Zcash Protocol Specification Version 2018.0-beta-15 [Overwinter+Sapling]

Daira Hopwood ${ }^{\dagger}$
Sean Bowe ${ }^{\dagger}$ - Taylor Hornby ${ }^{\dagger}$ - Nathan Wilcox ${ }^{\dagger}$

March 19, 2018

Abstract

Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash, with security fixes and adjustments to terminology, functionality and performance. It bridges the existing transparent payment scheme used by Bitcoin with a shielded payment scheme secured by zeroknowledge succinct non-interactive arguments of knowledge ($z k$-SNARKs). It attempts to address the problem of mining centralization by use of the Equihash memory-hard proof-of-work algorithm. This draft specification defines the next upgrade of the Zcash consensus protocol, codenamed Overwinter, and the subsequent upgrade, codenamed Sapling. It is a work in progress and should not be used as a reference for the current protocol.

Keywords: anonymity, applications, cryptographic protocols, electronic commerce and payment, financial privacy, proof of work, zero knowledge.

Contents

1 Introduction 6
1.1 Caution . 6
1.2 High-level Overview . 6

2 Notation 8
3 Concepts 10
3.1 Payment Addresses and Keys . 10
3.2 Notes . 11
3.2.1 Note Plaintexts and Memo Fields . 12
3.3 The Block Chain . 12
3.4 Transactions and Treestates . 13
3.5 JoinSplit Transfers and Descriptions . 13
3.6 Spend Transfers, Output Transfers, and their Descriptions . 14
3.7 Note Commitment Trees . 15
3.8 Nullifier Sets . 15
3.9 Block Subsidy and Founders' Reward . 16

[^0]3.10 Coinbase Transactions 16
4 Abstract Protocol 16
4.1 Abstract Cryptographic Schemes 16
4.1.1 Hash Functions 16
4.1.2 Pseudo Random Functions 17
4.1.3 Authenticated One-Time Symmetric Encryption 17
4.1.4 Key Agreement 18
4.1.5 Key Derivation 18
4.1.6 Signature 19
4.1.6.1 Signature with Re-Randomizable Keys 20
4.1.7 Commitment 21
4.1.8 Represented Group 21
4.1.9 Hash Extractor 22
4.1.10 Group Hash 22
4.1.11 Represented Pairing 23
4.1.12 Zero-Knowledge Proving System 23
4.2 Key Components 24
4.2.1 Sprout Key Components 24
4.2.2 Sapling Key Components 24
4.3 JoinSplit Descriptions 25
4.4 Spend Descriptions 26
4.5 Output Descriptions 27
4.6 Sending Notes 27
4.6.1 Sending Notes (Sprout) 27
4.6.2 Dummy Notes (Sprout) 28
4.6.3 Sending Notes (Sapling) 28
4.7 Merkle path validity 29
4.8 Non-malleability 30
4.9 Balance 30
4.10 Note Commitments and Nullifiers 31
4.11 Zk-SNARK Statements 31
4.11.1 JoinSplit Statement (Sprout) 31
4.11.2 Spend Statement (Sapling) 32
4.11.3 Output Statement (Sapling) 33
4.12 In-band secret distribution 34
4.12.1 Encryption (Sprout) 34
4.12.2 Decryption by a Recipient (Sprout) 35
5 Concrete Protocol 36
5.1 Caution 36
5.2 Integers, Bit Sequences, and Endianness 36
5.3 Constants 36
5.4 Concrete Cryptographic Schemes 37
5.4.1 Hash Functions 37
5.4.1.1 SHA-256 and SHA256Compress Hash Functions 37
5.4.1.2 BLAKE2 Hash Function 38
5.4.1.3 Merkle Tree Hash Function 38
5.4.1.4 $\quad \mathrm{h}_{\mathrm{Sig}}$ Hash Function 39
5.4.1.5 CRH ${ }^{\text {ivk }}$ Hash Function 39
5.4.1.6 DiversifyHash Hash Function 40
5.4.1.7 Pedersen Hash Function 40
5.4.1.8 Mixing Pedersen Hash Function 42
5.4.1.9 Equihash Generator 42
5.4.2 Pseudo Random Functions 43
5.4.3 Authenticated One-Time Symmetric Encryption 44
5.4.4 Key Agreement and Derivation 44
5.4.4.1 Sprout Key Agreement 44
5.4.4.2 Sprout Key Derivation 44
5.4.4.3 Sapling Key Agreement 45
5.4.4.4 Sapling Key Derivation 45
5.4.5 JoinSplit Signature 45
5.4.6 Spend Authorization Signature 45
5.4.7 Commitment schemes 46
5.4.7.1 \quad Sprout Note Commitments 46
5.4.7.2 Windowed Pedersen commitments 46
5.4.7.3 Homomorphic Pedersen commitments 47
5.4.8 Represented Groups and Pairings 47
5.4.8.1 BN-254 47
5.4.8.2 BLS12-381 48
5.4.8.3 Jubjub 50
5.4.8.4 Hash Extractor for Jubjub 50
5.4.8.5 Group Hash into Jubjub 51
5.4.9 Zero-Knowledge Proving Systems 52
5.4.9.1 PHGR13 52
5.4.9.2 Groth16 52
5.5 Encodings of Note Plaintexts and Memo Fields 53
5.6 Encodings of Addresses and Keys 54
5.6.1 Transparent Addresses 54
5.6.2 Transparent Private Keys 55
5.6.3 Sprout Shielded Payment Addresses 55
5.6.4 Sapling Shielded Payment Addresses 55
5.6.5 Sprout Incoming Viewing Keys 56
5.6.6 Sapling Incoming Viewing Keys 56
5.6.7 Sapling Full Viewing Keys 56
5.6.8 Sprout Spending Keys 57
5.6.9 Sapling Spending Keys 57
5.7 Sprout zk-SNARK Parameters 58
5.8 Sapling zk-SNARK Parameters 58
6 Network Upgrades 58
7 Consensus Changes from Bitcoin 59
7.1 Encoding of Transactions 59
7.2 Encoding of JoinSplit Descriptions 61
7.3 Encoding of Spend Descriptions 62
7.4 Encoding of Output Descriptions 62
7.5 Block Header 63
7.6 Proof of Work 64
7.6.1 Equihash 65
7.6.2 Difficulty filter 66
7.6.3 Difficulty adjustment 66
7.6.4 nBits conversion 67
7.6.5 Definition of Work 67
7.7 Calculation of Block Subsidy and Founders' Reward 68
7.8 Payment of Founders' Reward 68
7.9 Changes to the Script System 70
7.10 Bitcoin Improvement Proposals 70
8 Differences from the Zerocash paper 70
8.1 Transaction Structure 70
8.2 Memo Fields 70
8.3 Unification of Mints and Pours 70
8.4 Faerie Gold attack and fix 71
8.5 Internal hash collision attack and fix 72
8.6 Changes to PRF inputs and truncation 73
8.7 In-band secret distribution 74
8.8 Omission in Zerocash security proof 75
8.9 Miscellaneous 75
9 Acknowledgements 76
10 Change History 76
11 References 84
Appendices 90
A Circuit Design 90
A. 1 Quadratic Arithmetic Programs 90
A. 2 Elliptic curve background 90
A. 3 Circuit Components 91
A.3.1 Operations on individual bits 91
A.3.1.1 Boolean constraints 91
A.3.1.2 Selection constraints 92
A.3.1.3 Nonzero constraints 92
A.3.1.4 Exclusive-or constraints 92
A.3.2 Operations on multiple bits 92
A.3.2.1 [Un]packing modulo $r_{\mathbb{S}}$ 92
A.3.2.2 Range check 93
A.3.3 Elliptic curve operations 93
A.3.3.1 Checking that affine Edwards coordinates are on the curve 93
A.3.3.2 Edwards [de]compression and validation 94
A.3.3.3 Edwards \leftrightarrow Montgomery conversion 94
A.3.3.4 Affine-Montgomery arithmetic 95
A.3.3.5 Affine-Edwards arithmetic 96
A.3.3.6 Affine-Edwards nonsmall-order check 97
A.3.3.7 Fixed-base affine-Edwards scalar multiplication 98
A.3.3.8 Variable-base affine-Edwards scalar multiplication 98
A.3.3.9 Pedersen hash 99
A.3.3.10 Mixing Pedersen hash 100
A.3.4 Merkle path check 100
A.3.5 Windowed Pedersen Commitment 101
A.3.6 Homomorphic Pedersen Commitment 101
A.3.7 BLAKE2s hashes 101
A. 4 The SaplingSpend circuit 102
A. 5 The SaplingOutput circuit 102

1 Introduction

Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash [BCG+2014], with some security fixes and adjustments to terminology, functionality and performance. It bridges the existing transparent payment scheme used by Bitcoin [Naka2OO8] with a shielded payment scheme secured by zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs).

Changes from the original Zerocash are explained in §8 ‘Differences from the Zerocash paper' on p.70, and highlighted in magenta throughout the document. Changes specific to the Overwinter upgrade (which are also changes from Zerocash) are highlighted in blue. Changes specific to the Sapling upgrade following Overwinter (which are also changes from Zerocash) are highlighted in green. The name Sprout is used for the Zcash protocol prior to Sapling (both before and after Overwinter).
Technical terms for concepts that play an important rôle in Zcash are written in slanted text. Italics are used for emphasis and for references between sections of the document.

The key words MUST, MUST NOT, SHOULD, SHOULD NOT, MAY, and RECOMMENDED in this document are to be interpreted as described in [RFC-2119] when they appear in ALL CAPS. These words may also appear in this document in lower case as plain English words, absent their normative meanings.

This specification is structured as follows:

- Notation - definitions of notation used throughout the document;
- Concepts - the principal abstractions needed to understand the protocol;
- Abstract Protocol - a high-level description of the protocol in terms of ideal cryptographic components;
- Concrete Protocol - how the functions and encodings of the abstract protocol are instantiated;
- Network Upgrades - the strategy for upgrading from Sprout to Overwinter and then Sapling;
- Consensus Changes from Bitcoin - how Zcash differs from Bitcoin at the consensus layer, including the Proof of Work;
- Differences from the Zerocash protocol - a summary of changes from the protocol in [BCG+2014].
- Appendix: Circuit Design - details of how the Sapling circuit is defined as a Quadratic Arithmetic Program.

1.1 Caution

Zcash security depends on consensus. Should a program interacting with the Zcash network diverge from consensus, its security will be weakened or destroyed. The cause of the divergence doesn't matter: it could be a bug in your program, it could be an error in this documentation which you implemented as described, or it could be that you do everything right but other software on the network behaves unexpectedly. The specific cause will not matter to the users of your software whose wealth is lost.
Having said that, a specification of intended behaviour is essential for security analysis, understanding of the protocol, and maintenance of Zcash and related software. If you find any mistake in this specification, please file an issue at https://github.com/zcash/zips/issues or contact security@z.cash.

1.2 High-level Overview

The following overview is intended to give a concise summary of the ideas behind the protocol, for an audience already familiar with block chain-based cryptocurrencies such as Bitcoin. It is imprecise in some aspects and is not part of the normative protocol specification. This overview applies to both Sprout and Sapling, differences in the cryptographic constructions used notwithstanding.

Value in Zcash is either transparent or shielded. Transfers of transparent value work essentially as in Bitcoin and have the same privacy properties. Shielded value is carried by notes ${ }^{1}$, which specify an amount and (indirectly) a shielded payment address, which is a destination to which notes can be sent. As in Bitcoin, this is associated with a private key that can be used to spend notes sent to the address; in Zcash this is called a spending key.
To each note there is cryptographically associated a note commitment, and a nullifier ${ }_{-}^{1}$ (so that there is a 1:1:1 relation between notes, note commitments, and nullifiers). Computing the nullifier requires the associated private spending key (or the nullifier deriving key for Sapling notes). It is infeasible to correlate the note commitment with the corresponding nullifier without knowledge of at least this key. An unspent valid note, at a given point on the block chain, is one for which the note commitment has been publically revealed on the block chain prior to that point, but the nullifier has not. TODO: The "1:1:1" part isn't correct for Sapling.

A transaction can contain transparent inputs, outputs, and scripts, which all work as in Bitcoin [Bitc-Protocol]. It also includes JoinSplit descriptions, Spend descriptions, and Output descriptions. Together these describe shielded transfers which take in shielded input notes, and/or produce shielded output notes. (For Sprout, each JoinSplit description handles up to two shielded inputs and up to two shielded outputs. For Sapling, each shielded input or shielded output has its own description.) It is also possible for value to be transferred between the transparent and shielded domains.

The nullifiers of the input notes are revealed (preventing them from being spent again) and the commitments of the output notes are revealed (allowing them to be spent in future). A transaction also includes computationally sound $z k-S N A R K$ proofs, which prove that all of the following hold except with insignificant probability:
For each shielded input,

- [Sapling onward] there is a revealed value commitment to the same value as the input note;
- some revealed note commitment exists for the input note;
- the prover knew the proof authorizing key of the input note;
- the nullifier and note commitment are computed correctly.
and for each shielded output,
- [Sapling onward] there is a revealed value commitment to the same value as the output note;
- the note commitment is computed correctly;
- the output note is generated in such a way that it is infeasible to cause its nullifier to collide with the nullifier of any other note.

For Sprout, the JoinSplit statement also includes an explicit balance check. For Sapling, the value commitments corresponding to the inputs and outputs are checked to balance (together with any net transparent input or output) outside the $z k-S N A R K$.

In addition, various measures (differing between Sprout and Sapling) are used to ensure that the transaction cannot be modified by a party not authorized to do so.

Outside the $z k-S N A R K$, it is checked that the nullifiers for the input notes had not already been revealed (i.e. they had not already been spent).

A shielded payment address includes a transmission key for a key-private asymmetric encryption scheme. "Keyprivate" means that ciphertexts do not reveal information about which key they were encrypted to, except to a holder of the corresponding private key, which in this context is called the receiving key. This facility is used to communicate encrypted output notes on the block chain to their intended recipient, who can use the receiving key to scan the block chain for notes addressed to them and then decrypt those notes.

The basis of the privacy properties of Zcash is that when a note is spent, the spender only proves that some commitment for it had been revealed, without revealing which one. This implies that a spent note cannot be linked

[^1]to the transaction in which it was created. That is, from an adversary's point of view the set of possibilities for a given note input to a transaction-its note traceability set-includes all previous notes that the adversary does not control or know to have been spent. This contrasts with other proposals for private payment systems, such as CoinJoin [Bitc-CoinJoin] or CryptoNote [vanS2O14], that are based on mixing of a limited number of transactions and that therefore have smaller note traceability sets.
The nullifiers are necessary to prevent double-spending: each note only has one valid nullifier, and so attempting to spend a note twice would reveal the nullifier twice, which would cause the second transaction to be rejected.

2 Notation

\mathbb{B} means the type of bit values, i.e. $\{0,1\}$.
$\mathbb{B Y}^{Y}$ means the type of byte values, i.e. $\{0$.. 255$\}$.
\mathbb{N} means the type of nonnegative integers. \mathbb{N}^{+}means the type of positive integers. \mathbb{Z} means the type of integers. \mathbb{Q} means the type of rationals.
$x: T$ is used to specify that x has type T. A cartesian product type is denoted by $S \times T$, and a function type by $S \rightarrow T$. An argument to a function can determine other argument or result types.
The type of a randomized algorithm is denoted by $S \xrightarrow{\mathrm{R}} T$. The domain of a randomized algorithm may be (), indicating that it requires no arguments. Given $f: S \xrightarrow{\mathrm{R}} T$ and $s: S$, sampling a variable $x: T$ from the output of f applied to s is denoted by $x \stackrel{R}{\leftarrow} f(s)$.

Initial arguments to a function or randomized algorithm may be written as subscripts, e.g. if $x: X, y: Y$, and $f: X \times Y \rightarrow Z$, then an invocation of $f(x, y)$ can also be written $f_{x}(y)$.
$x: T \mapsto e_{x}: U$ means the function of type $T \rightarrow U$ mapping formal parameter x to e_{x} (an expression depending on x). The types T and U are always explicit.
$\mathscr{P}(T)$ means the powerset of T.
$T^{[\ell]}$, where T is a type and ℓ is an integer, means the type of sequences of length ℓ with elements in T. For example, $\mathbb{B}^{[\ell]}$ means the set of sequences of ℓ bits, and $\mathbb{B Y}^{[k]}$ means the set of sequences of k bytes.
$\mathbb{B Y}^{[\mathbb{N}]}$ means the type of byte sequences of arbitrary length.
length (S) means the length of (number of elements in) S.
$T \subseteq U$ indicates that T is an inclusive subset or subtype of U.
$\{x: T \mid p(x)\}$ means the subset of x from T for which $p(x)$ holds.
$S \cup T$ means the set union of S and T, or the type corresponding to it.
$S \cap T$ means the set intersection of S and T.
$S \backslash T$ means the set difference obtained by removing elements in T from S, i.e. $\{x: S \mid x \neq T\}$.
0x followed by a string of monospace hexadecimal digits means the corresponding integer converted from hexadecimal.
". . ." means the given string represented as a sequence of bytes in US-ASCII. For example, "abc" represents the byte sequence [0x61, 0x62, 0x63].
$[0]^{\ell}$ means the sequence of ℓ zero bits. $[1]^{\ell}$ means the sequence of ℓ one bits.
$a . . b$, used as a subscript, means the sequence of values with indices a through b inclusive. For example, $a_{p k}^{\text {new }}, 1 . . \mathrm{N}^{\text {new }}$ means the sequence $\left[a_{p k, 1}^{n e w}, a_{p k, 2}^{n e w}, \ldots a_{p k, N^{n e w}}^{n e w}\right]$. (For consistency with the notation in [BCG+2O14] and in [BK2O16], this specification uses 1-based indexing and inclusive ranges, notwithstanding the compelling arguments to the contrary made in [EWD-831].)
$\{a . . b\}$ means the set or type of integers from a through b inclusive.
[$f(x)$ for x from a up to b] means the sequence formed by evaluating f on each integer from a to b inclusive, in ascending order. Similarly, [$f(x)$ for x from a down to b] means the sequence formed by evaluating f on each integer from a to b inclusive, in descending order.
$a \| b$ means the concatenation of sequences a then b.
concat $_{\mathbb{B}}(S)$ means the sequence of bits obtained by concatenating the elements of S viewed as bit sequences. If the elements of S are byte sequences, they are converted to bit sequences with the most significant bit of each byte first.
sorted (S) means the sequence formed by sorting the elements of S.
\mathbb{F}_{n} means the finite field with n elements, and \mathbb{F}_{n}^{*} means its group under multiplication.
Where there is a need to make the distinction, we denote the unique representative of $a: \mathbb{F}_{n}$ in the range $\{0 . . n-1\}$ (or the unique representative of $a: \mathbb{F}_{n}^{*}$ in the range $\{1 \ldots n-1\}$) as $a \bmod n$. Conversely, we denote the element of \mathbb{F}_{n} corresponding to an integer $k: \mathbb{Z}$ as $k(\bmod n)$. We also use the latter notation in the context of an equality $k=k^{\prime}$ $(\bmod n)$ as shorthand for $k \bmod n=k^{\prime} \bmod n$, and similarly $k \neq k^{\prime}(\bmod n)$ as shorthand for $k \bmod n \neq k^{\prime} \bmod n$. (When referring to constants such as 0 and 1 it is usually not necessary to make the distinction between field elements and their representatives, since the meaning is normally clear from context.)
$\mathbb{F}_{n}[z]$ means the ring of polynomials over z with coefficients in \mathbb{F}_{n}.
$a+b$ means the sum of a and b. This may refer to addition of integers, rationals, finite field elements, or group elements (see §4.1.8 'Represented Group' on p. 21) according to context.
$-a$ means the value of the appropriate integer, rational, finite field, or group type such that $(-a)+a=0$ (or when a is an element of a group $\left.\mathbb{G},(-a)+a=\mathcal{O}_{\mathbb{G}}\right)$, and $a-b$ means $a+(-b)$.
$a \cdot b$ means the product of multiplying a and b. This may refer to multiplication of integers, rationals, or finite field elements according to context (this notation is not used for group elements).
a / b (also written $\frac{a}{b}$) means the value of the appropriate integer, rational, or finite field type such that $(a / b) \cdot b=a$.
$a \bmod q$, for $a: \mathbb{N}$ and $q: \mathbb{N}^{+}$, means the remainder on dividing a by q. (This usage does not conflict with the notation above for the unique representative of a field element.)
$a \oplus b$ means the bitwise-exclusive-or of a and b, and $a \& b$ means the bitwise-and of a and b. These are defined on integers or (equal-length) bit sequences according to context.
$\sum_{i=1}^{\mathrm{N}} a_{i}$ means the sum of $a_{1 . . \mathrm{N}} . \prod_{i=1}^{\mathrm{N}} a_{i}$ means the product of $a_{1 . . \mathrm{N}} . \bigoplus_{i=1}^{\mathrm{N}} a_{i}$ means the bitwise exclusive-or of $a_{1 . . \mathrm{N}}$. When $N=0$ these yield the appropriate neutral element, i.e. $\sum_{i=1}^{0} a_{i}=0, \prod_{i=1}^{0} a_{i}=1$, and $\bigoplus_{i=1}^{0} a_{i}=0$ or the all-zero bit
sequence of the appropriate length given by the type of a. $b ? x: y$ means x when $b=1$, or y when $b=0$.
a^{b}, for a an integer or finite field element and $b: \mathbb{Z}$, means the result of raising a to the exponent b, i.e.

$$
a^{b}:=\left\{\begin{array}{l}
\prod_{i=1}^{b} a, \text { if } b \geq 0 \\
\prod_{i=1}^{-b} \frac{1}{a}, \text { otherwise }
\end{array}\right.
$$

The $[k] P$ notation for scalar multiplication in a group is defined in $\$ 4.1 .8$ 'Represented Group' on p. 21.
The binary relations $<, \leq,=, \geq$, and $>$ have their conventional meanings on integers and rationals, and are defined lexicographically on sequences of integers.
floor (x) means the largest integer $\leq x$. ceiling (x) means the smallest integer $\geq x$.
bitlength (x), for $x: \mathbb{N}$, means the smallest integer ℓ such that $2^{\ell}>x$.

The symbol \perp is used to indicate unavailable information, or a failed decryption or validity check.
The following integer constants will be instantiated in $\begin{aligned} & \\ & 5.3 \\ & \text { 'Constants' on p. 36: }\end{aligned}$
MerkleDepth ${ }^{\text {Sprout }}$, MerkleDepth ${ }^{\text {Sapling }}, N^{\text {old }}, \mathrm{N}^{\text {new }}, \ell_{\text {MerkleSprout }}, \ell_{\text {MerkleSapling, }}, \ell_{\text {hSig }}, \ell_{\text {PRF }}, \ell_{\text {rcm }}, \ell_{\text {Seed }}, \ell_{\text {ask }}, \ell_{\varphi}, \ell_{\text {sk }}, \ell_{\text {d }}, \ell_{\text {ivk }}$, MAX_MONEY, SlowStartInterval, HalvingInterval, MaxBlockSubsidy, NumFounderAddresses, PoWAveragingWindow, PoWLimit, PoWMedianBlockSpan, PoWDampingFactor, PoWTargetSpacing.
 stants FoundersFraction, PoWMaxAdjustDown, and PoWMaxAdjustUp will also be defined in that section.

3 Concepts

3.1 Payment Addresses and Keys

Users who wish to receive payments under this scheme first generate a random spending key. In Sprout this is called $\mathrm{a}_{\text {sk }}$ and in Sapling it is called sk.

The following diagram depicts the relations between key components in Sprout and Sapling. Arrows point from a component to any other component(s) that can be derived from it.

[Sprout] The receiving key sk ${ }_{\text {enc }}$, the incoming viewing key ivk $=\left(\mathrm{a}_{\mathrm{pk}}, \mathrm{sk}_{\mathrm{enc}}\right)$, and the shielded payment address addr $_{\mathrm{pk}}=\left(\mathrm{a}_{\mathrm{pk}}, \mathrm{pk}_{\mathrm{enc}}\right)$ are derived from a_{sk}, as described in $\S 4.2 .1$ 'Sprout Key Components' on p. 24.
[Sapling onward] The spend authorizing key ask, the proof authorizing key (ak, nsk), the full viewing key (ak, nk), the incoming viewing key ivk, and each diversified payment address addr $\mathrm{r}_{\mathrm{d}}=\left(\mathrm{d}, \mathrm{pk}_{\mathrm{d}}\right)$ are derived from sk, as described in \$4.2.2 'Sapling Key Components' on p. 24.

The composition of shielded payment addresses, incoming viewing keys, full viewing keys, and spending keys is a cryptographic protocol detail that should not normally be exposed to users. However, user-visible operations should be provided to obtain a shielded payment address or incoming viewing key or full viewing key from a spending key.

Users can accept payment from multiple parties with a single shielded payment address and the fact that these payments are destined to the same payee is not revealed on the block chain, even to the paying parties. However if two parties collude to compare a shielded payment address they can trivially determine they are the same. In the case that a payee wishes to prevent this they should create a distinct shielded payment address for each payer.
[Sapling onward] Sapling provides a mechanism to allow the efficient creation of diversified payment addresses with the same spending authority. A group of such addresses shares the same full viewing key and incoming viewing key, and so creating as many unlinkable addresses as needed does not increase the cost of scanning the block chain for relevant transactions.

Note: It is conventional in cryptography to refer to the key used to encrypt a message in an asymmetric encryption scheme as the "public key". However, the public key used as the transmission key component of an address ($\mathrm{pk}_{\mathrm{enc}}$ or pk_{d}) need not be publically distributed; it has the same distribution as the shielded payment address itself. As mentioned above, limiting the distribution of the shielded payment address is important for some use cases. This also helps to reduce reliance of the overall protocol on the security of the cryptosystem used for note encryption (see §4.12 'In-band secret distribution' on p. 34), since an adversary would have to know pk enc or some pk_{d} in order to exploit a hypothetical weakness in that cryptosystem.

3.2 Notes

A note (denoted n) can be a Sprout note or a Sapling note. In either case it represents that a value v is spendable by the recipient who holds the spending key corresponding to a given shielded payment address.

A Sprout note is a tuple ($a_{\mathrm{pk}}, \mathrm{v}, \rho, \mathrm{rcm}$), where:

- $a_{p k}: \mathbb{B}^{\left[\ell_{\text {PRF }}\right]}$ is the paying key of the recipient's shielded payment address;
- v : $\{0$.. MAX_MONEY $\}$ is an integer representing the value of the note in zatoshi ($1 \mathrm{ZEC}=10^{8}$ zatoshi);
$\cdot \rho: \mathbb{B}^{\left[\ell_{\text {PRF }}\right]}$ is used as input to $\operatorname{PRF}_{\mathrm{a}_{\text {sk }}}^{\text {nf }}$ to derive the nullifier of the note;
- rcm : NoteCommit ${ }^{\text {Sprout }}$. Trapdoor is a random commitment trapdoor as defined in $\begin{aligned} & \text { 4.1.7 'Commitment' on }\end{aligned}$ p. 21.

Let Note ${ }^{\text {Sprout }}$ be the type of a Sprout note, i.e.
Note ${ }^{\text {Sprout }}:=\mathbb{B}^{\left[\ell_{\text {PRF }}\right]} \times\{0 \ldots$ MAX_MONEY $\} \times \mathbb{B}^{\left[\ell_{\text {PRF }}\right]} \times$ NoteCommit $^{\text {Sprout }}$. Trapdoor.

A Sapling note is a tuple $\left(\mathrm{d}, \mathrm{pk}_{\mathrm{d}}, \mathrm{v}, \mathrm{rcm}\right)$, where:
. $\mathrm{d}: \mathbb{B}^{\left[\ell_{\mathrm{d}}\right]}$ is the diversifier of the recipient's shielded payment address;

- $\mathrm{pk}_{\mathrm{d}}: \mathbb{J}$ is the diversified transmission key of the recipient's shielded payment address;
- $v:\{0$.. MAX_MONEY $\}$ is an integer representing the value of the note in zatoshi;
- rcm : NoteCommit ${ }^{\text {Sapling }}$. Trapdoor is a random commitment trapdoor as defined in $\begin{aligned} & \text { 4.1.7 ' } C o m m i t m e n t ' ~ o n ~\end{aligned}$ p. 21.

Let Note ${ }^{\text {Sapling }}$ be the type of a Sapling note, i.e.

$$
\text { Note Sapling }:=\mathbb{B}^{\left[\ell_{d}\right]} \times \mathbb{J} \times\{0 \ldots \text { MAX_MONEY }\} \times \text { NoteCommit }{ }^{\text {Sapling }} \text {.Trapdoor. }
$$

Creation of new notes is described in $\$ 4.6$ 'Sending Notes’ on p. 27. When notes are sent, only a commitment (see §4.1.7 'Commitment' on p. 21) to the above values is disclosed publically, and added to a data structure called the note commitment tree. This allows the value and recipient to be kept private, while the commitment is used by the zero-knowledge proof when the note is spent, to check that it exists on the block chain.

A Sprout note commitment on a note $\mathbf{n}=\left(a_{p k}, v, \rho, r \mathrm{~cm}\right)$ is computed as
NoteCommitment ${ }^{\text {Sprout }}(\mathbf{n})=\operatorname{NoteCommit}_{\text {spm }}^{\text {Sprout }}\left(\mathrm{a}_{\mathrm{pk}}, \mathrm{v}, \rho\right)$,
where NoteCommit ${ }^{\text {Sprout }}$ is instantiated in §5.4.7.1 'Sprout Note Commitments' on p. 46.
Let DiversifyHash be as defined in §5.4.1.6 'DiversifyHash Hash Function' on p. 40.
A Sapling note commitment on a note $\mathbf{n}=\left(\mathrm{d}, \mathrm{pk}_{\mathrm{d}}, \mathrm{v}, \mathrm{rcm}\right)$ is computed as

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{d}}:=\text { DiversifyHash(d) } \\
& \text { NoteCommitment }^{\text {Sapling }}(\mathbf{n}):= \begin{cases}\perp, & \text { if } \mathrm{g}_{\mathrm{d}}=\perp \\
\operatorname{NoteCommit~}_{\mathrm{rcm}}^{\text {Sapling }_{\left(\operatorname{repr}_{\mathbb{J}}\left(\mathrm{g}_{\mathrm{d}}\right), \operatorname{repr}_{\mathrm{J}}\left(\mathrm{pk}_{\mathrm{d}}\right), \mathrm{v}\right),},} \begin{array}{l}
\text { otherwise. }
\end{array}\end{cases}
\end{aligned}
$$

where NoteCommit ${ }^{\text {Sapling }}$ is instantiated in §5.4.7.2 'Windowed Pedersen commitments' on p. 46.
Notice that the above definition of a Sapling note does not have a ρ field. There is in fact a ρ value associated with each Sapling note, but this only be computed once its position in the note commitment tree is known (see $\S 3.3$ 'The Block Chain' on p. 12 and $\S 3.4$ 'Transactions and Treestates' on p.13). We refer to the combination of a note and its note position pos, as a positioned note.

For a positioned note, we can compute the value $\rho: \mathbb{B}^{\left[\ell_{\text {PRFSapling }}\right]}$; see $\$ 4.10$ 'Note Commitments and Nullifiers' on p. 31.

A nullifier (denoted $n f$) is derived from the ρ value of a note and the recipient's spending key $a_{\text {sk }}$ or nullifier deriving key nk. This computation uses a Pseudo Random Function (see §4.1.2 'Pseudo Random Functions' on p.17), as described in $\begin{aligned} & \\ & 4.10 \\ & \text { 'Note Commitments and Nullifiers' on p. } 31 .\end{aligned}$

A note is spent by proving knowledge of ($\rho, \mathrm{a}_{\mathrm{sk}}$) or (ρ, ak, nsk) in zero knowledge while publically disclosing its nullifier nf , allowing nf to be used to prevent double-spending. In the case of Sapling, a spend authorization signature is also required, in order to demonstrate knowledge of ask.

3.2.1 Note Plaintexts and Memo Fields

Transmitted notes are stored on the block chain in encrypted form, together with a note commitment cm .
The note plaintexts in a JoinSplit description are encrypted to the respective transmission keys $\mathrm{pk}_{\text {enc }, 1 . . \mathrm{N}^{\text {new. }} \text {. Each }}$ Sprout note plaintext (denoted $\mathbf{n p}$) consists of ($\mathrm{v}, \rho, \mathrm{rcm}$, memo).
[Sapling onward] The note plaintext in each Output description is encrypted to the diversified transmission key pk_{d}. Each Sapling note plaintext (denoted $\mathbf{n p}$) consists of ($\mathrm{d}, \mathrm{v}, \mathrm{rcm}$, memo).
memo represents a memo field associated with this note. The usage of the memo field is by agreement between the sender and recipient of the note.

Other fields are as defined in $\begin{aligned} & \\ & 3.2 \\ & \text { 'Notes' on p. } 11 .\end{aligned}$
Encodings are given in $\$ 5.5$ 'Encodings of Note Plaintexts and Memo Fields' on p. 53.
The result of encryption forms part of a transmitted notes ciphertext (see $\S 4.12$ 'In-band secret distribution’ on p. 34 for further details).

3.3 The Block Chain

At a given point in time, each full validator is aware of a set of candidate blocks. These form a tree rooted at the genesis block, where each node in the tree refers to its parent via the hashPrevBlock block header field (see $\begin{aligned} & \\ & 7.5\end{aligned}$ 'Block Header' on p. 63).

A path from the root toward the leaves of the tree consisting of a sequence of one or valid blocks consistent with consensus rules, is called a valid block chain.

Each block in a block chain has a block height. The block height of the genesis block is 0 , and the block height of each subsequent block in the block chain increments by 1 .
In order to choose the best valid block chain in its view of the overall block tree, a node sums the work, as defined in $\S 7.6 .5$ 'Definition of Work' on p .67 , of all blocks in each chain, and considers the valid block chain with greatest total work to be best. To break ties between leaf blocks, a node will prefer the block that it received first.
The consensus protocol is designed to ensure that for any given block height, the vast majority of nodes should eventually agree on their best valid block chain up to that height.

3.4 Transactions and Treestates

Each block contains one or more transactions.
Inputs to a transaction insert value into a transparent value pool, and outputs remove value from this pool. As in Bitcoin, the remaining value in the pool is available to miners as a fee.

Consensus rule: The remaining value in the transparent value pool MUST be nonnegative.
To each transaction there are associated initial treestates for Sprout and for Sapling.
Each treestate consists of:

- a note commitment tree (3.7 'Note Commitment Trees' on p.15);
- a nullifier set (§3.8 ‘Nullifier Sets’ on p.15).

Validation state associated with transparent transfers, such as the UTXO (Unspent Transaction Output) set, is not described in this document; it is used in essentially the same way as in Bitcoin.

An anchor is a Merkle tree root of a note commitment tree (either the Sprout tree or the Sapling tree). It uniquely identifies a note commitment tree state given the assumed security properties of the Merkle tree's hash function. Since the nullifier set is always updated together with the note commitment tree, this also identifies a particular state of the associated nullifier set.
In a given block chain, for each of Sprout and Sapling, treestates are chained as follows:

- The input treestate of the first block is the empty treestate.
- The input treestate of the first transaction of a block is the final treestate of the immediately preceding block.
- The input treestate of each subsequent transaction in a block is the output treestate of the immediately preceding transaction.
- The final treestate of a block is the output treestate of its last transaction.

JoinSplit descriptions also have interstitial input and output treestates for Sprout, explained in the following section. There is no equivalent of interstitial treestates for Sapling.

3.5 JoinSplit Transfers and Descriptions

A JoinSplit description is data included in a transaction that describes a JoinSplit transfer, i.e. a shielded value transfer. In Sprout, this kind of value transfer was the primary Zcash-specific operation performed by transactions.
A JoinSplit transfer spends $N^{\text {old }}$ notes $\mathbf{n}_{1 . . N^{\text {old }}}^{\text {old }}$ and transparent input $v_{\text {pub }}^{\text {old }}$, and creates $\mathrm{N}^{\text {new }}$ notes $\mathbf{n}_{1 . . \mathrm{N}^{\text {new }}}^{\text {new }}$ and transparent output $v_{\text {pub }}^{\text {new }}$. It is associated with an instance of a JoinSplit statement (§4.11.1 'JoinSplit Statement (Sprout)' on p. 31), for which it provides a zk-SNARK proof.

Each transaction has a sequence of JoinSplit descriptions.
The total $v_{\text {pub }}^{\text {new }}$ value adds to, and the total $v_{\text {pub }}^{\text {old }}$ value subtracts from the transparent value pool of the containing transaction.

The anchor of each JoinSplit description in a transaction refers to a Sprout treestate.
For each of the $\mathrm{N}^{\text {old }}$ shielded inputs, a nullifier is revealed. This allows detection of double-spends as described in §3.8 'Nullifier Sets' on p. 15.
For each JoinSplit description in a transaction, an interstitial output treestate is constructed which adds the note commitments and nullifiers specified in that JoinSplit description to the input treestate referred to by its anchor. This interstitial output treestate is available for use as the anchor of subsequent JoinSplit descriptions in the same transaction.

Interstitial treestates are necessary because when a transaction is constructed, it is not known where it will eventually appear in a mined block. Therefore the anchors that it uses must be independent of its eventual position.

Consensus rules:

- The input and output values of each JoinSplit transfer MUST balance exactly.
- For the first JoinSplit description of a transaction, the anchorMUST be the output Sprout treestate of a previous block.
- The anchor of each JoinSplit description in a transaction MUST refer to either some earlier block's final Sprout treestate, or to the interstitial output treestate of any prior JoinSplit description in the same transaction.

3.6 Spend Transfers, Output Transfers, and their Descriptions

JoinSplit transfers are not used for Sapling notes. Instead, there is a separate Spend transfer for each shielded input, and a separate Output transfer for each shielded output.
Spend descriptions and Output descriptions are data included in a transaction that describe Spend transfers and Output transfers, respectively.

A Spend transfer spends a note $\mathbf{n}^{\text {old }}$. Its Spend description includes a Pedersen value commitment to the value of the note. It is associated with an instance of a Spend statement (\$4.11.2 'Spend Statement (Sapling)' on p. 32) for which it provides a $z k-S N A R K$ proof.

An Output transfer creates a note $\mathbf{n}^{\text {new }}$. Similarly, its Output description includes a Pedersen value commitment to the note value. It is associated with an instance of an Output statement (\$4.11.3 'Output Statement (Sapling)' on p . 33) for which it provides a $z k-S N A R K$ proof.
Each transaction has a sequence of Spend descriptions and a sequence of Output descriptions.
To ensure balance, we use a homomorphic property of Pedersen commitments that allows them to be added and subtracted, as elliptic curve points. The result of adding two Pedersen value commitments, committing to values v_{1} and v_{2}, is a new Pedersen value commitment that commits to $v_{1}+v_{2}$. Subtraction works similarly.
Therefore, balance can be enforced by adding all of the value commitments for shielded inputs, subtracting all of the value commitments for shielded outputs, and checking that the result commits to a value consistent with the net transparent value change (see $\$ 4.9$ 'Balance' on p. 30 for a full specification). This approach allows all of the zk-SNARK statements to be independent of each other, potentially increasing opportunities for precomputation.

A Spend description includes an anchor, which refers to the output Sapling treestate of a previous block. It also reveals a nullifier, which allows detection of double-spends as described in §3.8 'Nullifier Sets' on p. 15.

Note: Interstitial treestates are not necessary for Sapling, because a Spend transfer in a given transaction cannot spend any of the shielded outputs of the same transaction. This is not an onerous restriction because, unlike Sprout where each JoinSplit transfer must balance individually, in Sapling it is only necessary for the whole transaction to balance.

Consensus rules:

- The transaction MUST balance as specified in §4.9 ‘Balance’ on p. 30.
- The anchor of each Spend description in a transaction MUST refer to some earlier block's final Sapling treestate.

3.7 Note Commitment Trees

TODO: The commitment indices in the above diagram should be zero-based to reflect the note position.
The note commitment tree is an incremental Merkle tree of fixed depth used to store note commitments that JoinSplit transfers and Spend transfers produce. Just as the unspent transaction output set (UTXO set) used in Bitcoin, it is used to express the existence of value and the capability to spend it. However, unlike the UTXO set, it is not the job of this tree to protect against double-spending, as it is append-only.

A root of this tree is associated with each treestate, as described in $\$ 3.4$ 'Transactions and Treestates' on p. 13.
Each node in the incremental Merkle tree is associated with a hash value of size $\ell_{\text {MerkleSprout }}$ or $\ell_{\text {MerkleSapling }}$ bits. The layer numbered h, counting from layer 0 at the root, has 2^{h} nodes with indices 0 to $2^{h}-1$ inclusive. The hash value associated with the node at index i in layer h is denoted M_{i}^{h}.

3.8 Nullifier Sets

Each full validator maintains a nullifier set logically associated with each treestate. As valid transactions containing JoinSplit transfers or Spend transfers are processed, the nullifiers revealed in JoinSplit descriptions and Spend descriptions are inserted into the nullifier set associated with the new treestate.

Nullifiers are enforced to be unique within a valid block chain, in order to prevent double-spends.

Consensus rule: A nullifier MUST NOT repeat either within a transaction, or across transactions in a valid block chain.

Note: Sprout and Sapling nullifiers are considered disjoint, even if they have the same bit pattern.

3.9 Block Subsidy and Founders' Reward

Like Bitcoin, Zcash creates currency when blocks are mined. The value created on mining a block is called the block subsidy. It is composed of a miner subsidy and a Founders' Reward. As in Bitcoin, the miner of a block also receives transaction fees.

The calculations of the block subsidy, miner subsidy, and Founders' Reward depend on the block height, as defined in §3.3 'The Block Chain’ on p. 12.
These calculations are described in §7.7 'Calculation of Block Subsidy and Founders' Reward' on p. 68.

3.10 Coinbase Transactions

The first transaction in a block must be a coinbase transaction, which should collect and spend any miner subsidy and transaction fees paid by transactions included in this block. The coinbase transaction must also pay the Founders' Reward as described in §7.8 'Payment of Founders' Reward’ on p. 68.

4 Abstract Protocol

4.1 Abstract Cryptographic Schemes

4.1.1 Hash Functions

Let MerkleDepth ${ }^{\text {Sprout }}, \ell_{\text {MerkleSprout }}$, MerkleDepth ${ }^{\text {Sapling }}, \ell_{\text {MerkleSapling }}, \ell_{\text {ivk }}, \ell_{\text {Seed }}, \ell_{\text {hSig }}, \ell_{\text {PRF }}$, and $N^{\text {old }}$ be as defined in $\underline{\S 5.3}$ 'Constants' on p. 36.

Let ℓ_{J} be as defined in §5.4.8.3 'Jubjub' on p. 50.
The functions MerkleCRH $H^{\text {Sprout }}:\left\{0 \ldots\right.$ MerkleDepth $\left.{ }^{\text {Sprout }}-1\right\} \times \mathbb{B}^{\left[\ell_{\text {MerkleSprout }}\right]} \times \mathbb{B}^{\left[\ell_{\text {MerkkSProut }}\right]} \rightarrow \mathbb{B}^{\left[\ell_{\text {MerkleSprout }}\right]}$ and (for Sapling), MerkleCRH ${ }^{\text {Sapling }}:\left\{0 .\right.$. MerkleDepth $\left.{ }^{\text {Sapling }}-1\right\} \times \mathbb{B}^{\left[\ell_{\text {MerkleSapling }}\right]} \times \mathbb{B}^{\left[\ell_{\text {MerkleSapling }}\right]} \rightarrow \mathbb{B}^{\left[\ell_{\text {MerkleSapling }}\right]}$ are hash functions used in §4.7 ‘Merkle path validity’ on p. 29. MerkleCRH ${ }^{\text {Sapling }}$ is collision-resistant on all its arguments, and MerkleCRH ${ }^{\text {Sprout }}$ is collision-resistant except on its first argument. Both of these functions are instantiated in $\S 5.4 .1 .3$ 'Merkle Tree Hash Function' on p. 38.
$\mathrm{hSigCRH}: \mathbb{B}^{\left[\ell_{\text {Seed }}\right]} \times \mathbb{B}^{\left[\ell_{\text {PRF }}\right]\left[N^{\text {old }}\right]} \times$ JoinSplitSig.Public $\rightarrow \mathbb{B}^{\left[\ell_{\text {hSig }}\right]}$ is a collision-resistant hash function used in $\underline{\$ 4.3}$ 'JoinSplit Descriptions' on p. 25. It is instantiated in §5.4.1.4 'h $\mathrm{h}_{\mathrm{sig}}$ Hash Function' on p. 39.
EquihashGen : $\left(n: \mathbb{N}^{+}\right) \times \mathbb{N}^{+} \times \mathbb{B Y Y}^{[\mathbb{N}]} \times \mathbb{N}^{+} \rightarrow \mathbb{B}^{[n]}$ is another hash function, used in $\underline{\$ 7.6 .1}$ 'Equihash' on p .65 to generate input to the Equihash solver. The first two arguments, representing the Equihash parameters n and k, are written subscripted. It is instantiated in §5.4.1.9 'Equihash Generator' on p. 42.
$\mathrm{CRH} H^{\mathrm{ivk}}: \mathbb{B}^{\left[\ell_{\mathrm{J}}\right]} \times \mathbb{B}^{\left[\ell_{\mathrm{J}}\right]} \rightarrow\left\{0 . .2^{\ell_{\mathrm{ivk}}}-1\right\}$ is a collision-resistant hash function used in $\$ 4.2 .2$ 'Sapling Key Components' on p. 24 to derive an incoming viewing key for a Sapling shielded payment address. It is also used in the Spend statement (\$4.11.2 'Spend Statement (Sapling)' on p.32) to confirm use of the correct key for the note being spent. It is instantiated in §5.4.1.5 'CRH ${ }^{\text {ivk }}$ Hash Function' on p. 39.
DiversifyHash : $\mathbb{B}^{\left[\ell_{d}\right]} \rightarrow \mathbb{J}$ is a hash function satisfying the Discrete Logarithm Independence property (which implies collision-resistance) described in $\$ 4.1 .10$ 'Group Hash' on p. 22. It is used to derive a diversified base from a diversifier in §4.2.2 'Sapling Key Components' on p. 24. It is instantiated in \$5.4.1.6 'DiversifyHash Hash Function' on p. 40.

4.1.2 Pseudo Random Functions

PRF_{x} is a Pseudo Random Function keyed by x.
Let $\ell_{a_{\text {sk }}}, \ell_{\varphi}, \ell_{\mathrm{hSig}}, \ell_{\mathrm{PRF}}, \ell_{\text {PRFSapling }}, \mathrm{N}^{\text {old }}$, and $\mathrm{N}^{\text {new }}$ be as defined in $\$ 5.3$ 'Constants' on p. 36.
Let $\ell_{\mathbb{J}}$ and $r_{\mathbb{J}}$ be as defined in §5.4.8.3 'Jubjub’ on p. 50 .
For Sprout, four independent PRF_{x} are needed:

$$
\begin{array}{lll}
\text { PRF }^{\text {addr }} & : \mathbb{B}^{\left[\ell_{\text {sk }}\right]} \times\{0 . .255\} & \rightarrow \mathbb{B}^{\left[\ell_{\text {PRF }}\right]} \\
\text { PRF }^{\text {nf }} & : \mathbb{B}^{\left[\ell_{\text {sk }}\right]} \times \mathbb{B}^{\left[\ell_{\text {PRF }}\right]} & \rightarrow \mathbb{B}^{\left[\ell_{\text {PRF }}\right]} \\
\text { PRF }^{\text {pk }} & : \mathbb{B}^{\left[\ell_{\text {sk }}\right]} \times\left\{1 . . \mathrm{N}^{\text {old }}\right\} \times \mathbb{B}^{\left[\ell_{\text {hSig }}\right]} \rightarrow \mathbb{B}^{\left[\ell_{\text {PRF }}\right]} & \\
\text { PRF }^{\rho} & : \mathbb{B}^{\left[\ell_{\varphi}\right]} \times\left\{1 . . \mathrm{N}^{\text {new }}\right\} \times \mathbb{B}^{\left[\ell_{\text {hSig }}\right]} \rightarrow \mathbb{B}^{\left[\ell_{\text {PRF }}\right]}
\end{array}
$$

These are used in §4.11.1 ‘JoinSplit Statement (Sprout)’ on p. 31; PRF ${ }^{\text {addr }}$ is also used to derive a shielded payment address from a spending key in §4.2.1 'Sprout Key Components’ on p. 24.

For Sapling, two additional PRF_{x} are needed:

$$
\begin{array}{ll}
\mathrm{PRF}^{\text {expand }}: \mathbb{B}^{\left[\ell_{\text {sk }}\right]} \times\{0 . .255\} & \rightarrow \mathbb{F}_{r_{J}} \\
\mathrm{PRF}^{\mathrm{nfSapling}}: \mathbb{B}^{\left[\ell_{J}\right]} \times \mathbb{B}^{\left[\ell_{J}\right]} & \rightarrow \mathbb{B}^{\left[\ell_{\text {PRFSapling }}\right]}
\end{array}
$$

$\mathrm{PRF}^{\text {expand }}$ is used in §4.2.2 'Sapling Key Components' on p. 24.
$\mathrm{PRF}^{\mathrm{nfS} \text { Sapling }}$ is used in $\S 4.11 .2$ 'Spend Statement (Sapling)' on p. 32.
All of these Pseudo Random Functions are instantiated in §5.4.2 'Pseudo Random Functions' on p. 43.

Security requirements:

- Security definitions for Pseudo Random Functions are given in [BDJR2000, section 4].
- In addition to being Pseudo Random Functions, it is required that $\mathrm{PRF}_{x}^{\mathrm{nf}}, \mathrm{PRF}_{x}^{\text {addr }}, \mathrm{PRF}_{x}^{\rho}$, and $\mathrm{PRF}_{x}^{\mathrm{nfSapling}}$ be collision-resistant across all x - i.e. finding $(x, y) \neq\left(x^{\prime}, y^{\prime}\right)$ such that $\operatorname{PRF}_{x}^{\mathrm{nf}}(y)=\operatorname{PRF}_{x^{\prime}}^{\mathrm{nf}}\left(y^{\prime}\right)$ should not be feasible, and similarly for $P R F^{\text {addr }}$ and PRF^{ρ} and $P R F^{\text {nfSapling }}$.

Note: PRF ${ }^{\text {nf }}$ was called $P R F^{\text {sn }}$ in Zerocash [BCG+2014].

4.1.3 Authenticated One-Time Symmetric Encryption

Let Sym be an authenticated one-time symmetric encryption scheme with keyspace Sym.K, encrypting plaintexts in Sym. \mathbf{P} to produce ciphertexts in Sym.C.

Sym.Encrypt : Sym.K \times Sym. $\mathbf{P} \rightarrow$ Sym. \mathbf{C} is the encryption algorithm.
Sym.Decrypt : Sym.K \times Sym. $\mathbf{C} \rightarrow$ Sym. $\mathbf{P} \cup\{\perp\}$ is the corresponding decryption algorithm, such that for any $K \in \operatorname{Sym} . K$ and $P \in \operatorname{Sym} . \mathbf{P}$, Sym. $\operatorname{Decrypt}_{K}\left(\operatorname{Sym}^{\mathrm{Sy}} \operatorname{Encrypt}_{K}(P)\right)=P$. \perp is used to represent the decryption of an invalid ciphertext.

Security requirement: Sym must be one-time (INT-CTXT \wedge IND-CPA)-secure. "One-time" here means that an honest protocol participant will almost surely encrypt only one message with a given key; however, the attacker may make many adaptive chosen ciphertext queries for a given key. The security notions INT-CTXT and IND-CPA are as defined in [BN2OO7].

4.1.4 Key Agreement

A key agreement scheme is a cryptographic protocol in which two parties agree a shared secret, each using their private key and the other party's public key.

A key agreement scheme KA defines a type of public keys KA.Public, a type of private keys KA.Private, and a type of shared secrets KA.SharedSecret.
Let KA.FormatPrivate $: \mathbb{B}^{\left[\ell_{\text {PRF }}\right]} \rightarrow$ KA.Private be a function that converts a bit string of length $\ell_{\text {PRF }}$ to a KA private key.

Let KA.DerivePublic : KA.Private \times KA.Public \rightarrow KA.Public be a function that derives the KA public key corresponding to a given KA private key and base point.
Let KA.Agree: KA.Private \times KA.Public \rightarrow KA.SharedSecret be the agreement function.
Optional: Let KA.Base : KA.Public be a public base point.

Note: The range of KA.DerivePublic may be a strict subset of KA.Public.

Security requirements:

- KA.FormatPrivate must preserve sufficient entropy from its input to be used as a secure KA private key.
- The key agreement and the KDF defined in the next section must together satisfy a suitable adaptive security assumption along the lines of [Bern2006, section 3] or [ABR1999, Definition 3].

More precise formalization of these requirements is beyond the scope of this specification.

4.1.5 Key Derivation

A Key Derivation Function is defined for a particular key agreement scheme and authenticated one-time symmetric encryption scheme; it takes the shared secret produced by the key agreement and additional arguments, and derives a key suitable for the encryption scheme.

Let KDF: $\left\{1 . . \mathrm{N}^{\text {new }}\right\} \times \mathbb{B}^{\left[\ell_{\text {nsig }}\right]} \times$ KA.SharedSecret \times KA.Public \times KA.Public \rightarrow Sym.K be a Key Derivation Function suitable for use with KA, deriving keys for Sym.Encrypt.

Security requirement: In addition to adaptive security of the key agreement and KDF, the following security property is required:

TODO: adapt this definition to handle Sapling, or maybe just remove it.
Let $\mathrm{g}:=$ TODO :?
Let $k_{\text {enc }}^{1}$ and $s k_{\text {enc }}^{2}$ each be chosen uniformly and independently at random from KA.Private.
Let $\mathrm{pk}_{\text {enc }}^{j}:=$ KA.DerivePublic(skenc $\left.{ }^{j}, \mathrm{~g}\right)$.
An adversary can adaptively query a function $Q:\{1 . .2\} \times \mathbb{B}^{\left[\ell_{\text {hisig }}\right]} \rightarrow$ KA.Public \times Sym. $\mathbf{K}_{1 . . \mathrm{N}^{\text {new }}}$ where $Q_{j}\left(\mathrm{~h}_{\text {Sig }}\right)$ is defined as follows:

1. Choose esk uniformly at random from KA.Private.
2. Let epk := KA.DerivePublic(esk,g).
3. For $i \in\left\{1 . . \mathrm{N}^{\text {new }}\right\}$, let $\mathrm{K}_{i}:=\operatorname{KDF}\left(i, \mathrm{~h}_{\mathrm{Sig}}, \mathrm{KA}\right.$. Agree(esk, $\left.\left.\mathrm{pk}_{\text {enc }}^{j}\right), \mathrm{epk}^{\mathrm{pk}} \mathrm{pk}_{\text {enc }}^{j}\right)$).
4. Return (epk, $\mathrm{K}_{\left.1 . . \mathrm{N}^{\mathrm{new}}\right)}$.

Then the adversary must make another query to Q_{j} with random unknown $j \in\{1 . .2\}$, and guess j with probability greater than chance.

If the adversary's advantage is insignificant, then the asymmetric encryption scheme constructed from KA, KDF and Sym in $\underline{\$ 4.12}$ 'In-band secret distribution' on p. 34 will be key-private as defined in [BBDP2001].

Note: The given definition only requires ciphertexts to be indistinguishable between transmission keys that are outputs of KA.DerivePublic (which includes all keys generated as in §4.2.1 'Sprout Key Components’ on p. 24). If a transmission key not in that range is used, it may be distinguishable. This is not considered to be a significant security weakness.

4.1.6 Signature

A signature scheme Sig defines:

- a type of signing keys Sig.Private;
- a type of verifying keys Sig.Public;
- a type of messages Sig.Message;
- a type of signatures Sig.Signature;
. a randomized key pair generation algorithm Sig.Gen: () $\xrightarrow{\text { R }}$ Sig.Private \times Sig.Public;
- a randomized signing algorithm Sig.Sign : Sig.Private \times Sig.Message $\xrightarrow{\text { R }}$ Sig.Signature;
- a verifying algorithm Sig.Verify: Sig.Public \times Sig.Message \times Sig.Signature $\rightarrow \mathbb{B}$;
such that for any key pair (sk,vk) $\stackrel{R}{\leftarrow} \operatorname{Sig}$.Gen(), and any $m:$ Sig.Message and $s: \operatorname{Sig}$.Signature $\stackrel{R}{\leftarrow} \operatorname{Sig} \cdot \operatorname{Sign}_{\text {sk }}(m)$, Sig.Verify ${ }_{\text {vk }}(m, s)=1$.

Zcash uses three signature schemes:

- one used for signatures that can be verified by script operations such as OP_CHECKSIG and OP_CHECKMULTISIG as in Bitcoin;
- one called JoinSplitSig (instantiated in $\$ 5.4 .5$ 'JoinSplit Signature’ on p.45), which is used to sign transactions that contain at least one JoinSplit description;
- [Sapling onward] one called SpendAuthSig (instantiated in §5.4.6 'Spend Authorization Signature' on p. 45), which is used to sign authorizations of Spend descriptions.

The following defines only the security properties needed for JoinSplitSig. Security properties for SpendAuthSig are defined in the next section, $\{$ 4.1.6.1 'Signature with Re-Randomizable Keys' on p. 20.

Security requirement: JoinSplitSig must be Strongly Unforgeable under (non-adaptive) Chosen Message Attack (SU-CMA), as defined for example in [BDEHR2011, Definition 6]. This allows an adversary to obtain signatures on chosen messages, and then requires it to be infeasible for the adversary to forge a previously unseen valid (message, signature) pair without access to the signing key.

TODO: Reference a different paper for the security definition. [BDEHR2011] has a flawed security proof; this doesn't affect Zcash but it would be better to avoid confusion that it might.

Notes:

- A fresh signature key pair is generated for each transaction containing a JoinSplit description. Since each key pair is only used for one signature (see §4.8 'Non-malleability' on p.30), a one-time signature scheme would suffice for JoinSplitSig. This is also the reason why only security against non-adaptive chosen message attack is needed. In fact the instantiation of JoinSplitSig uses a scheme designed for security under adaptive attack even when multiple signatures are signed under the same key.
- SU-CMA security requires it to be infeasible for the adversary, not knowing the private key, to forge a distinct signature on a previously seen message. That is, JoinSplit signatures are intended to be nonmalleable in the sense of [BIP-62].

4.1.6.1 Signature with Re-Randomizable Keys

A signature scheme with re-randomizable keys Sig is a signature scheme that additionally defines:

- a type of randomizers Sig.Random;
- a public key randomization algorithm Sig.RandomizePublic: Sig.Public \times Sig.Random \rightarrow Sig.Public;
- a private key randomization algorithm Sig.RandomizePrivate: Sig.Private \times Sig.Random \rightarrow Sig.Private
- a distinguished "identity" randomizer Sig.Id : Sig.Random
such that if (pk: Sig.Public, sk: Sig.Private) is a valid Sig key pair, then:
- (Sig.RandomizePublic(pk, r), Sig.RandomizePrivate(sk, r)) is also a valid Sig key pair for any r : Sig.Random;
- Sig.RandomizePrivate $(\cdot, r):$ Sig.Private \rightarrow Sig.Private is injective and easily invertible for any r : Sig.Random;
- For any key pair (pk, sk) returned by Sig.Gen(), the distribution of
(Sig.RandomizePublic(pk, r), Sig.RandomizePrivate(sk, r)) : $r \stackrel{R}{\leftarrow}$ Sig.Random is identical to the distribution of Sig .Gen().
- (Sig.RandomizePublic(pk, Sig.Id), Sig.RandomizePrivate(sk, Sig.Id)) $=(\mathrm{pk}, \mathrm{sk})$.

The following security requirement for such signature schemes is based on that given in [FKMSSS2O16, section 3]. Note that we require Strong Unforgeability with Re-randomized Keys, not Existential Unforgeability with Rerandomized Keys (the latter is called "Unforgeability under Re-randomized Keys" in [FKMSSS2O16, Definition 8]). Unlike the case for JoinSplitSig, we require security under adaptive chosen message attack with multiple messages signed using a given key. (Although each note uses a different re-randomized key pair, the same original key pair can be re-randomized for multiple notes, and also it can happen that multiple transactions spending the same note are revealed to an adversary.)

Security requirement: Strong Unforgeability with Re-randomized Keys under adaptive Chosen Message Attack (SURK-CMA)

Let O: Sig.Private \times Sig.Message \times Sig.Random \rightarrow Sig.Signature be a generator of signing oracles.
A signing oracle $\mathrm{O}_{\text {sk }}$ for private key sk has state $Q: \mathscr{P}(\mathrm{Sig}$.Message $\times \mathrm{Sig}$.Signature) initialized to $\{ \}$ that records queried messages and corresponding signatures.

$$
\begin{aligned}
& \mathrm{O}_{\text {sk }}:=\operatorname{var} Q \leftarrow\{ \} \text { in }(m: \text { Sig.Message, } r: \text { Sig.Random }) \mapsto \\
& \\
& \text { let } \sigma=\text { Sig.Sign } \text { Sig.RandomizePrivate }(\text { sk }, r)(m) \\
& \\
& Q \leftarrow Q \cup\{(m, \sigma)\} \\
& \\
& \text { return } \sigma: \text { Sig.Signature. }
\end{aligned}
$$

For random (pk, sk) $\stackrel{R}{\leftarrow} \operatorname{Sig}$.Gen(), it must be infeasible for an adversary given pk and a new instance of $\mathrm{O}_{\text {sk }}$ to find $\left(m^{*}, \sigma^{*}, r^{*}\right)$ such that Sig.Verify ${\text { Sig.RandomizePublic }\left(\mathrm{pk}, r^{*}\right)}\left(m^{*}, \sigma^{*}\right)=1$ and $\left(m^{*}, \sigma^{*}\right) \notin \mathrm{O}_{\text {sk }} \cdot Q$.

Notes:

- The requirement for Sig.Id simplifies the definition of SURK-CMA by removing the need for two oracles (since the oracle for original keys, called O_{1} in [FKMSSS2O16], is a special case of the oracle for randomized keys).
- Since (Sig.RandomizePublic(pk, r), Sig.RandomizePrivate(sk, r)) : $r \stackrel{R}{\leftarrow}$ Sig.Random is identically distributed to Sig.Gen(), the combination of a re-randomized public key and signature(s) under that key do not reveal the key from which it was re-randomized.
- Since Sig.RandomizePrivate (\cdot, r) is injective and easily invertible, knowledge of Sig.RandomizePrivate(sk, r) and r implies knowledge of sk.

4.1.7 Commitment

A commitment scheme is a function that, given a random commitment trapdoor and an input, can be used to commit to the input in such a way that:

- no information is revealed about it without the trapdoor ("hiding"),
- given the trapdoor and input, the commitment can be verified to "open" to that input and no other ("binding").

A commitment scheme COMM defines a type of inputs COMM.Input, a type of commitments COMM.Output, and a type of commitment trapdoors COMM.Trapdoor.

Let COMM : COMM.Trapdoor \times COMM.Input \rightarrow COMM.Output be a function satisfying the security requirements below.

Security requirements:

- Computational hiding: For all $x, x^{\prime}:$ COMM.Input, the distributions $\left\{\operatorname{COMM}_{r}(x) \mid r \stackrel{\mathrm{R}}{\leftarrow}\right.$ COMM.Trapdoor $\}$ and $\left\{\mathrm{COMM}_{r}\left(x^{\prime}\right) \mid r \stackrel{\mathrm{~K}}{\leftarrow}\right.$ COMM. Trapdoor $\}$ are computationally indistinguishable.
- Computational binding: It is infeasible to find x, x^{\prime} : COMM. Input and r, r^{\prime} : COMM. Trapdoor such that $x \neq x^{\prime}$ and $\operatorname{COMM}_{r}(x)=\operatorname{COMM}_{r^{\prime}}\left(x^{\prime}\right)$.

Note: If it were feasible to find $x:$ COMM.Input and $r, r^{\prime}:$ COMM.Trapdoor such that $r \neq r^{\prime}$ and $\operatorname{COMM}_{r}(x)=$ $\mathrm{COMM}_{r^{\prime}}(x)$, this would not by itself contradict the computational binding security requirement.

4.1.8 Represented Group

A represented group \mathbb{G} consists of:

- a subgroup order parameter $r_{\mathbb{G}}: \mathbb{N}^{+}$, which must be prime;
- a cofactor parameter $h_{\mathbb{G}}: \mathbb{N}^{+}$;
- a group \mathbb{G} of order $h_{\mathbb{G}} \cdot r_{\mathbb{G}}$, written additively with operation $+: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}$, and additive identity $\mathcal{O}_{\mathbb{G}}$;
- a generator $\mathcal{P}_{\mathbb{G}}$ of the subgroup of \mathbb{G} of order $r_{\mathbb{G}}$;
- a bit-length parameter $\ell_{\mathbb{G}}: \mathbb{N}$;
- a representation function repr $_{\mathbb{G}}: \mathbb{G} \rightarrow \mathbb{B}^{\left[\ell_{\mathbb{G}}\right]}$;
. an abstraction function abst $_{\mathbb{G}}: \mathbb{B}^{\left[\ell_{\mathbb{G}}\right]} \rightarrow \mathbb{G} \cup\{\perp\}$;
such that abst $\mathbb{G}_{\mathbb{G}}$ is the left inverse of repr $_{\mathbb{G}}$, i.e. for all $P \in \mathbb{G}, \operatorname{abst}_{\mathbb{G}}\left(\operatorname{repr}_{\mathbb{G}}(P)\right)=P$, and for all S not in the image of $\operatorname{repr}_{\mathbb{G}}, \operatorname{abst}_{\mathbb{G}}(S)=\perp$.
For $G: \mathbb{G}$ we write $-G$ for the negation of G, such that $(-G)+G=\mathcal{O}_{\mathbb{G}}$. We write $G-H$ for $G+(-H)$.
We also extend the \sum notation to addition on group elements.
For $G: \mathbb{G}$ and $k: \mathbb{Z}$ we write $[k] G$ for scalar multiplication on the group, i.e.

$$
[k] G:= \begin{cases}\sum_{i=1}^{k} G, & \text { if } k \geq 0 \\ \sum_{i=1}^{-k}(-G), & \text { otherwise } .\end{cases}
$$

For $G: \mathbb{G}$ and $a: \mathbb{F}_{r_{\mathbb{G}}}$, we may also write $[a] G$ meaning $\left[a \bmod r_{\mathbb{G}}\right] G$ as defined above. (This variant is not defined for fields other than $\mathbb{F}_{r_{G}}$.)

4.1.9 Hash Extractor

A hash extractor for a represented group \mathbb{G} is a function Extract $_{\mathbb{G}}: \mathbb{G} \rightarrow T$ for some type T, such that Extract ${ }_{\mathbb{G}}$ is injective on the subgroup of \mathbb{G} of order $r_{\mathbb{G}}$.

Note: Unlike the representation function repr $_{\mathbb{G}}$, Extract $_{\mathbb{G}}$ need not have an efficiently computable left inverse.

4.1.10 Group Hash

Given a represented group \mathbb{G} and a type CRSType, we define a family of group hashes into \mathbb{G} as a function

$$
\text { GroupHash }^{\mathbb{G}}: \text { CRSType } \times \mathbb{B}^{[l]} \rightarrow \mathbb{G}
$$

with the following security requirement.

Security requirement: Discrete Logarithm Independence

For a randomly selected member GroupHash ${ }_{\mathrm{CRS}}^{\mathbb{G}}$ of the family, it is infeasible to find a sequence of distinct inputs $m_{1 \ldots n}: \mathbb{B}^{[\ell][n]}$ and a sequence of nonzero scalars $x_{1 \ldots n}: \mathbb{F}_{r_{\mathbb{G}}}^{*}[n]$ such that $\sum_{i=1}^{n}\left(\left[x_{i}\right] \operatorname{GroupHash}{ }_{\mathrm{CRS}}^{\mathbb{G}}\left(m_{i}\right)\right)=\mathcal{O}_{\mathbb{G}}$.

Notes:

- This property implies (and is stronger than) collision-resistance, since a collision $\left(m_{1}, m_{2}\right)$ for GroupHash ${ }_{C R S}^{G}$ trivially gives a discrete logarithm relation with $x_{1}=1$ and $x_{2}=-1$.
- An alternative approach is to model GroupHash ${ }_{C R S}^{\mathbb{E}}$ as a random oracle, and assume that the Discrete Logarithm Problem is hard in the group. We prefer to avoid the Random Oracle Model and instead make a more specific standard-model assumption, which is effectively no stronger than the assumptions made in the random oracle approach.
- CRS is a Common Random String; we choose it verifiably at random, after fixing the concrete group hash algorithm to be used. If we publish the algorithm and the method of choosing the Common Random String before the CRS could be known, then this mitigates the possibility that the group hash algorithm could have been backdoored.

4.1.11 Represented Pairing

A represented pairing \mathbb{P} consists of:

- a group order parameter $r_{\mathbb{P}}: \mathbb{N}^{+}$which must be prime;
- two represented groups $\mathbb{P}_{1 . .2}$, both of order $r_{\mathbb{P}}$;
- a group \mathbb{P}_{T} of order $r_{\mathbb{P}}$, written multiplicatively with operation $: \circ \mathbb{P}_{T} \times \mathbb{P}_{T} \rightarrow \mathbb{P}_{T}$ and multiplicative identity $\mathbf{1}_{\mathbb{P}}$;
- a pairing function $\hat{e}_{\mathbb{P}}: \mathbb{P}_{1} \times \mathbb{P}_{2} \rightarrow \mathbb{P}_{T}$ satisfying:
- (Bilinearity) for all $a, b: \mathbb{F}_{r}^{*}, P: \mathbb{P}_{1}$, and $Q: \mathbb{P}_{2}, \hat{e}_{\mathbb{P}}([a] P,[b] Q)=\hat{e}_{\mathbb{P}}(P, Q)^{a \cdot b}$; and
- (Nondegeneracy) there does not exist $P: \mathbb{P}_{1} \backslash \mathcal{O}_{\mathbb{P}_{1}}$ such that for all $Q: \mathbb{P}_{2}, \hat{e}_{\mathbb{P}}(P, Q)=\mathbf{1}_{\mathbb{P}}$.

4.1.12 Zero-Knowledge Proving System

A zero-knowledge proving system is a cryptographic protocol that allows proving a particular statement, dependent on primary and auxiliary inputs, in zero knowledge - that is, without revealing information about the auxiliary inputs other than that implied by the statement. The type of zero-knowledge proving system needed by Zcash is a preprocessing zk-SNARK.
A preprocessing zk-SNARK instance ZK defines:

- a type of zero-knowledge proving keys, ZK.ProvingKey;
- a type of zero-knowledge verifying keys, ZK.VerifyingKey;
- a type of primary inputs ZK.Primarylnput;
- a type of auxiliary inputs ZK.AuxiliaryInput;
- a type of proofs ZK.Proof;
- a type ZK.SatisfyingInputs \subseteq ZK.Primarylnput \times ZK.Auxiliarylnput of inputs satisfying the statement;
- a randomized key pair generation algorithm ZK.Gen:() $\xrightarrow{\text { R }}$ ZK.ProvingKey \times ZK.VerifyingKey;
- a proving algorithm ZK.Prove : ZK.ProvingKey \times ZK.SatisfyingInputs \rightarrow ZK.Proof;
- a verifying algorithm ZK.Verify : ZK.VerifyingKey \times ZK.PrimaryInput \times ZK.Proof $\rightarrow \mathbb{B}$;

The security requirements below are supposed to hold with overwhelming probability for (pk, vk) $\stackrel{R}{\leftarrow}$ ZK.Gen().

Security requirements:

- Completeness: An honestly generated proof will convince a verifier: for any $(x, w) \in$ ZK.Satisfyinglnputs, if ZK.Prove ${ }_{\mathrm{pk}}(x, w)$ outputs π, then ZK.Verify $\mathrm{vk}_{\mathrm{kk}}(x, \pi)=1$.
- Knowledge Soundness: For any adversary \mathcal{A} able to find an x : ZK.Primarylnput and proof π : ZK.Proof such that ZK.Verify $\mathrm{vk}(x, \pi)=1$, there is an efficient extractor $E_{\mathcal{A}}$ such that if $E_{\mathcal{A}}(\mathrm{vk}, \mathrm{pk})$ returns w, then the probability that $(x, w) \notin$ ZK. SatisfyingInputs is insignificant.
- Statistical Zero Knowledge: An honestly generated proof is statistical zero knowledge. That is, there is a feasible stateful simulator \mathcal{S} such that, for all stateful distinguishers \mathcal{D}, the following two probabilities are not significantly different:

$$
\operatorname{Pr}\left[\begin{array}{c|l}
(x, w) \in \mathrm{ZK} . \text { SatisfyingInputs } & (\mathrm{pk}, \mathrm{vk}) \stackrel{\mathrm{R}}{\leftarrow} \mathrm{ZK} \cdot \operatorname{Gen}() \\
\mathcal{D}(\pi)=1 & (x, w) \stackrel{\mathrm{R}}{\leftarrow} \mathcal{D}(\mathrm{pk}, \mathrm{vk}) \\
\pi \stackrel{\mathrm{R}}{\leftarrow} \mathrm{ZK} \cdot \operatorname{Prove} \mathrm{pk}^{2}(x, w)
\end{array}\right] \text { and } \operatorname{Pr}\left[\begin{array}{l|l}
(x, w) \in \mathrm{ZK} \cdot \text { SatisfyingInputs } \\
\mathcal{D}(\pi)=1
\end{array} \begin{array}{l}
(\mathrm{pk}, \mathrm{vk}) \stackrel{\mathrm{R}}{\leftarrow} \mathcal{S}() \\
(x, w) \stackrel{\mathrm{R}}{\leftarrow} \mathcal{D}(\mathrm{pk}, \mathrm{vk}) \\
\pi \mathrm{R} \mathcal{S}(x)
\end{array}\right]
$$

These definitions are derived from those in [BCTV2014, Appendix C], adapted to state concrete security for a fixed circuit, rather than asymptotic security for arbitrary circuits. (ZK.Prove corresponds to P, ZK.Verify corresponds to V, and ZK.SatisfyingInputs corresponds to \mathcal{R}_{C} in the notation of that appendix.)

The Knowledge Soundness definition is a way to formalize the property that it is infeasible to find a new proof π where ZK.Verify $\mathrm{vk}(x, \pi)=1$ without $k n o w i n g$ an auxiliary input w such that $(x, w) \in$ ZK.Satisfyinglnputs. Note that Knowledge Soundness implies Soundness - i.e. the property that it is infeasible to find a new proof π where ZK.Verify ${ }_{\mathrm{vk}}(x, \pi)=1$ without there existing an auxiliary input w such that $(x, w) \in$ ZK.SatisfyingInputs.
It is possible to replay proofs, but informally, a proof for a given (x, w) gives no information that helps to find a proof for other (x, w).

Zcash uses two proving systems:

- PHGR13 (§5.4.9.1 'PHGR13’ on p.52) is used with the BN-254 pairing (§5.4.8.1 'BN-254’ on p.47), to prove and verify the Sprout JoinSplit statement (§4.11.1 'JoinSplit Statement (Sprout)' on p. 31).
- Groth16 (\$5.4.9.2 ‘Groth16’ on p.52) is used with the BLS12-381 pairing (§5.4.8.2 ‘BLS12-381’ on p. 48), to prove and verify the Sapling Spend statement (\$4.11.2 'Spend Statement (Sapling)' on p. 32) and Output statement (\$4.11.3 'Output Statement (Sapling)’ on p. 33).

These specializations are referred to as ZKJoinSplit for the Sprout JoinSplit statement, ZKSpend for the Sapling Spend statement, and ZKOutput for the Sapling Output statement.

We omit the key subscripts on ZKJoinSplit.Prove and ZKJoinSplit.Verify, taking them to be the PHGR13 proving key and verifying key defined in §5.7 ‘Sprout zk-SNARK Parameters’ on p. 58.
Similarly, we omit the key subscripts on ZKSpend.Prove, ZKSpend.Verify, ZKOutput.Prove, and ZKOutput.Verify, taking them to be the Groth16 proving keys and verifying keys defined in §5.8 'Sapling zk-SNARK Parameters' on p. 58.

4.2 Key Components

4.2.1 Sprout Key Components

Let PRF ${ }^{\text {addr }}$ be a Pseudo Random Function, instantiated in §5.4.2 'Pseudo Random Functions' on p. 43.
Let KA ${ }^{\text {Sprout }}$ be a key agreement scheme, instantiated in §5.4.4.1 'Sprout Key Agreement' on p. 44.
A new Sprout spending key $a_{s k}$ is generated by choosing a bit sequence uniformly at random from $\mathbb{B}^{\left[\ell_{\text {sk }}\right]}$.
$a_{\mathrm{pk}}, \mathrm{sk}_{\mathrm{enc}}$ and pk enc are derived from a_{sk} as follows:

$$
\begin{aligned}
\mathrm{a}_{\mathrm{pk}} & :=\mathrm{PRF}_{\mathrm{a}_{\text {sk }}}^{\text {addr }}(0) \\
\mathrm{sk}_{\mathrm{enc}} & :=\mathrm{KA} \mathrm{~A}^{\text {Spout }} . \text { FormatPrivate }\left(\mathrm{PRF}_{\mathrm{a}_{\text {sk }}}^{\text {addr }}(1)\right) \\
\mathrm{pk}_{\mathrm{enc}} & \left.:=\mathrm{KA} \mathrm{Sprot}^{\text {Sprot }} \text {.DerivePublic(sk } \mathrm{sk}_{\mathrm{enc}}, \mathrm{KA}^{\text {Sprout }} . \text { Base }\right) .
\end{aligned}
$$

4.2.2 Sapling Key Components

Let PRF ${ }^{\text {expand }}$ be a Pseudo Random Function, instantiated in §5.4.2 'Pseudo Random Functions' on p. 43.
Let KA Sapling be a key agreement scheme, instantiated in §5.4.4.3 'Sapling Key Agreement' on p. 45.
Let CRH ${ }^{\text {ivk }}$ be a hash function, instantiated in §5.4.1.5 'CRHivk Hash Function' on p. 39.
Let DiversifyHash be a hash function, instantiated in 5.4.1.6 'DiversifyHash Hash Function' on p. 40.

Let $\mathcal{G}=$ FindGroupHash $^{\mathbb{J}}\left(\right.$ "Zcash_G_", "") and let $\mathcal{H}=$ FindGroupHash ${ }^{\mathbb{J}}($ "Zcash_H_", "").

Let repr $r_{\mathbb{J}}$ be the representation function for the Jubjub represented group, instantiated in §5.4.8.3 ‘Jubjub’ on p. 50.
Let LEBS2OSP $\left.:(\ell: \mathbb{N}) \times \mathbb{B}^{[\ell]} \rightarrow \mathbb{B}^{[c e i l i n g}(\ell / 8)\right]$ be defined as in $\S 5.2$ 'Integers, Bit Sequences, and Endianness' on p. 36 .

A new Sapling spending key sk is generated by choosing a bit sequence uniformly at random from $\mathbb{B}^{\left[\ell_{\mathrm{sk}}\right]}$.
From this spending key, the spend authorizing key ask and proof authorizing key nsk are derived as follows:

$$
\begin{aligned}
\text { ask } & :=\mathrm{PRF}_{\text {sk }}^{\text {expand }}(0) \\
\text { nsk } & :=\mathrm{PRF}_{\text {sk }}^{\text {expand }}(1)
\end{aligned}
$$

$a k, n k$, and ivk are then derived as follows:

$$
\begin{aligned}
\mathrm{ak} & :=[\mathrm{ask}] \mathcal{G} \\
\mathrm{nk} & :=[\mathrm{nsk}] \mathcal{H} \\
\text { ivk }: & =\mathrm{CRH}^{\mathrm{ivk}}\left(\begin{array}{|c|c}
\square & 256 \text {-bit repr } \\
\mathbb{J} & (\mathrm{ak})
\end{array}\right.
\end{aligned}
$$

As explained in $\$ 3.1$ 'Payment Addresses and Keys' on p.10, Sapling allows the efficient creation of multiple diversified payment addresses with the same spending authority. A group of such addresses shares the same full viewing key and incoming viewing key.

To create a new diversified payment address given an incoming viewing key ivk, repeatedly pick a diversifier d uniformly at random from $\mathbb{B}^{\left[\ell_{d}\right]}$ until $g_{d}=$ DiversifyHash (d) is not \perp. Then calculate:

$$
\mathrm{pk}_{\mathrm{d}}:=\mathrm{KA}{ }^{\text {Sapling }} . \text { DerivePublic }\left(\mathrm{ivk}, \mathrm{~g}_{\mathrm{d}}\right) \text {. }
$$

The resulting diversified payment address is $\left(\mathrm{d}, \mathrm{pk}_{\mathrm{d}}\right)$.

Notes:

- The protocol does not prevent using the diversifier d to produce "vanity" addresses that start with a meaningful string when encoded in Bech32 (see §5.6.4 'Sapling Shielded Payment Addresses’ on p. 55). Users and writers of software that generates addresses should be aware that this provides weaker privacy properties than a randomly chosen diversifier, since a vanity address can obviously be distinguished, and might leak more information than intended as to who created it.
- Similarly, address generators MAY encode information in the diversifier that can be recovered by the recipient of a payment to determine which diversified payment address was used. It is RECOMMENDED that such diversifiers be randomly chosen unique byte sequences used to index into a database, rather than directly encoding the needed data.

4.3 JoinSplit Descriptions

A JoinSplit transfer, as specified in §3.5 'JoinSplit Transfers and Descriptions' on p.13, is encoded in transactions as a JoinSplit description.

Each transaction includes a sequence of zero or more JoinSplit descriptions. When this sequence is non-empty, the transaction also includes encodings of a JoinSplitSig public verification key and signature.

A JoinSplit description consists of ($v_{\text {pub }}^{\text {old }}, v_{\text {pub }}^{\text {new }}, r \mathrm{rt}, \mathrm{nf}_{1 . . \mathrm{N}^{\text {old }}}^{\text {old }}, \mathrm{cm}_{1 . . \mathrm{N}^{\text {new }}}^{\text {new }}, \mathrm{epk}$, randomSeed $, \mathrm{h}_{1 . . \mathrm{N}^{\text {old }},}, \pi_{\text {ZKJoinSplit }}, C_{1 . . \mathrm{N}^{\text {new }}}^{\text {enc }}$) where

- $v_{\text {pub }}^{\text {old }}:\{0$.. MAX_MONEY $\}$ is the value that the JoinSplit transfer removes from the transparent value pool;
- $v_{\text {pub }}^{\text {new }}:\{0$.. MAX_MONEY $\}$ is the value that the JoinSplit transfer inserts into the transparent value pool;
- rt: $\mathbb{B}^{[\text {M Merke] }]}$ is an anchor, as defined in $\$ 3.3$ 'The Block Chain’ on p .12 , for the output treestate of either a previous block, or a previous JoinSplit transfer in this transaction.
- nf $1_{1 . . N^{\text {old }}}^{\text {old }}: \mathbb{B}^{\left[\ell_{\text {PRF }}\right]\left[N^{\text {old }}\right]}$ is the sequence of nullifiers for the input notes;
- $\mathrm{cm}_{1 \ldots . \mathrm{N}^{\text {new }}}^{\text {new }}$: NoteCommit ${ }^{\text {Sprout }}$.Output ${ }^{\left[\mathrm{N}^{\text {new }}\right]}$ is the sequence of note commitments for the output notes;
- epk : KA ${ }^{\text {Sprout. }}$.Public is a key agreement public key, used to derive the key for encryption of the transmitted notes ciphertext (\$4.12 'In-band secret distribution' on p. 34);
- randomSeed $: \mathbb{B}^{\left[\ell_{\text {seed }}\right]}$ is a seed that must be chosen independently at random for each JoinSplit description;
- $h_{1 . . N^{\text {old }}}: \mathbb{B}^{\left[\ell_{\text {PRF }}\right]\left[N^{\text {old }}\right]}$ is a sequence of tags that bind $h_{\text {Sig }}$ to each $a_{\text {sk }}$ of the input notes;
- $\pi_{\mathrm{ZK} \text { JoinSplit }}:$ ZKJoinSplit.Proof is the zero-knowledge proof for the JoinSplit statement;
- $C_{1 . . \mathbb{N}^{\text {new }}}^{\text {enc }}$: Sym. $C^{\left[\mathbb{N}^{\text {new }}\right]}$ is a sequence of ciphertext components for the encrypted output notes.

The ephemeralkey and encCiphertexts fields together form the transmitted notes ciphertext.
The value $\mathrm{h}_{\text {Sig }}$ is also computed from randomSeed, $\mathrm{nf}_{1 \ldots \mathrm{~N}^{\text {old }}}^{\text {old }}$, and the joinSplitPubKey of the containing transaction:

$$
\mathrm{h}_{\text {Sig }}:=\mathrm{hSigCRH} \text { (randomSeed, } \mathrm{nf}_{1 \ldots . \mathrm{N}^{\text {old }}}^{\text {old }}, \text { joinSplitPubKey). }
$$

hSigCRH is instantiated in $\underline{\text { §5.4.1.4 }}{ }^{\text {' }} \mathrm{h}_{\text {Sig }}$ Hash Function' on p. 39.

Consensus rules:

- Elements of a JoinSplit description MUST have the types given above (for example: $0 \leq \mathrm{v}_{\text {pub }}^{\text {old }} \leq$ MAX_MONEY and $0 \leq v_{\text {pub }}^{\text {new }} \leq$ MAX_MONEY).
- Either $v_{\text {pub }}^{\text {old }}$ or $v_{\text {pub }}^{\text {new }}$ MUST be zero.
- The proof $\pi_{\mathrm{ZK} \text { JoinSplit }}$ MUST be valid given a primary input formed from the other fields and $\mathrm{h}_{\text {Sig }}$. I.e. it must be the case that ZKJoinSplit.Verify $\left(\left(\mathrm{rt}, \mathrm{nf}_{1 . . \mathrm{N}^{\text {old }}}^{\text {old }}, \mathrm{cm}_{1 . . \mathrm{N}^{\text {new }}}^{\text {new }}, v_{\text {pub }}^{\text {old }}, v_{\text {pub }}^{\text {new }}, \mathrm{h}_{\text {Sig }}, \mathrm{h}_{1 . . \mathrm{N}^{\text {old }}}\right), \pi_{\text {ZKJoinSplit }}\right)=1$.

4.4 Spend Descriptions

A Spend transfer, as specified in $\S 3.6$ 'Spend Transfers, Output Transfers, and their Descriptions' on p.14, is encoded in transactions as a Spend description.
Each transaction includes a sequence of zero or more Spend descriptions.
Unlike JoinSplit signatures of which there is at most one per transaction, each Spend description is authorized by a signature, called the spend authorization signature.
A Spend description consists of ($\mathrm{cv}, \mathrm{rt}, \mathrm{nf}, \mathrm{rk}, \pi_{\mathrm{ZKS} \text { pend }}$, spendAuthSig)
where

- cv: ValueCommit.Output is the value commitment to the value of the input note;
- rt: $\mathbb{B}^{\left[\ell_{\text {Merkesaping] }}\right]}$ is an anchor, as defined in $\$ 3.3$ 'The Block Chain’ on p.12, for the output treestate of a previous block.
- $n f: \mathbb{B}^{\left[\ell_{\text {PRFS Saping }}\right]}$ is the nullifier for the input note;
- rk: SpendAuthSig.Public is a randomized public key that should be used to verify spendAuthSig;
- $\pi_{\mathrm{ZKS} \text { pend }}: Z \mathrm{ZKSpend.Proof} \mathrm{is} \mathrm{the} \mathrm{zero-knowledge} \mathrm{proof} \mathrm{for} \mathrm{the} \mathrm{Spend} \mathrm{statement;}$
- spendAuthSig: SpendAuthSig.Signature is a signature authorizing this spend.

Consensus rules:

- Elements of a Spend description MUST have the types given above.
- The proof $\pi_{Z K S p e n d}$ MUST be valid given a primary input formed from the other fields except spendAuthSig. I.e. it must be the case that ZKSpend.Verify $\left((\mathrm{cv}, \mathrm{rt}, \mathrm{nf}), \pi_{\mathrm{ZKSpend}}\right)=1$.
- The spend authorization signature MUST be a valid SpendAuthSig signature using rk as the public key, over TODO: ...

4.5 Output Descriptions

An Output transfer, as specified in $\$ 3.6$ 'Spend Transfers, Output Transfers, and their Descriptions' on p.14, is encoded in transactions as an Output description.

Each transaction includes a sequence of zero or more Output descriptions. There are no signatures associated with Output descriptions.
An Output description consists of (cv, cm, epk, $\left.C^{\text {enc }}, \pi_{\text {ZKOutput }}\right)$
where
. cv : ValueCommit.Output is the value commitment to the value of the output note;
. cm : NoteCommit ${ }^{\text {Sapling }}$.Output is the note commitment for the output note;

- epk: KA ${ }^{\text {Sapling }}$.Public is a key agreement public key, used to derive the key for encryption of the transmitted notes ciphertext (\$4.12 ‘In-band secret distribution’ on p. 34);
- $\mathrm{C}^{\text {enc }}:$ Sym. C is a ciphertext component for the encrypted output note.
- $\pi_{\text {ZKOutput }}:$ ZKOutput.Proof is the zero-knowledge proof for the Output statement.

Consensus rules:

- Elements of an Output description MUST have the types given above.
- The proof $\pi_{\text {ZKOutput }}$ MUST be valid given a primary input formed from the other fields except $\mathrm{C}^{\text {enc }}$. I.e. it must be the case that ZKSpend.Verify $\left((\mathrm{cv}, \mathrm{cm}\right.$, epk $\left.), \pi_{\text {ZKOutput }}\right)=1$.

4.6 Sending Notes

4.6.1 Sending Notes (Sprout)

In order to send shielded value, the sender constructs a transaction containing one or more JoinSplit descriptions. This involves first generating a new JoinSplitSig key pair:
(joinSplitPrivKey, joinSplitPubKey) $\stackrel{R}{\leftarrow}$ JoinSplitSig.Gen().
For each JoinSplit description, the sender chooses randomSeed uniformly at random on $\mathbb{B}^{\left[\ell_{\text {Seed }}\right]}$, and selects the input notes. At this point there is sufficient information to compute $\mathrm{h}_{\mathrm{sig}}$, as described in the previous section. The sender also chooses φ uniformly at random on $\mathbb{B}^{\left[\ell_{\varphi}\right]}$. Then it creates each output note with index $i:\left\{1 . . \mathrm{N}^{\text {new }}\right\}$ as follows:

- Choose $\mathrm{rcm}_{i}^{\text {new }}$ uniformly at random on $\mathbb{B}^{\left[\ell_{\mathrm{rcm}}\right]}$.
- Compute $\rho_{i}^{\text {new }}=\operatorname{PRF}_{\varphi}^{\rho}(i$, hsig $)$.
- Encrypt the note to the recipient transmission key $\mathrm{pk}_{\text {enc }, i}$, as described in $\$ 4.12$ 'In-band secret distribution' on p. 34 , giving the ciphertext component $\mathrm{C}_{i}^{\text {enc }}$.

In order to minimize information leakage, the sender SHOULD randomize the order of the input notes and of the output notes. Other considerations relating to information leakage from the structure of transactions are beyond the scope of this specification.

After generating all of the JoinSplit descriptions, the sender obtains the dataToBeSigned ($\underline{\text { § } 4.8}$ 'Non-malleability' on p.30), and signs it with the private JoinSplit signing key:
joinSplitSig $\stackrel{R}{\leftarrow}$ JoinSplitSig.Sign ${ }_{\text {joinSplitPrivKey }}$ (dataToBeSigned)
Then the encoded transaction including joinSplitSig is submitted to the network.

4.6.2 Dummy Notes (Sprout)

The fields in a JoinSplit description allow for $N^{\text {old }}$ input notes, and $N^{\text {new }}$ output notes. In practice, we may wish to encode a JoinSplit transfer with fewer input or output notes. This is achieved using dummy notes.
A dummy input note, with index i in the JoinSplit description, is constructed as follows:

- Generate a new random spending key $a_{\mathrm{sk}, i}^{\text {old }}$ and derive its paying key $a_{\mathrm{pk}, i}^{\text {old }}$.
- Set $\mathrm{v}_{i}^{\text {old }}:=0$.
- Choose $\rho_{i}^{\text {old }}$ uniformly at random on $\mathbb{B}^{\left[\ell_{\text {PRF }}\right]}$.
- Choose $\mathrm{rcm}_{i}^{\text {old }}$ uniformly at random on $\mathbb{B}^{\left[\ell_{\mathrm{rcm}}\right]}$.
- Compute $\mathrm{nf}_{i}^{\text {old }}:=\mathrm{PRF}_{\substack{a_{\text {sk }, i} \text { old }}}^{\text {nf }}\left(\rho_{i}^{\text {old }}\right)$.
- Construct a dummy Merkle tree path path ${ }_{i}$ for use in the auxiliary input to the JoinSplit statement (this will not be checked).
- When generating the JoinSplit proof, set enforceMerklePath ${ }_{i}$ to 0 .

A dummy output note is constructed as normal but with zero value, and sent to a random shielded payment address.

4.6.3 Sending Notes (Sapling)

In order to send shielded value, the sender constructs a transaction containing one or more shielded outputs.
Let OutputIndex be the type $\left\{0 . .2^{32}-1\right\}$.
For each Output description with index idx: OutputIndex, the sender selects a value $v_{\text {idx }}^{\text {new }}$ and a destination Sapling shielded payment address ($\mathrm{d}, \mathrm{pk}_{\mathrm{d}}$), and then performs the following steps:

1. Check that pk_{d} is a valid compressed representation of an Edwards point on the Jubjub curve and this point is not of small order (i.e. $\operatorname{abst}_{\mathbb{J}}\left(\mathrm{pk}_{\mathrm{d}}\right) \neq \perp$ and [8] abst $\left.{ }_{\mathbb{J}}\left(\mathrm{pk}_{\mathrm{d}}\right) \neq \mathcal{O}_{\mathbb{J}}\right)$.
2. Calculate $\mathrm{g}_{\mathrm{d}}=$ DiversifyHash(d) and check that $\mathrm{g}_{\mathrm{d}} \neq \perp$.
3. Choose esk uniformly at random on $\left\{0 . . r_{\mathbb{J}}-1\right\}$.
4. Choose independent random commitment trapdoors:
rcvidx $_{\text {new }}^{\text {new }}$: ValueCommit.Trapdoor
rcmidx ${ }_{\text {id }}^{\text {new }}$: NoteCommit ${ }^{\text {Sapling }}$. Trapdoor
5. Calculate

$$
\begin{aligned}
& C v_{\text {idx }}^{\text {new }}:=\text { ValueCommit }_{\text {rccidx }}^{\text {new }}\left(v_{\text {idx }}^{\text {new }}\right) \\
& \mathrm{cm}_{\mathrm{idx}}^{\text {new }}:=\operatorname{NoteCommit}_{\mathrm{rcm}_{\mathrm{idx}}^{\text {new }}}^{\text {Sapling }}\left(\operatorname{repr}_{\mathbb{J}}\left(\mathrm{g}_{\mathrm{d}}\right), \operatorname{repr}_{\mathbb{J}}\left(\mathrm{pk}_{\mathrm{d}}\right), \mathrm{v}_{\mathrm{idx}}^{\text {new }}\right) \\
& \text { epk }:=K A^{\text {Sapling }} \text {.DerivePublic(esk, } g_{d} \text {) } \\
& \text { sharedSecret }:=\mathrm{KA}^{\text {Sapling }} \text {.Agree(esk, } \mathrm{pk}_{\mathrm{d}} \text {). }
\end{aligned}
$$

6. Let $\mathrm{K}:=\mathrm{KDF}^{\text {Sapling }}$ (idx, sharedSecret, epk).
7. Let P be the raw encoding of the note plaintext ($\mathrm{d}, \mathrm{v}_{\mathrm{idx}}^{\text {new }}, \mathrm{rcm}_{\mathrm{idx}}^{\text {new }}$, memo).
(See §5.5 'Encodings of Note Plaintexts and Memo Fields' on p. 53.)
8. Encrypt P using the IETF version of AEAD_CHACHA20_POLY1305, with empty associated data, all zero 96-bit nonce, and 256 -bit key K , giving C .
9. Generate a proof $\pi_{\text {ZKOutput }}$ for the Output circuit described below.
10. Return $\left(\mathrm{cv}_{\mathrm{idx}}^{\text {new }}, \mathrm{cm}_{\text {idx }}^{\text {new }}\right.$, epk, $\left.C, \pi_{\text {ZKOutput }}\right)$.

In order to minimize information leakage, the sender SHOULD randomize the order of the input notes and of the output notes. Other considerations relating to information leakage from the structure of transactions are beyond the scope of this specification.

The encoded transaction is submitted to the network.
TODO: The actual encryption should be split into a subsection of $\$ 4.12$ 'In-band secret distribution' on p. 34 as it is for Sprout.

TODO: Receiving a Sapling note.

4.7 Merkle path validity

Let MerkleDepth be MerkleDepth ${ }^{\text {Sprout }}$ for the Sprout note commitment tree, or MerkleDepth ${ }^{\text {Sapling }}$ for the Sapling note commitment tree. These constants are defined in $\$ 5.3$ 'Constants' on p. 36.
Similarly, let MerkleCRH be MerkleCRH ${ }^{\text {Sprout }}$ for Sprout, or MerkleDepth ${ }^{\text {Sapling }}$ for Sapling.
The following discussion applies independently to the Sprout and Sapling note commitment trees.
Each node in the incremental Merkle tree is associated with a hash value, which is a bit sequence.
The layer numbered h, counting from layer 0 at the root, has 2^{h} nodes with indices 0 to $2^{h}-1$ inclusive.
Let M_{i}^{h} be the hash value associated with the node at index i in layer h.
The nodes at layer MerkleDepth are called leaf nodes. When a note commitment is added to the tree, it occupies the leaf node hash value $\mathrm{M}_{i}^{\text {MerkleDepth }}$ for the next available i.
As-yet unused leaf nodes are associated with a distinguished hash value Uncommitted ${ }^{\text {Sprout }}$ or Uncommitted ${ }^{\text {Sapling }}$. It is assumed to be infeasible to find a preimage note \mathbf{n} such that $\operatorname{NoteCommitment~}^{\text {Sprout }}(\mathbf{n})=$ Uncommitted ${ }^{\text {Sprout }}$. (No similar assumption is needed for Sapling because we use a representation for Uncommitted Sapling that cannot occur as an output of NoteCommitment ${ }^{\text {Sapling }}$.)
The nodes at layers 0 to MerkleDepth - 1 inclusive are called internal nodes, and are associated with MerkleCRH outputs. Internal nodes are computed from their children in the next layer as follows: for $0 \leq h<$ MerkleDepth and $0 \leq i<2^{h}$,

$$
\mathrm{M}_{i}^{h}:=\operatorname{MerkleCRH}\left(\mathrm{M}_{2 i}^{h+1}, \mathrm{M}_{2 i+1}^{h+1}\right)
$$

A Merkle tree path from leaf node $\mathrm{M}_{i}^{\mathrm{MerkleDepth}}$ in the incremental Merkle tree is the sequence

$$
\text { [} \mathrm{M}_{\text {sibling }(h, i)}^{h} \text { for } h \text { from MerkleDepth down to } 1 \text {], }
$$

where

$$
\operatorname{sibling}(h, i):=\text { floor }\left(\frac{i}{2^{\text {MerkleDepth }-h}}\right) \oplus 1
$$

Given such a Merkle tree path, it is possible to verify that leaf node $M_{i}^{\text {MerkleDepth }}$ is in a tree with a given root $\mathrm{rt}=\mathrm{M}_{0}^{0}$.

4.8 Non-malleability

Bitcoin defines several SIGHASH types that cover various parts of a transaction. In Zcash, all of these SIGHASH types are extended to cover the Zcash-specific fields nJoinSplit, vJoinSplit, and (if present) joinSplitPubKey, described in $\begin{aligned} & 7.1 \\ & \text { 'Encoding of Transactions' on p. 59. They do not cover the field joinSplitSig. }\end{aligned}$

Consensus rule: If nJoinSplit >0, the transaction MUST NOT use SIGHASH types other than SIGHASH_ALL.

Let dataToBeSigned be the hash of the transaction using the SIGHASH_ALL SIGHASH type. This excludes all of the scriptSig fields in the non-Zcash-specific parts of the transaction.

In order to ensure that a JoinSplit description is cryptographically bound to the transparent inputs and outputs corresponding to $v_{\text {pub }}^{\text {new }}$ and $v_{\text {pub }}^{\text {old }}$, and to the other JoinSplit descriptions in the same transaction, an ephemeral JoinSplitSig key pair is generated for each transaction, and the dataToBeSigned is signed with the private signing key of this key pair. The corresponding public verification key is included in the transaction encoding as joinSplitPubKey.
JoinSplitSig is instantiated in §5.4.5 'JoinSplit Signature' on p. 45.
If nJoinSplit is zero, the joinSplitPubKey and joinSplitSig fields are omitted. Otherwise, a transaction has a correct JoinSplit signature if and only if JoinSplitSig.Verify joinSplitPubKey $^{(d a t a T o B e S i g n e d, ~ j o i n S p l i t S i g) ~}=1$.

Let $\mathrm{h}_{\mathrm{Sig}}$ be computed as specified in $\begin{aligned} & \\ & 4.3 \\ & \text { ‘JoinSplit Descriptions' on p. } 25 .\end{aligned}$
Let $\mathrm{PRF}^{\mathrm{pk}}$ be as defined in \S 4.1.2 'Pseudo Random Functions' on p.17.
For each $i \in\left\{1 . . \mathrm{N}^{\text {old }}\right\}$, the creator of a JoinSplit description calculates $\mathrm{h}_{i}=\mathrm{PRF}_{\substack{\text { ald } \\ \mathrm{ask}_{i}}}^{\mathrm{pk}}\left(i, \mathrm{~h}_{\mathrm{Sig}}\right)$.
The correctness of $h_{1 . . N^{\text {old }}}$ is enforced by the JoinSplit statement given in $\S 4.11 .1$ 'Non-malleability' on p. 32. This ensures that a holder of all of the $a_{s k, 1 . . N^{o l d}}^{\text {old }}$ for every JoinSplit description in the transaction has authorized the use of the private signing key corresponding to joinSplitPubKey to sign this transaction.
[Sapling onward] TODO: Specify the spend authorization signature.

4.9 Balance

A JoinSplit transfer can be seen, from the perspective of the transaction, as an input and an output simultaneously. $v_{\text {pub }}^{\text {old }}$ takes value from the transparent value pool and $v_{\text {pub }}^{\text {new }}$ adds value to the transparent value pool. As a result, $v_{\text {pub }}^{\text {old }}$ is treated like an output value, whereas $v_{\text {pub }}^{\text {new }}$ is treated like an input value.
Unlike original Zerocash [BCG+2014], Zcash does not have a distinction between Mint and Pour operations. The addition of $v_{\text {pub }}^{\text {old }}$ to a JoinSplit description subsumes the functionality of both Mint and Pour.
Also, a difference in the number of real input notes does not by itself cause two JoinSplit descriptions to be distinguishable.

As stated in $\$ 4.3$ 'JoinSplit Descriptions’ on p. 25 , either $v_{\text {pub }}^{\text {old }}$ or $v_{\text {pub }}^{\text {new }}$ MUST be zero. No generality is lost because, if a transaction in which both $v_{\text {pub }}^{\text {old }}$ and $v_{\text {pub }}^{\text {new }}$ were nonzero were allowed, it could be replaced by an equivalent one in which $\min \left(v_{\text {pub }}^{\text {old }}, v_{\text {pub }}^{\text {new }}\right)$ is subtracted from both of these values. This restriction helps to avoid unnecessary distinctions between transactions according to client implementation.
TODO: Add details of balance checking for Sapling transactions.

4.10 Note Commitments and Nullifiers

A transaction that contains one or more JoinSplit descriptions or Spend descriptions, when entered into the block chain, appends to the note commitment tree with all constituent note commitments.
All of the constituent nullifiers are also entered into the nullifier set of the associated treestate. A transaction is not valid if it would have added a nullifier to the nullifier set that already exists in the set (see §3.8 'Nullifier Sets' on p.15).

In Sprout, each note has a ρ component.
In Sapling, each positioned note has an associated ρ value which is computed from its note commitment cm and note position pos as follows:

$$
\rho:=\text { MixingPedersenHash(cm, pos). }
$$

MixingPedersenHash is defined in $\$ 5.4 .1 .8$ 'Mixing Pedersen Hash Function' on p. 42.
Let $\mathrm{PRF}^{\mathrm{nf}}$ and $\mathrm{PRF}^{\mathrm{nfS}}{ }^{\text {apling }}$ be as instantiated in $\begin{aligned} & \text { 5.4.2 'Pseudo Random Functions' on p. } 43 .\end{aligned}$
For a Sprout note, the nullifier is derived as $\operatorname{PRF}_{a_{\text {sk }}}^{\mathrm{nf}}(\rho)$.
For a Sapling note, the nullifier is derived as $\operatorname{PRF}_{n k}^{n f S a p l i n g}(\rho)$.

4.11 Zk-SNARK Statements

4.11.1 JoinSplit Statement (Sprout)

A valid instance of $\pi_{\mathrm{ZKJoinSplit}}$ assures that given a primary input:

$$
\begin{aligned}
& \left(\mathrm{rt}: \mathbb{B}^{\left[\ell_{\text {MerkleSprout }}\right]},\right. \\
& \mathrm{nf}_{1 . . \mathrm{N}^{\text {old }}}^{\text {old }}: \mathbb{B}^{\left[\ell_{\text {PRF }}\right]\left[\mathrm{N}^{\text {old }}\right]}, \\
& \mathrm{cm}_{1 . . . \mathrm{N}^{\text {new }}}^{\text {new }}: \text { NoteCommit }^{\text {Sprout }} . \text { Output }{ }^{\left[\mathrm{N}^{\text {new }}\right]}, \\
& \mathrm{v}_{\text {pub }}^{\text {old }}:\left\{0 \ldots 2^{64}-1\right\}, \\
& \mathrm{v}_{\text {pub }}^{\text {new }}:\left\{0 . .2^{64}-1\right\}, \\
& \mathrm{h}_{\text {Sig }}: \mathbb{B}^{\left[\ell_{\text {hSig }}\right]}, \\
& \left.\mathrm{h}_{1 . . \mathrm{N}^{\text {old }}:}: \mathbb{B}^{\left[\ell_{\text {PRF }}\right]\left[\mathrm{N}^{\text {old }}\right]}\right),
\end{aligned}
$$

the prover knows an auxiliary input:

$$
\left.\begin{array}{l}
\left(\text { path }_{1 . . \mathrm{N}^{\text {old }}}: \mathbb{B}^{\left[\ell_{\text {MerkleSprout }}\right]}[\text { MerkleDepth }\right. \\
\left.\mathbf{n}_{1 \ldots \text { prout }}^{\text {old }}\right]
\end{array} \mathrm{N}^{\text {old }}: \operatorname{Note}^{\text {Sprout }\left[\mathrm{N}^{\text {old }}\right]}, ~ . .2^{\text {MerkleDepth }}{ }^{\text {Sprout }}-1\right\}^{\left[\mathrm{N}^{\text {old }}\right]},
$$

where:

$$
\begin{aligned}
& \text { for each } i \in\left\{1 . . \mathrm{N}^{\text {old }}\right\}: \mathbf{n}_{i}^{\text {old }}=\left(\mathrm{a}_{\mathrm{p} k, i}^{\text {old }}, \mathrm{v}_{i}^{\text {old }}, \rho_{i}^{\text {old }}, \mathrm{rcm}_{i}^{\text {old }}\right) ; \\
& \text { for each } i \in\left\{1 . . \mathrm{N}^{\text {new }}\right\}: \mathbf{n}_{i}^{\text {new }}=\left(a_{\mathrm{pk}, i, i}^{\text {en }}, \mathrm{v}_{i}^{\text {new }}, \rho_{i}^{\text {new }}, \mathrm{rcm}_{i}^{\text {new }}\right)
\end{aligned}
$$

such that the following conditions hold:
Merkle path validity for each $i \in\left\{1 . . \mathrm{N}^{\text {old }}\right\} \mid$ enforceMerklePath ${ }_{i}=1$: path $_{i}$ is a valid Merkle tree path (see $\S 4.7$ 'Merkle path validity' on p .29) of depth MerkleDepth ${ }^{\text {Sprout }}$ from NoteCommitment ${ }^{\text {Sprout }}\left(\mathbf{n}_{i}^{\text {old }}\right)$ to the anchor rt.
Note: Merkle path validity covers both conditions 1. (a) and 1. (d) of the NP statement in [BCG+2014, section 4.2].
Merkle path enforcement for each $i \in\left\{1 . . N^{\text {old }}\right\}$, if $v_{i}^{\text {old }} \neq 0$ then enforceMerklePath ${ }_{i}=1$.
Balance $v_{\text {pub }}^{\text {old }}+\sum_{i=1}^{\mathrm{N}^{\text {old }}} v_{i}^{\text {old }}=v_{\text {pub }}^{\text {new }}+\sum_{i=1}^{\text {Nnew }_{\text {new }}^{\text {new }}} \in\left\{0 . .2^{64}-1\right\}$.
Nullifier integrity for each $i \in\left\{1 . . \mathrm{N}^{\text {old }}\right\}: \mathrm{nf}_{i}^{\text {old }}=\mathrm{PRF}_{\mathrm{a}_{\mathrm{sld}, i}}^{\text {nf }}$ ($\left.\rho_{i}^{\text {old }}\right)$.
Spend authority for each $i \in\left\{1 . . \mathrm{N}^{\text {old }}\right\}: a_{\mathrm{pk}, i}^{\text {old }}=\operatorname{PRF}_{\substack{\text { ads }, i}}^{\text {adr }}(0)$.
Non-malleability for each $i \in\left\{1 . . \mathrm{N}^{\text {old }}\right\}: \mathrm{h}_{i}=\mathrm{PRF}_{\substack{\text { ask,id }}}^{\mathrm{pl}}\left(i, \mathrm{~h}_{\mathrm{Sig}}\right)$.
Uniqueness of $\rho_{i}^{\text {new }}$ for each $i \in\left\{1 . . \mathrm{N}^{\text {new }}\right\}: \rho_{i}^{\text {new }}=\operatorname{PRF}_{\varphi}^{\rho}\left(i, \mathrm{~h}_{\text {Sig }}\right)$.
Note commitment integrity for each $i \in\left\{1 . . \mathrm{N}^{\text {new }}\right\}: \mathrm{cm}_{i}^{\text {new }}=\operatorname{NoteCommitment}{ }^{\text {Sprout }}\left(\mathbf{n}_{i}^{\text {new }}\right)$.
For details of the form and encoding of proofs, see §5.4.9.1 'PHGR13’ on p. 52.

4.11.2 Spend Statement (Sapling)

Let \mathcal{G} be as defined in $\begin{aligned} & \text { 4.2.2 } \\ & \text { 'Sapling Key Components' on p. } 24 .\end{aligned}$
A valid instance of $\pi_{\mathrm{ZKS} \text { pend }}$ assures that given a primary input:

```
(rt : \mathbb{B}}\mp@subsup{}{[\mp@subsup{\ell}{\mathrm{ Merkespaling ]}}{}}{
    cvold : ValueCommit.Output,
    nold}:\mp@subsup{\mathbb{B}}{}{[lPRRSapling],
```


the prover knows an auxiliary input:

```
(path : \(\left.\mathbb{B}^{\left[\ell_{\text {Merkle }}\right]}\right]\) MerkleDepth \({ }^{\text {Sapling }]} \times\left\{0 . .2^{\text {MerkleDepth }^{\text {Sapling }}}-1\right\}\),
\(\mathrm{gd}_{\mathrm{d}}{ }^{*}: \mathbb{B}^{\left[\ell_{J}\right]}\),
\(\mathrm{pk}_{\mathrm{d}}{ }^{*}: \mathbb{B}^{\left[\ell_{\mathrm{J}}\right]}\),
\(v^{\text {old }}:\left\{0 . .2^{64}-1\right\}\),
rcv \({ }^{\text {old }}\) : ValueCommit.Trapdoor,
\(\mathrm{cm}^{\text {old }}: \mathbb{B}^{\left[\ell_{\text {MerkleSapling }}\right]}\),
rcm \({ }^{\text {old }}:\) NoteCommit \({ }^{\text {Sapling }}\). Trapdoor,
ar: \(\left\{0 . .2^{252}-1\right\}\),
\(\mathrm{ak}^{*}: \mathbb{B}^{\left[\ell_{\mathrm{J}}\right]}\),
nsk: \(\left\{0 . .2^{252}-1\right\}\) )
```

such that the following conditions hold:

Note commitment integrity $\operatorname{pack}\left(\mathrm{cm}^{\text {old }}\right)=$ NoteCommit ${ }_{\mathrm{rcm}^{\text {old }}}^{\text {Sapling }}\left(\mathrm{g}_{\mathrm{d}}{ }^{*}, \mathrm{pk}_{\mathrm{d}}{ }^{*}, \mathrm{v}^{\text {old }}\right)$.
TODO: define pack.
Merkle path validity path is a valid Merkle tree path, as defined in $\S 4.7$ 'Merkle path validity' on p . 29, of depth MerkleDepth ${ }^{\text {Sapling }}$ from $\mathrm{cm}^{\text {old }}$ to the anchor rt .

Value commitment integrity $\quad \mathrm{cv}^{\text {old }}=$ ValueCommit $\mathrm{rcv}^{\text {old }}\left(\mathrm{v}^{\text {old }}\right)$.
Point validity checks $\mathrm{rk}^{\text {old }}, \mathrm{ak}, \mathrm{g}_{\mathrm{d}} \in \mathbb{J}$ and are not of small order, i.e. $[8] \mathrm{rk}{ }^{\text {old }} \neq \mathcal{O}_{\mathbb{J}}$ and $[8]$ ak $\neq \mathcal{O}_{\mathbb{J}}$ and $[8] \mathrm{g}_{\mathrm{d}} \neq \mathcal{O}_{\mathbb{J}}$.
Nullifier integrity $n f^{\text {old }}=\operatorname{PRF}_{n k}^{n f 5 a p l i n g}(\rho)$ where

$$
\begin{aligned}
& \mathrm{nk}=[\text { nsk }] \mathcal{H} \\
& \left.\rho=\text { MixingPedersenHash(} \mathrm{cm}^{\text {old }}, \text { pos }\right) .
\end{aligned}
$$

Spend authority $\quad \mathrm{rk}^{\text {old }}=\mathrm{ak}+[\mathrm{ar}] \mathcal{G}$ where
$\mathrm{rk}^{\text {old }}: \mathbb{J}=\operatorname{abst}_{\mathbb{J}}\left(\mathrm{rk}^{\text {old } *}\right)$
$a k: \mathbb{J}=\operatorname{abst}_{\mathbb{J}}\left(\mathrm{ak}^{*}\right)$.
Diversified address integrity $\mathrm{pk}_{\mathrm{d}}=[\mathrm{ivk}] \mathrm{g}_{\mathrm{d}}$ where

$$
\begin{aligned}
& \text { ivk }=C R H^{\text {ivk }}\left(a^{*}, \mathrm{nk}^{*}\right) \\
& \mathrm{g}_{\mathrm{d}}=\operatorname{abst}_{\mathbb{J}}\left(\mathrm{g}_{\mathrm{d}}^{*}\right)
\end{aligned}
$$

For details of the form and encoding of Spend statement proofs, see §5.4.9.2 'Groth16' on p. 52.

4.11.3 Output Statement (Sapling)

A valid instance of π_{ZKOutput} assures that given a primary input:
(cv ${ }^{\text {new }}$: ValueCommit.Output, $\mathrm{cm}^{\text {new }}$: NoteCommit ${ }^{\text {Sapling }}$.Output, epk: \mathbb{J}),
the prover knows an auxiliary input:

$$
\begin{aligned}
& \left(\mathrm{g}_{\mathrm{d}}{ }^{*}: \mathbb{B}^{\left[\ell_{J}\right]},\right. \\
& \mathrm{pk}_{\mathrm{d}}{ }^{*}: \mathbb{B}^{\left[\ell_{\mathrm{J}}\right]}, \\
& \mathrm{v}^{\text {new }}:\left\{0 . .2^{64}-1\right\}, \\
& \mathrm{rcv}^{\text {new }}: \text { ValueCommit.Trapdoor, } \\
& \mathrm{rcm}^{\text {new }}: \text { NoteCommit }{ }^{\text {Sapling }} \text {. Trapdoor, } \\
& \text { esk } \left.:\left\{0 . .2^{252}-1\right\}\right)
\end{aligned}
$$

such that the following conditions hold:
Note commitment integrity $\operatorname{pack}\left(\mathrm{cm}^{\text {new }}\right)=$ NoteCommit ${ }_{\mathrm{rcm}^{\text {new }}}^{\text {Sapling }}\left(\mathrm{g}_{\mathrm{d}}{ }^{*}, \mathrm{pk}_{\mathrm{d}}{ }^{*}, \mathrm{v}^{\text {new }}\right)$.
TODO: define pack.

Value commitment integrity $\quad \mathrm{cv}^{\text {new }}=$ ValueCommit ${ }_{r c v^{\text {new }}}\left(\mathrm{v}^{\text {new }}\right)$.
Point validity checks $g_{d} \in \mathbb{J}$ and is not of small order, i.e. [8] $g_{d} \neq \mathcal{O}_{\mathbb{J}}$, where
$\mathrm{g}_{\mathrm{d}}=\operatorname{abst}_{\mathbb{J}}\left(\mathrm{g}_{\mathrm{d}}{ }^{*}\right)$.

Ephemeral public key integrity $\mathrm{epk}=[\mathrm{esk}] \mathrm{g}_{d}$ where

$$
\mathrm{epk}=\mathrm{abst} \mathrm{t}_{\mathbb{J}}\left(\mathrm{epk}^{*}\right) .
$$

For details of the form and encoding of Output statement proofs, see \$5.4.9.2 'Groth16’ on p. 52.

4.12 In-band secret distribution

The secrets that need to be transmitted to a recipient of funds in order for them to later spend, are $\mathrm{v}, \rho, \mathrm{rcm}$, and in the case of Sapling d and pk_{d}. A memo field (\$3.2.1 'Note Plaintexts and Memo Fields' on p.12) is also transmitted.

In order to the transmit these secrets securely to a recipient without requiring an out-of-band communication channel, the transmission key $\mathrm{pk}_{\text {enc }}$ or pk_{d} is used to encrypt them. The recipient's possession of the associated incoming viewing key ivk is used to reconstruct the original note and memo field.

All of the resulting ciphertexts are combined to form a transmitted notes ciphertext.
For both encryption and decryption:
Let Sym be the encryption scheme instantiated in \$5.4.3 'Authenticated One-Time Symmetric Encryption' on p. 44.

Let KDF ${ }^{\text {Sprout }}$ and $\mathrm{KDF}^{\text {Sapling }}$ be the Key Derivation Functions instantiated in §5.4.4.2 'Sprout Key Derivation' on p. 44.

Let $K A^{\text {Sprout }}$ and $K A^{\text {Sapling }}$ be the key agreement schemes instantiated in §5.4.4 'Key Agreement and Derivation' on p. 44.
[Sprout] Let $\mathrm{h}_{\text {Sig }}$ be the value computed for this JoinSplit description in $\underline{\text { §.3 }}$ 'JoinSplit Descriptions' on p. 25.

4.12.1 Encryption (Sprout)

Let $\mathrm{pk}_{\mathrm{enc}, 1 . . \mathrm{N}^{\text {new }}}^{\text {new }}$ be the transmission keys for the intended recipient addresses of each new note.
Let $\mathbf{n} \mathbf{p}_{1 . . \mathrm{N}}$ new be the note plaintexts as defined in $\begin{aligned} & 5.5 \\ & \text { 'Encodings of Note Plaintexts and Memo Fields' on p. } 53 .\end{aligned}$
Then to encrypt:

- Generate a new KA ${ }^{\text {Sprout }}$ (public, private) key pair (epk, esk).
- For $i \in\left\{1 . . \mathrm{N}^{\text {new }}\right\}$,
- Let $\mathrm{P}_{i}^{\text {enc }}$ be the raw encoding of $\mathbf{n} \mathbf{p}_{i}$.
- Let sharedSecret ${ }_{i}:=\mathrm{KA}^{\text {Sprout }}$.Agree(esk, $\mathrm{pk}_{\text {enc }, i}$)).
- Let $\mathrm{K}_{i}^{\text {enc }}:=\operatorname{KDF}^{\text {Sprout }}\left(i, \mathrm{~h}_{\mathrm{Sig}}\right.$, sharedSecret ${ }_{i}$, epk, $\left.\mathrm{pk}_{\mathrm{enc}, i}^{\text {new }}\right)$.
- Let $C_{i}^{\text {enc }}:=$ Sym.Encrypt Kinc $_{i}^{\text {enc }}\left(P_{i}^{\text {enc }}\right)$.

The resulting transmitted notes ciphertext is (epk, $\mathrm{C}_{1 . . \mathrm{N}^{\text {new }}}^{\mathrm{enc}}$).

Note: It is technically possible to replace $C_{i}^{\text {enc }}$ for a given note with a random (and undecryptable) dummy ciphertext, relying instead on out-of-band transmission of the note to the recipient. In this case the ephemeral key MUST still be generated as a random public key (rather than a random bit sequence) to ensure indistinguishability from other JoinSplit descriptions. This mode of operation raises further security considerations, for example of how to validate a note received out-of-band, which are not addressed in this document.

4.12.2 Decryption by a Recipient (Sprout)

Let ivk $=\left(\mathrm{a}_{\mathrm{pk}}, \mathrm{sk}_{\mathrm{enc}}\right)$ be the recipient's incoming viewing key, and let $\mathrm{pk}_{\mathrm{enc}}$ be the corresponding transmission key derived from sk ${ }_{\text {enc }}$ as specified in $\$ 4.2$ 'Key Components' on p. 24.
Let $\mathrm{cm}_{1 . . \mathrm{N}}^{\text {new }}{ }^{\text {new }}$ be the note commitments of each output coin.
Then for each $i \in\left\{1 . . \mathrm{N}^{\text {new }}\right\}$, the recipient will attempt to decrypt that ciphertext component as follows:

```
    let sharedSecret \({ }_{i}=\mathrm{KA}^{\text {Sprout }}\).Agree(sk \({ }_{\text {enc }}\), epk)
    let \(\mathrm{K}_{i}^{\text {enc }}=\operatorname{KDF}^{\text {Sprout }}\left(i, \mathrm{~h}_{\mathrm{Sig}}\right.\), sharedSecret \({ }_{i}\), epk, \(\left.\mathrm{pk}_{\text {enc }}\right)\)
    return DecryptNote ( \(K_{i}^{\text {enc }}, C_{i}^{\text {enc }}, \mathrm{cm}_{i}^{\text {new }}, a_{\mathrm{pk}}\) ).
DecryptNote ( \(\mathrm{K}_{i}^{\text {enc }}, \mathrm{C}_{i}^{\text {enc }}, \mathrm{cm}_{i}^{\text {new }}, \mathrm{a}_{\mathrm{pk}}\) ) is defined as follows:
    let \(\mathrm{P}_{i}^{\text {enc }}=\operatorname{Sym}^{\text {. }}\) Decrypt \(\mathrm{K}_{i}^{\text {enc }}\left(\mathrm{C}_{i}^{\text {enc }}\right)\)
    if \(\mathrm{P}_{i}^{\text {enc }}=\perp\), return \(\perp\)
    extract \(\mathbf{n p}_{i}=\left(v_{i}^{\text {new }}, \rho_{i}^{\text {new }}\right.\), rcm \(_{i}^{\text {new }}\), memo \(\left._{i}\right)\) from \(\mathrm{P}_{i}^{\text {enc }}\)
    if NoteCommit \(\left.{ }_{( }^{\text {Sprout }}\left(a_{\mathrm{pk}}, \mathrm{v}_{i}^{\text {new }}, \rho_{i}^{\text {new }}, \mathrm{rcm}_{i}^{\text {new }}\right)\right) \neq \mathrm{cm}_{i}^{\text {new }}\), return \(\perp\), else return \(\mathbf{n p}_{i}\).
```

To test whether a note is unspent in a particular block chain also requires the spending key a_{sk}; the coin is unspent if and only if $n f=\operatorname{PRF}_{\mathrm{a}_{\text {sk }}}^{\mathrm{nf}}(\rho)$ is not in the nullifier set for that block chain.

Notes:

- The decryption algorithm corresponds to step 3 (b) i. and ii. (first bullet point) of the Receive algorithm shown in [BCG+2014, Figure 2].
- A note can change from being unspent to spent as a node's view of the best block chain is extended by new transactions. Also, block chain reorganizations can cause a node to switch to a different best block chain that does not contain the transaction in which a note was output.

See $\$ 8.7$ 'In-band secret distribution' on p. 74 for further discussion of the security and engineering rationale behind this encryption scheme.

5 Concrete Protocol

5.1 Caution

TODO: Explain the kind of things that can go wrong with linkage between abstract and concrete protocol. E.g. §8.5 'Internal hash collision attack and fix' on p. 72

5.2 Integers, Bit Sequences, and Endianness

All integers in Zcash-specific encodings are unsigned, have a fixed bit length, and are encoded in little-endian byte order unless otherwise specified.
The following functions convert between sequences of bits, sequences of bytes, and integers:

- I2LEBSP : $(\ell: \mathbb{N}) \times\left\{0 . .2^{\ell}-1\right\} \rightarrow \mathbb{B}^{[\ell]}$, such that $\operatorname{I2LEBSP}_{\ell}(x)$ is the sequence of ℓ bits representing x in little-endian order;
- I2BEBSP : $(\ell: \mathbb{N}) \times\left\{0 . .2^{\ell}-1\right\} \rightarrow \mathbb{B}^{[\ell]}$ such that $\operatorname{I2BEBSP}_{\ell}(x)$ is the sequence of ℓ bits representing x in big-endian order.
- LEOS2IP $:(k: \mathbb{N}) \times \mathbb{B B Y}^{[k]} \rightarrow\left\{0 . .256^{k}-1\right\}$ such that $\operatorname{LEOS}^{\left[1 P_{k}\right.}(S)$ is the integer represented in little-endian order by the byte sequence S of length k.
- LEBS2OSP : $(\ell: \mathbb{N}) \times \mathbb{B}^{[\ell]} \rightarrow \mathbb{B}^{[c e i l i n g(\ell / 8)]}$ defined as follows: pad the input on the right with $8 \cdot \operatorname{ceiling}(\ell / 8)-\ell$ zero bits so that its length is a multiple of 8 bits. Then convert each group of 8 bits to a byte value with the least significant bit first, and concatenate the resulting bytes in the same order as the groups.

In bit layout diagrams, each box of the diagram represents a sequence of bits. Diagrams are read from left-toright, with lines read from top-to-bottom; the breaking of boxes across lines has no significance. The bit length ℓ is given explicitly in each box, except when it is obvious (e.g. for a single bit, or for the notation [0] representing the sequence of ℓ zero bits, or for the output of LEBS2OSP ℓ).

The entire diagram represents the sequence of bytes formed by first concatenating these bit sequences, and then treating each subsequence of 8 bits as a byte with the bits ordered from most significant to least significant. Thus the most significant bit in each byte is toward the left of a diagram. Where bit fields are used, the text will clarify their position in each case.

5.3 Constants

Define:

$$
\begin{aligned}
& \text { MerkleDepth } \\
& \text { MerkleDept }: \mathbb{N}:=29 \\
& \mathrm{~N}^{\text {old }}: \mathbb{N}:=2 \\
& \mathrm{~N}^{\text {new }}: \mathbb{N}:=2 \\
& \ell_{\text {MerkleSprout }}: \mathbb{N}:=32 \\
& \ell_{\text {MerkleSapling }}: \mathbb{N}:=256 \\
& \ell_{\text {hSig }}: \mathbb{N}:=256 \\
& \ell_{\text {PRF }}: \mathbb{N}:=256 \\
& \ell_{\text {rcm }}: \mathbb{N}:=256 \\
& \ell_{\text {Seed }}: \mathbb{N}:=256 \\
& \ell_{\mathrm{a}_{\text {sk }}}: \mathbb{N}:=252
\end{aligned}
$$

$$
\begin{aligned}
& \ell_{\varphi}: \mathbb{N}:=252 \\
& \ell_{\text {sk }}: \mathbb{N}:=256 \\
& \ell_{\mathrm{d}}: \mathbb{N}:=88 \\
& \ell_{\text {ivk }}: \mathbb{N}:=251 \\
& \text { Uncommitted }^{\text {Sprout }: \mathbb{B}^{\left[\ell_{\text {Merklesprout }}\right]}:=[0]^{\ell_{\text {Merklesprout }}}} \\
& \text { Uncommitted }^{\text {Sapling }}: \mathbb{B}^{\left[\ell_{\text {MerkleSapling }}\right]}:=I_{2 L E B S P}^{\ell_{\text {MerkleSapling }}}{ }^{(1)} \\
& \text { MAX_MONEY }: \mathbb{N}:=2.1 \cdot 10^{15} \text { (zatoshi) } \\
& \text { SlowStartInterval }: \mathbb{N}:=20000 \\
& \text { HalvingInterval }: \mathbb{N}:=840000 \\
& \text { MaxBlockSubsidy }: \mathbb{N}:=1.25 \cdot 10^{9} \text { (zatoshi) } \\
& \text { NumFounderAddresses }: \mathbb{N}:=48 \\
& \text { FoundersFraction }: \mathbb{Q}:=\frac{1}{5} \\
& \text { PoWLimit }: \mathbb{N}:=\left\{\begin{array}{l}
243 \\
2^{251}-1, \text { for the production network }
\end{array}\right. \\
& \text { PoWAveragingWindow }: \mathbb{N}:=17 \\
& \text { PoWMedianBlockSpan }: \mathbb{N}:=11 \\
& \text { PoWMaxAdjustDown }: \mathbb{Q}:=\frac{32}{100} \\
& \text { PoWMaxAdjustUp }: \mathbb{Q}:=\frac{16}{100} \\
& \text { PoWDampingFactor }: \mathbb{N}:=4 \\
& \text { PoWTargetSpacing }: \mathbb{N}:=150 \text { (seconds). }
\end{aligned}
$$

5.4 Concrete Cryptographic Schemes

5.4.1 Hash Functions

5.4.1.1 SHA-256 and SHA256Compress Hash Functions

SHA-256 is defined by [NIST2O15].
Zcash uses the full SHA-256 hash function to instantiate NoteCommitment ${ }^{\text {Sprout }}$.

$$
\mathrm{SHA}-256: \mathbb{B Y}^{[\mathbb{N}]} \rightarrow \mathbb{B}^{[32]}
$$

[NIST2O15] strictly speaking only specifies the application of SHA-256 to messages that are bit sequences, producing outputs ("message digests") that are also bit sequences. In practice, SHA-256 is universally implemented with a byte-sequence interface for messages and outputs, such that the most significant bit of each byte corresponds to the first bit of the associated bit sequence. (In the NIST specification "first" is conflated with "leftmost".)
Zcash also uses the SHA-256 compression function, SHA256Compress. This operates on a single 512-bit block and excludes the padding step specified in [NIST2O15, section 5.1].

That is, the input to SHA256Compress is what [NIST2O15, section 5.2] refers to as "the message and its padding". The Initial Hash Value is the same as for full SHA-256.
SHA256Compress is used to instantiate several Pseudo Random Functions and MerkleCRH ${ }^{\text {Sprout }}$.

$$
\text { SHA256Compress }: \mathbb{B}^{[512]} \rightarrow \mathbb{B}^{[256]}
$$

The ordering of bits within words in the interface to SHA256Compress is consistent with [NIST2O15, section 3.1], i.e. big-endian.

5.4.1.2 BLAKE2 Hash Function

BLAKE2 is defined by [ANWW2013]. Zcash uses both the BLAKE2b and BLAKE2s variants.
BLAKE2b- $\ell(p, x)$ refers to unkeyed BLAKE2b- ℓ in sequential mode, with an output digest length of $\ell / 8$ bytes, 16byte personalization string p, and input x.
BLAKE2b is used to instantiate hSigCRH, EquihashGen, and KDF ${ }^{\text {Sprout }}$. From Overwinter onward, it is used to compute SIGHASH transaction hashes as specified in [ZIP-143]. For Sapling, it is also used to instantiate KDF ${ }^{\text {Sapling }}$, and in the EdJubjub signature scheme which instantiates SpendAuthSig.

$$
\text { BLAKE2b- } \ell: \mathbb{B Y}^{[16]} \times \mathbb{B Y}^{[\mathbb{N}]} \rightarrow \mathbb{B Y}^{[\ell / 8]}
$$

Note: BLAKE2b- ℓ is not the same as BLAKE2b-512 truncated to ℓ bits, because the digest length is encoded in the parameter block.

BLAKE2s- $\ell(p, x)$ refers to unkeyed BLAKE2s- ℓ in sequential mode, with an output digest length of $\ell / 8$ bytes, 8 -byte personalization string p, and input x.
BLAKE2s is used to instantiate PRF ${ }^{\text {expand }}, \mathrm{PRF}^{\text {nfsapling }}, \mathrm{CRH}^{\mathrm{ivk}}$, and GroupHash ${ }^{\mathbb{J}}$.

$$
\text { BLAKE2s- } \ell: \mathbb{B Y}^{[8]} \times \mathbb{B Y}^{[\mathbb{N}]} \rightarrow \mathbb{B}^{[\ell / 8]}
$$

5.4.1.3 Merkle Tree Hash Function

MerkleCRH ${ }^{\text {Sprout }}$ and MerkleCRH ${ }^{\text {Sapling }}$ are used to hash incremental Merkle tree hash values for Sprout and Sapling respectively.

MerkleCRH ${ }^{\text {Sprout }}$ Hash Function

Let SHA256Compress be as specified in §5.4.1.1 'SHA-256 and SHA256Compress Hash Functions' on p. 37.
 MerkleCRH ${ }^{\text {Sprout }}$ (layer, left, right) $:=$ SHA256Compress $\left(\begin{array}{|l|l|}\hline 256 \text {-bit left } & 256 \text {-bit right } \\ \hline\end{array}\right)$.

Notes:

- The layer argument does not affect the output.
- SHA256Compress is not the same as the SHA-256 function, which hashes arbitrary-length byte sequences.

Security requirement: SHA256Compress must be collision-resistant, and it must be infeasible to find a preimage x such that SHA256Compress $(x)=[0]^{256}$.

MerkleCRH ${ }^{\text {Sapling }}$ Hash Function

Let PedersenHash be as specified in $\begin{aligned} & \text { s5.4.1.7 'Pedersen Hash Function' on p. } 40 .\end{aligned}$
MerkleCRH ${ }^{\text {Sapling }}:\left\{0 \ldots\right.$ MerkleDepth $\left.{ }^{\text {Sapling }}-1\right\} \times \mathbb{B}^{\left[\ell_{\text {Merklesapling }}\right]} \times \mathbb{B}^{\left[\ell_{\text {Merklesapling }}\right]} \rightarrow \mathbb{B}^{\left[\ell_{\text {Merklesapling }}\right]}$ is defined as follows:

$$
\text { MerkleCRH }{ }^{\text {Sapling }} \text { (layer, left, right) }:=\text { PedersenHash("Zcash_PH", } l|\mid \text { left || right) }
$$

$$
\text { where } l=\text { I2LEBSP }_{6} \text { (MerkleDepth }{ }^{\text {Sapling }}-1 \text { - layer). }
$$

Security requirement: PedersenHash must be collision-resistant.

Note: The prefix l provides domain separation between inputs at different layers of the note commitment tree. It is distinct from the prefix used in NoteCommit ${ }^{\text {Sapling }}$ as noted in §5.4.7.2 'Windowed Pedersen commitments' on p. 46 .

5.4.1.4 $\mathrm{h}_{\mathrm{Sig}}$ Hash Function

hSigCRH is used to compute the value $\mathrm{h}_{\mathrm{Sig}}$ in $\underline{\S 4.3}$ 'JoinSplit Descriptions' on p. 25.

```
hSigCRH (randomSeed, \(\mathrm{nf}_{1 . . \mathrm{N}^{\text {old }}}^{\text {old }}\), joinSplitPubKey) \(:=\) BLAKE2b-256("ZcashComputehSig", hSiglnput)
```

where

hSigInput $:=$| 256 -bit randomSeed | 256 -bit nf ${ }_{1}^{\text {old }}$ | \ldots | 256 -bit $\mathrm{nf}_{\mathrm{N}}^{\text {old }} \mathrm{old}$ | 256 -bit joinSplitPubKey |
| :--- | :--- | :--- | :--- | :--- |

BLAKE2b-256 (p, x) is defined in §5.4.1.2 'BLAKE2 Hash Function' on p. 38.

Security requirement: BLAKE2b-256("ZcashComputehSig", x) must be collision-resistant on x.

5.4.1.5 $\mathrm{CRH}^{\text {ivk }}$ Hash Function

CRH ${ }^{\text {ivk }}$ is used to derive the incoming viewing key ivk for a Sapling shielded payment address. For its use when generating an address see $\S 4.2 .2$ 'Sapling Key Components' on p. 24, and for its use in the Spend statement see §4.11.2 'Spend Statement (Sapling)' on p. 32.

It is defined as follows:

$$
\mathrm{CRH}^{\mathrm{ivk}}(\mathrm{ak}, \mathrm{nk}):=\operatorname{LEOS} 2 \mathrm{IP}_{256}(\text { BLAKE2s-256("Zcashivk", crhlnput) }) \bmod 2^{\ell_{\mathrm{ivk}}}
$$

where

$$
\text { crhInput }:=\begin{array}{|l|l|}
\hline 256 \text {-bit LEBS2OSP } & 256 \\
\left(\mathrm{ak}^{*}\right) & 256 \text {-bit LEBS2OSP } \\
256
\end{array}\left(\mathrm{nk}^{*}\right)
$$

BLAKE2b-256 (p, x) is defined in §5.4.1.2 'BLAKE2 Hash Function' on p. 38.

Security requirement: LEOS2IP 256 (BLAKE2s-256("Zcashivk", x)) mod $2^{\ell_{i v k}}$ must be collision-resistant on a 64byte input x. Note that this does not follow from collision-resistance of BLAKE2s-256 (and the best possible concrete security is that of a 251-bit hash rather than a 256 -bit hash), but it is a reasonable assumption given the design, structure, and cryptanalysis to date of BLAKE2s.

Note: The variable output digest length feature of BLAKE2s does not support arbitrary bit lengths, otherwise that would have been used rather than external truncation. However, the protocol-specific personalization string together with truncation achieve essentially the same effect as using that feature.

5.4.1.6 DiversifyHash Hash Function

DiversifyHash is used to derive a diversified base from a diversifier in §4.2.2 'Sapling Key Components' on p. 24.

Define
DiversifyHash(d) := GroupHash ${ }_{U}^{\mathbb{J}}$ ("Zcash_gd", LEBS2OSP ${ }_{\ell_{\mathrm{d}}}(\mathrm{d})$)

Security requirement: DiversifyHash must satisfy the Discrete Logarithm Independence property described in §4.1.10 ‘Group Hash' on p. 22. TODO: make this more precise.

5.4.1.7 Pedersen Hash Function

PedersenHash is an algebraic hash function with collision resistance (for fixed input length) derived from assumed hardness of the Discrete Logarithm Problem on the Jubjub curve. It is based on the work of David Chaum, Ivan Damgård, Jeroen van de Graaf, Jurjen Bos, George Purdy, Eugène van Heijst and Birgit Pfitzmann in [CDG1987], [BCP1988] and [CvHP1991], and of Mihir Bellare, Oded Goldreich, and Shafi Goldwasser in [BGG1995], with optimizations for efficient instantiation in zk-SNARK circuits by Sean Bowe and Daira Hopwood.

PedersenHash is used in the incremental Merkle tree over note commitments (3.7 'Note Commitment Trees’ on p.15) and in the definition of Pedersen commitments (\$5.4.7.2 'Windowed Pedersen commitments' on p.46).

Let \mathbb{J} be as defined in §5.4.8.3 ‘Jubjub’ on p. 50.
Let Extract $\mathbb{J}_{\mathbb{J}}$ be as defined in §5.4.8.4 'Hash Extractor for Jubjub' on p. 50.
Let FindGroupHash ${ }^{\mathbb{J}}$ be as defined in §5.4.8.5 ‘Group Hash into Jubjub’ on p. 51.
Let $c:=63$.
Define $\mathcal{I}: \mathbb{B Y Y}^{[8]} \times \mathbb{N} \rightarrow \mathbb{J}$ by:

$$
\mathcal{I}_{i}^{D}:=\text { FindGroupHash }^{\mathbb{J}}\left(D, 32 \text {-bit floor }\left(\frac{i-1}{c}\right)\right.
$$

Define PedersenHashToPoint $\left(D: \mathbb{B}^{Y}[8], M: \mathbb{B}^{\left[\mathbb{N}^{+}\right]}\right)$as follows:
Pad M to a multiple of 3 bits by appending zero bits, giving M^{\prime}.
Let $n=\operatorname{ceiling}\left(\frac{\operatorname{length}\left(M^{\prime}\right)}{3 \cdot c}\right)$.
Split M^{\prime} into n "segments" $M_{1 . . n}$ so that $M^{\prime}=\operatorname{concat}_{\mathbb{B}}\left(M_{1 . . n}\right)$, and each of $M_{1 . . n-1}$ is of length $3 \cdot c$ bits. (M_{n} may be shorter.)
Return $\sum_{i=1}^{n}\left[\left\langle M_{i}\right\rangle\right] \mathcal{I}_{i}^{D}: \mathbb{J}$.
where $\langle\cdot\rangle: \mathbb{B}^{[3 \cdot\{1 . . c\}]} \rightarrow\left\{-\frac{r_{\mathbb{J}}-1}{2} . . \frac{r_{\mathbb{J}}-1}{2}\right\} \backslash\{0\}$ is defined as:
Let $k_{i}=$ length $\left(M_{i}\right) / 3$.
Split M_{i} into 3-bit "chunks" $m_{1 . . k_{i}}$ so that $M_{i}=\operatorname{concat}_{\mathbb{B}}\left(m_{1 . . k_{i}}\right)$.
Write each m_{j} as $\left[s_{0}^{j}, s_{1}^{j}, s_{2}^{j}\right]$, and let enc $\left(m_{j}\right)=\left(1-2 \cdot s_{2}^{j}\right) \cdot\left(1+s_{0}^{j}+2 \cdot s_{1}^{j}\right): \mathbb{Z}$.

$$
\text { Let }\left\langle M_{i}\right\rangle=\sum_{j=1}^{k_{i}} \operatorname{enc}\left(m_{j}\right) \cdot 2^{4 \cdot(j-1)} \text {. }
$$

Finally, define PedersenHash : $\mathbb{B Y}^{[8]} \times \mathbb{B}^{\left[\mathbb{N}^{+}\right]} \rightarrow \mathbb{B}^{\left[\ell_{\text {MerkkeSapling }}\right]}$ by:

See §A.3.3.9 'Pedersen hash’ on p. 99 for rationale and efficient circuit implementation of these functions.

Security requirement: PedersenHash and PedersenHashToPoint are required to be collision-resistant between inputs of fixed length, for a given personalization input D. No other security properties commonly associated with hash functions are needed.

Theorem 5.4.1. The encoding function $\langle\cdot\rangle$ is injective.

Proof. We first check that the range of $\sum_{j=1}^{k_{i}} \operatorname{enc}\left(m_{j}\right) \cdot 2^{4 \cdot(j-1)}$ is a subset of the allowable range $\left\{-\frac{r_{\mathrm{J}}-1}{2} . . \frac{r_{\mathbb{J}}-1}{2}\right\} \backslash\{0\}$. The range of this expression is a subset of $\{-\Delta . . \Delta\} \backslash\{0\}$ where $\Delta=4 \cdot \sum_{i=0}^{c-1} 2^{4 \cdot i}=4 \cdot \frac{2^{4 \cdot c}}{15}$.

When $c=63$, we have

$$
\begin{aligned}
4 \cdot \frac{2^{4 \cdot c}}{15} & =0 \mathrm{x} 444 \\
\frac{r_{\mathbb{J}}-1}{2} & =0 \times 73 \text { EDA753299D7D483339D80809A1D8053341049E6640841684B872F6B7B965B }
\end{aligned}
$$

so the required condition is met. This implies that there is no "wrap around" and so $\sum_{j=1}^{k_{i}}$ enc $\left(m_{j}\right) \cdot 2^{4 \cdot(j-1)}$ may be treated as an integer expression.
enc is injective. In order to prove that $\langle\cdot\rangle$ is injective, consider $\langle\cdot\rangle^{\Delta}: \mathbb{B}^{[3 \cdot\{1 \ldots c\}]} \rightarrow\{0 . .2 \cdot \Delta\}$ such that $\left\langle M_{i}\right\rangle^{\Delta}=\left\langle M_{i}\right\rangle+\Delta$. With k_{i} and m_{j} defined as above, we have $\left\langle M_{i}\right\rangle^{\Delta}=\sum_{j=1}^{k_{i}}$ enc $^{\prime}\left(m_{j}\right) \cdot 2^{4 \cdot(j-1)}$ where enc $\left(m_{j}\right)=\operatorname{enc}\left(m_{j}\right)+4$ is in $\{0 . .8\}$ and enc ${ }^{\prime}$ is injective. Express this sum in hexadecimal; then each m_{j} affects only one hex digit, and it is easy to see that $\langle\cdot\rangle^{\Delta}$ is injective. Therefore so is $\langle\cdot\rangle$.

Since the security proof from [BGG1995, Appendix A] depends only on the encoding being injective and its range not including zero, the proof can be adapted straightforwardly to show that PedersenHashToPoint is collision-resistant under the same assumptions and security bounds. Because $I_{2 L E B S}{\ell_{\text {MerkleSapling }}}$ and Extract $\mathbb{J}_{\mathbb{J}}$ are injective, it follows that PedersenHash is equally collision-resistant.

Theorem 5.4.2. Uncommitted ${ }^{\text {Sapling }}=I 2 L E B S P_{\ell_{\text {MerkleSapling }}}$ (1) is not in the range of PedersenHash.
Proof. By the definition of PedersenHash, I2LEBSP ${ }_{\ell_{\text {MerkleSapling }}}$ (1) can be in the range of PedersenHash only if there exist $D: \mathbb{B Y}^{[8]}$ and $M: \mathbb{B}^{\left[\mathbb{N}^{+}\right]}$such that $\operatorname{Extract}_{\mathbb{J}}($ PedersenHashToPoint $(D, M))=1$. The latter can only be the affineEdwards u-coordinate of a point in \mathbb{J}. We show that there are no points in \mathbb{J} with affine-Edwards u-coordinate 1. Suppose for a contradiction that $(u, v) \in \mathbb{J}$ for $u=1$ and some $v: \mathbb{F}_{r_{\mathbb{J}}}$. By writing the curve equation as $v^{2}=$ $\left(1-a_{\mathbb{J}} \cdot u^{2}\right) /\left(1-d_{\mathbb{J}} \cdot u^{2}\right)$, and noting that $1-d_{\mathbb{J}} \cdot u^{2} \neq 0$, we have $v^{2}=\left(1-a_{\mathbb{J}}\right) /\left(1-d_{\mathbb{J}}\right)$. The right-hand-side is a nonsquare in $\mathbb{F}_{r_{\mathrm{J}}}$, so there are no solutions for v (contradiction).

5.4.1.8 Mixing Pedersen Hash Function

A mixing Pedersen hash is used to compute ρ from cm and pos in $\S 4.10$ 'Note Commitments and Nullifiers' on p. 31. It takes as input a Pedersen commitment P, and hashes it with another input x.

Let $\mathcal{J}=$ FindGroupHash ${ }^{\mathbb{J}}$ ("Zcash_J_", "").
We define MixingPedersenHash: $\mathbb{J} \times\left\{0 . . r_{\mathbb{J}}-1\right\} \rightarrow \mathbb{J}$ by:

$$
\text { MixingPedersenHash }(P, x):=P+[x] \mathcal{J} .
$$

Security requirement: The function

$$
\left.(r, M, x):\left\{0 . . r_{\mathbb{J}}-1\right\} \times \mathbb{B}^{\left[\mathbb{N}^{+}\right]} \times\left\{0 . . r_{\mathbb{J}}-1\right\} \mapsto \text { MixingPedersenHash(WindowedPedersenCommit }(M), x\right): \mathbb{J}
$$

must be collision-resistant on (r, M, x).
See §A.3.3.10 'Mixing Pedersen hash' on p. 100 for efficient circuit implementation of this function.

5.4.1.9 Equihash Generator

EquihashGen ${ }_{n, k}$ is a specialized hash function that maps an input and an index to an output of length n bits. It is used in §7.6.1 'Equihash' on p. 65.

Let powtag $:=$| 64 -bit "ZcashPoW" | 32 -bit n | 32 -bit k |
| :---: | :---: | :---: |

Let powcount $(g):=32$-bit g.

Let EquihashGen ${ }_{n, k}(S, i):=T_{h+1 \ldots h+n}$, where
$m:=$ floor $\left(\frac{512}{n}\right)$;
$h:=(i-1 \bmod m) \cdot n$;
$T:=\operatorname{BLAKE} 2 \mathrm{~b}-(n \cdot m)\left(\right.$ powtag, $S \|$ powcount $\left(\right.$ floor $\left.\left.\left(\frac{i-1}{m}\right)\right)\right)$.
Indices of bits in T are 1-based.
BLAKE2b- $\ell(p, x)$ is defined in \S 5.4.1.2 'BLAKE2 Hash Function' on p. 38.

Security requirement: BLAKE2b- ℓ (powtag, x) must generate output that is sufficiently unpredictable to avoid short-cuts to the Equihash solution process. It would suffice to model it as a random oracle.

Note: When EquihashGen is evaluated for sequential indices, as in the Equihash solving process (\$7.6.1 'Equihash’ on p. 65), the number of calls to BLAKE2b can be reduced by a factor of floor ($\frac{512}{n}$) in the best case (which is a factor of 2 for $n=200$).

5.4.2 Pseudo Random Functions

$\mathrm{PRF}^{\text {addr }}, \mathrm{PRF}^{\mathrm{nf}}, \mathrm{PRF}^{\mathrm{pk}}$, and PRF^{ρ}, described in $\S 4.1 .2$ 'Pseudo Random Functions' on p.17, are all instantiated using the SHA-256 compression function defined in §5.4.1.1 'SHA-256 and SHA256Compress Hash Functions' on p. 37:

$$
\begin{aligned}
& \operatorname{PRF}_{x}^{\text {addr }}(t):=\text { SHA256Compress }\left(\begin{array}{l|l|l|l|l|l|l|}
\hline 1 & 1 & 0 & 0 & 252 \text {-bit } x & 8 \text {-bit } t & {[0]^{248}} \\
\hline
\end{array}\right) \\
& \operatorname{PRF}_{\mathrm{a}_{\mathrm{sk}}}^{\mathrm{nf}}(\rho):=\operatorname{SHA} 256 \text { Compress }\left(\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 0 & 252 \text {-bit ask } & 256 \text {-bit } \rho \\
\hline
\end{array}\right) \\
& \operatorname{PRF}_{\mathrm{a}_{\mathrm{sk}}}^{\mathrm{pk}}\left(i, \mathrm{~h}_{\mathrm{Sig}}\right):=\text { SHA256Compress }\left(\begin{array}{|l|l|l|l|l|l|}
\hline 0 & i-1 & 0 & 0 & 252 \text {-bit } \mathrm{a}_{\text {sk }} & 256 \text {-bit } \mathrm{h}_{\mathrm{sig}} \\
\hline
\end{array}\right) \\
& \operatorname{PRF}_{\varphi}^{\rho}\left(i, \mathrm{~h}_{\text {Sig }}\right):=\text { SHA256Compress }\left(\begin{array}{|l|l|l|l|l|}
\hline 0 & i-1 & 1 & 0 & 252 \text {-bit } \varphi
\end{array}\right.
\end{aligned}
$$

Security requirements:

- The SHA-256 compression function must be collision-resistant.
- The SHA-256 compression function must be a PRF when keyed by the bits corresponding to $x, \mathrm{a}_{\text {sk }}$ or φ in the above diagrams, with input in the remaining bits.

Note: The first four bits -i.e. the most significant four bits of the first byte- are used to separate distinct uses of SHA256Compress, ensuring that the functions are independent. As well as the inputs shown here, bits 1011 in this position are used to distinguish uses of the full SHA-256 hash function; see §5.4.7.1 'Sprout Note Commitments' on p. 46.
(The specific bit patterns chosen here were motivated by the possibility of future extensions that might have increased $\mathrm{N}^{\text {old }}$ and/or $\mathrm{N}^{\text {new }}$ to 3 , or added an additional bit to $\mathrm{a}_{\text {sk }}$ to encode a new key type, or that would have required an additional PRF. In fact since Sapling switches to non-SHA256Compress-based cryptographic primitives, these extensions are unlikely to be necessary.)

Let LEOS2IP be as defined in $\begin{aligned} & 5.2 \\ & \text { 'Integers, Bit Sequences, and Endianness' on p. } 36 .\end{aligned}$
$\mathrm{PRF}^{\text {expand }}$ is used in $\S 4.2 .2$ 'Sapling Key Components' on p. 24 to derive the spend authorizing key ask and the proof authorizing key nsk.

It is instantiated using the BLAKE2b hash function defined in §5.4.1.2 'BLAKE2 Hash Function' on p. 38:

Security requirement: BLAKE2b-512 ("Zcash_ExpandSeed", $\left.\begin{array}{|l|l|}\hline \text { LEBS2OSP } & 256 \\ \text { (sk) } & 8 \text {-bit } t\end{array}\right)$ must be a PRF for output range $\mathbb{B} Y^{[64]}$ when keyed by the bits corresponding to sk, with input in the bits corresponding to t. In that
 and 2^{512} is large compared to $r_{\mathbb{J}}$.

PRF ${ }^{\text {nfSapling }}$ is used to derive the nullifier for a Sapling note. It is instantiated using the BLAKE2s hash function defined in §5.4.1.2 'BLAKE2 Hash Function' on p. 38:

Security requirement: BLAKE2s-256("Zcash_nf", $\operatorname{LEBS2OSP}_{256}\left(\right.$ repr $\left._{\mathbb{J}}(\mathrm{nk})\right)$ LEBS2OSP ${ }_{256}\left(\right.$ repr $\left._{\mathbb{J}}(\rho)\right)$ must be a collision-resistant PRF for output range $\mathbb{B Y Y}{ }^{[32]}$ when keyed by the bits corresponding to nk, with input in the bits corresponding to ρ.

5.4.3 Authenticated One-Time Symmetric Encryption

Let Sym.K $:=\mathbb{B}^{[256]}$, Sym. $\left.\mathbf{P}:=\mathbb{B}^{[1 N}\right]$, and Sym. $\mathbf{C}:=\mathbb{B}^{[\mathbb{N}}{ }^{[\mathbb{N}]}$.
Let Sym.Encrypt ${ }_{K}(P)$ be authenticated encryption using AEAD_CHACHA20_POLY1305 [RFC-7539] encryption of plaintext $P \in \operatorname{Sym} . \mathbf{P}$, with empty "associated data", all-zero nonce $[0]^{96}$, and 256 -bit key $\bar{K} \in$ Sym.K.

Similarly, let Sym.Decrypt ${ }_{K}(C)$ be AEAD_CHACHA20_POLY1305 decryption of ciphertext $C \in$ Sym.C, with empty "associated data", all-zero nonce $[0]^{96}$, and 256 -bit key $\mathrm{K} \in \operatorname{Sym} . \mathbf{K}$. The result is either the plaintext byte sequence, or \perp indicating failure to decrypt.

Note: The "IETF" definition of AEAD_CHACHA20_POLY1305 from [RFC-7539] is used; this has a 32-bit block count and a 96-bit nonce, rather than a 64-bit block count and 64-bit nonce as in the original definition of ChaCha20.

5.4.4 Key Agreement and Derivation

5.4.4.1 Sprout Key Agreement

The key agreement scheme specified in §4.1.4 'Key Agreement' on p. 18 is instantiated using Curve25519 [Bern2006] as follows.

Let $K A^{\text {Sprout }}$. Public and $K A^{\text {Sprout }}$. SharedSecret be the type of Curve 25519 public keys (i.e. a sequence of 32 bytes), and let KA ${ }^{\text {Sprout }}$. Private be the type of Curve 25519 secret keys.

Let Curve25519 (n, q) be the result of point multiplication of the Curve 25519 public key represented by the byte sequence \underline{q} by the Curve25519 secret key represented by the byte sequence \underline{n}, as defined in [Bern2006, section 2].
Let $K A^{\text {Sprout }}$.Base $:=\underline{9}$ be the public byte sequence representing the Curve 25519 base point.
Let clamp ${ }_{\text {Curve } 25519}(\underline{x})$ take a 32 -byte sequence \underline{x} as input and return a byte sequence representing a Curve 25519 private key, with bits "clamped" as described in [Bern2006, section 3]: "clear bits $0,1,2$ of the first byte, clear bit 7 of the last byte, and set bit 6 of the last byte." Here the bits of a byte are numbered such that bit b has numeric weight 2^{b}.
Define KA ${ }^{\text {Sprout }}$.FormatPrivate $(x):=$ clamp Curve25519 $^{(x)}$.
Define $\mathrm{KA}^{\text {Sprout }}$. $\operatorname{Agree}(n, q):=$ Curve25519 (n, q).

5.4.4.2 Sprout Key Derivation

The Key Derivation Function specified in $\underline{\text { 4.1.5 'Key Derivation' on p. } 18 \text { is instantiated using BLAKE2b-256 as fol- }}$ lows:
where:

kdftag $:=$| 64 -bit "ZcashKDF" | 8 -bit $i-1$ | $[0]^{56}$ |
| :--- | :--- | :--- |

kdfinput $:=$| 256 -bit $\mathrm{h}_{\text {Sig }}$ | 256 -bit sharedSecret ${ }_{i}$ | 256 -bit epk | 256 -bit pk enc,$i_{\text {new }}$ |
| :--- | :--- | :--- | :--- |

BLAKE2b-256 (p, x) is defined in §5.4.1.2 'BLAKE2 Hash Function' on p. 38.

5.4.4.3 Sapling Key Agreement

The key agreement scheme specified in $\underline{\$ 4.1 .4}$ 'Key Agreement' on p. 18 is instantiated using Diffie-Hellman with cofactor multiplication on Jubjub as follows.
 and let KA ${ }^{\text {Sapling }}$. Private be the type of Jubjub secret keys. TODO: expand this

5.4.4.4 Sapling Key Derivation

The KDF ${ }^{\text {Sapling }}$ Key Derivation Function is specified in §4.1.5 'Key Derivation' on p. 18.
It is instantiated using BLAKE2b-256 as follows:

$$
\text { KDF }^{\text {Sapling (idx, sharedSecret, epk) := BLAKE2b-256 ("Zcash_SaplingKDF", kdfinput). }}
$$

where:

kdfinput := | 32 -bit idx | LEBS2OSP $_{256}\left(\right.$ repr $_{\mathbb{J}}($ sharedSecret $\left.)\right)$ | LEBS2OSP $_{256}\left(\right.$ repr $_{\mathbb{J}}($ epk $\left.)\right)$ |
| :--- | :--- | :--- |

BLAKE2b-256 (p, x) is defined in §5.4.1.2 ‘BLAKE2 Hash Function’ on p. 38.

5.4.5 JoinSplit Signature

JoinSplitSig is specified in §4.1.6 'Signature’ on p. 19.
It is instantiated as Ed25519 [BDLSY2012], with the additional requirements that:

- \underline{S} MUST represent an integer less than the prime $\ell=2^{252}+27742317777372353535851937790883648493$;
- \underline{R} MUST represent a point of order ℓ on the Ed25519 curve;

If these requirements are not met then the signature is considered invalid. Note that it is not required that the encoding of the y-coordinate in \underline{R} is less than $2^{255}-19$.
Ed25519 is defined as using SHA-512 internally.
A valid Ed25519 public key is defined as a point of order ℓ on the Ed25519 curve, in the encoding specified by [BDLSY2012]. Again, it is not required that the encoding of the y-coordinate of the public key is less than $2^{255}-19$.

The encoding of a signature is:

256 -bit \underline{R}	256 -bit \underline{S}

where \underline{R} and \underline{S} are as defined in [BDLSY2012].
The encoding of a public key is as defined in [BDLSY2012].

5.4.6 Spend Authorization Signature

SpendAuthSig is a signature scheme with re-randomizable keys specified in §4.1.6.1 'Signature with Re-Randomizable Keys' on p. 20.
It is instantiated as EdJubjub, which is defined as EdDSA [BJLSY2015] over the Jubjub curve which these additional constraints: TODO: ...
[FKMSSS2016]

5.4.7 Commitment schemes

5.4.7.1 Sprout Note Commitments

The commitment scheme NoteCommit ${ }^{\text {Sprout }}$ specified in $\S 4.1 .7$ 'Commitment' on p. 21 is instantiated using SHA-256 as follows:

$$
\text { NoteCommit }_{\mathrm{Sprom}}^{\text {Sprout }}\left(\mathrm{a}_{\mathrm{pk}}, \mathrm{v}, \rho\right):=\text { SHA-256 }\left(\begin{array}{ll|l|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 256 \text {-bit } \mathrm{a}_{\mathrm{pk}} & 64 \text {-bit } \mathrm{v} & 256 \text {-bit } \rho \\
\hline
\end{array}\right)
$$

Note: The leading byte of the SHA-256 input is $0 \times \mathrm{xB}$.

Security requirements:

- The SHA-256 compression function must be collision-resistant.
- The SHA-256 compression function must be a PRF when keyed by the bits corresponding to the position of rcm in the second block of SHA-256 input, with input to the PRF in the remaining bits of the block and the chaining variable.

5.4.7.2 Windowed Pedersen commitments

We construct "windowed" Pedersen commitments by reusing the Pedersen hash construction from §5.4.1.7 ‘Pedersen Hash Fu on p. 40, and adding a randomized point on the Jubjub curve (see §5.4.8.3 ‘Jubjub’ on p. 50):

$$
\text { WindowedPedersenCommit } r \text { (} s \text {):=PedersenHashToPoint("Zcash_PH", } s)+[r] \text { FindGroupHash }{ }^{\mathbb{J}\left(" Z c a s h _P H ", ~ " r "\right) ~}
$$

See §A.3.5 'Windowed Pedersen Commitment' on p. 101 for rationale and efficient circuit implementation of this function.

The commitment scheme NoteCommit ${ }^{\text {Sprout }}$ specified in $\underline{\S 4.1 .7}$ 'Commitment’ on p. 21 is instantiated using WindowedPedersenCom as follows:

```
NoteCommit \({ }_{\text {rcm }}^{\text {Sapling }}\left(\mathrm{g}_{\mathrm{d}}{ }^{*}, \mathrm{pk}_{\mathrm{d}}{ }^{*}, \mathrm{v}\right):=\) WindowedPedersenCommit \({ }_{\mathrm{rcm}}\left([1]^{6}\left\|\mathrm{~g}_{\mathrm{d}}{ }^{*}\right\| \mathrm{pk}_{\mathrm{d}}{ }^{*} \| \operatorname{I2LEBSP}{ }_{64}(\mathrm{v})\right)\).
```


Security requirements:

- WindowedPedersenCommit must be a computationally binding and at least computationally hiding commitment scheme.
. NoteCommit ${ }^{\text {Sapling }}$ must be a computationally binding and at least computationally hiding commitment scheme.
(They are in fact unconditionally hiding commitment schemes.)

Note: The prefix $[1]^{6}$ distinguishes the use of WindowedPedersenCommit in NoteCommit ${ }^{\text {Sapling }}$ from the layer prefix used in MerkleCRH ${ }^{\text {Sapling }}$ (see §5.4.1.3 'Merkle Tree Hash Function’ on p. 38). The latter is a 6-bit little-endian encoding of an integer in $\left\{0\right.$.. MerkleDepth $\left.{ }^{\text {Sapling }}-1\right\}$, and so cannot collide with $[1]^{6}$ because MerkleDepth ${ }^{\text {Sapling }}<64$.

5.4.7.3 Homomorphic Pedersen commitments

The windowed Pedersen commitments defined in the preceding section are highly efficient, but they do not support the homomorphic property we need when instantiating ValueCommit (see $\begin{aligned} & \text { §4.9 'Balance' on p. } 30 \text { and } \S 3.6\end{aligned}$ 'Spend Transfers, Output Transfers, and their Descriptions' on p.14).

In order to support this property, we also define "homomorphic" Pedersen commitments as follows:

```
HomomorphicPedersenCommit \({ }_{\mathrm{rcv}}(D, \mathrm{v}):=[\mathrm{v}]\) FindGroupHash \({ }^{\mathbb{J}}(D, " \mathrm{v}\) " \()+[\mathrm{rcv}]\) FindGroupHash \({ }^{\mathbb{J}}(D, " r ")\)
```

See §A.3.6 'Homomorphic Pedersen Commitment' on p. 101 for rationale and efficient circuit implementation of this function.

The commitment scheme ValueCommit specified in §4.1.7 'Commitment’ on p. 21 is instantiated using HomomorphicPedersenCom as follows:

ValueCommit $_{\text {rcv }}(v):=$ HomomorphicPedersenCommit $_{\text {rcv }}\left({ }^{\text {"Zcash_cv", }}\right.$ v).

Security requirements:

- HomomorphicPedersenCommit must be a computationally binding and at least computationally hiding commitment scheme, for a given personalization input D.
- ValueCommit must be a computationally binding and at least computationally hiding commitment scheme.
(They are in fact unconditionally hiding commitment schemes.)

5.4.8 Represented Groups and Pairings

5.4.8.1 BN-254

The represented pairing $\mathrm{BN}-254$ is defined in this section.
Let $q_{\mathbb{G}}:=21888242871839275222246405745257275088696311157297823662689037894645226208583$.
Let $r_{\mathbb{G}}:=21888242871839275222246405745257275088548364400416034343698204186575808495617$.
Let $b_{\mathbb{G}}:=3$.
($q_{\mathbb{G}}$ and $r_{\mathbb{G}}$ are prime.)
Let \mathbb{G}_{1} be the group of points on a Barreto-Naehrig curve $E_{\mathbb{G}_{1}}$ over $\mathbb{F}_{q_{\mathbb{G}}}$ with equation $y^{2}=x^{3}+b_{\mathbb{G}}$. This curve has embedding degree 12 with respect to $r_{\mathbb{G}}$.

Let \mathbb{G}_{2} be the subgroup of order r in the sextic twist $E_{\mathbb{G}_{2}}$ of \mathbb{G}_{1} over $\mathbb{F}_{q_{\mathbb{G}}}$ with equation $y^{2}=x^{3}+\frac{b_{\mathbb{G}}}{\xi}$, where $\xi: \mathbb{F}_{q_{\mathbb{G}}}$.
We represent elements of $\mathbb{F}_{q_{G}}$ as polynomials $a_{1} \cdot t+a_{0}: \mathbb{F}_{q_{\mathrm{G}}}[t]$, modulo the irreducible polynomial $t^{2}+1$; in this representation, ξ is given by $t+9$.
Let \mathbb{G}_{T} be the subgroup of ${r_{\mathbb{G}}}^{\text {th }}$ roots of unity in $\mathbb{F}_{q_{\mathbb{G}}}^{*}{ }^{12}$.
Let $\hat{e}_{\mathbb{G}}$ be the optimized ate pairing of type $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$.
For $i:\{1 . .2\}$, let $\mathcal{O}_{\mathbb{G}_{i}}$ be the point at infinity (which is the additive identity) in \mathbb{G}_{i}, and let $\mathbb{G}_{i}^{*}:=\mathbb{G}_{i} \backslash\left\{\mathcal{O}_{\mathbb{G}_{i}}\right\}$.
Let $\mathcal{P}_{\mathbb{G}_{1}}: \mathbb{G}_{1}^{*}:=(1,2)$.

$$
\text { Let } \begin{aligned}
\mathcal{P}_{\mathbb{G}_{2}}: \mathbb{G}_{2}^{*}:= & (11559732032986387107991004021392285783925812861821192530917403151452391805634 \cdot t+ \\
& 10857046999023057135944570762232829481370756359578518086990519993285655852781, \\
& 4082367875863433681332203403145435568316851327593401208105741076214120093531 \cdot t+ \\
& 8495653923123431417604973247489272438418190587263600148770280649306958101930) .
\end{aligned}
$$

$\mathcal{P}_{\mathbb{G}_{1}}$ and $\mathcal{P}_{\mathbb{G}_{2}}$ are generators of \mathbb{G}_{1} and \mathbb{G}_{2} respectively.
Define I2BEBSP $:(\ell: \mathbb{N}) \times\left\{0 . .2^{\ell}-1\right\} \rightarrow \mathbb{B}^{[\ell]}$ as in $\begin{aligned} & \S .2 \\ & \text { 'Integers, Bit Sequences, and Endianness' on p. } 36 .\end{aligned}$
For a point $P: \mathbb{G}_{1}^{*}=\left(x_{P}, y_{P}\right)$:

- The field elements x_{P} and $y_{P}: \mathbb{F}_{q}$ are represented as integers x and $y:\{0 . . q-1\}$.
- Let $\tilde{y}=y \bmod 2$.
- P is encoded as | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 -bit \tilde{y} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 256-bit I2BEBSP | | | | | | | |
| 256 | | | | | | | |(x)

For a point $P: \mathbb{G}_{2}^{*}=\left(x_{P}, y_{P}\right)$:

- Define FE2IP : $\mathbb{F}_{q_{\mathbb{G}}}[t] /\left(t^{2}+1\right) \rightarrow\left\{0 . . q_{\mathbb{G}}^{2}-1\right\}$ such that FE2IP $\left(a_{w, 1} \cdot t+a_{w, 0}\right)=a_{w, 1} \cdot q+a_{w, 0}$.
- Let $x=\operatorname{FE} 2 I \mathrm{P}\left(x_{P}\right), y=\operatorname{FE} 2 I \mathrm{P}\left(y_{P}\right)$, and $y^{\prime}=\operatorname{FE} 2 I \mathrm{P}\left(-y_{P}\right)$.
. Let $\tilde{y}= \begin{cases}1, & \text { if } y>y^{\prime} \\ 0, & \text { otherwise. }\end{cases}$

-P is encoded as | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 -bit \tilde{y} | 512 -bit $12 \operatorname{BEBSP}_{512}(x)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Non-normative notes:

- The use of big-endian order by I2BEBSP is different from the encoding of most other integers in this protocol. The encodings for $\mathbb{G}_{1,2}^{*}$ are consistent with the definition of EC2OSP for compressed curve points in [IEEE2OO4, section 5.5.6.2]. The LSB compressed form (i.e. EC2OSP-XL) is used for points in \mathbb{G}_{1}^{*}, and the SORT compressed form (i.e. EC2OSP-XS) for points in \mathbb{G}_{2}^{*}.
- The points at infinity $\mathcal{O}_{\mathbb{G}_{1,2}}$ never occur in proofs and have no defined encodings in this protocol.
- Testing $y>y^{\prime}$ for the compression of \mathbb{G}_{2}^{*} points is equivalent to testing whether ($a_{y, 1}, a_{y, 0}$) >($a_{-y, 1}, a_{-y, 0}$) in lexicographic order.
- Algorithms for decompressing points from the above encodings are given in [IEEE2000, Appendix A.12.8] for \mathbb{G}_{1}^{*}, and [IEEE2OO4, Appendix A.12.11] for \mathbb{G}_{2}^{*}.
- A rational point $P \neq \mathcal{O}_{\mathbb{G}_{2}}$ on the curve $E_{\mathbb{G}_{2}}$ can be verified to be of order $r_{\mathbb{G}}$, and therefore in \mathbb{G}_{2}^{*}, by checking that $r_{\mathbb{G}} \cdot P=\mathcal{O}_{\mathbb{G}_{2}}$.

When computing square roots in $\mathbb{F}_{q_{\mathbb{G}}}$ or $\mathbb{F}_{q_{\mathbb{G}}}$ in order to decompress a point encoding, the implementation MUST NOT assume that the square root exists, or that the encoding represents a point on the curve.

5.4.8.2 BLS12-381

The represented pairing BLS12-381 is defined in this section. Parameters are taken from [Bowe2017].

Let $q_{\mathbb{S}}:=4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787$.
Let $r_{\mathbb{S}}:=52435875175126190479447740508185965837690552500527637822603658699938581184513$.
Let $u_{\mathbb{S}}:=-15132376222941642752$.
Let $b_{\mathbb{S}}:=4$.
($q_{\mathbb{S}}$ and $r_{\mathbb{S}}$ are prime.)
Let \mathbb{S}_{1} be the group of points on a Barreto-Lynn-Scott curve $E_{\mathbb{S}_{1}}$ over $\mathbb{F}_{q_{\mathbb{S}}}$ with equation $y^{2}=x^{3}+b_{\mathbb{S}}$. This curve has embedding degree 12 with respect to $r_{\mathbb{S}}$.
Let \mathbb{S}_{2} be the subgroup of order $r_{\mathbb{S}}$ in the sextic twist $E_{\mathbb{S}_{2}}$ of \mathbb{S}_{1} over $\mathbb{F}_{q_{\mathbb{S}}}$ with equation $y^{2}=x^{3}+4(i+1)$, where $i: \mathbb{F}_{q_{\mathrm{s}}}$.

We represent elements of $\mathbb{F}_{q_{\mathrm{S}}{ }^{2}}$ as polynomials $a_{1} \cdot t+a_{0}: \mathbb{F}_{q_{\mathrm{S}}}[t]$, modulo the irreducible polynomial $t^{2}+1$; in this representation, i is given by TODO: ?.
Let \mathbb{S}_{T} be the subgroup of $r_{\mathbb{S}}{ }^{\text {th }}$ roots of unity in $\mathbb{F}_{q_{\mathbb{S}}}^{*}{ }^{12}$.
Let $\hat{e}_{\mathbb{S}}$ be the optimized ate pairing of type $\mathbb{S}_{1} \times \mathbb{S}_{2} \rightarrow \mathbb{S}_{T}$.
For $i:\{1 . .2\}$, let $\mathcal{O}_{\mathbb{S}_{i}}$ be the point at infinity in \mathbb{S}_{i}, and let $\mathbb{S}_{i}^{*}:=\mathbb{S}_{i} \backslash\left\{\mathcal{O}_{\mathbb{S}_{i}}\right\}$.
Let $\mathcal{P}_{\mathbb{S}_{1}}: \mathbb{S}_{1}^{*}:=(1,2)$.
Let $\mathcal{P}_{\mathbb{S}_{2}}: \mathbb{S}_{2}^{*}:=(11559732032986387107991004021392285783925812861821192530917403151452391805634 \cdot t+$ 10857046999023057135944570762232829481370756359578518086990519993285655852781 , $4082367875863433681332203403145435568316851327593401208105741076214120093531 \cdot t+$ 8495653923123431417604973247489272438418190587263600148770280649306958101930).
$\mathcal{P}_{\mathbb{S}_{1}}$ and $\mathcal{P}_{\mathbb{S}_{2}}$ are generators of \mathbb{S}_{1} and \mathbb{S}_{2} respectively.
Define I2BEBSP : $(\ell: \mathbb{N}) \times\left\{0 . .2^{\ell}-1\right\} \rightarrow \mathbb{B}^{[\ell]}$ as in $\underline{\S .2}$ 'Integers, Bit Sequences, and Endianness' on p. 36.
For a point $P: \mathbb{S}_{1}^{*}=\left(x_{P}, y_{P}\right)$:

- The field elements x_{P} and $y_{P}: \mathbb{F}_{q_{\mathbb{S}}}$ are represented as integers x and $y:\left\{0 . . q_{\mathbb{S}}-1\right\}$.

Let $\tilde{y}= \begin{cases}1, & \text { if } y>q_{\mathbb{S}}-y \\ 0, & \text { otherwise. }\end{cases}$

-P is encoded as | 1 | 0 | 1 -bit \tilde{y} | 381-bit $\operatorname{I2BEBSP}_{381}(x)$ |
| :--- | :--- | :--- | :--- |

For a point $P: \mathbb{S}_{2}^{*}=\left(x_{P}, y_{P}\right)$:

- Define FE2IPP : $\mathbb{F}_{q_{\mathbb{S}}}[t] /\left(t^{2}+1\right) \rightarrow\left\{0 . . q_{\mathbb{S}}-1\right\}^{[2]}$ such that FE2IPP $\left(a_{w, 1} \cdot t+a_{w, 0}\right)=\left[a_{w, 1}, a_{w, 0}\right]$.
- Let $x=\operatorname{FE} 2 \operatorname{IPP}\left(x_{P}\right), y=\operatorname{FE} 2 \operatorname{IPP}\left(y_{P}\right)$, and $y^{\prime}=\operatorname{FE} 2 \operatorname{IPP}\left(-y_{P}\right)$.

Let $\tilde{y}= \begin{cases}1, & \text { if } y>y^{\prime} \text { lexicographically } \\ 0, & \text { otherwise }\end{cases}$

-P is encoded as | 1 | 0 | 1 -bit \tilde{y} | 381 -bit $\operatorname{I2BEBSP}_{381}\left(x_{1}\right)$ | 384 -bit $\operatorname{I2BEBSP}_{384}\left(x_{2}\right)$ |
| :--- | :--- | :--- | :--- | :--- |

Non-normative notes:

- The encodings for $\mathbb{S}_{1,2}^{*}$ are specific to Zcash.
- The points at infinity $\mathcal{O}_{\mathbb{S}_{1,2}}$ never occur in proofs and have no defined encodings in this protocol.
- Algorithms for decompressing points from the encodings of $\mathbb{S}_{1,2}^{*}$ are defined analogously to those for $\mathbb{G}_{1,2}^{*}$ in §5.4.8.1 ' $B N-254$ ' on p. 47, taking into account that the SORT compressed form (not the LSB compressed form) is used for \mathbb{G}_{1}^{*}.
- A rational point $P \neq \mathcal{O}_{\mathbb{S}_{2}}$ on the curve $E_{\mathbb{S}_{2}}$ can be verified to be of order $r_{\mathbb{S}}$, and therefore in \mathbb{S}_{2}^{*}, by checking that $r_{\mathbb{S}} \cdot P=\mathcal{O}_{\mathbb{S}_{2}}$.

When computing square roots in $\mathbb{F}_{q_{\mathbb{S}}}$ or $\mathbb{F}_{q_{\mathbb{S}}}{ }^{2}$ in order to decompress a point encoding, the implementation MUST NOT assume that the square root exists, or that the encoding represents a point on the curve.

5.4.8.3 Jubjub

The represented group Jubjub is defined in this section.
Let $q_{\mathbb{J}}:=r_{\mathbb{S}}$, as defined in 5.4.8.2 ‘BLS12-381’ on p. 48.
Let $r_{\mathbb{J}}:=6554484396890773809930967563523245729705921265872317281365359162392183254199$.
($q_{\mathbb{J}}$ and $r_{\mathbb{J}}$ are prime.)
Let $a_{\mathrm{J}}:=-1$.
Let $d_{J}:=-10240 / 10241\left(\bmod q_{J}\right)$.
Let \mathbb{J} be the group of points (u, v) on a twisted Edwards curve $E_{\mathbb{J}}$ over $\mathbb{F}_{q_{\mathbb{J}}}$ with equation $a_{\mathbb{J}} \cdot u^{2}+v^{2}=1+d_{\mathbb{J}} \cdot u^{2} \cdot v^{2}$. The zero point with coordinates $(0,1)$ is denoted $\mathcal{O}_{\mathbb{J}} \cdot \mathbb{J}$ has order $8 \cdot r_{\mathbb{J}}$.
Let $\ell_{\mathrm{J}}:=256$.
Define I2LEBSP : $(\ell: \mathbb{N}) \times\left\{0 . .2^{\ell}-1\right\} \rightarrow \mathbb{B}^{[\ell]}$ as in $\underline{\$ 5.2}$ 'Integers, Bit Sequences, and Endianness' on p. 36.
Define repr $_{\mathbb{J}}: \mathbb{J} \rightarrow \mathbb{B}^{\left[\ell_{\mathbb{J}}\right]}$ such that $\operatorname{repr}_{\mathbb{J}}(u, v)=12 \operatorname{LEBSP}_{256}\left(v+2^{255} \cdot \tilde{u}\right)$, where $\tilde{u}=u \bmod 2$.
Let abst $\mathbb{J}_{\mathbb{J}}: \mathbb{B}^{\left[\ell_{\mathbb{J}}\right]} \rightarrow \mathbb{J} \cup\{\perp\}$ be the left inverse of repr $\mathbb{J}_{\mathbb{J}}$ such that if S is not in the range of $\operatorname{repr}_{\mathbb{J}}$, then abst ${ }_{\mathbb{J}}(S)=\perp$.

Non-normative notes:

- The encoding of a compressed twisted Edwards point used here is consistent with that used in EdDSA [BJLSY2015] for public keys and the R element of a signature.
- Algorithms for decompressing points from the encoding of \mathbb{J} are given in [BJLSY2O15, "Encoding and parsing curve points

When computing square roots in $\mathbb{F}_{q_{\mathbb{J}}}$ in order to decompress a point encoding, the implementation MUST NOT assume that the square root exists, or that the encoding represents a point on the curve.
This specification requires "strict" parsing as defined in [BJLSY2015, "Encoding and parsing integers"].
Note that algorithms elsewhere in this specification that use Jubjub may impose other conditions on points, for example that they are not the zero point, or are in the large prime-order subgroup.

5.4.8.4 Hash Extractor for Jubjub

Let $\boldsymbol{U}((u, v))=u$ and let $\mathcal{V}((u, v))=v$.

Let Extract $\mathbb{J}_{\mathbb{J}}: \mathbb{J} \rightarrow \mathbb{F}_{q_{\mathbb{J}}}$ be U.
Let G be the subgroup of \mathbb{J} of order $r_{\mathbb{J}}$ (an odd prime).

Facts: \quad The point $(0,1)=\mathcal{O}_{\mathbb{J}}$, and the point $(0,-1)$ has order 2 in \mathbb{J}.

Lemma. Let $P=(u, v) \in G$. Then $(u,-v) \notin G$.

Proof. If $P=\mathcal{O}_{\mathbb{J}}$ then $(u,-v)=(0,-1) \notin G$. Else, P is of odd-prime order. Note that $v \neq 0$. (If $v=0$ then $a \cdot u^{2}=1$, and so applying the doubling formula gives $[2] P=(0,-1)$, then $[4] P=(0,1)=\mathcal{O}_{J}$; contradiction since then P would not be of odd-prime order.) Therefore, $-v \neq v$. Now suppose $(u,-v)=Q$ is a point in G. Then by applying the doubling formula we have [2] $Q=-[2] P$. But also [2] $(-P)=-[2] P$. Therefore either $Q=-P($ then $\mathcal{V}(Q)=\mathcal{V}(-P)$; contradiction since $-v \neq v$), or doubling is not injective on G (contradiction since G is of odd order [KvE2O13]).

Theorem 5.4.3. U is injective on G.

Proof. By writing the curve equation as $v^{2}=\left(1-a \cdot u^{2}\right) /\left(1-d \cdot u^{2}\right)$, and noting that the potentially exceptional case $1-d \cdot u^{2}=0$ does not occur for a complete twisted Edwards curve, we see that for a given u there can be at most two possible solutions for v, and that if there are two solutions they can be written as v and $-v$. In that case by the Lemma, at most one of (u, v) and $(u,-v)$ is in G. Therefore, u is injective on points in G.

5.4.8.5 Group Hash into Jubjub

TODO: Define CRS using the MPC randomness beacon.
Let BLAKE2s-256 be as defined in §5.4.1.2 ‘BLAKE2 Hash Function' on p. 38.
Let LEOS2IP be as defined in $\underline{\$ 5.2}$ 'Integers, Bit Sequences, and Endianness' on p. 36.

Let $D: \mathbb{B}^{Y}[8]$ be an 8 -byte domain separator, and let $M: \mathbb{B Y}^{[\mathbb{N}]}$ be the hash input.
The hash GroupHash ${ }_{\mathrm{CRS}}^{\mathbb{J}}(D, M)$ is calculated as follows:
$P:=\operatorname{abst}_{\mathbb{J}}\left(\operatorname{LEOS} 2 I P^{256}\left(\operatorname{BLAKE2s}^{256}(D, \operatorname{CRS} \| M)\right)\right)$
If $P=\perp$ then return \perp.
$Q:=[8] P$
If $Q=\mathcal{O}_{\mathbb{J}}$ then return \perp, else return Q.

Define first: $(\mathbb{N} \rightarrow T \cup\{\perp\}) \rightarrow T \cup\{\perp\}$ so that first $(f)=f(i)$ where i is the least integer in $\{0 . .255\}$ such that $f(i) \neq \perp$, or \perp if no such i exists.
Let FindGroupHash ${ }^{\mathbb{J}}(D, M)=\operatorname{first}\left(i: \mathbb{N} \mapsto \operatorname{GroupHash}_{\mathrm{CRS}}^{\mathbb{J}}(D, M \|[i]): \mathbb{J}\right)$.

Notes:

- The BLAKE2s-256 chaining variable after processing CRS may be precomputed.
- For random input, FindGroupHash ${ }^{\mathbb{J}}$ returns \perp with probability approximately 2^{-256}. In the Zcash protocol, uses of FindGroupHash ${ }^{\mathbb{J}}$ never return \perp.

5.4.9 Zero-Knowledge Proving Systems

5.4.9.1 PHGR13

Zcash uses zk-SNARKs generated by its fork of libsnark [libsnark-fork] with the proving system described in [BCTV2015], which is a refinement of the systems in [PHGR2013] and [BCGTV2013].
A proof consists of a tuple $\left(\pi_{A}: \mathbb{G}_{1}^{*}, \pi_{A}^{\prime}: \mathbb{G}_{1}^{*}, \pi_{B}: \mathbb{G}_{2}^{*}, \pi_{B}^{\prime}: \mathbb{G}_{1}^{*}, \pi_{C}: \mathbb{G}_{1}^{*}, \pi_{C}^{\prime}: \mathbb{G}_{1}^{*}, \pi_{K}: \mathbb{G}_{1}^{*}, \pi_{H}: \mathbb{G}_{1}^{*}\right)$. It is computed using the parameters above as described in [BCTV2015, Appendix B].

Note: Many details of the proving system are beyond the scope of this protocol document. For example, the quadratic arithmetic program verifying the JoinSplit statement, or its expression as a Rank 1 Constraint System, are not specified in this document. In practice it will be necessary to use the specific proving and verification keys generated for the Zcash production block chain (see $\begin{aligned} & 5.7 \\ & \text { 'Sprout } z k \text {-SNARK Parameters' on } \mathrm{p} .58 \text {), and a }\end{aligned}$ proving system implementation that is interoperable with the Zcash fork of libsnark, to ensure compatibility.

Encoding of PHGR13 Proofs A PHGR13 proof is encoded by concatenating the encodings of its elements:

264 -bit π_{A}	264 -bit π_{A}^{\prime}	520 -bit π_{B}	264 -bit π_{B}^{\prime}	264 -bit π_{C}	264 -bit π_{C}^{\prime}	264 -bit π_{K}	264 -bit π_{H}

The resulting proof size is 296 bytes.
In addition to the steps to verify a proof given in [BCTV2015, Appendix B], the verifier MUST check, for the encoding of each element, that:

- the lead byte is of the required form;
- the remaining bytes encode a big-endian representation of an integer in $\left\{0 . . q_{\mathbb{S}}-1\right\}$ or (in the case of π_{B}) $\left\{0 . . q_{\mathbb{S}}{ }^{2}-1\right\}$;
- the encoding represents a point in \mathbb{G}_{1}^{*} or (in the case of $\left.\pi_{B}\right) \mathbb{G}_{2}^{*}$, including checking that it is of order $r_{\mathbb{G}}$ in the latter case.

5.4.9.2 Groth16

Sapling uses zk-SNARKs generated by the bellman library, with the proving system described in [Grot2016].
A proof consists of a tuple $\left(\pi_{A}: \mathbb{S}_{1}^{*}, \pi_{B}: \mathbb{S}_{2}^{*}, \pi_{C}: \mathbb{S}_{1}^{*}\right)$. It is computed using the parameters above as described in [Grot2016].

Note: The quadratic arithmetic programs verifying the Spend statement and Output statement are described in Appendix A 'Circuit Design' on p. 90. However, many other details of the proving system are beyond the scope of this protocol document. For example, the expressions of the Spend statement and Output statement as Rank 1 Constraint Systems are not specified in this document. In practice it will be necessary to use the specific proving and verification keys generated for the Zcash production block chain (see $\mathrm{s}^{5.8}$ 'Sapling zk-SNARK Parameters' on p .58), and a proving system implementation that is interoperable with the bellman library used by Zcash, to ensure compatibility.

Encoding of Groth16 Proofs A Groth16 proof is encoded by concatenating the encodings of its elements:

384 -bit π_{A}	768 -bit π_{B}	384 -bit π_{C}

The resulting proof size is 192 bytes.

In addition to the steps to verify a proof given in [Grot2016], the verifier MUST check, for the encoding of each element, that:

- the leading bitfield is of the required form;
- the remaining bits encode a big-endian representation of an integer in $\left\{0 . . q_{\mathbb{S}}-1\right\}$ or (in the case of π_{B}) two integers in that range;
- the encoding represents a point in \mathbb{S}_{1}^{*} or (in the case of π_{B}) \mathbb{S}_{2}^{*}, including checking that it is of order $r_{\mathbb{S}}$ in the latter case.

5.5 Encodings of Note Plaintexts and Memo Fields

As explained in §3.2.1 'Note Plaintexts and Memo Fields' on p. 12, transmitted notes are stored on the block chain in encrypted form.

The note plaintexts in a JoinSplit description are encrypted to the respective transmission keys $\mathrm{pk}_{\text {enc, }, 1 . . \mathrm{N}^{\text {new }} \text {. Each }}^{\text {nen }}$ Sprout note plaintext (denoted np) consists of ($\mathrm{v}, \rho, \mathrm{rcm}$, memo).
[Sapling onward] The note plaintext in each Output description is encrypted to the diversified transmission key pk_{d}. Each Sapling note plaintext (denoted $\mathbf{n p}$) consists of ($\mathrm{d}, \mathrm{v}, \mathrm{rcm}$, memo).
memo is a 512-byte memo field associated with this note.
The usage of the memo field is by agreement between the sender and recipient of the note. The memo field SHOULD be encoded either as:

- a UTF-8 human-readable string [Unicode], padded by appending zero bytes; or
- an arbitrary sequence of 512 bytes starting with a byte value of $0 x F 5$ or greater, which is therefore not a valid UTF-8 string.

In the former case, wallet software is expected to strip any trailing zero bytes and then display the resulting UTF-8 string to the recipient user, where applicable. Incorrect UTF-8-encoded byte sequences should be displayed as replacement characters (U+FFFD).
In the latter case, the contents of the memo field SHOULD NOT be displayed. A start byte of 0xF5 is reserved for use by automated software by private agreement. A start byte of $0 x F 6$ followed by $5110 x 00$ bytes means "no memo". A start byte of 0xF6 followed by anything else, or a start byte of 0xF7 or greater, are reserved for use in future Zcash protocol extensions.
Other fields are as defined in $\begin{aligned} & \\ & 3.2 \\ & \text { ' Notes' on p. } 11 .\end{aligned}$
The encoding of a Sprout note plaintext consists of:

8 -bit 0×00	64 -bit v	256 -bit ρ	256 -bit rcm	memo (512 bytes)

- A byte, 0×00, indicating this version of the encoding of a Sprout note plaintext.
- 8 bytes specifying v.
- 32 bytes specifying ρ.
- 32 bytes specifying rcm.
- 512 bytes specifying memo.

The encoding of a Sapling note plaintext consists of:

8 -bit 0 x 01	88 -bit d	64 -bit v	256 -bit rcm	memo (512 bytes)

- A byte, 0x01, indicating this version of the encoding of a Sapling note plaintext.
- 11 bytes specifying d.
- 8 bytes specifying v.
- 32 bytes specifying rcm.
- 512 bytes specifying memo.

5.6 Encodings of Addresses and Keys

This section describes how Zcash encodes shielded payment addresses, incoming viewing keys, and spending keys.
Addresses and keys can be encoded as a byte sequence; this is called the raw encoding. This byte sequence can then be further encoded using Base58Check. The Base58Check layer is the same as for upstream Bitcoin addresses [Bitc-Base58].

For Sapling-specific key and address formats, Bech32 [BIP-173] is used instead of Base58Check. SHA-256 compression outputs are always represented as sequences of 32 bytes.

The language consisting of the following encoding possibilities is prefix-free.

5.6.1 Transparent Addresses

Transparent addresses are either P2SH (Pay to Script Hash) [BIP-13] or P2PKH (Pay to Public Key Hash) [Bitc-P2PKH] addresses.

The raw encoding of a P2SH address consists of:

8 -bit 0x1C	8 -bit 0xBD	160-bit script hash

- Two bytes [$0 \mathrm{x} 1 \mathrm{C}, 0 \mathrm{xBD}$], indicating this version of the raw encoding of a P2SH address on the production network. (Addresses on the test network use [0x1C, 0xBA] instead.)
- 20 bytes specifying a script hash [Bitc-P2SH].

The raw encoding of a P2PKH address consists of:

8 -bit 0x1C	8 -bit 0xB8	160-bit public key hash

- Two bytes [$0 \mathrm{x} 1 \mathrm{C}, 0 \mathrm{xB} 8$], indicating this version of the raw encoding of a P2PKH address on the production network. (Addresses on the test network use [0x1D, 0x25] instead.)
- 20 bytes specifying a public key hash, which is a RIPEMD-160 hash [RIPEMD160] of a SHA-256 hash [NIST2O15] of an uncompressed ECDSA key encoding.

Notes:

- In Bitcoin a single byte is used for the version field identifying the address type. In Zcash two bytes are used. For addresses on the production network, this and the encoded length cause the first two characters of the Base58Check encoding to be fixed as "t3" for P2SH addresses, and as "t1" for P2PKH addresses. (This does not imply that a transparent Zcash address can be parsed identically to a Bitcoin address just by removing the " t ".)
- Zcash does not yet support Hierarchical Deterministic Wallet addresses [BIP-32].

5.6.2 Transparent Private Keys

These are encoded in the same way as in Bitcoin [Bitc-Base58], for both the production and test networks.

5.6.3 Sprout Shielded Payment Addresses

A Sprout shielded payment address consists of $\mathrm{a}_{\mathrm{pk}}: \mathbb{B}^{\left[\ell_{\mathrm{PRF}}\right]}$ and $\mathrm{pk} \mathrm{e}_{\mathrm{enc}}: \mathrm{KA}^{\text {Sprout }}$. Public.
a_{pk} is a SHA-256 compression output. $\mathrm{pk}_{\mathrm{enc}}$ is a $\mathrm{KA}^{\text {Sprout }}$. Public key (see §5.4.4.1 'Sprout Key Agreement' on p. 44), for use with the encryption scheme defined in $\$ 4.12$ 'In-band secret distribution' on p. 34. These components are derived from a spending key as described in §4.2.1 'Sprout Key Components' on p. 24.

The raw encoding of a Sprout shielded payment address consists of:

8 -bit 0x16	8 -bit 0x9A	256 -bit a_{pk}	256 -bit pk enc

- Two bytes [0x16, 0x9A], indicating this version of the raw encoding of a Sprout shielded payment address on the production network. (Addresses on the test network use [$0 \mathrm{x} 16,0 \mathrm{xB6}$] instead.)
- 32 bytes specifying a_{pk}.
- 32 bytes specifying $\mathrm{pk}_{\text {enc }}$, using the normal encoding of a Curve25519 public key [Bern2006].

Note: For addresses on the production network, the lead bytes and encoded length cause the first two characters of the Base58Check encoding to be fixed as " $\mathbf{z c}$ ". For the test network, the first two characters are fixed as " $z t$ ".

5.6.4 Sapling Shielded Payment Addresses

A Sapling shielded payment address consists of $d: \mathbb{B}^{\left[\ell_{d}\right]}$ and $p k_{d}: K A^{\text {Sapling }}$.Public.
d is a sequence of 11 bytes. pk_{d} is an encoding of a $\mathrm{KA}^{\text {Sapling } . P u b l i c ~ k e y ~(s e e ~} \S 5.4 .4 .3$ 'Sapling Key Agreement' on p.45), for use with the encryption scheme defined in $\$ 4.12$ 'In-band secret distribution' on p . 34. These components are derived as described in §4.2.2 'Sapling Key Components' on p. 24.
The raw encoding of a Sapling shielded payment address consists of:

LEBS2OSP $_{88}(\mathrm{~d})$	LEBS2OSP $_{256}\left(\right.$ repr $\left._{\mathbb{J}}\left(\mathrm{pk}_{\mathrm{d}}\right)\right)$

- 11 bytes specifying d .
- 32 bytes specifying the compressed Edwards encoding of pk_{d} (see §5.4.8.3 ‘Jubjub’ on p. 50).

When decoding the representation of pk_{d}, the address is not valid if abst $\mathrm{t}_{\mathbb{J}}$ returns \perp.
For addresses on the production network, the Human-Readable Part is " zs ". For addresses on the test network, the Human-Readable Part is "ztestsapling".

5.6.5 Sprout Incoming Viewing Keys

An incoming viewing key consists of $\mathrm{a}_{\mathrm{pk}}: \mathbb{B}^{\left[\ell_{\text {PRF }}\right]}$ and $\mathrm{sk}_{\mathrm{enc}}: \mathrm{KA} \mathrm{Sprout}^{\text {Sprivate }}$.
a_{pk} is a SHA-256 compression output. sk ${ }_{\mathrm{enc}}$ is a $\mathrm{KA}^{\text {Sprout }}$. Private key (see $\begin{aligned} & \text { §5.4.4.1 'Sprout Key Agreement' on p. 44), }\end{aligned}$ for use with the encryption scheme defined in $\$ 4.12$ 'In-band secret distribution' on p.34. These components are derived from a spending key as described in §4.2.1 'Sprout Key Components' on p. 24.

The raw encoding of an incoming viewing key consists of, in order:

8 -bit 0xA8	8 -bit 0xAB	8 -bit 0xD3	256 -bit a_{pk}	256 -bit sk enc

- Three bytes [0xA8, 0xAB, 0xD3], indicating this version of the raw encoding of a Zcash incoming viewing key on the production network. (Addresses on the test network use [0xA8, 0xAC, 0x0C] instead.)
- 32 bytes specifying a_{pk}.
- 32 bytes specifying $\mathrm{sk}_{\mathrm{enc}}$, using the normal encoding of a Curve25519 private key [Bern2006].
sk $_{\text {enc }}$ MUST be "clamped" using KA ${ }^{\text {Sprout }}$.FormatPrivate as specified in $\begin{aligned} & \text { §4.2.1 'Sprout Key Components' on p. } 24 .\end{aligned}$ That is, a decoded incoming viewing key MUST be considered invalid if sk $\mathrm{enc}_{\mathrm{enc}} \neq \mathrm{KA}^{\text {Sprout }}$. FormatPrivate(sk $\mathrm{enc}_{\mathrm{enc}}$).
$K^{\text {Kprout }}$.FormatPrivate is defined in §5.4.4.1 'Sprout Key Agreement' on p. 44.

Note: For addresses on the production network, the lead bytes and encoded length cause the first four characters of the Base58Check encoding to be fixed as "ZiVK". For the test network, the first four characters are fixed as "ZiVt".

5.6.6 Sapling Incoming Viewing Keys

A Sapling incoming viewing key consists of ivk: KA ${ }^{\text {Sprout }}$. Private (see §5.4.4.3 'Sapling Key Agreement' on p. 45). ivk is a $K A^{\text {Sprout }}$. Private key for use with the encryption scheme defined in $\S 4.12$ 'In-band secret distribution' on p. 34. It is derived as described in §4.2.2 'Sapling Key Components' on p. 24.

The raw encoding of an incoming viewing key consists of:

256-bit ivk

- 32 bytes (little-endian) specifying ivk.
ivk MUST be in the range $\left\{0 . .2^{\ell_{\text {ivk }}}-1\right\}$ as specified in $\S 4.2 .2$ 'Sapling Key Components' on p.24. That is, a decoded incoming viewing key MUST be considered invalid if ivk is not in this range.

For incoming viewing keys on the production network, the Human-Readable Part is " zivks ". For incoming viewing keys on the test network, the Human-Readable Part is "zivktestsapling".

5.6.7 Sapling Full Viewing Keys

A Sapling full viewing key consists of ak: \mathbb{J} and $n k: \mathbb{J}$.
ak and nk are points on the Jubjub curve (see $\underline{\$ 5.4 .8 .3}$ ‘Jubjub’ on p.50). They are derived as described in $\underline{\$ 4.2 .2}$ 'Sapling Key Components' on p. 24.

The raw encoding of a full viewing key consists of:

LEBS2OSP $_{256}\left(\right.$ repr $\left._{\mathbb{J}}(\mathrm{ak})\right)$	LEBS2OSP $_{256}\left(\right.$ repr $\left._{\mathbb{J}}(\mathrm{nk})\right)$

- 32 bytes specifying the compressed Edwards encoding of ak (see §5.4.8.3 ‘Jubjub’ on p. 50).
. 32 bytes specifying the compressed Edwards encoding of nk.

When decoding this representation, the key is not valid if abst $\mathbb{J}_{\mathbb{J}}$ returns \perp for either point.
For incoming viewing keys on the production network, the Human-Readable Part is "zviews". For incoming viewing keys on the test network, the Human-Readable Part is "zviewtestsapling".

5.6.8 Sprout Spending Keys

A Sprout spending key consists of $a_{\text {sk }}$, which is a sequence of 252 bits (see $\S 4.2 .1$ 'Sprout Key Components' on p. 24).

The raw encoding of a Sprout spending key consists of:

8-bit 0xAB	8 -bit 0x36	$[0]^{4}$	252 -bit ask

- Two bytes [$0 \mathrm{xAB}, 0 \mathrm{x} 36$], indicating this version of the raw encoding of a Zcash spending key on the production network. (Addresses on the test network use [0xAC, 0x08] instead.)
- 32 bytes: 4 zero padding bits and 252 bits specifying $a_{\text {sk }}$.

The zero padding occupies the most significant 4 bits of the third byte.

Notes:

- If an implementation represents a_{sk} internally as a sequence of 32 bytes with the 4 bits of zero padding intact, it will be in the correct form for use as an input to $P R F^{\text {addr }}, ~ P R F^{n f}$, and $P R F^{p k}$ without need for bit-shifting. Future key representations may make use of these padding bits.
- For addresses on the production network, the lead bytes and encoded length cause the first two characters of the Base58Check encoding to be fixed as "SK". For the test network, the first two characters are fixed as "ST".

5.6.9 Sapling Spending Keys

A Sapling spending key consists of sk: $\mathbb{B}^{\left[\ell_{\text {sk }}\right]}$ (see $\S_{4.2 .1}$ 'Sprout Key Components' on p. 24).
The raw encoding of a Sapling spending key consists of:

$$
\mathrm{LEBS}^{2 \mathrm{OSP}_{256}(\mathrm{sk})}
$$

- 32 bytes specifying sk.

For spending keys on the production network, the Human-Readable Part is "secret-spending-key-main". For spending keys on the test network, the Human-Readable Part is "secret-spending-key-test".

5.7 Sprout zk-SNARK Parameters

For the Zcash production block chain and testnet, the SHA-256 hashes of the proving key and verifying key for the Sprout JoinSplit statement, encoded in libsnark format, are:

```
8bc20a7f013b2b58970cddd2e7ea028975c88ae7ceb9259a5344a16bc2c0eef7 sprout-proving.key
4bd498dae0aacfd8e98dc306338d017d9c08dd0918ead18172bd0aec2fc5df82 sprout-verifying.key
```

These parameters were obtained by a multi-party computation described in [GitHub-mpc] and [BGG2O16].

5.8 Sapling zk-SNARK Parameters

The SHA-256 hashes of the proving key and verifying key for the Sapling Spend statement, encoded in bellman format, are:


```
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx sapling-spend-verifying.key
```

The SHA-256 hashes of the proving key and verifying key for the Sapling Output statement, encoded in bellman format, are:

```
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx sapling-output-proving.key
mxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx sapling-output-verifying.key
```

These parameters were obtained by a multi-party computation described in TODO: .

6 Network Upgrades

Zcash launched with a protocol revision that we call Sprout. At the time of writing, two upgrades are planned: Overwinter, and Sapling. This section summarizes the planned strategy for upgrading from Sprout to Overwinter and then Sapling.
The upgrade mechanism is described in [ZIP-200]. The specifications of the Overwinter upgrade are described in [ZIP-201], [ZIP-202], [ZIP-203], and [ZIP-143].

Overwinter and Sapling will each be introduced as a "bilateral consensus rule change". In this kind of upgrade,

- there is a block height at which the consensus rule change takes effect;
- blocks and transactions that are valid according to the post-upgrade rules are not valid before the upgrade block height;
- blocks and transactions that are valid according to the pre-upgrade rules are no longer valid at or after the upgrade block height.

Full support for each upgrade is indicated by a minimum version of the peer-to-peer protocol. At the planned upgrade block height, nodes that support a given upgrade will disconnect from (and will not reconnect to) nodes with a protocol version lower than this minimum. See [ZIP-201] for how this applies to the Overwinter upgrade.

This ensures that upgrade-supporting nodes transition cleanly from the old protocol to the new protocol. Nodes that do not support the upgrade will find themselves on a network that uses the old protocol and is fully partitioned from the upgrade-supporting network.

This allows us to specify arbitrary protocol changes that take effect at a given block height. Note, however, that a block chain reorganization across the upgrade block height is possible. In the case of such a reorganization, blocks at a height before the upgrade block height will still be created and validated according to the pre-upgrade rules, and upgrade-supporting nodes MUST allow for this.

7 Consensus Changes from Bitcoin

7.1 Encoding of Transactions

The Zcash transaction format is as follows:

Version	Bytes	Name	Data Type	Description
≥ 1	4	header	uint32	Contains: - fOverwintered flag (bit 31) - version (bits 30 .. 0) - transaction version number.
≥ 3	4	nVersionGroupId	uint32	Version group ID (nonzero).
≥ 1	Varies	tx_in_count	compactSize uint	Number of transparent inputs in this transaction.
≥ 1	Varies	tx_in	tx_in	Transparent inputs, encoded as in Bitcoin.
≥ 1	Varies	tx_out_count	compactSize uint	Number of transparent outputs in this transaction.
≥ 1	Varies	tx_out	tx_out	Transparent outputs, encoded as in Bitcoin.
≥ 1	4	lock_time	uint32	A Unix epoch time (UTC) or block height, encoded as in Bitcoin.
≥ 3	4	nExpiryHeight	uint32	A block height in the range \{1..499999999\} after which the transaction will expire, or 0 to disable expiry ([ZIP-203]).
≥ 4	Varies	nShieldedSpend	compactSize uint	The number of Spend descriptions in vShieldedSpend.
≥ 4	384. nShieldedSpend	vShieldedSpend	SpendDescription [nShieldedSpend]	A sequence of Spend descriptions, each encoded as in $\S 7.3$ 'Encoding of Spend Descriptions' on p. 62.
≥ 4	Varies	nShieldedOutput	compactSize uint	The number of Output descriptions in vShieldedOutput.
≥ 4	580. nShieldedOutput	vShieldedOutput	OutputDescription [nShieldedOutput]	A sequence of Output descriptions, each encoded as in $\$ 7.4$ 'Encoding of Output Descriptions' on p. 62.
≥ 2	Varies	nJoinSplit	compactSize uint	The number of JoinSplit descriptions in vJoinSplit.
≥ 2	$\begin{gathered} 1802 \cdot \\ \text { nJoinSplit } \end{gathered}$	vJoinSplit	JoinSplitDescription [nJoinSplit]	A sequence of JoinSplit descriptions, each encoded as in $\S 7.2$ 'Encoding of JoinSplit Descriptions' on p. 61.
$\geq 2 \dagger$	32	joinSplitPubKey	char [32]	An encoding of a JoinSplitSig public verification key.
$\geq 2 \dagger$	64	joinSplitSig	char [64]	A signature on a prefix of the transaction encoding, to be verified using joinSplitPubKey.

\dagger The joinSplitPubKey and joinSplitSig fields are present if and only if version ≥ 2 and nJoinSplit >0.
The encoding of joinSplitPubKey and the data to be signed are specified in $\$ 4.8$ 'Non-malleability' on p. 30 .

Consensus rules:

- The transaction version number MUST be greater than or equal to 1 .
- [Sprout only] The f0verwintered flag MUST NOT be set.
- [Overwinter onward] The f0verwintered flag MUST be set.
- [Overwinter onward] The version group ID MUST be recognized.
- [Overwinter only, pre-Sapling] The transaction version number MUST be 3, and the version group ID MUST be 0x03C48270.
- [Sapling onward] The transaction version number and version group ID MUST be either (3, 0x03C48270) or (4, TODO : Sapling version group ID).

- [Sapling onward] At least one of tx_in_count, nShieldedSpend, and nJoinSplit MUST be nonzero.
- A transaction with one or more inputs from coinbase transactions MUST have no transparent outputs (i.e. tx_out_count MUST be 0).
- If nJoinSplit > 0, then joinSplitSig MUST represent a valid signature over dataToBeSigned as defined in §4.8 'Non-malleability' on p. 30.
- If nJoinSplit > 0, then joinSplitPubKey MUST represent a valid Ed25519 public key encoding as specified in §5.4.5 ‘JoinSplit Signature’ on p. 45.
- [Sprout only] The encoded size of the transaction MUST be less than or equal to 100000 bytes.
- A coinbase transaction MUST NOT have any JoinSplit descriptions, Spend descriptions, or Output descriptions.
- A transaction MUST NOT spend an output of a coinbase transaction (necessarily a transparent output) from a block less than 100 blocks prior to the spend.
- [Overwinter onward] nExpiryHeight MUST be less than or equal to 499999999.
- [Overwinter onward] If a transaction is not a coinbase transaction and its nExpiryHeight field is nonzero, then it MUST NOT be mined at a block height greater than its nExpiryHeight.
- TODO: Other rules inherited from Bitcoin.

In addition, consensus rules associated with each JoinSplit description (§7.2 'Encoding of JoinSplit Descriptions' on p.61), each Spend description (7.3 'Encoding of Spend Descriptions' on p.62), and each Output description (§7.4 'Encoding of Output Descriptions' on p. 62) MUST be followed.

Notes:

- Previous versions of this specification defined what is now the header field as a signed int 32 field which was required to be positive. The consensus rule that the f0verwintered flag MUST NOT be set before Overwinter has activated, has the same effect.
- The semantics of transactions with transaction version number not equal to $1,2,3$, or 4 is not currently defined. Miners MUST NOT create blocks before the Overwinter activation block height containing transactions with version other than 1 or 2 .
- The exclusion of transactions with transaction version number greater than 2 is not a consensus rule before Overwinter activation. Such transactions may exist in the block chain and MUST be treated identically to version 2 transactions.
- [Overwinter onward] Once Overwinter has activated, limits on the maximum transaction version number are consensus rules.
- Note that a future upgrade might use any transaction version number. It is likely that an upgrade that changes the transaction version number will also change the transaction format, and software that parses transactions SHOULD take this into account.
- TODO: Describe interpretation of $f 0$ verwintered and version.
- A transaction version number of 2 does not have the same meaning as in Bitcoin, where it is associated with support for OP_CHECKSEQUENCEVERIFY as specified in [BIP-68]. Zcash was forked from Bitcoin v0.11.2 and does not currently support BIP 68, or the related BIPs 9, 112 and 113 .

The changes relative to Bitcoin version 1 transactions as described in [Bitc-Format] are:

- Transaction version 0 is not supported.
- A version 1 transaction is equivalent to a version 2 transaction with nJoinSplit $=0$.
- The nJoinSplit, vJoinSplit, joinSplitPubKey, and joinSplitSig fields have been added.
- In Zcash it is permitted for a transaction to have no transparent inputs provided that nJoinSplit >0.
- A consensus rule limiting transaction size has been added. In Bitcoin there is a corresponding standard rule but no consensus rule.
[Sprout only] Software that creates transactions SHOULD use version 1 for transactions with no JoinSplit descriptions.

7.2 Encoding of JoinSplit Descriptions

An abstract JoinSplit description, as described in $\begin{aligned} & \\ & 3.5 \\ & \text { 'JoinSplit Transfers and Descriptions’ on p. 13, is encoded }\end{aligned}$ in a transaction as an instance of a JoinSplitDescription type as follows:

Bytes	Name	Data Type	Description
8	vpub_old	uint64	A value $\mathrm{v}_{\text {pub }}^{\text {old }}$ that the JoinSplit transfer removes from the transparent value pool.
8	vpub_new	uint64	A value $v_{\text {pub }}^{\text {new }}$ that the JoinSplit transfer inserts into the transparent value pool.
32	anchor	char [32]	A root rt of the Sprout note commitment tree at some block height in the past, or the root produced by a previous JoinSplit transfer in this transaction.
64	nullifiers	char [32] [$\left.\mathrm{N}^{\text {old }}\right]$	A sequence of nullifiers of the input notes $\mathrm{nf}_{1 . . \mathrm{N}}^{\text {old }}$ old
64	commitments	char [32] [$\left.N^{\text {new }}\right]$	A sequence of note commitments for the output notes $\mathrm{cm}_{1 . . \mathrm{N}^{\text {new }}}^{\text {new }}$.
32	ephemeralKey	char [32]	A Curve25519 public key epk.
32	randomSeed	char [32]	A 256 -bit seed that must be chosen independently at random for each JoinSplit description.
64	vmacs	char [32] [$\left.\mathrm{N}^{\text {old }}\right]$	A sequence of message authentication tags $h_{1 . . \text { Nold }^{\text {old }}}$ that bind $\mathrm{h}_{\mathrm{sig}}$ to each a_{sk} of the JoinSplit description.
296	zkproof	char [296]	An encoding of the zero-knowledge proof $\pi_{\mathrm{ZKJoinSplit}}$ (see §5.4.9.1 'PHGR13’ on p.52).
1202	encCiphertexts	char [601] [$\left.{ }^{\text {new }}\right]$	A sequence of ciphertext components for the encrypted output notes, $\mathrm{C}_{1 \ldots \mathrm{~N}}^{\text {enc }}$ new.

The vmacs field encodes $\mathrm{h}_{1 . . \mathrm{N}^{\text {odd }}}$ which are computed as described in $\underline{\$ 4.8}$ 'Non-malleability' on p. 30.
The ephemeralKey and encCiphertexts fields together form the transmitted notes ciphertext, which is computed as described in $\$ 4.12$ 'In-band secret distribution’ on p. 34.
Consensus rules applying to a JoinSplit description are given in $\begin{aligned} & \text { 4.3 } \\ & \text { 'JoinSplit Descriptions’ on p. } 25 .\end{aligned}$

7.3 Encoding of Spend Descriptions

Let LEBS2OSP be as defined in $\$ 5.2$ 'Integers, Bit Sequences, and Endianness' on p. 36.
An abstract Spend description, as described in $\$ 3.6$ 'Spend Transfers, Output Transfers, and their Descriptions' on p. 14, is encoded in a transaction as an instance of a SpendDescription type as follows:

Bytes	Name	Data Type	Description
32	cv	char [32]	A value commitment to the value of the input note, $\mathrm{LEBS}^{2 O S P}{ }_{256}$ (cv).
32	anchor	char [32]	A root of the Sapling note commitment tree at some block height in the past, LEBS2OSP ${ }_{256}(\mathrm{rt})$.
32	nullifier	char [32]	The nullifier of the input note, $\mathrm{LEBS} 2 \mathrm{OSP}_{256}(\mathrm{nf})$.
32	rk	char [32]	The randomized public key for spendAuthSig, $\operatorname{LEBS}^{2 O S P}{ }_{256}\left(\right.$ repr $\left._{\mathbb{J}}(\mathrm{rk})\right)$.
192	zkproof	char [192]	An encoding of the zero-knowledge proof $\pi_{\mathrm{ZKS} \text { pend }}$ (see § 5.4.9.2 'Groth16' on p. 52).
64	spendAuthSig	char [64]	A signature authorizing this spend.

Consensus rules applying to a Spend description are given in $\$ 4.4$ 'Spend Descriptions' on p. 26.

7.4 Encoding of Output Descriptions

Let LEBS2OSP be as defined in $\begin{aligned} & \\ & 5.2 \\ & \text { 'Integers, Bit Sequences, and Endianness' on p. } 36 .\end{aligned}$
An abstract Output description, described in $\S 3.6$ 'Spend Transfers, Output Transfers, and their Descriptions' on p. 14, is encoded in a transaction as an instance of an OutputDescription type as follows:

Bytes	Name	Data Type	Description
32	cv	char [32]	A value commitment to the value of the output note, LEBS2OSP $_{256}(\mathrm{cv})$.
32	cm	char [32]	The note commitment for the output note, LEBS2OSP ${ }_{256}(\mathrm{~cm})$.
32	ephemeralKey	char [32]	An encoding of a Jubjub public key epk (see§5.4.4.3 'Sapling Key Agreement' on p.45). 580 encCiphertext
char [580]	A ciphertext component for the encrypted output note, Cenc.		
192	zkproof	char [192]	An encoding of the zero-knowledge proof $\pi_{\text {ZKOutput }}$ (see S5.4.9.2 'Groth16' on p. 52).

The ephemeralKey and encCiphertext fields together form the transmitted note ciphertext, which is computed as described in $\$ 4.12$ 'In-band secret distribution' on p. 34.

Consensus rules applying to an Output description are given in $\begin{aligned} & \text { \$4.5 'Output Descriptions' on p. } 27 .\end{aligned}$

7.5 Block Header

The Zcash block header format is as follows:

Bytes	Name	Data Type	Description
4	nVersion	int32	The block version number indicates which set of block validation rules to follow. The current and only defined block version number for Zcash is 4.
32	hashPrevBlock	char [32]	A SHA-256d hash in internal byte order of the previous block's header. This ensures no previous block can be changed without also changing this block's header.
32	hashMerkleRoot	char [32]	A SHA-256d hash in internal byte order. The merkle root is derived from the hashes of all transactions included in this block, ensuring that none of those transactions can be modified without modifying the header.
32	hashReserved / hashFinalSaplingRoot	char [32]	[Sprout only] A reserved field which should be ignored. [Sapling onward] A root (TODO: specify bit sequence to byte sequence conversion) of the Sapling note commitment tree corresponding to the final Sapling treestate of this block.
4	nTime	uint32	The block time is a Unix epoch time (UTC) when the miner started hashing the header (according to the miner).
4	nBits	uint32	An encoded version of the target threshold this block's header hash must be less than or equal to, in the same nBits format used by Bitcoin. [Bitc-nBits]
32	nNonce	char [32]	An arbitrary field that miners can change to modify the header hash in order to produce a hash less than or equal to the target threshold.
3	solutionSize	compactSize uint	The size of an Equihash solution in bytes (always 1344).
1344	solution	char [1344]	The Equihash solution.

A block consists of a block header and a sequence of transactions. How transactions are encoded in a block is part of the Zcash peer-to-peer protocol but not part of the consensus protocol.
Let ThresholdBits be as defined in $\underline{\$ 7.6 .3}$ 'Difficulty adjustment' on p. 66, and let PoWMedianBlockSpan be the constant defined in $\$ 5.3$ 'Constants' on p. 36 .

Consensus rules:

- The block version number MUST be greater than or equal to 4 .
- For a block at block height height, nBits MUST be equal to ThresholdBits(height).
- The block MUST pass the difficulty filter defined in $\begin{aligned} & \text { §7.6.2 'Difficulty filter’ on p. } 66 .\end{aligned}$
- solution MUST represent a valid Equihash solution as defined in §7.6.1 'Equihash’ on p. 65.
- nTime MUST be strictly greater than the median time of the previous PoWMedianBlockSpan blocks.
- The size of a block MUST be less than or equal to 2000000 bytes.
- [Sapling onward] hashFinalSaplingRoot MUST be the root of the Sapling note commitment tree for the final Sapling treestate of this block.
- TODO: Other rules inherited from Bitcoin.

In addition, a full validator MUST NOT accept blocks with nTime more than two hours in the future according to its clock. This is not strictly a consensus rule because it is nondeterministic, and clock time varies between nodes. Also note that a block that is rejected by this rule at a given point in time may later be accepted.

Notes:

- The semantics of blocks with block version number not equal to 4 is not currently defined. Miners MUST NOT create such blocks, and SHOULD NOT mine other blocks that chain to them.
- The exclusion of blocks with block version number greater than 4 is not a consensus rule; such blocks may exist in the block chain and MUST be treated identically to version 4 blocks by full validators. Note that a future upgrade might use block version number either greater than or less than 4 . It is likely that such an upgrade will change the block header and/or transaction format, and software that parses blocks SHOULD take this into account.
- The nVersion field is a signed integer. (It was specified as unsigned in a previous version of this specification.) A future upgrade might use negative values for this field, or otherwise change its interpretation.
- There is no relation between the values of the version field of a transaction, and the nVersion field of a block header.
- Like other serialized fields of type compactSize uint, the solutionSize field MUST be encoded with the minimum number of bytes (3 in this case), and other encodings MUST be rejected. This is necessary to avoid a potential attack in which a miner could test several distinct encodings of each Equihash solution against the difficulty filter, rather than only the single intended encoding.
- As in Bitcoin, the nTime field MUST represent a time strictly greater than the median of the timestamps of the past PoWMedianBlockSpan blocks. The Bitcoin Developer Reference [Bitc-Block] was previously in error on this point, but has now been corrected.
- There are no changes to the block version number or format for Overwinter.
- Although the block version number does not change for Sapling, the previously reserved (and ignored) field hashReserved has been repurposed for hashFinalSaplingRoot. There are no other format changes.

The changes relative to Bitcoin version 4 blocks as described in [Bitc-Block] are:

- Block versions less than 4 are not supported.
- The hashReserved (or hashFinalSaplingRoot), solutionSize, and solution fields have been added.
- The type of the nNonce field has changed from uint32 to char [32].
- The maximum block size has been doubled to 2000000 bytes.

7.6 Proof of Work

Zcash uses Equihash [BK2O16] as its Proof of Work. Motivations for changing the Proof of Work from SHA-256d used by Bitcoin are described in [WG2O16].

A block satisfies the Proof of Work if and only if:

- The solution field encodes a valid Equihash solution according to §7.6.1 'Equihash' on p. 65.
- The block header satisfies the difficulty check according to §7.6.2 'Difficulty filter’ on p. 66.

7.6.1 Equihash

An instance of the Equihash algorithm is parameterized by positive integers n and k, such that n is a multiple of $k+1$. We assume $k \geq 3$.

The Equihash parameters for the production and test networks are $n=200, k=9$.
The Generalized Birthday Problem is defined as follows: given a sequence $X_{1 . . \mathrm{N}}$ of n-bit strings, find 2^{k} distinct $X_{i_{j}}$ such that $\bigoplus_{j=1}^{2^{k}} X_{i_{j}}=0$.

In Equihash, $\mathrm{N}=2^{\frac{n}{k+1}+1}$, and the sequence $X_{1 . . \mathrm{N}}$ is derived from the block header and a nonce.

Let powheader $:=$| 32 -bit nVersion | 256 -bit hashPrevBlock | | 256 -bit hashMerkleRoot | |
| :---: | :---: | :---: | :---: | :---: |
| 256 -bit hashReserved | | 32 -bit nTime | 32 -bit nBits | |
| 256 -bit nNonce | | | | |

For $i \in\{1 \ldots N\}$, let $X_{i}=$ EquihashGen $_{n, k}$ (powheader, i).
EquihashGen is instantiated in \$5.4.1.9 'Equihash Generator' on p. 42.
Define I2BEBSP $:(u: \mathbb{N}) \times\left\{0 . .2^{u}-1\right\} \rightarrow \mathbb{B}^{[u]}$ as in $\underline{\S 5.2}$ 'Integers, Bit Sequences, and Endianness' on p. 36.
A valid Equihash solution is then a sequence $i:\{1 . . N\}^{2^{k}}$ that satisfies the following conditions:
Generalized Birthday condition $\bigoplus_{j=1}^{2^{k}} X_{i_{j}}=0$.

Algorithm Binding conditions

- For all $r \in\{1 . . k-1\}$, for all $w \in\left\{0 . .2^{k-r}-1\right\}: \bigoplus_{j=1}^{2^{r}} X_{i_{w \cdot 2^{r}+j}}$ has $\frac{n \cdot r}{k+1}$ leading zeros; and
- For all $r \in\{1 . . k\}$, for all $w \in\left\{0 . .2^{k-r}-1\right\}: i_{w \cdot 2^{r}+1 . . w \cdot 2^{r}+2^{r-1}}<i_{w \cdot 2^{r}+2^{r-1}+1 . . w \cdot 2^{r}+2^{r}}$ lexicographically.

Notes:

- This does not include a difficulty condition, because here we are defining validity of an Equihash solution independent of difficulty.
- Previous versions of this specification incorrectly specified the range of r to be $\{1 . . k-1\}$ for both parts of the algorithm binding condition. The implementation in zcashd was as intended.

An Equihash solution with $n=200$ and $k=9$ is encoded in the solution field of a block header as follows:

$\operatorname{I2BEBSP}_{21}\left(i_{1}-1\right)$	$\operatorname{I2BEBSP}_{21}\left(i_{2}-1\right)$	\ldots	$\operatorname{I2BEBSP}_{21}\left(i_{512}-1\right)$

Recall from $\underline{\$ 5.2}$ 'Integers, Bit Sequences, and Endianness' on p. 36 that bits in the above diagram are ordered from most to least significant in each byte. For example, if the first 3 elements of i are $\left[69,42,2^{21}\right]$, then the corresponding bit array is:

I2BEBSP $_{21}(68)$			12 BEBSP 21 (41)		$\mathrm{I}^{\text {BEEBSP }}{ }_{21}\left(2^{21}-1\right)$		
8 -bit 0	8-bit 2	8-bit 32	8 -bit 0	8-bit 10	8-bit 127	8-bit 255	

and so the first 7 bytes of solution would be $[0,2,32,0,10,127,255]$.

Note: I2BEBSP is big-endian, while integer field encodings in powheader and in the instantiation of EquihashGen are little-endian. The rationale for this is that little-endian serialization of block headers is consistent with Bitcoin, but using little-endian ordering of bits in the solution encoding would require bit-reversal (as opposed to only shifting).

7.6.2 Difficulty filter

Let ToTarget be as defined in §7.6.4 ' n Bits conversion' on p. $67 .^{\text {. }}$
Difficulty is defined in terms of a target threshold, which is adjusted for each block according to the algorithm defined in \$7.6.3 'Difficulty adjustment' on p. 66.
The difficulty filter is unchanged from Bitcoin, and is calculated using SHA-256d on the whole block header (including solutionSize and solution). The result is interpreted as a 256 -bit integer represented in little-endian byte order, which MUST be less than or equal to the target threshold given by ToTarget(nBits).

7.6.3 Difficulty adjustment

Zcash uses a difficulty adjustment algorithm based on DigiShield v3/v4 [DigiByte-PoW], with simplifications and altered parameters, to adjust difficulty to target the desired 2.5 -minute block time. Unlike Bitcoin, the difficulty adjustment occurs after every block.

The constants PoWLimit, PoWAveragingWindow, PoWMaxAdjustDown, PoWMaxAdjustUp, PoWDampingFactor, and PoWTargetSpacing are instantiated in $\$ 5.3$ 'Constants' on p. 36.
Let ToCompact and ToTarget be as defined in §7.6.4 ' n Bits conversion' on p. 67.
Let nTime (height) be the value of the nTime field in the header of the block at block height height.
Let nBits(height) be the value of the nBits field in the header of the block at block height height.
Block header fields are specified in $\underline{\$ 7.5}$ ‘Block Header’ on p. 63.
Define:

$$
\begin{aligned}
& \operatorname{mean}(S):=\left(\sum_{i=1}^{\text {length }(S)} S_{i}\right) / \text { length }(S) . \\
& \operatorname{median}(S):=\operatorname{sorted}(S)_{\text {ceiling }(\operatorname{length}(S) / 2)} \\
& \operatorname{bound} \text { lowerer }(x):=\max (\operatorname{lower}, \min (\text { upper, } x))) \\
& \operatorname{trunc}(x):= \begin{cases}\operatorname{floor}(x), & \text { if } x \geq 0 \\
-\operatorname{floor}(-x), & \text { otherwise }\end{cases}
\end{aligned}
$$

AveragingWindowTimespan := PoWAveragingWindow • PoWTargetSpacing
MinActualTimespan := floor(AveragingWindowTimespan $\cdot(1-$ PoWMaxAdjustUp $)$)

MaxActualTimespan := floor(AveragingWindowTimespan • (1 + PoWMaxAdjustDown))
MedianTime(height) $:=\operatorname{median}([n T i m e(i)$ for i from $\max (0$, height - PoWMedianBlockSpan $)$ up to height -1$])$
ActualTimespan(height) := MedianTime(height) - MedianTime(height - PoWAveragingWindow)
ActualTimespanDamped(height) $:=$ AveragingWindowTimespan $+\operatorname{trunc}\left(\frac{\text { ActualTimespan(height) }- \text { AveragingWindowTimespan }}{\text { PoWDampingFactor }}\right)$
ActualTimespanBounded(height) := bound $\begin{gathered}\text { MinActualTimespan } \\ \text { MinAspan }\end{gathered}$ (ActualTimespanDamped(height))
MeanTarget(height) $:=\left\{\begin{array}{lc}\text { PoWLimit, } & \text { if height } \leq \text { PoWAveragingWindow } \\ \text { mean }([\operatorname{ToTarget}(\mathrm{nBits}(i)) \text { for } i \text { from height }- \text { PoWAveragingWindow up to height }-1 \rrbracket), \\ \text { otherwise }\end{array}\right.$

The target threshold for a given block height height is then calculated as:
Threshold(height) $:= \begin{cases}\text { PoWLimit, } & \text { if height }=0 \\ \min \left(\text { PoWLimit, floor }\left(\frac{\text { MeanTarget(height) }}{\text { AveragingWindowTimespan }}\right) \cdot \text { ActualTimespanBounded(height) }\right), \\ \text { otherwise }\end{cases}$
ThresholdBits(height) := ToCompact(Threshold(height)).

Note: The convention used for the height parameters to MedianTime, ActualTimespan, ActualTimespanDamped, ActualTimespanBounded, MeanTarget, Threshold, and ThresholdBits is that these functions use only information from blocks preceding the given block height.

7.6.4 nBits conversion

Deterministic conversions between a target threshold and a "compact" nBits value are not fully defined in the Bitcoin documentation [Bitc-nBits], and so we define them here:

$$
\begin{aligned}
& \operatorname{size}(x):=\operatorname{ceiling}\left(\frac{\operatorname{bitlength}(x)}{8}\right) \\
& \operatorname{mantissa}(x):=\text { floor }\left(x \cdot 256^{3-\operatorname{size}(x)}\right) \\
& \text { ToCompact }(x):= \begin{cases}\operatorname{mantissa}(x)+2^{24} \cdot \operatorname{size}(x), & \text { if mantissa }(x)<2^{23} \\
\text { floor }\left(\frac{\operatorname{mantissa}(x)}{256}\right)+2^{24} \cdot(\operatorname{size}(x)+1), & \text { otherwise }\end{cases} \\
& \text { ToTarget }(x):= \begin{cases}0, & \text { if } x \& 2^{23}=2^{23} \\
\left(x \&\left(2^{23}-1\right)\right) \cdot 256^{\text {floor }\left(x / 2^{24}\right)-3}, & \text { otherwise. }\end{cases}
\end{aligned}
$$

7.6.5 Definition of Work

As explained in $\$ 3.3$ 'The Block Chain' on p.12, a node chooses the "best" block chain visible to it by finding the chain of valid blocks with the greatest total work.

Let ToTarget be as defined in $\begin{aligned} & \text { 7.6.4 ' } n \text { Bits conversion' on p. } 67 .\end{aligned}$
The work of a block with value nBits for the nBits field in its block header is defined as floor $\left(\frac{2^{256}}{\operatorname{ToTarget}(\mathrm{nBits})+1}\right)$.

7.7 Calculation of Block Subsidy and Founders' Reward

§3.9 'Block Subsidy and Founders' Reward’ on p. 16 defines the block subsidy, miner subsidy, and Founders' Reward. Their amounts in zatoshi are calculated from the block height using the formulae below. The constants SlowStartInterval, HalvingInterval, MaxBlockSubsidy, and FoundersFraction are instantiated in §5.3 ‘Constants’ on p. 36.

```
SlowStartShift : \(\mathbb{N}:=\frac{\text { SlowStartInterval }}{2}\)
SlowStartRate : \(\mathbb{N}:=\frac{\text { MaxBlockSubsidy }}{\text { SlowStartInterval }}\)
Halving(height) \(:=\) floor \(\left(\frac{\text { height }- \text { SlowStartShift }}{\text { HalvingInterval }}\right)\)
BlockSubsidy(height) \(:= \begin{cases}\text { SlowStartRate } \cdot \text { height, } & \text { if height }<\frac{\text { SlowStartInterval }}{2} \\ \text { SlowStartRate } \cdot(\text { height }+1), & \text { if } \frac{\text { SlowStartInterval }}{2} \leq \text { height }<\text { SlowStartInterval } \\ \text { floor }\left(\frac{\text { MaxBlockSubsidy }}{\left.2^{\text {Halving(height) }}\right),}\right. & \text { otherwise }\end{cases}\)
FoundersReward(height) \(:= \begin{cases}\text { BlockSubsidy(height) } \cdot \text { FoundersFraction, } & \text { if height }<\text { SlowStartShift }+ \text { HalvingInterval } \\ 0, & \text { otherwise }\end{cases}\)
MinerSubsidy(height) := BlockSubsidy(height) - FoundersReward(height).
```


7.8 Payment of Founders' Reward

The Founders' Reward is paid by a transparent output in the coinbase transaction, to one of NumFounderAddresses transparent addresses, depending on the block height.

For the production network, FounderAddressList ${ }_{1}$.. NumFounderAddresses is:

```
[ "t3Vz22vK5z2LcKEdg16Yv4FFneEL1zg9ojd", "t3cL9AucCajm3HXDhb5jBnJK2vapVoXsop3",
    "t3fqvkzrrNaMcamkQMwAyHRjfDdM2xQvDTR", "t3TgZ9ZT2CTSK44AnUPi6qeNaHa2eC7pUyF",
    "t3SpkcPQPfuRYHsP5vz3Pv86PgKo5m9KVmx", "t3Xt4oQMRPagwbpQqkgAViQgtST4VoSWR6S",
    "t3ayBkZ4w6kKXynwoHZFUSSgXRKtogTXNgb", "t3adJBQuaa21u7NxbRR8YMzp3km3TbSZ4MGB",
    "t3K4aLYagSSBySdrfAGGeUd5H9z5Qvz88t2", "t3RYnsc5nhEvKiva3ZPhfRSk7eyh1CrA6Rk",
    "t3Ut4KUq2ZSMTPNE67pBU5LqYCi2q36KpXQ", "t3ZnCNAvgu6CSyHm1vWtrx3aiN98dSAGpnD",
    "t3fB9cB3eSYim64BS9xfwAHQUKLgQQroBDG", "t3cwZfKNNj2vXMAHBQeewm6pXhKFdhk18kD",
    "t3YcoujXfspWy7rbNUsGKxFEWZqNstGpeG4", "t3bLvCLigc6rbNrUTS5NwkgyVrZcZumTRa4",
    "t3VvHWa7r3oy67YtU4LZKGCWa2J6eGHvShi", "t3eF9X6X2dSo7MCvTjfZEzwWrVzquxRLNeY",
    "t3esCNwwmcyc8i9qQfyTbYhTqmYXZ99AwK3X", "t3M4jN7hYE2e27yLsuQPPPjuVek81WV3VbBj",
    "t3gGWxdC67CYNoBbPjNvrrWLAWxPqZLLxrVY", "t3LTWeoxeWPbmdkUD3NWBquk4WkazhFBmvU",
    "t3P5KKXX97gXYFSaSjJPiruQEX84yF5z3Tjq", "t3f3T3nCWsEpzmD35VK62JgQfFig74dV8C9",
    "t3Rqonuzz7afkF7156ZA4vi4iimRSEn41hj", "t3f JZ5jYsyxDtvNrWBeoMbvJaQCj4JJgbgX",
    "t3Pnbg7XjP7FGPBUuz75H65aczphHgkpoJW", "t3WeKQDxCijL5X7rwFem1MTL9ZwVJkUFhpF",
    "t3Y9FNi26J7UtAUC4moaETLbMo8KS1Be6ME", "t3aNRLLsL2y8xcjPheZZwFy3Pcv7CsTwBec",
    "t3gQDEavk5VzAAHK8TrQu2BWDLxEiF1unBm", "t3Rbykhx1TUFrgXrmBYrAJe2STxRKFL7G9r",
    "t3aaW4aTdP7a8d1VTE1Bod2yhbeggHgMajR", "t3YEiAa6uEjXwFL2v5ztU1fn3yKgzMQqNyo",
    "t3g1yUUWwt2PbmDvMDevTCPWUcbDatL2iQGP", "t3dPWnep6YqGPuY1CecgbeZrY9iUwH8Yd4z",
    "t3QRZXHDPh2hwU46iQs2776kRuuWfwFp4dV", "t3enhACRxi1ZD7e8ePomVGKn7wp7N9fFJ3r",
    "t3PkLgT71TnF112nSwBToXsD77yNbx2gJJY", "t3LQtHUDoe7ZhhvddRv4vnaoNAhCr2f4oFN",
    "t3fNcdBUbycvbCtsD2n9q3LuxG7jVPvFB8L", "t3dKojUU2EMjs28nHV84TvkVEUDu1M1FaEx",
    "t3aKH6NiWN1ofGd8c19rZiqgYpkJ3n679ME", "t3MEXDF9Wsi63KwpPuQdD6by32Mw2bNTbEa",
    "t3WDhPfik343yNmPTqtkZAoQZeqA83K7Y3f", "t3PSn5TbMMAEw7Eu36DYctFezRzpX1hzf3M",
    "t3R3Y5vnBLrEn8L6wFjPjBLnxSUQsKnmFpv", "t3Pcm737EsVkGTbhsu2NekKtJeG92mvYyoN" ]
```

For the test network, FounderAddressList ${ }_{1}$.. NumFounderAddresses is:

```
[ "t2UNzUUx8mWBCRYPRezvA363EYXyEpHokyi", "t2N9PH9Wk9xjqYg9iin1Ua3aekJqf AtE543",
    "t2NGQjYMQhFndDHguvUw4wZdNdsssA6K7x2", "t2ENg7hHVqqs9JwU5cgjvSbxnT2a9USNfhy",
    "t2BkYdVCHzvTJJUTx4yZB8qeegD8QsPx8bo", "t2J8q1xH1EuigJ52MfExyyjYtN3VgvshKDf",
    "t2Crq9mydTm37kZokC68HzT6yez3t2FBnFj", "t2EaMPUiQ1kthqcP5UEkF42CAFKJqXCkXC9",
    "t2F9dtQc63JDDyrhnfpzvVYTJcr57MkqA12", "t2LPirmnfYSZc481GgZBa6xUGcoovfytBnC",
    "t26xfxoSw2UV9Pe503C8V4YybQD4SESfxtp", "t2D3k4fNdErd66YxtvXEdft9xuLoKD7CcVo",
    "t2DWYBkxKNivdmsMiivNJzutaQGqmoRjRnL", "t2C3kFF9iQRxfc4B9zgbWo4dQLLqzqjpuGQ",
    "t2MnT5tzu9HSKcppRyUNwoTp8MUueuSGNaB", "t2AREsWdoW1F8EQYsScsjkgqobmgrkKeUkK",
    "t2Vf4wKcJ3ZFtLj4jezUUKkwYR92BLHn5UT", "t2K3fdViH6R5tRuXLphKyoYXyZhyWGghDNY",
    "t2VEn3KiKyHSGyzd3nDw6ESWtaCQHwuv9WC", "t2F8XouqdNMq6zzEvxQXHv1TjwZRHwRg8gC",
    "t2BS7Mrbaef3fA4xrmkvDisFVXVrRBnZ6Qj", "t2FuSwoLCdBVPwdZuYoHrEzxAb9qy4qjbnL",
    "t2SX3U8NtrT6gz5Db1AtQCSGjrpptr8JC6h", "t2V51gZNSoJ5kRL74bf9YTtbZuv8Fcqx2FH",
    "t2FyTsLjjdm4jeVwir4xzj7FAkUidbr1b4R", "t2EYbGLekmpqHyn8UBF6kqpahrYm7D6N1Le",
    "t2NQTrStZHt JECNFT3dUBLYA9AErxPCmkka", "t2GSWZZJzoesYxfPTWXkFn5UaxjiYxGBU2a",
    "t2RpffkzyLRevGM3w9aWdqMX6bd8uuAK3vn", "t2JzjoQqnuXtTGSN7k7yk5keURBGvYofh1d",
    "t2AEefc72ieTnsXKmgK2bZNckiwvZe3oPNL", "t2NNs3ZGZFsNj2wvmVd8BSwSfvETgiLrD8J",
    "t2ECCQPVcxUCSSQopdNquguEPE14HsVf cUn", "t2JabDUkG8TaqVKYfqDJ3rqkVdHKp6hwXvG",
    "t2FGzW5Zdc8Cy98ZKmRygsVGi6oKcmYir9n", "t2DUD8a21FtEFn42oVLp5NGbogY13uyjy9t",
    "t2UjVSd3zheHPgAkuX8WQW2CiC9xHQ8EvWp", "t2TBUAhELyHUn8i6SXYsXz5Lmy7kDzA1uT5",
    "t2Tz3uCyhP6eizUWDc3bGH7XUC9GQsEyQNc", "t2NysJSZtLwMLWEJ6MH3BsxRh6h27mNcsSy",
    "t2KXJVVyyrjVxxSeazbY9ksGyft4qsXUNm9", "t2J9YYtH31cveiLZzjaE4AcuwVho6qjTNzp",
    "t2QgvW4sP9zaGpPMH1GRzy7cpydmuRfB4AZ", "t2NDTJP9MosKpyFPHJmfjc5pGCvAU58XGa4",
    "t29pHDBWq7qN4EjwSEHg8wEqYe9pkmVrtRP", "t2Ez9KM8VJLuArcxuEkNRAkhNvidKkzXcjJ",
    "t2D5y7J5fpXajLbGrMBQkFg2mFN8fo3n8cX", "t2UV2wr1PTaUiybpkV3FdSdGxUJeZdZztyt" ]
```

Note: For the test network only, the addresses from index 4 onward have been changed from what was implemented at launch. This reflects an upgrade on the test network, starting from block height 53127. [ZcashIssue-2113]

Each address representation in FounderAddressList denotes a transparent P2SH multisig address.
Let SlowStartShift be defined as in the previous section.
Define:

$$
\begin{aligned}
& \text { FounderAddressChangelnterval }:=\text { ceiling }\left(\frac{\text { SlowStartShift }+ \text { HalvingInterval }}{\text { NumFounderAddresses }}\right) \\
& \text { FounderAddressIndex (height) }:=1+\text { floor }\left(\frac{\text { height }}{\text { FounderAddressChangelnterval }}\right) .
\end{aligned}
$$

Let RedeemScriptHash (height) be the standard redeem script hash, as defined in [Bitc-Multisig], for the P2SH multisig address with Base58Check representation given by FounderAddressList ${ }_{\text {FounderAddressIndex(height) }}$.

Consensus rule: A coinbase transaction for block height height $\in\{1$.. SlowStartShift + HalvingInterval - 1\} MUST include at least one output that pays exactly FoundersReward(height) zatoshi with a standard P2SH script of the form OP_HASH160 RedeemScriptHash(height) OP_EQUAL as its scriptPubKey.

Notes:

- No Founders' Reward is required to be paid for height \geq SlowStartShift + HalvingInterval (i.e. after the first halving), or for height $=0$ (i.e. the genesis block).
- The Founders'Reward addresses are not treated specially in any other way, and there can be other outputs to them, in coinbase transactions or otherwise. In particular, it is valid for a coinbase transaction with height \in $\{1$.. SlowStartShift + HalvingInterval -1$\}$ to have other outputs, possibly to the same address, that do not meet the criterion in the above consensus rule, as long as at least one output meets it.

7.9 Changes to the Script System

The OP_CODESEPARATOR opcode has been disabled. This opcode also no longer affects the calculation of signature hashes.

7.10 Bitcoin Improvement Proposals

In general, Bitcoin Improvement Proposals (BIPs) do not apply to Zcash unless otherwise specified in this section. All of the BIPs referenced below should be interpreted by replacing "BTC", or "bitcoin" used as a currency unit, with "ZEC"; and "satoshi" with "zatoshi".

The following BIPs apply, otherwise unchanged, to Zcash: [BIP-11], [BIP-14], [BIP-31], [BIP-35], [BIP-37], [BIP-61].
The following BIPs apply starting from the Zcash genesis block, i.e. any activation rules or exceptions for particular blocks in the Bitcoin block chain are to be ignored: [BIP-16], [BIP-30], [BIP-65], [BIP-66].
[BIP-34] applies to all blocks other than the Zcash genesis block (for which the "height in coinbase" was inadvertently omitted).
[BIP-13] applies with the changes to address version bytes described in \$5.6.1 'Transparent Addresses' on p.54.

8 Differences from the Zerocash paper

8.1 Transaction Structure

Zerocash introduces two new operations, which are described in the paper as new transaction types, in addition to the original transaction type of the cryptocurrency on which it is based (e.g. Bitcoin).

In Zcash, there is only the original Bitcoin transaction type, which is extended to contain a sequence of zero or more Zcash-specific operations.

This allows for the possibility of chaining transfers of shielded value in a single Zcash transaction, e.g. to spend a shielded note that has just been created. (In Zcash, we refer to value stored in UTXOs as transparent, and value stored in JoinSplit transfer output notes as shielded.) This was not possible in the Zerocash design without using multiple transactions. It also allows transparent and shielded transfers to happen atomically - possibly under the control of nontrivial script conditions, at some cost in distinguishability.
TODO: Describe changes to signing.

8.2 Memo Fields

Zcash adds a memo field sent from the creator of a JoinSplit description to the recipient of each output note. This feature is described in more detail in $\underline{\S 5.5}$ 'Encodings of Note Plaintexts and Memo Fields' on p. 53.

8.3 Unification of Mints and Pours

In the original Zerocash protocol, there were two kinds of transaction relating to shielded notes:

- a "Mint" transaction takes value from transparent UTXOs as input and produces a new shielded note as output.
- a "Pour" transaction takes up to $N^{\text {old }}$ shielded notes as input, and produces up to $\mathrm{N}^{\text {new }}$ shielded notes and a transparent UTXO as output.

Only "Pour" transactions included a zk-SNARK proof.
[Sprout only] In Zcash, the sequence of operations added to a transaction (see §8.1 'Transaction Structure’ on p. 70) consists only of JoinSplit transfers. A JoinSplit transfer is a Pour operation generalized to take a transparent UTXO as input, allowing JoinSplit transfers to subsume the functionality of Mints. An advantage of this is that a Zcash transaction that takes input from an UTXO can produce up to $\mathrm{N}^{\text {new }}$ output notes, improving the indistinguishability properties of the protocol. A related change conceals the input arity of the JoinSplit transfer: an unused (zero-value) input is indistinguishable from an input that takes value from a note.
This unification also simplifies the fix to the Faerie Gold attack described below, since no special case is needed for Mints.
[Sapling onward] In Sapling, there are still no "Mint" transactions. Instead of JoinSplit transfers, there are Spend transfers and Output transfers. These make use of Pedersen value commitments to represent the shielded values that are transferred. Because these commitments are additively homomorphic (using elliptic curve addition), it is possible to check that all Spend transfers and Output transfers balance; see $\S 4.9$ 'Balance’ on p. 30 for detail. This reduces the granularity of the circuit, allowing a substantial performance improvement (orthogonal to other Sapling circuit improvements) when the numbers of shielded inputs and outputs are significantly different. This comes at the cost of revealing the exact number of shielded inputs and outputs, but dummy (zero-valued) outputs are still possible.

8.4 Faerie Gold attack and fix

When a shielded note is created in Zerocash, the creator is supposed to choose a new ρ value at random. The nullifier of the note is derived from its spending key $\left(\mathrm{a}_{\mathrm{sk}}\right)$ and ρ. The note commitment is derived from the recipient address component a_{pk}, the value v , and the commitment trapdoor rcm , as well as ρ. However nothing prevents creating multiple notes with different v and rcm (hence different note commitments) but the same ρ.

An adversary can use this to mislead a note recipient, by sending two notes both of which are verified as valid by Receive (as defined in [BCG+2014, Figure 2]), but only one of which can be spent.

We call this a "Faerie Gold" attack - referring to various Celtic legends in which faeries pay mortals in what appears to be gold, but which soon after reveals itself to be leaves, gorse blossoms, gingerbread cakes, or other less valuable things [LG2OO4].
This attack does not violate the security definitions given in [BCG+2014]. The issue could be framed as a problem either with the definition of Completeness, or the definition of Balance:

- The Completeness property asserts that a validly received note can be spent provided that its nullifier does not appear on the ledger. This does not take into account the possibility that distinct notes, which are validly received, could have the same nullifier. That is, the security definition depends on a protocol detail -nullifiers- that is not part of the intended abstract security property, and that could be implemented incorrectly.
- The Balance property only asserts that an adversary cannot obtain more funds than they have minted or received via payments. It does not prevent an adversary from causing others' funds to decrease. In a Faerie Gold attack, an adversary can cause spending of a note to reduce (to zero) the effective value of another note for which the attacker does not know the spending key, which violates an intuitive conception of global balance.

These problems with the security definitions need to be repaired, but doing so is outside the scope of this specification. Here we only describe how Zcash addresses the immediate attack.

It would be possible to address the attack by requiring that a recipient remember all of the ρ values for all notes they have ever received, and reject duplicates (as proposed in [GGM2016]). However, this requirement would interfere with the intended Zcash feature that a holder of a spending key can recover access to (and be sure that they are able to spend) all of their funds, even if they have forgotten everything but the spending key.
[Sprout] Instead, Zcash enforces that an adversary must choose distinct values for each ρ, by making use of the fact that all of the nullifiers in JoinSplit descriptions that appear in a valid block chain must be distinct. This is true
regardless of whether the nullifiers corresponded to real or dummy notes (see 84.6 .2 'Dummy Notes (Sprout)' on p .28). The nullifiers are used as input to hSigCRH to derive a public value $\mathrm{h}_{\mathrm{Sig}}$ which uniquely identifies the transaction, as described in $\S 4.3$ 'JoinSplit Descriptions' on p. 25. ($\mathrm{h}_{\mathrm{Sig}}$ was already used in Zerocash in a way that requires it to be unique in order to maintain indistinguishability of JoinSplit descriptions; adding the nullifiers to the input of the hash used to calculate it has the effect of making this uniqueness property robust even if the transaction creator is an adversary.)
[Sprout] The ρ value for each output note is then derived from a random private seed φ and $h_{\text {Sig }}$ using $\operatorname{PRF}_{\varphi}^{\rho}$. The correct construction of ρ for each output note is enforced by $\S 4.11 .1$ 'Uniqueness of $\rho_{i}^{\text {new' }}$ on p. 32 in the JoinSplit statement.
[Sprout] Now even if the creator of a JoinSplit description does not choose φ randomly, uniqueness of nullifiers and collision resistance of both hSigCRH and PRF^{ρ} will ensure that the derived ρ values are unique, at least for any two JoinSplit descriptions that get into a valid block chain. This is sufficient to prevent the Faerie Gold attack.

A variation on the attack attempts to cause the nullifier of a sent note to be repeated, without repeating ρ. However, since the nullifier is computed as $\operatorname{PRF}_{\mathrm{a}_{\text {sk }}}^{\text {nf }}(\rho)$, this is only possible if the adversary finds a collision (across both inputs) on $\mathrm{PRF}^{\mathrm{nf}}$, which is assumed to be infeasible - see $\S 4.1 .2$ 'Pseudo Random Functions' on p. 17.
[Sprout] Crucially, "nullifier integrity" (§4.11.1 'Nullifier integrity’ on p.32) is enforced whether or not the enforceMerklePath ${ }_{i}$ flag is set for an input note. If this were not the case then an adversary could perform the attack by creating a zerovalued note with a repeated nullifier, since the nullifier would not depend on the value.
[Sprout] Nullifier integrity also prevents a "roadblock attack" in which the attacker sees a victim's transaction, and is able to publish another transaction that is mined first and blocks the victim's transaction. This attack would be possible if the public value(s) used to enforce uniqueness of ρ could be chosen arbitrarily by the transaction creator: the victim's transaction, rather than the attacker's, would be considered to be repeating these values. In the chosen solution that uses nullifiers for these public values, they are enforced to be dependent on spending keys controlled by the original transaction creator (whether or not each input note is a dummy), and so a roadblock attack cannot be performed by another party who does not know these keys.
[Sapling onward] In Sapling, uniqueness of ρ is ensured by making it dependent on the position of the note commitment in the Sapling note commitment tree. Specifically, $\rho=\mathrm{cm}+[\mathrm{pos}] \mathcal{J}$, where \mathcal{J} is a generator independent of the generators used in NoteCommit ${ }^{\text {Sapling. Therefore, } \rho \text { commits uniquely to the note and its position, and this }}$ commitment is collision-resistant by the same argument used to prove collision resistance of Pedersen hashes. Note that it is possible for two distinct Sapling positioned notes (having different ρ values and nullifiers, but different note positions) to have the same note commitment, but this causes no security problem. Roadblock attacks are not possible because a given note position does not repeat for outputs of different transactions in the same block chain.

8.5 Internal hash collision attack and fix

The Zerocash security proof requires that the composition of $\mathrm{COMM}_{\mathrm{rcm}}$ and $\mathrm{COMM}_{\mathrm{s}}$ is a computationally binding commitment to its inputs $a_{p k}, v$, and ρ. However, the instantiation of $\mathrm{COMM}_{\mathrm{rcm}}$ and $\mathrm{COMM}_{\mathrm{s}}$ in section 5.1 of the paper did not meet the definition of a binding commitment at a 128-bit security level. Specifically, the internal hash of $a_{p k}$ and ρ is truncated to 128 bits (motivated by providing statistical hiding security). This allows an attacker, with a work factor on the order of 2^{64}, to find distinct pairs (a_{pk}, ρ) and ($\mathrm{a}_{\mathrm{pk}}{ }^{\prime}, \rho^{\prime}$) with colliding outputs of the truncated hash, and therefore the same note commitment. This would have allowed such an attacker to break the Balance property by double-spending notes, potentially creating arbitrary amounts of currency for themself [HW2O16].

Zcash uses a simpler construction with a single hash evaluation for the commitment: SHA-256 for Sprout, and PedersenHash for Sapling. The motivation for the nested construction in Zerocash was to allow Mint transactions to be publically verified without requiring a zero-knowledge proof (as described under step 3 in [BCG+2014, section 1.3] Since Zcash combines "Mint" and "Pour" transactions into generalized JoinSplit transfers (for Sprout), or Spend transfers and Output transfers (for Sapling), and each transfer always uses a zero-knowledge proof, Zcash does not require the nesting. A side benefit is that this reduces the cost of computing the note commitments: for Sprout it reduces the number of SHA256Compress evaluations needed to compute each note commitment from three to two, saving a total of four SHA256Compress evaluations in the JoinSplit statement.
[Sprout] Note: Sprout note commitments are not statistically hiding, so for Sprout notes, Zcash does not support the "everlasting anonymity" property described in [BCG+2014, section 8.1], even when used as described in that section. While it is possible to define a statistically hiding, computationally binding commitment scheme for this use at a 128-bit security level, the overhead of doing so within the JoinSplit statement was not considered to justify the benefits.
[Sapling onward] In Sapling, Pedersen commitments are used instead of SHA256Compress. These commitments are statistically hiding, and so "everlasting anonymity" is supported for Sapling notes under the same conditions as in Zerocash (by the protocol, not necessarily by zcashd).

8.6 Changes to PRF inputs and truncation

The format of inputs to the PRFs instantiated in $\$ 5.4 .2$ 'Pseudo Random Functions' on p .43 has changed relative to Zerocash. There is also a requirement for another PRF, PRF^{ρ}, which must be domain-separated from the others.
In the Zerocash protocol, $\rho_{i}^{\text {old }}$ is truncated from 256 to 254 bits in the input to PRF $^{\text {sn }}$ (which corresponds to PRF ${ }^{\text {nf }}$ in $\mathbf{Z c a s h}$). Also, $\mathrm{h}_{\text {Sig }}$ is truncated from 256 to 253 bits in the input to $\mathrm{PRF}^{\mathrm{pk}}$. These truncations are not taken into account in the security proofs.
Both truncations affect the validity of the proof sketch for Lemma D. 2 in the proof of Ledger Indistinguishability in [BCG+2014, Appendix D].
In more detail:

- In the argument relating \mathbf{H} and ∂_{2}, it is stated that in ∂_{2}, "for each $i \in\{1,2\}, \operatorname{sn}_{i}:=\operatorname{PRF}_{\mathrm{a}_{\text {sk }}}^{\mathrm{sn}}(\rho)$ for a random (and not previously used) ρ ". It is also argued that "the calls to $P R F_{a_{s k}}^{s n}$ are each by definition unique". The latter assertion depends on the fact that ρ is "not previously used". However, the argument is incorrect because the truncated input to $\mathrm{PRF}_{\mathrm{a}_{\text {sk }}}^{\text {sn }}$ i.e. $[\rho]_{254}$, may repeat even if ρ does not.
- In the same argument, it is stated that "with overwhelming probability, $\mathrm{h}_{\mathrm{Sig}}$ is unique". In fact what is required to be unique is the truncated input to $\mathrm{PRF}^{\mathrm{pk}}$, i.e. $\left[\mathrm{h}_{\text {Sig }}\right]_{253}=\left[\mathrm{CRH}\left(\mathrm{pk}_{\text {sig }}\right)\right]_{253}$. In practice this value will be unique under a plausible assumption on CRH provided that $\mathrm{pk}_{\mathrm{sig}}$ is chosen randomly, but no formal argument for this is presented.

Note that ρ is truncated in the input to $\mathrm{PRF}^{5 n}$ but not in the input to $\mathrm{COMM}_{\mathrm{rcm}}$, which further complicates the analysis.
As further evidence that it is essential for the proofs to explicitly take any such truncations into account, consider a slightly modified protocol in which ρ is truncated in the input to $C O M M ~_{\mathrm{rcm}}$ but not in the input to $\mathrm{PRF}^{\mathrm{sn}}$. In that case, it would be possible to violate balance by creating two notes for which ρ differs only in the truncated bits. These notes would have the same note commitment but different nullifiers, so it would be possible to spend the same value twice.
[Sprout] For resistance to Faerie Gold attacks as described in $\S 8.4$ 'Faerie Gold attack and fix' on p.71, Zcash depends on collision resistance of hSigCRH (instantiated using BLAKE2b-256) and PRF (instantiated using SHA256Compress) Collision resistance of a truncated hash does not follow from collision resistance of the original hash, even if the truncation is only by one bit. This motivated avoiding truncation along any path from the inputs to the computation of $h_{\text {sig }}$ to the uses of ρ.
[Sprout] Since the PRFs are instantiated using SHA256Compress which has an input block size of 512 bits (of which 256 bits are used for the PRF input and 4 bits are used for domain separation), it was necessary to reduce the size of the PRF key to 252 bits. The key is set to $a_{\text {sk }}$ in the case of $P R F^{\text {addr }}, P R F^{\text {nf }}$, and $P R F^{\mathrm{pk}}$, and to φ (which does not exist in Zerocash) for PRF $^{\rho}$, and so those values have been reduced to 252 bits. This is preferable to requiring reasoning about truncation, and 252 bits is quite sufficient for security of these cryptovalues.
Sapling uses Pedersen hashes and BLAKE2s where Sprout used SHA256Compress. Pedersen hashes can be efficiently instantiated for arbitrary input lengths. BLAKE2s has an input block size of 512 bits, and uses a finalization flag rather than padding of the last input block; it also supports domain separation via a personalization parameter distinct from the input. Therefore, there is no need for truncation in the inputs to any of these hashes. TODO: check, especially $C R H^{\text {ivk }}$ which has truncated output.

8.7 In-band secret distribution

Zerocash specified ECIES (referencing Certicom's SEC 1 standard) as the encryption scheme used for the in-band secret distribution. This has been changed to a key agreement scheme based on Curve25519 (for Sprout) or Jubjub (for Sapling) and the authenticated encryption algorithm AEAD_CHACHA20_POLY1305. This scheme is still loosely based on ECIES, and on the crypto_box_seal scheme defined in libsodium [libsodium-Seal].
The motivations for this change were as follows:

- The Zerocash paper did not specify the curve to be used. We believe that Curve25519 has significant sidechannel resistance, performance, implementation complexity, and robustness advantages over most other available curve choices, as explained in [Bern2006]. For Sapling, the Jubjub curve was designed according to a similar design process following the "Safe curves" criteria [BL-SafeCurves] [GitHub-jubjub]. This retains Curve25519's advantages while keeping shielded payment address sizes short, because the same public key material supports both encryption and spend authentication.
- ECIES permits many options, which were not specified. There are at least -counting conservatively- 576 possible combinations of options and algorithms over the four standards (ANSI X9.63, IEEE Std 1363a-2004, ISO/IEC 18033-2, and SEC 1) that define ECIES variants [MAEÁ2010].
- Although the Zerocash paper states that ECIES satisfies key privacy (as defined in [BBDP2001]), it is not clear that this holds for all curve parameters and key distributions. For example, if a group of non-prime order is used, the distribution of ciphertexts could be distinguishable depending on the order of the points representing the ephemeral and recipient public keys. Public key validity is also a concern. Curve25519 (and Jubjub) key agreement is defined in a way that avoids these concerns due to the curve structure and the "clamping" of private keys (or explicit cofactor multiplication and point validation for Sapling).
- Unlike the DHAES/DHIES proposal on which it is based [ABR1999], ECIES does not require a representation of the sender's ephemeral public key to be included in the input to the KDF, which may impair the security properties of the scheme. (The Std 1363a-2004 version of ECIES [IEEE2004] has a "DHAES mode" that allows this, but the representation of the key input is underspecified, leading to incompatible implementations.) The scheme we use has both the ephemeral and recipient public key encodings -which are unambiguous for Curve25519- and also $\mathrm{h}_{\mathrm{Sig}}$ and a nonce as described below, as input to the KDF. Note that being able to break the Elliptic Curve Diffie-Hellman Problem on Curve25519 (without breaking AEAD_CHACHA20_POLY1305 as an authenticated encryption scheme or BLAKE2b-256 as a KDF) would not help to decrypt the transmitted notes ciphertext unless $\mathrm{pk}_{\text {enc }}$ is known or guessed.
- [Sprout] The KDF also takes a public seed $\mathrm{h}_{\mathrm{Sig}}$ as input. This can be modeled as using a different "randomness extractor" for each JoinSplit transfer, which limits degradation of security with the number of JoinSplit transfers. This facilitates security analysis as explained in [DGKM2011] - see section 7 of that paper for a security proof that can be applied to this construction under the assumption that single-block BLAKE2b-256 is a "weak PRF". Note that $\mathrm{h}_{\mathrm{Sig}}$ is authenticated, by the $z k$-SNARK proof, as having been chosen with knowledge of $\mathrm{a}_{\text {sk,1... }}^{\text {old }}$ old, so an adversary cannot modify it in a ciphertext from someone else's transaction for use in a chosen-ciphertext attack without detection. In Sapling, there is no equivalent to $\mathrm{h}_{\mathrm{Sig}}$. TODO: Explain why this is ok.
- [Sprout] The scheme used by Sprout includes an optimization that reuses the same ephemeral key (with different nonces) for the two ciphertexts encrypted in each JoinSplit description.

The security proofs of [ABR1999] can be adapted straightforwardly to the resulting scheme. Although DHAES as defined in that paper does not pass the recipient public key or a public seed to the hash function H, this does not impair the proof because we can consider H to be the specialization of our KDF to a given recipient key and seed. (Passing the recipient public key to the KDF could in principle compromise key privacy, but not confidentiality of encryption.) [Sprout] It is necessary to adapt the "HDH independence" assumptions and the proof slightly to take into account that the ephemeral key is reused for two encryptions.
Note that the 256-bit key for AEAD_CHACHA20_POLY1305 maintains a high concrete security level even under attacks using parallel hardware [Bern2005] in the multi-user setting [Zave2012]. This is especially necessary because the privacy of Zcash transactions may need to be maintained far into the future, and upgrading the encryption
algorithm would not prevent a future adversary from attempting to decrypt ciphertexts encrypted before the upgrade. Other cryptovalues that could be attacked to break the privacy of transactions are also sufficiently long to resist parallel brute force in the multi-user setting: for Sprout, $a_{\text {sk }}$ is 252 bits, and sk enc is no shorter than a_{sk}.

8.8 Omission in Zerocash security proof

The abstract Zerocash protocol requires PRF ${ }^{\text {addr }}$ only to be a PRF; it is not specified to be collision-resistant. This reveals a flaw in the proof of the Balance property.

Suppose that an adversary finds a collision on $\mathrm{PRF}^{\text {addr }}$ such that $\mathrm{a}_{\mathrm{sk}}^{1}$ and $\mathrm{a}_{\mathrm{sk}}^{2}$ are distinct spending keys for the same a_{pk}. Because the note commitment is to a_{pk}, but the nullifier is computed from a_{sk} (and ρ), the adversary is able to double-spend the note, once with each a_{sk}. This is not detected because each spend reveals a different nullifier. The JoinSplit statements are still valid because they can only check that the a_{sk} in the witness is some preimage of the $a_{p k}$ used in the note commitment.

The error is in the proof of Balance in [BCG+2014, Appendix D.3]. For the " \mathcal{A} violates Condition I" case, the proof says:
"(i) If $\mathrm{cm}_{1}^{\text {old }}=\mathrm{cm}_{2}^{\text {old }}$, then the fact that $\mathrm{sn}_{1}^{\text {old }} \neq \mathrm{sn}_{2}^{\text {old }}$ implies that the witness a contains two distinct openings of $\mathrm{cm}_{1}^{\text {old }}$ (the first opening contains ($a_{\mathrm{sk}, 1}^{\text {old }}, \rho_{1}^{\text {old }}$), while the second opening contains $\left(a_{\mathrm{sk}, 2}^{\text {old }}, \rho_{2}^{\text {old }}\right)$). This violates the binding property of the commitment scheme COMM."

In fact the openings do not contain $a_{\mathrm{sk}, i}^{\text {old }}$; they contain $a_{\mathrm{pk}, i}^{\text {old }}$. (In Sprout $\mathrm{cm}_{i}^{\text {old }}$ opens directly to ($a_{\mathrm{pk}, i}^{\text {old }}, \mathrm{v}_{i}^{\text {old }}, \rho_{i}^{\text {old }}$), and in Zerocash it opens to ($\mathrm{v}_{i}^{\text {old }}, \operatorname{COMM}_{\mathrm{s}}\left(\mathrm{a}_{\mathrm{pk}, i}^{\text {old }}, \rho_{i}^{\text {old }}\right)$.)
A similar error occurs in the argument for the " \mathcal{A} violates Condition II" case.
The flaw is not exploitable for the actual instantiations of PRF ${ }^{\text {addr }}$ in Zerocash and Sprout, which are collisionresistant assuming that SHA256Compress is.
The proof can be straightforwardly repaired. The intuition is that we can rely on collision resistance of PRF ${ }^{\text {addr }}$
 statement (see $\S 4.11 .1$ 'Spend authority' on p. 32), implies distinctness of $\mathrm{a}_{\mathrm{pk}, 1}^{\mathrm{old},}$ and $\mathrm{a}_{\mathrm{pk}, 2}^{\mathrm{old}}$, therefore distinct openings of the note commitment when Condition I or II is violated.

8.9 Miscellaneous

- The paper defines a note as $\left(\left(a_{p k}, \mathrm{pk}_{\mathrm{enc}}\right), \mathrm{v}, \rho, \mathrm{rcm}, \mathrm{s}, \mathrm{cm}\right)$, whereas this specification defines a Sprout note as $\left(a_{p k}, v, \rho, r c m\right)$. The instantiation of $\mathrm{COMM}_{\mathrm{s}}$ in section 5.1 of the paper did not actually use s , and neither does the new instantiation of NoteCommit ${ }^{\text {Sprout }}$ in Sprout. $\mathrm{pk}_{\text {enc }}$ is also not needed as part of a note: it is not an input to NoteCommit ${ }^{\text {Sprout }}$ nor is it constrained by the Zerocash POUR statement or the Zcash JoinSplit statement. cm can be computed from the other fields. (The definition of notes for Sapling is different again.)
- The length of proof encodings given in the paper is 288 bytes. [Sprout] This differs from the 296 bytes specified in §5.4.9.1 ‘PHGR13’ on p.52, because both the x-coordinate and compressed y-coordinate of each point need to be represented. Although it is possible to encode a proof in 288 bytes by making use of the fact that elements of \mathbb{F}_{q} can be represented in 254 bits, we prefer to use the standard formats for points defined in [IEEE2004]. The fork of libsnark used by Zcash uses this standard encoding rather than the less efficient (uncompressed) one used by upstream libsnark.
- The range of monetary values differs. In Zcash, this range is $\{0$.. MAX_MONEY $\}$; in Zerocash it is $\left\{0 . .2^{64}-1\right\}$. (The JoinSplit statement still only directly enforces that the sum of amounts in a given JoinSplit transfer is in the latter range; this enforcement is technically redundant given that the Balance property holds.)

9 Acknowledgements

The inventors of Zerocash are Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars Virza.

The authors would like to thank everyone with whom they have discussed the Zerocash protocol design; in addition to the inventors, this includes Mike Perry, Isis Lovecruft, Leif Ryge, Andrew Miller, Zooko Wilcox, Samantha Hulsey, Jack Grigg, Simon Liu, Ariel Gabizon, jl777, Ben Blaxill, Alex Balducci, Jake Tarren, Solar Designer, Ling Ren, Alison Stevenson, John Tromp, Paige Peterson, Maureen Walsh, Jay Graber, Jack Gavigan, Filippo Valsorda, Zaki Manian, George Tankersley, Tracy Hu, and no doubt others.
Zcash has benefited from security audits performed by NCC Group and Coinspect.
The Faerie Gold attack was found by Zooko Wilcox; subsequent analysis of variations on the attack was performed by Daira Hopwood and Sean Bowe. The internal hash collision attack was found by Taylor Hornby. The error in the Zerocash proof of Balance relating to collision-resistance of PRF ${ }^{\text {addr }}$ was found by Daira Hopwood. The errors in the proof of Ledger Indistinguishability mentioned in $\$ 8.6$ 'Changes to PRF inputs and truncation' on p. 73 were also found by Daira Hopwood.

The design of Sapling is primarily due to Matthew Green, Ian Miers, Daira Hopwood, Sean Bowe, and Jack Grigg.

10 Change History

2018.0-beta-15

- Clarify the bit ordering of SHA-256.
- Drop _t from the names of representation types.
- Remove functions from the Sprout specification that it does not use.
- Updates to transaction format and consensus rules for Overwinter and Sapling.
- Add specification of the Output statement.
- Change MerkleDepth ${ }^{\text {Sapling }}$ from 29 to 32 .
- Updates to Sapling construction, changing how the nullifier is computed and separating it from the randomized spend verifying key (rk).
- Clarify conversions between bit and byte sequences for sk, repr ${ }_{\mathbb{J}}(\mathrm{ak})$, and repr $\mathrm{J}_{\mathbb{J}}(\mathrm{nk})$.
- Change the Makefile to avoid multiple reloads in PDF readers while rebuilding the PDF.
- Spacing and pagination improvements.

2018.0-beta-14

- Only cosmetic changes to Sprout.
- Simplify FindGroupHash ${ }^{\mathbb{J}}$ to use a single-byte index.
- Changes to diversification for Pedersen hashes and Pedersen commitments.
- Improve security definitions for signatures.

2018.0-beta-13

- Only cosmetic changes to Sprout.
- Change how (ask, nsk) are derived from the spending key sk to ensure they are on the full range of $\mathbb{F}_{r_{J}}$.
- Change $P R F^{n r}$ to produce output computationally indistinguishable from uniform on $\mathbb{F}_{r_{\mathrm{J}}}$.
- Change Uncommitted ${ }^{\text {Sapling }}$ to be a u-coordinate for which there is no point on the curve.
- Appendix A updates:
- categorize components into larger sections
- fill in the [de]compression and validation algorithm
- more precisely state the assumptions for inputs and outputs
- delete not-all-one component which is no longer needed
- factor out xor into its own component
- specify [un]packing more precisely; separate it from boolean constraints
- optimize checking for non-small order
- notation in variable-base multiplication algorithm.

2018.0-beta-12

- No changes to Sprout.
- Add references to Overwinter ZIPs and update the section on Overwinter/Sapling transitions.
- Add a section on re-randomizable signatures.
- Add definition of PRF ${ }^{\mathrm{nr}}$.
- Work-in-progress on Sapling statements.
- Rename "raw" to "homomorphic" Pedersen commitments.
- Add packing modulo the field size and range checks to Appendix A.
- Update the algorithm for variable-base scalar multiplication to what is implemented by sapling-crypto.

2018.0-beta-11

- No changes to Sprout.
- Add sections on Spend descriptions and Output descriptions.
- Swap order of cv and rt in a Spend description for consistency.
- Fix off-by-one error in the range of ivk.

2018.0-beta-10

- Split the descriptions of SHA-256 and SHA256Compress, and of BLAKE2, into their own sections. Specify SHA256Compress more precisely.
- Add Tracy Hu to acknowledgements (for the idea of explicitly encoding the root of the Sapling note commitment tree in block headers).
- Move bit/byte/integer conversion primitives into $\$ 5.2$ 'Integers, Bit Sequences, and Endianness' on p. 36.
- Refer to Overwinter and Sapling just as "upgrades" in the abstract, not as the next "minor version" and "major version".
- PRF ${ }^{\mathrm{nr}}$ must be collision-resistant.
- Correct an error in the Pedersen hash specification.
- Use a named variable, c, for chunks per segment in the Pedersen hash specification, and change its value from 61 to 63 . Add a proof justifying this value of c.
- Specify Pedersen commitments.
- Notation changes.
- Generalize the distinct-x criterion (Theorem A.3.3 on p.95) to allow negative indices.

2018.0-beta-9

- Specify the coinbase maturity rule, and the rule that coinbase transactions cannot contain JoinSplit descriptions, Spend descriptions, or Output descriptions.
- Delay lifting the 100000-byte transaction size limit from Overwinter to Sapling.
- Improve presentation of the proof of injectivity for Extract $\mathbb{J}_{\mathbb{J}}$.
- Specify GroupHash ${ }^{\mathbb{J}}$.
- Specify Pedersen hashes.

2018.0-beta-8

- No changes to Sprout.
- Add instantiation of $\mathrm{CRH}^{\mathrm{ivk}}$.
- Add instantiation of a hash extractor for Jubjub.
- Make the background lighter and the Sapling green darker, for contrast.

2018.0-beta-7

- Specify the 100000-byte limit on transaction size. (The implementation in zcashd was as intended.)
- Specify that 0xF6 followed by 511 zero bytes encodes an empty memo field.
- Reference security definitions for Pseudo Random Functions and Pseudo Random Generators.
- Rename clamp to bound and ActualTimespanClamped to ActualTimespanBounded in the difficulty adjustment algorithm, to avoid a name collision with Curve25519 scalar "clamping".
- Change uses of the term full node to full validator. A full node by definition participates in the peer-to-peer network, whereas a full validator just needs a copy of the block chain from somewhere. The latter is what was meant.
- Add an explanation of how Sapling prevents Faerie Gold and roadblock attacks.
- Sapling work in progress.

2018.0-beta-6

- No changes to Sprout.
- Sapling work in progress, mainly on Appendix A 'Circuit Design' on p. 90.

2018.0-beta-5

- Specify more precisely the requirements on Ed25519 public keys and signatures.
- Sapling work in progress.

2018.0-beta-4

- No changes to Sprout.
- Update key components diagram for Sapling.

2018.0-beta-3

- Explain how the chosen fix to Faerie Gold avoids a potential "roadblock" attack.
- Update some explanations of changes from Zerocash for Sapling.
- Add a description of the Jubjub curve.
- Add an acknowledgement to George Tankersley.
- Add an appendix on the design of the Sapling circuits at the quadratic arithmetic program level.

2017.0-beta-2.9

- Refer to skenc as a receiving key rather than as a viewing key.
- Updates for incoming viewing key support.
- Refer to Network Upgrade O as Overwinter.

2017.0-beta-2.8

- Correct the non-normative note describing how to check the order of π_{B}.
- Initial version of draft Sapling protocol specification.

2017.0-beta-2.7

- Fix an off-by-one error in the specification of the Equihash algorithm binding condition. (The implementation in zcashd was as intended.)
- Correct the types and consensus rules for transaction version numbers and block version numbers. (Again, the implementation in zcashd was as intended.)
- Clarify the computation of h_{i} in a JoinSplit statement.

2017.0-beta-2.6

- Be more precise when talking about curve points and pairing groups.

2017.0-beta-2.5

- Clarify the consensus rule preventing double-spends.
- Clarify what a note commitment opens to in $\S 8.8$ 'Omission in Zerocash security proof on p. 75.
- Correct the order of arguments to COMM in §5.4.7.1 'Sprout Note Commitments' on p. 46.
- Correct a statement about indistinguishability of JoinSplit descriptions.
- Change the Founders' Reward addresses, for the test network only, to reflect the hard-fork upgrade described in [ZcashIssue-2113].

2017.0-beta-2.4

- Explain a variation on the Faerie Gold attack and why it is prevented.
- Generalize the description of the InternalH attack to include finding collisions on (a_{pk}, ρ) rather than just on ρ.
- Rename enforce ${ }_{i}$ to enforceMerklePath ${ }_{i}$.

2017.0-beta-2.3

- Specify the security requirements on the SHA-256 compression function in order for the scheme in $\begin{aligned} & \text { §5.4.7.1 }\end{aligned}$ 'Sprout Note Commitments' on p. 46 to be a secure commitment.
- Specify \mathbb{G}_{2} more precisely.
- Explain the use of interstitial treestates in chained JoinSplit transfers.

2017.0-beta-2.2

- Give definitions of computational binding and computational hiding for commitment schemes.
- Give a definition of statistical zero knowledge.
- Reference the white paper on MPC parameter generation [BGG2016].

2017.0-beta-2.1

- $\ell_{\text {Merkle }}$ is a bit length, not a byte length.
- Specify the maximum block size.

2017.0-beta-2

- Add abstract and keywords.
- Fix a typo in the definition of nullifier integrity.
- Make the description of block chains more consistent with upstream Bitcoin documentation (referring to "best" chains rather than using the concept of a block chain view).
- Define how nodes select a best chain.

2016.0-beta-1.13

- Specify the difficulty adjustment algorithm.
- Clarify some definitions of fields in a block header.
- Define PRF ${ }^{\text {addr }}$ in §4.2.1 'Sprout Key Components' on p. 24.

2016.0-beta-1.12

- Update the hashes of proving and verifying keys for the final Sprout parameters.
- Add cross references from shielded payment address and spending key encoding sections to where the key components are specified.
- Add acknowledgements for Filippo Valsorda and Zaki Manian.

2016.0-beta-1.11

- Specify a check on the order of π_{B} in a zero-knowledge proof.
- Note that due to an oversight, the Zcash genesis block does not follow [BIP-34].

2016.0-beta-1.10

- Update reference to the Equihash paper [BK2O16]. (The newer version has no algorithmic changes, but the section discussing potential ASIC implementations is substantially expanded.)
- Clarify the discussion of proof size in "Differences from the Zerocash paper".

2016.0-beta-1.9

- Add Founders' Reward addresses for the production network.
- Change "protected" terminology to "shielded".

2016.0-beta-1.8

- Revise the lead bytes for transparent P2SH and P2PKH addresses, and reencode the testnet Founders'Reward addresses.
- Add a section on which BIPs apply to Zcash.
- Specify that OP_CODESEPARATOR has been disabled, and no longer affects signature hashes.
- Change the representation type of vpub_old and vpub_new to uint64. (This is not a consensus change because the type of $v_{\text {pub }}^{\text {old }}$ and $v_{\text {pub }}^{\text {new }}$ was already specified to be $\{0$.. MAX_MONEY $\}$; it just better reflects the implementation.)
- Correct the representation type of the block nVersion field to uint32.

2016.0-beta-1.7

- Clarify the consensus rule for payment of the Founders' Reward, in response to an issue raised by the NCC audit.

2016.0-beta-1.6

- Fix an error in the definition of the sortedness condition for Equihash: it is the sequences of indices that are sorted, not the sequences of hashes.
- Correct the number of bytes in the encoding of solutionSize.
- Update the section on encoding of transparent addresses. (The precise prefixes are not decided yet.)
- Clarify why BLAKE2b- ℓ is different from truncated BLAKE2b-512.
- Clarify a note about SU-CMA security for signatures.
- Add a note about PRF ${ }^{\text {nf }}$ corresponding to $\mathrm{PRF}^{\text {sn }}$ in Zerocash.
- Add a paragraph about key length in §8.7 'In-band secret distribution' on p. 74.
- Add acknowledgements for John Tromp, Paige Peterson, Maureen Walsh, Jay Graber, and Jack Gavigan.

2016.0-beta-1.5

- Update the Founders' Reward address list.
. Add some clarifications based on Eli Ben-Sasson's review.

2016.0-beta-1.4

- Specify the block subsidy, miner subsidy, and the Founders' Reward.
- Specify coinbase transaction outputs to Founders' Reward addresses.
- Improve notation (for example "." for multiplication and " $T^{[\ell]}$ " for sequence types) to avoid ambiguity.

2016.0-beta-1.3

- Correct the omission of solutionSize from the block header format.
- Document that compactSize uint encodings must be canonical.
- Add a note about conformance language in the introduction.
- Add acknowledgements for Solar Designer, Ling Ren and Alison Stevenson, and for the NCC Group and Coinspect security audits.

2016.0-beta-1.2

- Remove GeneralCRH in favour of specifying hSigCRH and EquihashGen directly in terms of BLAKE2b- ℓ.
- Correct the security requirement for EquihashGen.

2016.0-beta-1.1

- Add a specification of abstract signatures.
- Clarify what is signed in the "Sending Notes" section.
- Specify ZK parameter generation as a randomized algorithm, rather than as a distribution of parameters.

2016.0-beta-1

- Major reorganization to separate the abstract cryptographic protocol from the algorithm instantiations.
- Add type declarations.
- Add a "High-level Overview" section.
- Add a section specifying the zero-knowledge proving system and the encoding of proofs. Change the encoding of points in proofs to follow IEEE Std 1363[a].
- Add a section on consensus changes from Bitcoin, and the specification of Equihash.
- Complete the "Differences from the Zerocash paper" section.
- Correct the Merkle tree depth to 29.
- Change the length of memo fields to 512 bytes.
- Switch the JoinSplit signature scheme to Ed25519, with consequent changes to the computation of $\mathrm{h}_{\mathrm{Sig}}$.
- Fix the lead bytes in shielded payment address and spending key encodings to match the implemented protocol.
- Add a consensus rule about the ranges of $v_{\text {pub }}^{\text {old }}$ and $v_{\text {pub }}^{\text {new }}$.
- Clarify cryptographic security requirements and added definitions relating to the in-band secret distribution.
- Add various citations: the "Fixing Vulnerabilities in the Zcash Protocol" and "Why Equihash?" blog posts, several crypto papers for security definitions, the Bitcoin whitepaper, the CryptoNote whitepaper, and several references to Bitcoin documentation.
- Reference the extended version of the Zerocash paper rather than the Oakland proceedings version.
- Add JoinSplit transfers to the Concepts section.
- Add a section on Coinbase Transactions.
- Add acknowledgements for Jack Grigg, Simon Liu, Ariel Gabizon, jl777, Ben Blaxill, Alex Balducci, and Jake Tarren.
- Fix a Makefile compatibility problem with the escaping behaviour of echo.
- Switch to biber for the bibliography generation, and add backreferences.
- Make the date format in references more consistent.
- Add visited dates to all URLs in references.
- Terminology changes.

2016.0-alpha-3.1

- Change main font to Quattrocento.

2016.0-alpha-3

- Change version numbering convention (no other changes).

2.0-alpha-3

- Allow anchoring to any previous output treestate in the same transaction, rather than just the immediately preceding output treestate.
- Add change history.

2.0-alpha-2

- Change from truncated BLAKE2b-512 to BLAKE2b-256.
- Clarify endianness, and that uses of BLAKE2b are unkeyed.
- Minor correction to what SIGHASH types cover.
- Add "as intended for the Zcash release of summer 2016" to title page.
- Require PRF ${ }^{\text {addr }}$ to be collision-resistant (see $\S 8.8$ ‘Omission in Zerocash security proof on p. 75).
- Add specification of path computation for the incremental Merkle tree.
- Add a note in $\$ 4.11 .1$ 'Merkle path validity' on p. 32 about how this condition corresponds to conditions in the Zerocash paper.
- Changes to terminology around keys.

2.0-alpha-1

- First version intended for public review.

11 References

[ABR1999] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. DHAES: An Encryption Scheme Based on the Diffie-Hellman Problem. Cryptology ePrint Archive: Report 1999/007. Received March 17, 1999. September 1998. URL: https : / /eprint.iacr . org / 1999/007 (visited on 2016-08-21) (\uparrow p18, 74).
[AGRRT2017] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. MiMC: Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity. Cryptology ePrint Archive: Report 2016/492. Received May 21, 2016. January 5, 2017. URL: https : //eprint.iacr.org/2016/492 (visited on 2018-01-12) (\uparrow p1O2).
[ANWW2013] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O'Hearn, and Christian Winnerlein. BLAKE2: simpler, smaller, fast as MD5. January 29, 2013. URL: https://blake2 . net/\#sp (visited on 2016-08-14) (\uparrow p38, 101).
[BBDP2001] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-Privacy in PublicKey Encryption. September 2001. URL: https://cseweb.ucsd.edu/~mihir/papers/anonenc. html (visited on 2016-08-14). Full version. (\uparrow p19, 74).
[BBJLP2008] Daniel Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters. Twisted Edwards Curves. Cryptology ePrint Archive: Report 2008/013. Received January 8, 2008. March 13, 2008. URL: https://eprint.iacr.org/2008/013 (visited on 2018-01-12) (\uparrow p96).
[BCG+2014] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized Anonymous Payments from Bitcoin (extended version). URL: http: //zerocash-project. org/media/pdf/zerocash-extended-20140518.pdf (visited on 2016-08-06). A condensed version appeared in Proceedings of the IEEE Symposium on Security and Privacy (Oakland) 2014, pages 459-474; IEEE, 2014. (\uparrow p6, 7, 8, 17, 30, 32, 35, 71, 72, 73, 75).
[BCGTV2013] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for C: Verifying Program Executions Succinctly and in Zero Knowledge. Cryptology ePrint Archive: Report 2013/507. Last revised October 7, 2013. URL: https : / / eprint. iacr . org / 2013/507 (visited on 2016-08-31). An earlier version appeared in Proceedings of the 33rd Annual International Cryptology Conference, CRYPTO 2013, pages 90-108; IACR, 2013. (\uparrow p52).
[BCP1988] Jurgen Bos, David Chaum, and George Purdy. "A Voting Scheme". Unpublished. Presented at the rump session of CRYPTO '88 (Santa Barbara, California, USA, August 21-25, 1988); does not appear in the proceedings. ($\uparrow \mathrm{p} 40$).
[BCTV2014] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. "Scalable Zero Knowledge via Cycles of Elliptic Curves (extended version)". In: Advances in Cryptology - CRYPTO 2014. Vol. 8617. Lecture Notes in Computer Science. Springer, 2014, pages 276-294. URL: https : // www. cs.tau.ac.il/~tromer / papers/scalablezk-20140803.pdf (visited on 2016-09-01) (\uparrow p24).
[BCTV2015] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture. Cryptology ePrint Archive: Report 2013/879. Last revised May 19, 2015. URL: https://eprint.iacr.org/2013/879 (visited on 2016-08-21) (\uparrow p52).
[BDEHR2011] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and Markus Rückert. On the Security of the Winternitz One-Time Signature Scheme (full version). Cryptology ePrint Archive: Report 2011/191. Received April 13, 2011. URL: https://eprint.iacr. org/2011/191 (visited on 2016-09-05) (\uparrow p19).
[BDJR2000] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A Concrete Security Treatment of Symmetric Encryption: Analysis of the DES Modes of Operation. September 2000. URL: https://cseweb.ucsd.edu / ~mihir / papers / sym - enc. html (visited on 2018-02-07). An extended abstract appeared in Proceedings of the 38th Annual Symposium on Foundations of Computer Science (Miami Beach, Florida, USA, October 20-22, 1997), pages 394-403; IEEE Computer Society Press, 1997; ISBN 0-8186-8197-7. (\uparrow p17).
[BDLSY2012] Daniel Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. "High-speed highsecurity signatures". In: Journal of Cryptographic Engineering 2 (September 26, 2011), pages 7789. URL: http : / / cr . yp.to / papers . html\#ed25519 (visited on 2016-08-14). Document ID: a1a62a2f76d23f65d622484ddd09caf8. ($\uparrow \mathrm{p} 45$).
[Bern2005] Daniel Bernstein. "Understanding brute force". In: ECRYPT STVL Workshop on Symmetric Key Encryption, eSTREAM report 2005/036. April 25, 2005. URL: https : / / cr . yp . to / papers . html\#bruteforce (visited on 2016-09-24). Document ID: 73e92f5b71793b498288efe81fe55dee. (\uparrow p74).
[Bern2006] Daniel Bernstein. "Curve25519: new Diffie-Hellman speed records". In: Public Key Cryptography - PKC 2006. Proceedings of the 9th International Conference on Theory and Practice in Public-Key Cryptography (New York, NY, USA, April 24-26, 2006). Springer-Verlag, February 9, 2006. URL: http://cr.yp.to/papers.html\#curve25519 (visited on 2016-08-14). Document ID: 4230efdfa673480fc079449d90f322c0. (\uparrow p18, 44, 55, 56, 74).
[BGG1995] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. "Incremental Cryptography: The Case of Hashing and Signing". In: Advances in Cryptology - CRYPTO '94. Proceedings of the 14th Annual International Cryptology Conference (Santa Barbara, California, USA, August 21-25, 1994). Ed. by Yvo Desmedt. Vol. 839. Lecture Notes in Computer Science. Springer, October 20, 1995, pages 216-233. ISBN: 978-3-540-48658-9. DOI: 10.1007/3-540-48658-5_22. URL: https: //cseweb.ucsd.edu/~mihir/papers/inc1.pdf (visited on 2018-02-09) (\uparrow p40, 41, 99).
[BGG2016] Sean Bowe, Ariel Gabizon, and Matthew Green. A multi-party protocol for constructing the public parameters of the Pinocchio zk-SNARK. November 24, 2016. URL: https : / / github . com/zcash/mpc/blob/master/whitepaper.pdf (visited on 2017-02-11) (\uparrow p $\overline{58}$, 80).
[BIP-11] Gavin Andresen. M-of- N Standard Transactions. Bitcoin Improvement Proposal 11. Created October 18, 2011. URL: https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki (visited on 2016-10-02) (\uparrow p70).
[BIP-13] Gavin Andresen. Address Format for pay-to-script-hash. Bitcoin Improvement Proposal 13. Created October 18, 2011. URL: https : / / github . com / bitcoin / bips /blob/master / bip0013. mediawiki (visited on 2016-09-24) (\uparrow p54, 70).

[BIP-14]	Amir Taaki and Patrick Strateman. Protocol Version and User Agent. Bitcoin Improvement Proposal 14. Created November 10, 2011. URL: https://github.com/bitcoin/bips/blob/master/ bip-0014.mediawiki (visited on 2016-10-02) (\uparrow p70).
[BIP-16]	Gavin Andresen. Pay to Script Hash. Bitcoin Improvement Proposal 16. Created January 3, 2012. URL: https://github .com/bitcoin/bips/blob/master/bip-0016.mediawiki (visited on 2016-10-02) (\uparrow p70).
[BIP-30]	Pieter Wuille. Duplicate transactions. Bitcoin Improvement Proposal 30. Created February 22, 2012. URL: https://github.com/bitcoin/bips/blob/master/bip-0030.mediawiki (visited on 2016-10-02) (\uparrow p70).
[BIP-31]	Mike Hearn. Pong message. Bitcoin Improvement Proposal 31. Created April 11, 2012. URL: https : / / github . com / bitcoin / bips / blob/master / bip - 0031 . mediawiki (visited on 2016-10-02) (\uparrow p70).
[BIP-32]	Pieter Wuille. Hierarchical Deterministic Wallets. Bitcoin Improvement Proposal 32. Created February 11, 2012. Last updated January 15, 2014. URL: https://github.com/bitcoin/bips/ blob/master/bip-0032.mediawiki (visited on 2016-09-24) (\uparrow p55).
[BIP-34]	Gavin Andresen. Block v2, Height in Coinbase. Bitcoin Improvement Proposal 34. Created July 6, 2012. URL: https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki (visited on 2016-10-02) (\uparrow p70, 81).
[BIP-35]	Jeff Garzik. mempool message. Bitcoin Improvement Proposal 35. Created August 16, 2012. URL: https://github . com/bitcoin/bips/blob/master/bip-0035.mediawiki (visited on 2016-10-02) (\uparrow p70).
[BIP-37]	Mike Hearn and Matt Corallo. Connection Bloom filtering. Bitcoin Improvement Proposal 37. Created October 24, 2012. URL: https://github . com/bitcoin/bips/blob/master/bip0037.mediawiki (visited on 2016-10-02) (\uparrow p70).
[BIP-61]	Gavin Andresen. Reject P2P message. Bitcoin Improvement Proposal 61. Created June 18, 2014. URL: https://github.com/bitcoin/bips/blob/master/bip-0061.mediawiki (visited on 2016-10-02) (\uparrow P70).
[BIP-62]	Pieter Wuille. Dealing with malleability. Bitcoin Improvement Proposal 62. Withdrawn November 17, 2015. URL: https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki (visited on 2016-09-05) (\uparrow p20).
[BIP-65]	Peter Todd. OP_CHECKLOCKTIMEVERIFY. Bitcoin Improvement Proposal 65. Created October 10, 2014. URL: https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki (visited on 2016-10-02) (\uparrow p70).
[BIP-66]	Pieter Wuille. Strict DER signatures. Bitcoin Improvement Proposal 66. Created January 10, 2015. URL: https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki (visited on 2016-10-02) (\uparrow p70).
[BIP-68]	Mark Friedenbach, BtcDrak, Nicolas Dorier, and kinoshitajona. Relative lock-time using con-sensus-enforced sequence numbers. Bitcoin Improvement Proposal 68. Last revised November 21, 2015. URL: https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki (visited on 2016-09-02) (\uparrow p61).
[BIP-173]	Pieter Wuille and Greg Maxwell. Base32 address format for native vO-16 witness outputs. Bitcoin Improvement Proposal 173. Last revised September 24, 2017. URL: https://github.com/ bitcoin/bips/blob/master/bip-0173.mediawiki (visited on 2018-01-22) (\uparrow p54).
[Bitc-Base58]	Base58Check encoding - Bitcoin Wiki. URL: https://en. bitcoin.it/wiki/Base58Check_ encoding (visited on 2016-01-26) (\uparrow p54, 55).
[Bitc-Block]	Block Headers - Bitcoin Developer Reference. URL: https: //bitcoin. org/en/developer-reference\#block-headers (visited on 2017-04-25) (\uparrow p64).

[Bitc-CoinJoin] CoinJoin - Bitcoin Wiki.URL:https://en.bitcoin.it/wiki/CoinJoin (visited on 2016-08-17) ($\uparrow \mathrm{p} 8$).
[Bitc-Format] Raw Transaction Format - Bitcoin Developer Reference. URL: https : / /bitcoin . org/en / developer-reference\#raw-transaction-format (visited on 2016-03-15) (\uparrow p61).
[Bitc-Multisig] P2SH multisig (definition) - Bitcoin Developer Guide. URL: https://bitcoin. org/en / developer-guide\#term-p2sh-multisig (visited on 2016-08-19)(个p69).
[Bitc-nBits] Target nBits - Bitcoin Developer Reference. URL: https://bitcoin. org / en / developer-reference\#target-nbits (visited on 2016-08-13) (\uparrow p63, 67).
[Bitc-P2PKH] P2PKH (definition) - Bitcoin Developer Guide. URL: https://bitcoin.org/en/developer-guide\#term-p2pkh (visited on 2016-08-24) (\uparrow p54).
[Bitc-P2SH] P2SH (definition) - Bitcoin Developer Guide. URL: https://bitcoin. org/en/developer -guide\#term-p2sh (visited on 2016-08-24) (\uparrow p54).
[Bitc-Protocol] Protocol documentation - Bitcoin Wiki. URL: https://en.bitcoin.it/wiki/Protocol_ documentation (visited on 2016-10-02) ($\uparrow \mathrm{p} 7$).
[BJLSY2015] Daniel Bernstein, Simon Josefsson, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. EdDSA for more curves. Technical Report. July 4, 2015. URL: https://cr.yp.to/papers.html\#eddsa (visited on 2018-01-22) (\uparrow p45, 50).
[BK2016] Alex Biryukov and Dmitry Khovratovich. Equihash: Asymmetric Proof-of-Work Based on the Generalized Birthday Problem (full version). Cryptology ePrint Archive: Report 2015/946. Last revised October 27, 2016. URL: https://eprint.iacr.org/2015/946 (visited on 2016-10-30) (\uparrow p 8, 64, 81).
[BL-SafeCurves] Daniel Bernstein and Tanja Lange. SafeCurves: choosing safe curves for elliptic-curve cryptography. URL: https://safecurves.cr.yp.to (visited on 2018-01-29) (个 p74, 88).
[BL2017] Daniel Bernstein and Tanja Lange. Montgomery curves and the Montgomery ladder. Cryptology ePrint Archive: Report 2017/293. Received March 30, 2017. URL: https : / /eprint . iacr . org/2017/293 (visited on 2017-11-26) (\uparrow p90, 95, 96).
[BN2007] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Relations among notions and analysis of the generic composition paradigm. Cryptology ePrint Archive: Report 2000/025. Last revised July 14, 2007. URL: https : / / eprint. iacr . org / 2000 / 025 (visited on 2016-09-02) (\uparrow p17).
[Bowe2017] Sean Bowe. ebfull/pairing source code, BLS12-381-README.md as of commit e726600. URL: https://github.com/ebfull/pairing/tree/e72660056e00c93d6b054dfb08ff34a1c67cb799/ src/bls12_381 (visited on 2017-07-16) (\uparrow p48).
[CDG1987] David Chaum, Ivan Damgård, and Jeroen van de Graaf. "Multiparty computations ensuring privacy of each party's input and correctness of the result". In: Advances in Cryptology CRYPTO '87. Proceedings of the 14th Annual International Cryptology Conference (Santa Barbara, California, USA, August 16-20, 1987). Ed. by Carl Pomerance. Vol. 293. Lecture Notes in Computer Science. Springer, January 1988, pages 87-119. ISBN: 978-3-540-48184-3. DOI: 10 . 1007/3-540-48184-2_7. URL: https://www.researchgate.net/profile/Jeroen_Van__de_ Graaf/publication/242379939_Multiparty_computations_ensuring_secrecy_of_each_ party\%27s_input_and_correctness_of_the_output (visited on 2018-03-01) (\uparrow p 40).
[CvHP1991] David Chaum, Eugène van Heijst, and Birgit Pfitzmann. Cryptographically Strong Undeniable Signatures, Unconditionally Secure for the Signer. February 1991. URL: http : / / citeseerx . ist . psu . edu / viewdoc / summary ? doi=10.1.1.34.8570 (visited on 2018-02-17). DOI: 10.1.1.34.8570. An extended abstract appeared in Advances in Cryptology - CRYPTO '91: Proceedings of the 11th Annual International Cryptology Conference (Santa Barbara, California, USA, August 11-15, 1991); Ed. by Joan Feigenbaum; Vol. 576, Lecture Notes in Computer Science, pages 470-484; Springer, 1992; ISBN 978-3-540-55188-1. (\uparrow p40, 99).

[DGKM2011]	Dana Dachman-Soled, Rosario Gennaro, Hugo Krawczyk, and Tal Malkin. Computational Extractors and Pseudorandomness. Cryptology ePrint Archive: Report 2011/708. December 28, 2011. URL: https: //eprint.iacr. org/2011/708 (visited on 2016-09-02) (\uparrow p74).
[DigiByte-PoW]	DigiByte Core Developers. DigiSpeed 4.0.0 source code, functions GetNextWorkRequiredV3/4 in src/main.cpp as of commit 178e134. URL: https://github.com/digibyte/digibyte/blob/ 178e1348a67d9624db328062397fde0de03fe388/src/main.cpp\#L1587 (visited on 2017-01-20) (\uparrow p66).
[EWD-831]	Edsger W. Dijkstra. Why numbering should start at zero. Manuscript. August 11, 1982. URL: https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html (visited on 2016-08-09) (\uparrow p8).
[FKMSSS2016]	Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Dominique Schröder, and Mark Simkin. Efficient Unlinkable Sanitizable Signatures from Signatures with ReRandomizable Keys. Cryptology ePrint Archive: Report 2012/159. Last revised February 11, 2016. URL: https://eprint.iacr.org/2015/395 (visited on 2018-03-03). An extended abstract appeared in Public Key Cryptography - PKC 2016: 19th IACR International Conference on Practice and Theory in Public-Key Cryptography (Taipei, Taiwan, March 6-9, 2016), Proceedings, Part 1; Ed. by Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang; Vol. 9614, Lecture Notes in Computer Science, pages 301-330; Springer, 2016; ISBN 978-3-662-49384-7. ($\uparrow \mathrm{p} 20,21,45$).
[GGM2016]	Christina Garman, Matthew Green, and Ian Miers. Accountable Privacy for Decentralized Anonymous Payments. Cryptology ePrint Archive: Report 2016/061. Last revised January 24, 2016. URL: https://eprint.iacr.org/2016/061 (visited on 2016-09-02) (\uparrow p71).
[GitHub-jubjub]	Daira Hopwood. GitHub repository 'daira/jubjub': Supporting evidence for security of the Jubjub curve to be used in Zcash. URL: https: / / github . com / daira / jubjub (visited on 2018-02-18). Based on code written for SafeCurves [BL-SafeCurves] by Daniel Bernstein and Tanja Lange. (\uparrow p74).
[GitHub-mpc]	Sean Bowe, Ariel Gabizon, and Matthew Green. GitHub repository 'zcash/mpc': zk-SNARK parameter multi-party computation protocol. URL: https://github . com/zcash/mpc (visited on 2017-01-06) (\uparrow p58).
[Grot2016]	Jens Groth. On the Size of Pairing-based Non-interactive Arguments. Cryptology ePrint Archive: Report 2016/260. Last revised May 31, 2016. URL: https ://eprint.iacr.org/2016/260 (visited on 2017-08-03) ($\uparrow \mathrm{p} 52,53$).
[HW2O16]	Taylor Hornby and Zooko Wilcox. Fixing Vulnerabilities in the Zcash Protocol. Zcash blog. April 25, 2016. URL: https://z.cash/blog/fixing-zcash-vulns.html (visited on 2016-06-22) (\uparrow p72).
[IEEE2000]	IEEE Computer Society. IEEE Std 1363-2000: Standard Specifications for Public-Key Cryptography. IEEE, August 29, 2000. DOI: 10.1109/IEEESTD.2000.92292. URL: http://ieeexplore. ieee. org/servlet/opac?punumber=7168 (visited on 2016-08-03) (\uparrow p48).
[IEEE2O04]	IEEE Computer Society. IEEE Std 1363a-2004: Standard Specifications for Public-Key Cryptography - Amendment 1: Additional Techniques. IEEE, September 2, 2004. DOI: 10.1109 / IEEESTD.2004.94612. URL: http://ieeexplore.ieee.org/servlet/opac? punumber=9276 (visited on 2016-08-03) ($\uparrow \mathrm{p} 48,74,75$).
[KvE2O13]	Kaa1el and Hagen von Eitzen. If a group G has odd order, then the square function is injective (answer). Mathematics Stack Exchange. URL: https://math . stackexchange. com/a/522277/ 185422 (visited on 2018-02-08). Version: 2013-10-11. (\uparrow p51).
[LG2004]	Eddie Lenihan and Carolyn Eve Green. Meeting the Other Crowd: The Fairy Stories of Hidden Ireland. TarcherPerigee, February 2004, pages 109-110. ISBN: 1-58542-206-1 (\uparrow p71).
[libsnark-fork]	libsnark: C++ library for zkSNARK proofs (Zcash fork). URL: https : / / github . com / zcash / zcash/tree/master/src/snark (visited on 2018-02-04) (\uparrow p52).

[libsodium-Seal]	Sealed boxes - libsodium. URL: https://download. libsodium. org/doc/public-key _ cryptography/sealed_boxes.html (visited on 2016-02-01) (\uparrow p74).
[MAEÁ2O10]	V. Gayoso Martínez, F. Hernández Alvarez, L. Hernández Encinas, and C. Sánchez Ávila. "A Comparison of the Standardized Versions of ECIES". In: Proceedings of Sixth International Conference on Information Assurance and Security (23-25 August 2010, Atlanta, GA, USA, 23-25 August 2010). IEEE, 2010, pages 1-4. ISBN: 978-1-4244-7407-3. DOI: $10.1109 /$ ISIAS . 2010.5604194. URL: https://digital.csic.es/bitstream/10261/32674/1/Gayoso_A\% 20Comparison $\%$ 20of \% 20the \% 20Standardized \% 20Versions \% 20of \% 20ECIES . pdf (visited on 2016-08-14) (\uparrow p74).
[Naka2008]	Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. October 31, 2008. URL: https://bitcoin.org/en/bitcoin-paper (visited on 2016-08-14) (\uparrow p6).
[NIST2015]	NIST. FIPS 180-4: Secure Hash Standard (SHS). August 2015. DOI: 10.6028/NIST . FIPS . 1804. URL: https://csrc.nist.gov/publications/detail/fips/180/4/final (visited on 2018-02-14) (\uparrow p37, 54).
[PHGR2O13]	Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly Practical Verifiable Computation. Cryptology ePrint Archive: Report 2013/279. Last revised May 13, 2013. URL: https://eprint.iacr.org/2013/279 (visited on 2016-08-31) (\uparrow p52).
[RFC-2119]	Scott Bradner. Request for Comments 7693: Key words for use in RFCs to Indicate Requirement Levels. Internet Engineering Task Force (IETF). March 1997. URL: https://tools.ietf.org/ html/rfc2119 (visited on 2016-09-14) (\uparrow p6).
[RFC-7539]	Yoav Nir and Adam Langley. Request for Comments 7539: ChaCha20 and Poly1305 for IETF Protocols. Internet Research Task Force (IRTF). May 2015. URL: https://tools.ietf . org/ html/rfc7539 (visited on 2016-09-02). As modified by verified errata at https://www.rfceditor.org/errata_search.php?rfc=7539 (visited on 2016-09-02). (\uparrow p44).
[RIPEMD160]	Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160, a strengthened version of RIPEMD. URL: http://homes.esat. kuleuven. be / ~bosselae /ripemd160. html (visited on 2016-09-24) (\uparrow p54).
[Unicode]	The Unicode Consortium. The Unicode Standard. The Unicode Consortium, 2016. URL: http: //www.unicode.org/versions/latest/ (visited on 2016-08-31) (\uparrow p53).
[vanS2014]	Nicolas van Saberhagen. CryptoNote v 2.0. Date disputed. URL: https : / / cryptonote . org/ whitepaper.pdf (visited on 2016-08-17) (\uparrow p8).
[WG2016]	Zooko Wilcox and Jack Grigg. Why Equihash? Zcash blog. April 15, 2016. URL: https : / / z . cash/blog/why-equihash.html (visited on 2016-08-05) (\uparrow p64).
[Zave2012]	Gregory M. Zaverucha. Hybrid Encryption in the Multi-User Setting. Cryptology ePrint Archive: Report 2012/159. Received March 20, 2012. URL: https: //eprint.iacr.org/2012/159 (visited on 2016-09-24) ($\uparrow \mathrm{p} 74$).
[ZcashIssue-2113]	Simon Liu. GitHub repository 'zcash/zcash': Issue 2113. URL: https : / / github . com / zcash/ zcash/issues/2113 (visited on 2017-02-20) (\uparrow p69, 80).
[ZIP-143]	Jack Grigg and Daira Hopwood. Transaction Signature Verification for Overwinter. Zcash Improvement Proposal 143. Created December 27, 2017. URL: https://github.com/zcash/zips/ blob/master/zip-0143.rst (visited on 2018-03-01) (\uparrow p38, 58).
[ZIP-200]	Jack Grigg. Network Upgrade Mechanism. Zcash Improvement Proposal 200. Created January 8, 2018. URL: https://github . com/zcash/zips/blob/master/zip-0200.rst (visited on 2018-03-01) (\uparrow p58).
[ZIP-201]	Simon Liu. Network Peer Management for Overwinter. Zcash Improvement Proposal 201. Created January 15, 2018. URL: https://github.com/zcash/zips/blob/master/zip-0201.rst (visited on 2018-03-01) ($\uparrow \mathrm{p} 58$).

Appendices

A Circuit Design

A. 1 Quadratic Arithmetic Programs

Sapling defines two circuits, Spend and Output, each implementing an abstract statement described in $\S 4.11 .2$ 'Spend Statement (Sapling)' on p. 32 and §4.11.3 'Output Statement (Sapling)' on p. 33 respectively. At the next lower level, each circuit is defined in terms of a quadratic arithmetic program, detailed in this section. The description given here is necessary to compute witness elements for the circuit.

Let $\mathbb{F}_{r_{\mathbb{S}}}$ be the finite field over which Jubjub is defined, as given in §5.4.8.3 ‘Jubjub’ on p. 50.
A quadratic arithmetic program consists of a set of constraints over variables in $\mathbb{F}_{r_{\mathbb{S}}}$, each of the form:
$(A) \times(B)=(C)$
where $(A),(B)$, and (C) are linear combinations of variables and constants in $\mathbb{F}_{r_{\mathbb{S}}}$.
Here \times and \cdot both represent multiplication in the field $\mathbb{F}_{r_{\mathbb{S}}}$, but we use \times for multiplications corresponding to gates of the circuit, and \cdot for multiplications by constants in the terms of a linear combination.

A. 2 Elliptic curve background

The circuit makes use of a twisted Edwards curve, Jubjub, and also a Montgomery curve that is birationally equivalent to Jubjub. From here on we omit "twisted" when referring to the Edwards Jubjub curve or coordinates. Following the notation in [BL2O17] we use (u, v) for affine coordinates on the Edwards curve, and (x, y) for affine coordinates on the Montgomery curve.

The Montgomery curve has parameters $A_{\mathbb{M}}=40962$ and $B_{\mathbb{M}}=1$. We use an affine representation of this curve with the formula:

$$
B_{\mathbb{M}} \cdot y^{2}=x^{3}+A_{\mathbb{M}} \cdot x^{2}+x
$$

Usually, elliptic curve arithmetic over prime fields is implemented using some form of projective coordinates, in order to reduce the number of expensive inversions required. In the circuit, it turns out that a division can be implemented at the same cost as a multiplication, i.e. one constraint. Therefore it is beneficial to use affine coordinates for both curves.

We define the following types representing affine Edwards and Montgomery coordinates respectively:

$$
\begin{aligned}
\text { AffineEdwardsJubjub }: & =\left(u: \mathbb{F}_{r_{\mathbb{S}}}\right) \times\left(v: \mathbb{F}_{r_{\mathbb{S}}}\right): a_{\mathbb{J}} \cdot u^{2}+v^{2}=1+d_{\mathbb{J}} \cdot u^{2} \cdot v^{2} \\
\text { AffineMontJubjub }: & =\left(x: \mathbb{F}_{r_{\mathbb{S}}}\right) \times\left(y: \mathbb{F}_{r_{\mathbb{S}}}\right): B_{\mathbb{M}} \cdot y^{2}=x^{3}+A_{\mathbb{M}} \cdot x^{2}+x
\end{aligned}
$$

We also define a type representing compressed, not necessarily valid, Edwards coordinates:

```
CompressedEdwardsJubjub := (\tilde{u}:\mathbb{B})\times(v:\mp@subsup{\mathbb{F}}{\mp@subsup{r}{\mathbb{S}}{}}{})
```

See §5.4.8.3 ‘Jubjub’ on p. 50 for how this type is represented as a byte sequence in external encodings.
We use affine Montgomery arithmetic in parts of the circuit because it is more efficient, in terms of the number of constraints, than affine Edwards arithmetic.

An important consideration when using Montgomery arithmetic is that the addition formula is not complete, that is, there are cases where it produces the wrong answer. We must ensure that these cases do not arise.

We will need the theorem below about y-coordinates of points on Montgomery curves.

Fact: $\quad A_{\mathbb{M}}{ }^{2}-4$ is a nonsquare in $\mathbb{F}_{r_{\mathbb{J}}}$.
Theorem A.2.1. Let $P=(x, y)$ be a point other than $(0,0)$ on a Montgomery curve over \mathbb{F}_{r} with parameter A, such that $A^{2}-4$ is a nonsquare in \mathbb{F}_{r}. Then $y \neq 0$.

Proof. Substituting $y=0$ into the Montgomery curve equation gives $0=x^{3}+A \cdot x^{2}+x=x \cdot\left(x^{2}+A \cdot x+1\right)$. So either $x=0$ or $x^{2}+A \cdot x+1=0$. Since $P \neq(0,0)$, the case $x=0$ is excluded. In the other case, complete the square for $x^{2}+A \cdot x+1=0$ to give the equivalent $(2 \cdot x+A)^{2}=A^{2}-4$. The left-hand side is a square, so if the right-hand side is a nonsquare, then there are no solutions for x.

A. 3 Circuit Components

Each of the following sections describes how to implement a particular component of the circuit, and counts the number of constraints required. Some components make use of others; the order of presentation is "bottom-up".
It is important for security to ensure that variables intended to be of boolean type are boolean-constrained; and for efficiency that they are boolean-constrained only once. We explicitly state for the boolean inputs and outputs of each component whether they are boolean-constrained by the component, or are assumed to have been booleanconstrained separately.

Affine coordinates for elliptic curve points are assumed to represent points on the relevant curve, unless otherwise specified.

In this section, variables have type $\mathbb{F}_{r_{\mathbb{S}}}$ unless otherwise specified. In contrast to most of this document, we use zero-based indexing in order to more closely match the implementation.

A.3.1 Operations on individual bits

A.3.1.1 Boolean constraints

A boolean constraint $b \in \mathbb{B}$ can be implemented as:

$$
(1-b) \times(b)=(0)
$$

A.3.1.2 Selection constraints

A selection constraint $b ? x: y=z$, where $b: \mathbb{B}$ has been boolean-constrained, can be implemented as:
(b) $\times(y-x)=(y-z)$

A.3.1.3 Nonzero constraints

Since only nonzero elements of $\mathbb{F}_{r_{\mathrm{s}}}$ have a multiplicative inverse, the assertion $a \neq 0$ can be implemented by witnessing the inverse, $a_{\mathrm{inv}}=a^{-1}\left(\bmod r_{\mathrm{s}}\right)$:

$$
\left(a_{\text {inv }}\right) \times(a)=(1)
$$

A global optimization allows to use a single inverse computation outside the circuit for any number of nonzero constraints. Suppose that we have n variables (or linear combinations) that are supposed to be nonzero: $a_{0} . . n-1$. Multiply these together (using $n-1$ constraints) to give $a^{*}=\prod_{i=0}^{n-1} a_{i}$; then, constrain a^{*} to be nonzero. This works because the product a^{*} is nonzero if and only if all of $a_{0 . . n-1}$ are nonzero.

A.3.1.4 Exclusive-or constraints

An exclusive-or operation $a \oplus b=c$, where $a, b: \mathbb{B}$ are already boolean-constrained, can be implemented in one constraint as:
$(2 \cdot a) \times(b)=(a+b-c)$
This automatically boolean-constrains c. Its correctness can be seen by checking the truth table of (a, b).

A.3.2 Operations on multiple bits

A.3.2.1 [Un]packing modulo $r_{\mathbb{S}}$

Let $n: \mathbb{N}^{+}$be a constant. The operation of converting a field element, $a: \mathbb{F}_{r_{\mathbf{s}}}$, to a sequence of boolean variables $b_{0 \ldots n-1}: \mathbb{B}^{[n]}$ such that $a=\sum_{i=0}^{n-1} b_{i} \cdot 2^{i}\left(\bmod r_{\mathbb{S}}\right)$, is called "unpacking". The inverse operation is called "packing". In the quadratic arithmetic program these are the same operation (but see the note about canonical representation below). We assume that the variables $b_{0 . . n-1}$ are boolean-constrained separately.
We have $a \bmod r_{\mathbb{S}}=\left(\sum_{i=0}^{n-1} b_{i} \cdot 2^{i}\right) \bmod r_{\mathbb{S}}=\left(\sum_{i=0}^{n-1} b_{i} \cdot\left(2^{i} \bmod r_{\mathbb{S}}\right)\right) \bmod r_{\mathbb{S}}$.
This can be implemented in one constraint:

$$
\left(\sum_{i=0}^{n-1} b_{i} \cdot\left(2^{i} \bmod r_{\mathbb{S}}\right)\right) \times(1)=(a)
$$

Notes:

- The bit length n is not limited by the field element size.
- Since the constraint has only a trivial multiplication, it is possible to eliminate it by merging it into the boolean constraint of one of the output bits, expressing that bit as a linear combination of the others and a. However, this optimization requires substitutions that would interfere with the modularity of the circuit implementation (for a saving of only one constraint per unpacking operation), and so we do not use it for the Sapling circuit. TODO: Do we want to use it internally to the BLAKE2s implementation where modularity is not significantly affected?
- In the case $n=255$, for $a<2^{255}-r_{\mathbb{S}}$ there are two possible representations of $a: \mathbb{F}_{r_{\mathbb{S}}}$ as a sequence of 255 bits, corresponding to $I_{2 L E B S P}^{255}(a)$ and $\operatorname{I2LEBSP}{ }_{255}\left(a+r_{\mathbb{S}}\right)$. This is a potential hazard, but it may or may not be necessary to force use of the canonical representation $I_{2 L E B S P}^{255}$ (a), depending on the context in which the [un]packing operation is used. We therefore do not consider this to be part of the [un]packing operation itself.

A.3.2.2 Range check

Let $n: \mathbb{N}^{+}$be a constant, and let $a=\sum_{i=0}^{n-1} a_{i} \cdot 2^{i}: \mathbb{N}$. Suppose we want to constrain $a \leq c$ for some constant $c=\sum_{i=0}^{n-1} c_{i} \cdot 2^{i}: \mathbb{N}$.

Without loss of generality we can assume that $c_{n-1}=1$, because if it were not then we would decrease n accordingly.

Note that since a and c are provided in binary representation, their bit length n is not limited by the field element size. We do not assume that the bits $a_{0 . . n-1}$ are already boolean-constrained.

Suppose c has k bits set to 1 , and let $j_{0 . . k-1}$ be the indices of those bits in ascending order. Let t be the minimum of $k-1$ and the number of trailing 1 bits in c.
Let $\Pi_{j_{k-1}}=a_{j_{k-1}}$. For $z \in\{t . . k-2\}$, constrain:

$$
\left(\Pi_{j_{z+1}}\right) \times\left(a_{j_{z}}\right)=\left(\Pi_{j_{z}}\right)
$$

For $i \in\{0 . . n-1\}$:

- if $c_{i}=0$, constrain $\left(1-\Pi_{j_{z}}-a_{i}\right) \times\left(a_{i}\right)=(0)$ where j_{z} is the least element of j greater than i;
- if $c_{i}=1$, boolean-constrain a_{i} as in §A.3.1.1 'Boolean constraints' on p. 91.

Note that the constraints corresponding to zero bits of c are in place of boolean constraints on bits of a_{i}.
This costs $n+k-1-t$ constraints.
TODO: Explain why this works (see https://github.com/zcash/zcash/issues/2234\#issuecomment-338930637).

A.3.3 Elliptic curve operations

A.3.3.1 Checking that affine Edwards coordinates are on the curve

To check that (u, v) is a point on the Edwards curve, use:
$(u) \times(u)=(u u)$
$(v) \times(v)=(v v)$
$\left(d_{\mathbb{J}} \cdot u u\right) \times(v v)=\left(a_{\mathbb{J}} \cdot u u+v v-1\right)$

A.3.3.2 Edwards [de]compression and validation

Define DecompressValidate: CompressedEdwardsJubjub \rightarrow AffineEdwardsJubjub as follows:
DecompressValidate (\tilde{u}, v) :
// Prover supplies the u-coordinate.
Let $u: \mathbb{F}_{r_{\mathbb{S}}}$.
// §A.3.3.1 'Checking that affine Edwards coordinates are on the curve' on p.93.
Check that (u, v) is a point on the Edwards curve.
// §A.3.2.1 '[Un]packing modulo $r_{\mathbb{S}}$ ' on p. 92.
Unpack u to $\sum_{i=0}^{254} u_{i} \cdot 2^{i}$, equating \tilde{u} with u_{0}.
// §A.3.2.2 'Range check' on p. 93.
Check that $\sum_{i=0}^{254} u_{i} \cdot 2^{i} \leq r_{\mathbb{S}}-1$.
Return (u, v).

This costs 3 constraints for the curve equation check, 1 constraint for the unpacking, and $255+133-1$ constraints for the range check (which includes boolean-constraining $u_{0 . .254}$), for a total of 391 constraints.

The same quadratic arithmetic program be used for compression and decompression.

Note: The point-on-curve check could be omitted if (u, v) were already known to be on the curve. However, the Sapling circuit never omits it; this provides a redundant consistency check on the elliptic curve arithmetic in some cases.

A.3.3.3 Edwards \leftrightarrow Montgomery conversion

Define EdwardsToMont: AffineEdwardsJubjub \rightarrow AffineMontJubjub as follows:

$$
\text { EdwardsToMont }(u, v)=\left(\frac{1+v}{1-v}, \sqrt{-40964} \cdot \frac{1+v}{(1-v) \cdot u}\right) \quad[1-v \neq 0 \text { and } u \neq 0]
$$

Define MontToEdwards: AffineMontJubjub \rightarrow AffineEdwardsJubjub as follows:

$$
\operatorname{MontToEdwards}(x, y)=\left(\sqrt{-40964} \cdot \frac{x}{y}, \frac{x-1}{x+1}\right) \quad[x+1 \neq 0 \text { and } y \neq 0]
$$

Either of these conversions can be implemented by the same quadratic arithmetic program:

$$
\begin{aligned}
& (y) \times(u)=(\sqrt{-40964} \cdot x) \\
& (x+1) \times(v)=(x-1)
\end{aligned}
$$

The above conversions should only be used if the input is guaranteed to be a point on the relevant curve. If that is the case, the theorems below enumerate all exceptional inputs that may violate the side-conditions.

Theorem A.3.1. Let (u, v) be an affine point on a complete twisted Edwards curve. Then the only points with $u \neq 0$ or $v \neq 0$ are $(0,1)=\mathcal{O}_{\mathbb{J}} ;(0,-1)$ of order 2 ; and $\left(\pm 1 / \sqrt{a_{J}}, 0\right)$ of order 4 .

Proof. Straightforward from the curve equation. (The fact that the points $\left(\pm 1 / \sqrt{a_{\mathbb{J}}}, 0\right)$ are of order 4 can be inferred by applying the doubling formula.)

Theorem A.3.2. Let (x, y) be an affine point on a Montgomery curve over \mathbb{F}_{r} with parameter A such that $A^{2}-4$ is a nonsquare in \mathbb{F}_{r}, that is birationally equivalent to a complete twisted Edwards curve. Then $x+1 \neq 0$, and the only point (x, y) with $y=0$ is $(0,0)$ of order 2 .

Proof. That the only point with $y=0$ is $(0,0)$ is proven by Theorem A.2.1 on p. 91.
If $x+1=0$, then subtituting $x=-1$ into the Montgomery curve equation gives $B_{\mathbb{M}} \cdot y^{2}=x^{3}+A_{\mathbb{M}} \cdot x^{2}+x=A_{\mathbb{M}}-2$. So in that case $y^{2}=\left(A_{\mathbb{M}}-2\right) / B_{\mathbb{M}}$. The right-hand-side is equal to the parameter d of a particular complete twisted Edwards curve birationally equivalent to the Montgomery curve (see [BL2O17, section 4.3.5]). For all complete twisted Edwards curves, d is nonsquare, so this equation has no solutions for y, hence $x+1 \neq 0$.
(The complete twisted Edwards curve referred to in the proof is an isomorphic y-coordinate rescaling of the Jubjub curve.)

A.3.3.4 Affine-Montgomery arithmetic

The incomplete affine-Montgomery addition formulae given in [BL2O17, section 4.3.2] are:

$$
\begin{aligned}
& x_{3}=B_{\mathbb{M}} \cdot \lambda^{2}-A_{\mathbb{M}}-x_{1}-x_{2} \\
& y_{3}=\left(x_{1}-x_{3}\right) \cdot \lambda^{2}-y_{1} \\
& \text { where } \lambda= \begin{cases}\frac{3 \cdot x_{1}^{2}+2 \cdot A_{\mathbb{M}} \cdot x_{1}+1}{2 \cdot B_{\mathbb{M}} \cdot y_{1}}, & \text { if } x_{1}=x_{2} \\
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, & \text { otherwise. }\end{cases}
\end{aligned}
$$

The following theorem helps to determine when these incomplete addition formulae can be safely used:
Theorem A.3.3. Let Q be a point of odd-prime orders on a Montgomery curve $E_{A_{\mathbb{M}}, B_{\mathbb{M}}} / \mathbb{F}_{r_{\mathbb{S}}}$. Let $k_{1 \text {.. }}$ be integers in $\left\{-\frac{s-1}{2} . . \frac{s-1}{2}\right\} \backslash\{0\}$. Let $P_{i}=\left[k_{i}\right] Q=\left(x_{i}, y_{i}\right)$ for $i \in\{1 . .2\}$, with $k_{1} \neq \pm k_{2}$. Then the non-unified addition constraints

$$
\begin{aligned}
& \left(x_{2}-x_{1}\right) \times(\lambda)=\left(y_{2}-y_{1}\right) \\
& \left(B_{\mathbb{M}} \cdot \lambda\right) \times(\lambda)=\left(A_{\mathbb{M}}+x_{1}+x_{2}+x_{3}\right) \\
& \left(x_{1}-x_{3}\right) \times(\lambda)=\left(y_{3}+y_{1}\right)
\end{aligned}
$$

implement the affine-Montgomery addition $P_{1}+P_{2}=\left(x_{3}, y_{3}\right)$ for all such $P_{1 . .2}$.
Proof. The given constraints are equivalent to the Montgomery addition formulae under the side condition $x_{1} \neq$ x_{2}. (Note that neither P_{i} can be the zero point since $k_{1 . .2} \neq 0(\bmod s)$.) Assume for a contradiction that $x_{1}=x_{2}$. For any $P_{1}=\left[k_{1}\right] Q$, there can be only one other point $-P_{1}$ with the same x-coordinate. (This follows from the fact that the curve equation determines $\pm y$ as a function of x.) But $-P_{1}=[-1]\left[k_{1}\right] Q=\left[-k_{1}\right] Q$. Since $k \circ\left\{-\frac{s-1}{2} . . \frac{s-1}{2}\right\} \mapsto$ $[k] Q: \mathbb{J}$ is injective and $k_{1 . .2}$ are in $\left\{-\frac{s-1}{2} . . \frac{s-1}{2}\right\}$, then $k_{2}= \pm k_{1}$ (contradiction).

The conditions of this theorem are called the distinct-x criterion.
In particular, if $k_{1 . .2}$ are integers in $\left\{1 . . \frac{s-1}{2}\right\}$ then it is sufficient to require $k_{1} \neq k_{2}$, since that implies $k_{1} \neq \pm k_{2}$.

Affine-Montgomery doubling can be implemented as:
$(x) \times(x)=(x x)$
$\left(2 \cdot B_{\mathbb{M}} \cdot y\right) \times(\lambda)=\left(3 \cdot x x+2 \cdot A_{\mathbb{M}} \cdot x+1\right)$
$\left(B_{\mathbb{M}} \cdot \lambda\right) \times(\lambda)=\left(A_{\mathbb{M}}+2 \cdot x+x_{3}\right)$
$\left(x-x_{3}\right) \times(\lambda)=\left(y_{3}+y\right)$
This doubling formula is valid when $y \neq 0$, which is the case when (x, y) is not the point $(0,0)$ (the only point of order 2), as proven in Theorem A.2.1 on p. 91.

A.3.3.5 Affine-Edwards arithmetic

Formulae for affine-Edwards addition are given in [BBJLP2O08, section 6]. With a change of variable names to match our convention, the formulae for $\left(u_{1}, v_{1}\right)+\left(u_{2}, v_{2}\right)=\left(u_{3}, v_{3}\right)$ are:

$$
\begin{aligned}
& u_{3}=\frac{u_{1} \cdot v_{2}+v_{1} \cdot u_{2}}{1+d_{J} \cdot u_{1} \cdot u_{2} \cdot v_{1} \cdot v_{2}} \\
& v_{3}=\frac{v_{1} \cdot v_{2}-a_{\mathbb{J}} \cdot u_{1} \cdot u_{2}}{1-d_{J} \cdot u_{1} \cdot u_{2} \cdot v_{1} \cdot v_{2}}
\end{aligned}
$$

We use an optimized implementation found by Daira Hopwood making use of an observation by Bernstein and Lange in [BL2017, last paragraph of section 4.5.2]:

$$
\begin{aligned}
& \left(u_{1}+v_{1}\right) \times\left(v_{2}-a_{\mathbb{J}} \cdot u_{2}\right)=(T) \\
& \left(u_{1}\right) \times\left(v_{2}\right)=(A) \\
& \left(v_{1}\right) \times\left(u_{2}\right)=(B) \\
& \left(d_{\mathbb{J}} \cdot A\right) \times(B)=(C) \\
& (1+C) \times\left(u_{3}\right)=(A+B) \\
& (1-C) \times\left(v_{3}\right)=\left(T-A+a_{\mathbb{J}} \cdot B\right)
\end{aligned}
$$

The correctness of this implementation can be seen by expanding $T-A+a_{\mathbb{J}} \cdot B$:

$$
\begin{aligned}
T-A+a_{\mathbb{J}} \cdot B & =\left(u_{1}+v_{1}\right) \cdot\left(v_{2}-a_{\mathbb{J}} \cdot u_{2}\right)-u_{1} \cdot v_{2}+a_{J} \cdot v_{1} \cdot u_{2} \\
& =v_{1} \cdot v_{2}-a_{\mathbb{J}} \cdot u_{1} \cdot u_{2}+u_{1} \cdot v_{2}-a_{\mathbb{J}} \cdot v_{1} \cdot u_{2}-u_{1} \cdot v_{2}+a_{\mathbb{J}} \cdot v_{1} \cdot u_{2} \\
& =v_{1} \cdot v_{2}-a_{\mathbb{J}} \cdot u_{1} \cdot u_{2}
\end{aligned}
$$

The above addition formulae are "unified", that is, they can also be used for doubling. Affine-Edwards doubling [2] $(u, v)=\left(u_{3}, v_{3}\right)$ can also be implemented slightly more efficiently as:

$$
\begin{aligned}
& (u+v) \times\left(v-a_{\mathbb{J}} \cdot u\right)=(T) \\
& (u) \times(v)=(A) \\
& \left(d_{\mathbb{J}} \cdot A\right) \times(A)=(C) \\
& (1+C) \times\left(u_{3}\right)=(2 \cdot A) \\
& (1-C) \times\left(v_{3}\right)=\left(T+\left(a_{\mathbb{J}}-1\right) \cdot A\right)
\end{aligned}
$$

This implementation is obtained by specializing the addition formulae to $(u, v)=\left(u_{1}, v_{1}\right)=\left(u_{2}, v_{2}\right)$ and observing that $u \cdot v=A=B$.

A.3.3.6 Affine-Edwards nonsmall-order check

In order to avoid small-subgroup attacks, we check that certain points used in the circuit are not of small order. In practice the Sapling circuit uses this in combination with a check that the coordinates are on the curve (§A.3.3.1 'Checking that affine Edwards coordinates are on the curve' on p. 93), so we combine the two operations.
The Jubjub curve has a large prime-order subgroup with a cofactor of 8 . To check for a point P of order 8 or less, we double twice (as in §A.3.3.5 'Affine-Edwards arithmetic' on p.96) and check that the resulting u-coordinate is not 0 (as in §A.3.1.3 'Nonzero constraints' on p.92).
On a twisted Edwards curve, only the zero point \mathcal{O}_{J}, and the unique point of order 2 at $(0,-1)$ have zero u coordinate. So this u-coordinate check rejects both \mathcal{O}_{J} and the point of order 2 , and no other points.
The first doubling can be merged with the curve point check to avoid recomputing C or T. The second doubling does not need to compute T or the v-coordinate of the result; also, the u-coordinate of the result is zero if-and-only-if the intermediate value A is zero.
// Curve equation check.
$(u) \times(u)=(u u)$
$(v) \times(v)=(v v)$
$\left(d_{\rrbracket} \cdot u u\right) \times(v v)=\left(a_{\rrbracket} \cdot u u+v v-1\right)$
$/ /$ First doubling; subsitute $C=d_{\rrbracket} \cdot u u \cdot v v=a_{\rrbracket} \cdot u u+v v-1$ and $T+\left(a_{\rrbracket}-1\right) \cdot A=v v-a_{\rrbracket} \cdot u u$.
$(u) \times(v)=\left(A_{1}\right)$
$\left(a_{\rrbracket} \cdot u u+v v\right) \times\left(u_{1}\right)=\left(2 \cdot A_{1}\right)$
$\left(2-a_{\rrbracket} \cdot u u-v v\right) \times\left(v_{1}\right)=\left(v v-a_{\rrbracket} \cdot u u\right)$
$/ /$ Second doubling and non-zero check.
$\left(u_{1}\right) \times\left(v_{1}\right)=\left(A_{2}\right)$
// u-coordinate is zero if-and-only-if A_{2} is zero.
$\left(A_{\text {inv }}\right) \times\left(A_{2}\right)=(1)$
The total cost, including the curve check, is $3+3+2=8$ constraints.

Notes:

- This does not ensure that the point is in the prime-order subgroup.
- If the point P is used as the base of a variable-base scalar multiplication using the algorithm of $\begin{aligned} & \text { A.3.3.8 }\end{aligned}$ 'Variable-base affine-Edwards scalar multiplication' on p .98 , then [4] P will be calculated as Base_{2}. Then $u\left(\mathrm{Base}_{2}\right) \neq 0$ can be checked using a single constraint (saving 4 constraints). The Sapling circuit does not use this optimization.

A.3.3.7 Fixed-base affine-Edwards scalar multiplication

If the base point B is fixed for a given scalar multiplication $[k] B$, we can fully precompute window tables for each window position.

It is most efficient to use 3-bit fixed windows. Since the length of $r_{\mathbb{J}}$ is 252 bits, we need 84 windows.
Express k in base 8, i.e. $k=\sum_{i=0}^{83} k_{i} \cdot 8^{i}$.
Then $[k] B=\sum_{i=0}^{83} w_{\left(B, i, k_{i}\right)}$, where $w_{\left(B, i, k_{i}\right)}=\left[k_{i} \cdot 8^{i}\right] B$.
We precompute all of $w_{(B, i, s)}$ for $i \in\{0 . .83\}, s \in\{0 . .7\}$.
To look up a given window entry $w_{(B, i, s)}=\left(u_{s}, v_{s}\right)$, where $s=4 \cdot s_{2}+2 \cdot s_{1}+s_{0}$, we use:

$$
\begin{aligned}
& \left(s_{1}\right) \times\left(s_{0}\right)=\left(s_{\Sigma_{\alpha}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+u_{4} \cdot s_{\text {x }}-u_{4} \cdot s_{1}-u_{4} \cdot s_{0}+u_{4}-u_{5} \cdot s_{\text {d }}+u_{5} \cdot s_{0}-u_{6} \cdot s_{\text {d }}+u_{6} \cdot s_{1}+u_{7} \cdot s_{\text {d }}\right)= \\
& \left(u_{s}-u_{0} \cdot s_{\text {d }}+u_{0} \cdot s_{1}+u_{0} \cdot s_{0}-u_{0}+u_{1} \cdot s_{\alpha}-u_{1} \cdot s_{0}+u_{2} \cdot s_{\Sigma_{\alpha}}-u_{2} \cdot s_{1}-u_{3} \cdot s_{\alpha}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+v_{4} \cdot s_{\text {¢ }}-v_{4} \cdot s_{1}-v_{4} \cdot s_{0}+v_{4}-v_{5} \cdot s_{\text {d }}+v_{5} \cdot s_{0}-v_{6} \cdot s_{\text {¢ }}+v_{6} \cdot s_{1}+v_{7} \cdot s_{\alpha}\right)= \\
& \left(v_{s}-v_{0} \cdot s_{\text {d }}+v_{0} \cdot s_{1}+v_{0} \cdot s_{0}-v_{0}+v_{1} \cdot s_{\text {d }}-v_{1} \cdot s_{0}+v_{2} \cdot s_{\text {s }}-v_{2} \cdot s_{1}-v_{3} \cdot s_{\alpha}\right)
\end{aligned}
$$

This costs 3 constraints for each of 84 window lookups, plus 6 constraints for each of 83 Edwards additions (as in §A.3.3.5 'Affine-Edwards arithmetic' on p. 96), for a total of 750 constraints.

Note: It would be more efficient to use arithmetic on the Montgomery curve, as in §A.3.3.9 'Pedersen hash' on p. 99. However since there are only three instances of fixed-base scalar multiplication in the Spend circuit and two in the Output circuit ${ }^{2}$, the additional complexity was not considered justified for Sapling.

A.3.3.8 Variable-base affine-Edwards scalar multiplication

When the base point B is not fixed, the method in the preceding section cannot be used. Instead we use a naïve double-and-add method.
Given $k=\sum_{i=0}^{250} k_{i} \cdot 2^{i}$, we calculate $R=[k] B$ using:

$$
\begin{aligned}
& \quad / / \mathrm{Base}_{i}=\left[2^{i}\right] B \\
& \text { let } \mathrm{Base}_{0}^{u}=U(B) \\
& \text { let } \mathrm{Base}_{0}^{v}=B_{v} \\
& \text { let } \mathrm{Acc}_{0}^{u}=k_{0} ? B^{u}: 0 \\
& \text { let } \mathrm{Acc}_{0}^{v}=k_{0} ? B^{v}: 1 \\
& \text { for } i \text { from } 1 \text { up to } 250 \text { : } \\
& \quad \text { let } \text { Base }_{i}=[2] \text { Base }_{i-1} \\
& \quad / / \text { select } \text { Base }_{i} \text { or } \mathcal{O}_{\mathbb{J}} \text { depending on the bit } k_{i}
\end{aligned}
$$

[^2]\[

$$
\begin{aligned}
& \text { let } \operatorname{Addend}_{i}^{u}=k_{i} \text { ? } \mathrm{Base}_{i}^{u}: 0 \\
& \text { let } \mathrm{Addend}_{i}^{v}=k_{i} \text { ? } \mathrm{Base}_{i}^{v}: 1 \\
& \text { let } \mathrm{Acc}_{i}=\operatorname{Acc}_{i-1}+\mathrm{Addend}^{i} \\
& \text { let } R=\mathrm{Acc}_{250} \text {. }
\end{aligned}
$$
\]

This costs 5 constraints for each of 250 Edwards doublings, 6 constraints for each of 250 Edwards additions, and 2 constraints for each of 251 point selections, for a total of 3252 constraints.

Note: It would be more efficient to use 2-bit fixed windows, and/or to use arithmetic on the Montgomery curve in a similar way to §A.3.3.9 'Pedersen hash' on p.99. However since there are only two instances of variablebase scalar multiplication in the Spend circuit and one in the Output circuit, the additional complexity was not considered justified for Sapling.

A.3.3.9 Pedersen hash

The specification of the Pedersen hashes used in Sapling is given in §5.4.1.7 'Pedersen Hash Function' on p. 40. It is based on the scheme from [CvHP1991, section 5.2] -for which a tighter security reduction to the Discrete Logarithm Problem was given in [BGG1995]- but tailored to allow several optimizations in the circuit implementation.
Pedersen hashes are the single most commonly used primitive in the Sapling circuits. MerkleDepth ${ }^{\text {Sapling }}$ Pedersen hash instances are used in the Spend circuit to check a Merkle path to the note commitment of the note being spent. We also reuse the Pedersen hash implementation to construct the commitment scheme NoteCommit ${ }^{\text {Sapling }}$.

This motivates considerable attention to optimizing this circuit implementation of this primitive, even at the cost of complexity.

First, we use a windowed scalar multiplication algorithm with signed digits. Each 3-bit message chunk corresponds to a window; the chunk is encoded as an integer from the set Digits $=\{-4 . .4\} \backslash\{0\}$. This allows a more efficient lookup of the window entry for each chunk than if the set $\{1 . .8\}$ had been used, because a point can be conditionally negated using only a single constraint.

Next, we optimize the cost of point addition by allowing as many additions as possible to be performed on the Montgomery curve. An incomplete Montgomery addition costs 3 constraints, in comparison with an Edwards addition which costs 6 constraints.

However, we cannot do all additions on the Montgomery curve because the Montgomery addition is incomplete. In order to be able to prove that exceptional cases do not occur, we need to ensure that the distinct-x criterion from §A.3.3.4 'Affine-Montgomery arithmetic' on p. 95 is met. This requires splitting the input into segments (each using an independent generator), calculating an intermediate result for each segment, and then converting to the Edwards curve and summing the intermediate results using Edwards addition. If the resulting point is R, then (abstracting away the changes of curve) this calculation can be written as:

$$
\text { PedersenHashToPoint }(D, M)=\sum_{j=1}^{N}\left[\left\langle M_{j}\right\rangle\right] \mathcal{I}_{j}^{D}
$$

where $\langle\cdot\rangle$ and \mathcal{I}_{j}^{D} are defined as in $\$ 5.4 .1 .7$ 'Pedersen Hash Function' on p. 40.
We have to prove that:

- the distinct-x criterion is met for all Montgomery additions within a segment;
- the Montgomery-to-Edwards conversions can be implemented without exceptional cases.

The proof of Theorem 5.4 .1 on $p .41$ showed that all indices of addition inputs are in the range $\left\{-\frac{r_{\mathrm{J}}-1}{2} . . \frac{r_{\mathbb{J}}-1}{2}\right\} \backslash\{0\}$.

Because the \mathcal{I}_{j}^{D} (which are outputs of GroupHash ${ }^{\mathbb{J}}$) are all of prime order, and $\left\langle M_{j}\right\rangle \neq 0\left(\bmod r_{\mathbb{J}}\right)$, it is guaranteed that all of the terms $\left[\left\langle M_{j}\right\rangle\right] \mathcal{I}_{j}^{D}$ to be converted to Edwards form are of prime order. From Theorem A.3.2 on p. 95, we can infer that the conversions will not encounter exceptional cases.

We also need to show that the indices of addition inputs are all distinct disregarding sign.
Theorem A.3.4. For all disjoint nonempty subsets S and S^{\prime} of $\{1 . . c\}$, and for all $m \in \mathbb{B}^{[3][c]}$,

$$
\sum_{j \in S} \operatorname{enc}\left(m_{j}\right) \cdot 2^{4 \cdot(j-1)} \neq \pm \sum_{j^{\prime} \in S^{\prime}} \operatorname{enc}\left(m_{j^{\prime}}\right) \cdot 2^{4 \cdot\left(j^{\prime}-1\right)}
$$

Proof. TODO: ...

When these hashes are used in the circuit, the first two windows of the input are fixed and can be optimized (for example, in the Merkle tree hashes they represent the layer number). This is done by precomputing the sum of the relevant two points, and adding them to the intermediate result for the remainder of the first segment. This requires 3 constraints for a single Montgomery addition rather than .. constraints for 2 window lookups and 2 additions.

Taking into account this optimization, the cost of a Pedersen hash over ℓ bits, with the first 6 bits fixed, is ... constraints. In particular, for the Merkle tree hashes $\ell=516$, so the cost is ... constraints.

A.3.3.10 Mixing Pedersen hash

A mixing Pedersen hash is used to compute ρ from cm and pos in $\$ 4.10$ 'Note Commitments and Nullifiers' on p. 31. It takes as input a Pedersen commitment P, and hashes it with another input x.

Let \mathcal{J} be as defined in §5.4.1.8 'Mixing Pedersen Hash Function' on p. 42.
We define MixingPedersenHash : $\left\{0 . . r_{\mathbb{J}}-1\right\} \times \mathbb{J} \rightarrow \mathbb{J}$ by:
MixingPedersenHash $(P, x):=P+[x] \mathcal{J}$.
This costs TODO: ... for the scalar multiplication, and 6 constraints for the Edwards addition, for a total of TODO: ... constraints.

A.3.4 Merkle path check

Checking a Merkle authentication path, as described in $\S 4.7$ 'Merkle path validity' on p . 29, requires to:

- boolean-constrain the path bit specifying whether the previous node is a left or right child;
- conditionally swap the previous-layer and sibling hashes (as \mathbb{F}_{r} elements) depending on the path bit;
- unpack the previous-layer and sibling hashes to 255 -bit sequences;
- compute the Merkle hash.

The unpacking need not be canonical in the sense discussed in §A.3.2.1 '[Un]packing modulo $r_{\mathbb{S}}$ ' on p. 92; that is, it is not necessary to ensure that the previous-layer or sibling bit-sequence inputs represent integers in the range $\left\{0 . . r_{\mathbb{S}}-1\right\}$. Since the root of the Merkle tree is calculated outside the circuit using the canonical representations, and since the Pedersen hashes are collision-resistant on arbitrary bit-sequence inputs, an attempt by an adversarial prover to use a non-canonical input would result in the wrong root being calculated, and the overall path check would fail.
Note that the leaf node input of the authentication path is given as a bit sequence, not as a field element.

For each layer, the cost is $1+2 \cdot 255$ boolean constraints, 2 constraints for the conditional swap (implemented as two selection constraints), and todo... for the Merkle hash, for a total of TODO: ... constraints.

Note: The conditional swap $\left(a_{0}, a_{1}\right) \mapsto\left(c_{0}, c_{1}\right)$ could be implemented in only one constraint by substituting $c_{1}=a_{0}+a_{1}-c_{0}$ into the uses of c_{1}. The Sapling circuit does not use this optimization.

A.3.5 Windowed Pedersen Commitment

We construct windowed Pedersen commitments by reusing the Pedersen hash implementation, and adding a randomized point:

```
WindowedPedersenCommit \({ }_{r}(s)=\) PedersenHashToPoint("Zcash_PH", \(\left.s\right)+[r]\) FindGroupHash \({ }^{\mathbb{J}}(\) "Zcash_PH", "r")
```

This can be implemented in:
$\cdot \ldots \cdot \ell+\ldots$ constraints for the Pedersen hash on $\ell=$ length (s) bits (again assuming that the first 6 bits are fixed);

- 750 constraints for the fixed-base scalar multiplication;
- 6 constraints for the final Edwards addition
for a total of $\ldots \cdot \ell+756$ constraints.

A.3.6 Homomorphic Pedersen Commitment

The windowed Pedersen commitments defined in the preceding section are highly efficient, but they do not support the homomorphic property we need when instantiating ValueCommit (see §4.9 'Balance’ on p. 30 and $\S 3.6$ 'Spend Transfers, Output Transfers, and their Descriptions' on p.14).

In order to support this property, we also define homomorphic Pedersen commitments as follows:

$$
\text { HomomorphicPedersenCommit }_{\mathrm{rcv}}(D, v)=[\mathrm{v}] \text { FindGroupHash}{ }^{\mathbb{J}}(D, " v ")+[r c v] \text { FindGroupHash }(D, " r ")
$$

In the case that we need for ValueCommit, v has 64 bits 3. This can be straightforwardly implemented in ... constraints.

A.3.7 BLAKE2s hashes

BLAKE2s is defined in [ANWW2O13]. Its main subcomponent is a " G function", defined as follows:

$$
\begin{aligned}
& G: \ldots \rightarrow \ldots \\
& G(\ldots)=\ldots
\end{aligned}
$$

A 32-bit exclusive-or can be implemented in 32 constraints, one for each bit position $a \oplus b=c$ as in $\underline{\text { §A.3.1.4 }}$ 'Exclusive-or constraints' on p. 92.

Additions not involving a message word require 33 constraints:

Additions of message words require one extra constraint each, i.e. $a+b+m=c$ is implemented by declaring 34 boolean variables, and ...

There are $10 \cdot 4 \cdot 2$ such message word additions.

[^3]Each G evaluation requires 260 constraints. There are $10 \cdot 8$ instances of G :

There are also 8 output exclusive-ors.
The total cost is 21136 constraints. This includes boolean-constraining the hash output bits, but not the input bits.

Note: It should be clear that BLAKE2s is very expensive in the circuit compared to elliptic curve operations. This is primarily because it is inefficient to use $\mathbb{F}_{r_{\mathbb{S}}}$ elements to represent single bits. However Pedersen hashes do not have the necessary cryptographic properties for the two cases where the Spend circuit uses BLAKE2s. While it might be possible to use variants of functions with low circuit cost such as MiMC [AGRRT2017], it was felt that they had not yet received sufficient cryptanalytic attention to confidently use them for Sapling.

A. 4 The SaplingSpend circuit

A. 5 The SaplingOutput circuit

[^0]: ${ }^{\dagger}$ Zerocoin Electric Coin Company

[^1]: ${ }^{1}$ In Zerocash [BCG+2014], notes were called "coins", and nullifiers were called "serial numbers".

[^2]: ${ }^{2}$ A Pedersen commitment uses fixed-base scalar multiplication as a subcomponent.

[^3]: ${ }^{3}$ It would be sufficient to use 51 bits, which accomodates the range $\{0 .$. MAX_MONEY $\}$, but the Sapling circuit uses 64 .

