytes specifying r.

5 Pours (within a transaction on the blockchain)

TBD.

6 Transactions

TBD.

6


