Zcash Protocol Specification
Version 2021.2.2 [Overwinter+Sapling]

Daira Hopwood
Sean Bowe' — Taylor Hornby' — Nathan Wilcox'

May 20, 2021

Abstract. Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash, with
security fixes and improvements to performance and functionality. It bridges the existing transparent
payment scheme used by Bitcoin with a shielded payment scheme secured by zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKSs). It attempted to address the problem of mining
centralization by use of the Equihash memory-hard proof-of-work algorithm.

This specification defines the Zcash consensus protocol at launch; after the upgrade codenamed Over-
winter; and after the subsequent upgrade codenamed Sapling. It is a work in progress. Protocol
differences from Zerocash and Bitcoin are also explained.

Keywords: anonymity, applications, cryptographic protocols, electronic commerce and payment,
financial privacy, proof of work, zero knowledge.

Contents

1 Introduction

L1 Caution . . . . ..
12 High-level Overview . . . . . . . . . . ..

" Electric Coin Company
! Jubjub bird image credit: Peter Newell 1902; Daira Hopwood 2018.



2 Notation

3 Concepts

31 Payment Addressesand Keys . . . . . .. . ...
32 Notes. . . .
3.21 Note Plaintextsand Memo Fields . . .. . ... ... ... .. .. . ... . .

3.3 TheBlock Chain . . .. .. . .
34 Transactionsand Treestates . . . . . . . . . . . ..
3.5 JoinSplit Transfers and Descriptions . . . . . . . . . . .. .. ..
3.6 Spend Transfers, Output Transfers, and their Descriptions . . . . ... ......... .. .......
37 Note CommitmentTrees . . . . . . .. ... ...
3.8 Nulliffer Sets . . . . . o
3.9 Block Subsidy and Founders' Reward . . . .. ... ... ... ... ...
310 Coinbase Transactions . . . . . . . .. .. . .
311 Mainnetand Testnet . . . . . . . ..

4 Abstract Protocol

41 Abstract Cryptographic Schemes . . . . . . . .. ... .. ..
411 HashFunctions . . . ... .. .. .

412 PseudoRandom Functions . . . . ... ... ... ...

413 SymmetricEncryption. . . . . ...
414 KeyAgreement . . . .. . . ...

415 KeyDerivation . .. .. ... .

41.6  Signature . . . . ...
41.6.1 Signature with Re-RandomizableKeys . . . ... ... ... ... ... .......

41.6.2  Signature with Signing Key to Validating Key Monomorphism . . . . ... ... ...

417  Commitment . . .. .. ...

41.8 Represented Group . . . . . . . ...

419 Coordinate EXtractor . . . . . . . . . .
4110 Group Hash . . . .. ..

4111 Represented Pairing . . . . . . . . . . ...
4112 Zero-Knowledge Proving System . . . . . . .. . ... ...

42 KeyComponents . . .. ... .. ... ... ..
421 SproutKey Components . . ... ... ... ... ...

422 Sapling Key Components . . . . .. .. ... ...

43 JoinSplit Descriptions . . . . . . . . . ..
44 Spend DesCriptions . . . . . . . . . ..
45 Output Descriptions . . . . . . . ... ..
46 Sending Notes . . . . . . . . . . .
461 SendingNotes (Sprout) . . . . . .. ... ...

46.2 Sending Notes (Sapling) . . . . . . .. . ... . ...

47 Dummy Notes . . . . .. ...
471 Dummy Notes (Sprout) . . . . . . ... ...

472 Dummy Notes (Sapling) . . . . . . . . . ... ..

48 Merkle Path Validity . . . . . ... ..

12
12
13
14
15
15
16
16
17
18
18
18
18

19
19
19
19
20
21
21
22
23
24
24
26
26
26
27
27
29
29
29
31
32
33
34
34
34
35
35
36
36



49

SIGHASH Transaction Hashing . . . . . . . ... . ... . . ..

4.10

Non-malleability (Sprout) . . . . . . . ... .

411

Balance (Sprout) . . . . . . ..

412

Balance and Binding Signature (Sapling) . . . ... ... ... ... ... o

413

Spend Authorization Signature (Sapling) . . . . . ... .. ... ... L

414

Note Commitments and Nullifiers . . . . . . . . . . . . .

415

ZKk-SNARK Statements . . . . . . . . . .

4.16

4151

JoinSplit Statement (Sprout) . . . . . . .. ...

415.2 Spend Statement (Sapling) . . . . . .. ...

4.15.3 Output Statement (Sapling) . . . . . . . . . . ...

In-band secret distribution (Sprout) . . . . . ... ...

417

4.16.1

Encryption (Sprout) . . .. ... ... ...

416.2 Decryption (Sprout) . . . . . .. . .. ...

In-band secret distribution (Sapling) . . . . . . . ... ...

4.18

4171

Encryption (Sapling) . . . . . ... ... ...

4172 Decryption using an Incoming Viewing Key (Sapling) . . . . . . ... ... ... ... ......

417.3 Decryption using a Full Viewing Key (Sapling) . . . . . ... .. ... ... ... .. .......

Block Chain Scanning (Sprout) . . . . . ... . ... . ...

4.19

Block Chain Scanning (Sapling) . . . . . . . . . . . ...

Concrete Protocol

5.1 Caution . . . ..
5.2 Integers, Bit Sequences, and Endianness . . . . ... ...
53 Constants . . . . .. ...
54 Concrete Cryptographic Schemes . . .. ... .. ... . . . . ... . ...
541 HashFunctions . . ... ... ... .
54.11  SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions . . . . . .. . ..

5412 BLAKE2Hash Functions . .. ... ... ... ... . .. ... . ... . .. .. ...

5413 Merkle Tree Hash Function . . . ... ... .. ... .. ... ... ... .........

5414 hggyHashFunction .. ... ... ... ... ... . ... ... .. .. .. .. ...

5415 CRHY Hash Function . ... ............ ... ... ... .. . .. ...

5416 DiversifyHash>®® ™ Hash FUNCHON . . . . . . . v oo

5417 Pedersen Hash Function . . . .. .. ... ... ... ... ... ... . .. ... ...

5418 Mixing Pedersen Hash Function . . .. ... ... ... ... .. ... ..........

5419 Equihash Generator . ... ... .. .. ... ... ... ... ...

542 PseudoRandom Functions . . . . . .. ... ... ... ...

543 Symmetric Encryption. . . . .. ...
544 Key Agreement And Derivation . . ... ... ... ... ... ...
5441 SproutKey Agreement . . . . ... ... ... ... ... L o

5442 SproutKeyDerivation . . .. ... ... ... ... L

5443 SaplingKey Agreement . ... ... .. ... ... ... ...

5444 SaplingKeyDerivation . . . . . .. ... .. ...

54.5 Ed25519 . . . .

54.6 RedDSA and RedJubjub. . . . . . ... ...
54.61 Spend Authorization Signature (Sapling) . . . . . .. ... .. ... ... ... .....

37
38
38
39
41
42
43
43
44
45
46
46
47
47
48
49
49
51
51

52
52
53
54
55
55
55
56
56
57
57
57
59
60
60
61
62
62
62
63
63
64
64
65
68



54.6.2 Binding Signature (Sapling) . . . . . ... ... ... ...

547 Commitmentschemes . ... ... ... . ... ...

5471 Sprout Note Commitments . . . . ... .. ... ... ... ...

54.72 Windowed Pedersen commitments . . . . . ... ... ... oL

54.73 Homomorphic Pedersen commitments (Sapling) . .. ... ... ..... ... ...

548 Represented Groupsand Pairings . . . . .. ... ... ...

54.81  BN-254 . . . . e

54.82 BLSI2-381. . . . . . .

54.8.3 Jubjub . ...

54.84 Coordinate Extractor forJubjub . . .. .. ... .. ... .. ...

54.85 GroupHashintoJubjub . ... ... ... ... ...

549 Zero-Knowledge Proving Systems . . . . ... ... . ... ...

5491 BCTVI14 . . e

5492 Grothlb . .. .. . . . . .

5.5 Encodings of Note Plaintexts and Memo Fields . . . . ... ... .. ... .. .. ... ... ... ...

56 Encodingsof Addressesand Keys . . . .. ... ... ...

5.6.1 TransparentEncodings . . .. ... ... . ... ...

5.6.1.1 Transparent Addresses . . . . . . ... ... ...

56.1.2 Transparent Private Keys. . . . .. . .. .. . . . L

56.2 SproutEncodings . .. .. .. ... ..

5.6.21 SproutPayment Addresses . . . .. . ... ... ...

5.6.22 SproutIncoming ViewingKeys. . . . . ... ... ... ... Lo L L.

5.6.2.3 SproutSpendingKeys . . .. .. ... ...

5.6.3 SaplingEncodings . . . .. .. .. ...

5.6.31 Sapling Payment Addresses . . . . . .. ... ...

5.6.3.2 Sapling Incoming ViewingKeys . . . . ... ... ... ... ... .. .. .. ... ...

5.6.3.3 Sapling Full ViewingKeys . . . . ... ... .. ... ...

5.6.34 Sapling SpendingKeys . . . . . . ... ...

57 BCTV14zk-SNARK Parameters . . . . . . . . .. ..ottt e e

5.8 Grothl6 zk-SNARK Parameters . . . . .. . .. ... ...

59 RandomnessBeacon . . . . .. ... ...
Network Upgrades

Consensus Changes from Bitcoin

71 Transaction Encodingand CoONsensus . . . . . . . .. ... ...
7.2 JoinSplit Description Encodingand Consensus . . . . .. .. ... ... ...
7.3 Spend Description Encodingand CONSensuUSs . . . . . . . .. ..ottt
74 Output Description Encoding and Consensus . . . . .. ... ... ... ... ... ...
75 Block Header Encodingand Consensus . . . . . . .. ... ... ... .. ...
76 Proofof Work . . . .
761 Equihash . . ... ..
76.2 Difficulty filter . . . . . ..
76.3 Difficulty adjustment . . . ... ...
764 nBitsconversion . . .. .. ...

68
68
68
69
69
70
70
72
73
74
75
76
76
77
78
78
79
79
79
79
79
80
80
81
81
82
82
82
83
83
83

84

85
85
88
88
89
90
92
92
93
93
94



76.5 Definitionof Work . . . . . . 94

7.7 Calculation of Block Subsidy and Founders'Reward . . ... ... ....... ... ........... 95

7.8 Payment of Founders' Reward . .. ... ... .. ... . ... ... 95

79 Changestothe Script System . . . . . . . . .. 97
710 Bitcoin Improvement Proposals . . . .. . ... ... 97

8 Differences from the Zerocash paper 97
8.1 Transaction Structure . . . . . . . .. .. .. 97

82 Memo Fields . . . . . . . 97
8.3 Unificationof Mintsand Pours . . . . .. ... .. L 98

8.4 Faerie Goldattackand fix . . ... ... .. 98
8.5 Internal hash collisionattackand fix. . . . .. ... ... . . L 100

8.6 Changesto PRFinputsand truncation . . . . . . ... ... . ... ... 100
8.7 In-bandsecretdistribution . . . ... ... 101
8.8 Omission in Zerocash security proof . . . .. ... ... 102

8.9 Miscellaneous . . . . . . .. 103

9 Acknowledgements 103
10 Change History 104
11 References 124
Appendices 135
A Circuit Design 135
Al Quadratic Constraint Programs . . . . . . . . .. ... ... 135
A2 Ellipticcurve background . . . . ... 135
A3 Circuit Components . . . .. ... ... ... . 136
A31 Operationsonindividualbits . ... ... ... ... .. 136

A3.11 Booleanconstraints. . . . .. .. ... ... 136

A312 Conditionalequality . .. ... ... ... .. 137

A3.13 Selectionconstraints . . . . ... .. ... 137

A314 Nonzeroconstraints . .. ... ... ... ... ... ... 137

A315 Exclusive-orconstraints . . . . .. ... ... 137

A32 Operationsonmultiplebits. . . . .. ... .. .. 137

A.321 [Un]packingmodulorg. . ... ... ... ... 137

A322 Rangecheck ... ... . ... 138

A.3.3 Ellipticcurve operations . . ... ... ... ... ... 140

A.3.31 Checking that Affine-ctEdwards coordinates are onthecurve . . . . . ... ... .. 140

A.3.3.2 ctEdwards [de]Jcompression and validation . . ... ... ... ... .. ... ... .. 140

A.3.3.3 ctEdwards <> Montgomery conversion . . . . . .. ... ... 140

A.3.34 Affine-Montgomery arithmetic. . . . ... ... ... ... .. ... .. .. .. ... .. 141

A.3.3.5 Affine-ctEdwards arithmetic . . . . ... ... ... . 142

A.3.3.6 Affine-ctEdwards nonsmall-ordercheck . . ... ..... ... ... ... ... ... 143

A.3.3.7 Fixed-base Affine-ctEdwards scalar multiplication. . . . . ... ... ... ... ... 143

A.3.3.8 Variable-base Affine-ctEdwards scalar multiplication . . . . ... ... ... ... .. 144




A34

A33.9 Pedersenhash . ... ... ... ...
A.3.310 Mixing Pedersenhash . ... ... . ... ... .. ... .. ...
Merkle pathcheck . ... .. ... .

A3.5

Windowed Pedersen Commitment . . . . . . . . .. ...

A3.6

Homomorphic Pedersen Commitment . . ... ... ... ... .. ... ... ........

A37

BLAKEZ2s hashes . . . . . . . . .

A4 TheSapling Spend circuit . . . . . ... .

A5 The Sapling Outputcircuit. . . . . .. .. ...

B Batching Optimizations

B.1 RedDSA batch validation . . . . . . . . .

B.2 Grothl6 batch verification . . . . . . . . . . .

List of Theorems and Lemmata

Index

155
155
156

158

158



1 Introduction

Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash [BCGGMTV2014], with
security fixes and improvements to performance and functionality. It bridges the existing transparent payment
scheme used by Bitcoin [Nakamoto2008] with a shielded payment scheme secured by zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKS).

In this document, technical terms for concepts that play an important réle in Zcash are written in slanted text,
which links to an index entry. Italics are used for emphasis and for references between sections of the document.
The symbol § precedes section numbers in cross-references.

The key words MUST, MUST NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this docu-
ment are to be interpreted as described in [RFC-2119] when they appear in ALL CAPS. These words may also appear
in this document in lower case as plain English words, absent their normative meanings.

The most significant changes from the original Zerocash are explained in § 8 ‘Differences from the Zerocash paper’
onp.97.

Changes specific to the Overwinter upgrade are highlighted in blue.

Changes specific to the Sapling upgrade following Overwinter are highlighted in green.

All of these are also changes from Zerocash. The name Sprout is used for the Zcash protocol prior to Sapling (both
before and after Overwinter), and in particular its shielded protocol.

This specification is structured as follows:
- Notation — definitions of notation used throughout the document;
- Concepts — the principal abstractions needed to understand the protocol;
- Abstract Protocol — a high-level description of the protocol in terms of ideal cryptographic components;
- Concrete Protocol — how the functions and encodings of the abstract protocol are instantiated;
- Network Upgrades — the strategy for upgrading the Zcash protocol.

- Consensus Changes from Bitcoin — how Zcash differs from Bitcoin at the consensus layer, including the
Proof of Work;

- Differences from the Zerocash protocol — a summary of changes from the protocol in [BCGGMTV2014].
- Appendix: Circuit Design — details of how the Sapling circuits are defined as quadratic constraint programs.

- Appendix: Batching Optimizations — improvements to the efficiency of validating multiple signatures and
verifying multiple proofs.

1.1 Caution

Zcash security depends on consensus. Should a program interacting with the Zcash network diverge from con-
sensus, its security will be weakened or destroyed. The cause of the divergence doesn't matter: it could be a bug
in your program, it could be an error in this documentation which you implemented as described, or it could be
that you do everything right but other software on the network behaves unexpectedly. The specific cause will not
matter to the users of your software whose wealth is lost.

Having said that, a specification of intended behaviour is essential for security analysis, understanding of the
protocol, and maintenance of Zcash and related software. If you find any mistake in this specification, please file
an issue at https://github.com/zcash/zips/issues or contact <security@z.cash>.



https://zips.z.cash/protocol/sapling.pdf#introduction
https://zips.z.cash/protocol/sapling.pdf#caution
https://github.com/zcash/zips/issues

1.2 High-level Overview

The following overview is intended to give a concise summary of the ideas behind the protocol, for an audience
already familiar with block chain-based cryptocurrencies such as Bitcoin. It is imprecise in some aspects and is
not part of the normative protocol specification. This overview applies to both Sprout and Sapling, differences in
the cryptographic constructions used notwithstanding.

Value in Zcash is either transparent or shielded. Transfers of transparent value work essentially as in Bitcoin and
have the same privacy properties. Shielded value is carried by notes?, which specify an amount and (indirectly) a
shielded payment address, which is a destination to which notes can be sent. As in Bitcoin, this is associated with a
private key that can be used to spend notes sent to the address; in Zcash this is called a spending key.

To each note there is cryptographically associated a note commitment. Once the transaction creating a note has
been mined, the note is associated with a fixed note position in a tree of note commitments, and with a nullifier”
unique to that note. Computing the nullifier requires the associated private spending key (or the nullifier deriving
key for Sapling notes). It is infeasible to correlate the note commitment or note position with the corresponding
nullifier without knowledge of at least this key. An unspent valid note, at a given point on the block chain, is one for
which the note commitment has been publically revealed on the block chain prior to that point, but the nullifier
has not.

A transaction can contain transparent inputs, outputs, and scripts, which all work as in Bitcoin [Bitcoin-Protocol].
It also can include JoinSplit descriptions, Spend descriptions, and Output descriptions. Together these describe
shielded transfers which take in shielded input notes, and/or produce shielded output notes. (For Sprout, each
JoinSplit description handles up to two shielded inputs and up to two shielded outputs. For Sapling, each shielded
input or shielded output has its own description.) It is also possible for value to be transferred between the
transparent and shielded domains.

The nullifiers of the input notes are revealed (preventing them from being spent again) and the commitments of the
output notes are revealed (allowing them to be spent in future). A transaction also includes computationally sound
zk-SNARK proofs and signatures, which prove that all of the following hold except with insignificant probability:

For each shielded input,
- [Sapling onward] there is a revealed value commitment to the same value as the input note;
- if the value is nonzero, some revealed note commitment exists for this note;
- the prover knew the proof authorizing key of the note;

- the nullifier and note commitment are computed correctly.
and for each shielded output,

- [Sapling onward] there is a revealed value commitment to the same value as the output note;
- the note commitment is computed correctly;

- itis infeasible to cause the nullifier of the output note to collide with the nullifier of any other note.

For Sprout, the JoinSplit statement also includes an explicit balance check. For Sapling, the value commitments
corresponding to the inputs and outputs are checked to balance (together with any net transparent input or output)
outside the zk-SNARK.

In addition, various measures (differing between Sprout and Sapling) are used to ensure that the transaction cannot
be modified by a party not authorized to do so.

Outside the zk-SNARK, it is checked that the nullifiers for the input notes had not already been revealed (i.e. they
had not already been spent).

A shielded payment address includes a transmission key for a “key-private” asymmetric encryption scheme.
Key-private means that ciphertexts do not reveal information about which key they were encrypted to, except to a

2 In Zerocash [BCGGMTV2014], notes were called “coins”, and nullifiers were called “serial numbers”.


https://zips.z.cash/protocol/sapling.pdf#overview

holder of the corresponding private key, which in this context is called the receiving key. This facility is used to
communicate encrypted output notes on the block chain to their intended recipient, who can use the receiving
key to scan the block chain for notes addressed to them and then decrypt those notes.

In Sapling, for each spending key there is a full viewing key that allows recognizing both incoming and outgoing
notes without having spend authority. This is implemented by an additional ciphertext in each Output description.

The basis of the privacy properties of Zcash is that when a note is spent, the spender only proves that some
commitment for it had been revealed, without revealing which one. This implies that a spent note cannot be linked
to the transaction in which it was created. That is, from an adversary’s point of view the set of possibilities for a
given note input to a transaction —its note traceability set— includes all previous notes that the adversary does
not control or know to have been spent,i This contrasts with other proposals for private payment systems, such

as CoinJoin [Bitcoin-CoinJoin] or CryptoNote [vanSaberh2014], that are based on mixing of a limited number of
transactions and that therefore have smaller note traceability sets.

The nullifiers are necessary to prevent double-spending: each note on the block chain only has one valid nullifier,
and so attempting to spend a note twice would reveal the nullifier twice, which would cause the second transaction
to be rejected.

2 Notation

B means the type of bit values, i.e. {0,1}. BY means the type of byte values, i.e. {0..255}.

N means the type of nonnegative integers. NT means the type of positive integers. Z means the type of integers.
Q means the type of rationals.

x ¢ T is used to specify that = has type T A cartesian product type is denoted by S x T, and a function type by
S — T. An argument to a function can determine other argument or result types.

The type of a randomized algorithm is denoted by S & T The domain of a randomized algorithm may be (),
indicating that it requires no arguments. Given f : S & T and s : S, sampling a variable z : T from the output of f
applied to s is denoted by z & £(s).

Initial arguments to a function or randomized algorithm may be written as subscripts, e.g. if z : X,y : Y, and
f: X xY — Z then an invocation of f(z,y) can also be written f,(y).

{z : T'| p, } means the subset of z from T for which p, (a boolean expression depending on z) holds.
T C U indicates that T is an inclusive subset or subtype of U.

S UT means the set union of S and 7.

S N T means the set intersection of Sand T, i.e. {z : S|z € T}.

S\ T means the set difference obtained by removing elements in T’ from S, i.e. {x : S|z ¢ T}

x: T + e, : U means the function of type ' — U mapping formal parameter x to e, (an expression depending
on z). The types T'and U are always explicit.

r:Tgye,:Umeansz : T — e, : UUV restricted to the domain {z : T'| e, ¢ V' } and range U.
9P(T) means the powerset of T.

1 is a distinguished value used to indicate unavailable information, a failed decryption or validity check, or an
exceptional case.

T, where T'is a type and / is an integer, means the type of sequences of length ¢ with elements in T'. For example,
B means the set of sequences of ¢ bits, and BY" means the set of sequences of k bytes.

® We make this claim only for fully shielded transactions. It does not exclude the possibility that an adversary may use data present in
the cleartext of a transaction such as the number of inputs and outputs, or metadata-based heuristics such as timing, to make proba-
bilistic inferences about transaction linkage. For consequences of this in the case of partially shielded transactions, see [Peterson2017],
[Quesnelle2017], and [KYMM2018].



https://zips.z.cash/protocol/sapling.pdf#notation

BY™ means the type of byte sequences of arbitrary length.
length(S) means the length of (number of elements in) S.
truncatey (S) means the sequence formed from the first k£ elements of S.

0x followed by a string of monospace hexadecimal digits means the corresponding integer converted from hexadec-
imal. [0x00]° means the sequence of £ zero bytes.

“

.." means the given string represented as a sequence of bytes in US-ASCII. For example, “abc” represents the
byte sequence [0x61, 0x62, 0x63 |.

[0]° means the sequence of £ zero bits. [1]* means the sequence of ¢ one bits.

a..b, used as a subscript, means the sequence of values with indices a through b inclusive. For example, aj"| yrev

means the sequence [ap", apk2, - apy yrev]. (For consistency with the notation in [BCGGMTV2014] and in [BK2016],

this specification uses 1-based indexing and inclusive ranges, notwithstanding the compelling arguments to the
contrary made in [EWD-831].)

{a..b} means the set or type of integers from a through b inclusive.

[ f(z) for x from a up to b | means the sequence formed by evaluating f on each integer from a to b inclusive, in
ascending order. Similarly, [ f(z) for « from a down to b | means the sequence formed by evaluating f on each
integer from a to b inclusive, in descending order.

a || b means the concatenation of sequences a then b.

concatg(.S) means the sequence of bits obtained by concatenating the elements of S as bit sequences.
sorted(S) means the sequence formed by sorting the elements of S.

FF,, means the finite field with n elements, and F;, means its group under multiplication (which excludes 0).

Where there is a need to make the distinction, we denote the unique representative of a : F,, in the range {0..n — 1}
(or the unique representative of a : IF;, in the range {1..n — 1}) as @ mod n. Conversely, we denote the element of I,
corresponding to an integer k : Z as k (mod n). We also use the latter notation in the context of an equality k = &’
(mod n) as shorthand for k£ mod n = k" mod n, and similarly k # &’ (mod n) as shorthand for £ mod n # k" mod n.
(When referring to constants such as 0 and 1 it is usually not necessary to make the distinction between field
elements and their representatives, since the meaning is normally clear from context.)

[, [2] means the ring of polynomials over z with coefficients in F,,.

a + b means the sum of a and b. This may refer to addition of integers, rationals, finite field elements, or group
elements (see §4.1.8 ‘Represented Group’ on p.26) according to context.

—a means the value of the appropriate integer, rational, finite field, or group type such that (—a) + a = 0 (or when a
is an element of a group G, (—a) + a = Og), and a — b means a + (—b).

a - b means the product of multiplying a and b. This may refer to multiplication of integers, rationals, or finite field
elements according to context (this notation is not used for group elements).

a/b, also written % means the value of the appropriate integer, rational, or finite field type such that (a/b) - b = a.

amod ¢ fora : Nand ¢ : N*, means the remainder on dividing a by ¢. (This usage does not conflict with the notation
above for the unique representative of a field element.)

a @ b means the bitwise-exclusive-or of ¢ and b, and a & b means the bitwise-and of @ and b. These are defined
on integers (which include bits and bytes), or elementwise on equal-length sequences of integers, according to

context.
N N N

Z a; means the sum of a; . H a; means the product of a; . @ a; means the bitwise exclusive-or of a;_y.
=1 =1 =1

0 0 0
When N = 0 these yield the appropriate neutral element, i.e. Zizlai =0, Hi:lai =1, and @i=1ai = 0 or the
all-zero bit sequence of length given by the type of a.

10



Va', where a : F,, means the positive square root of a in F,, i.e. in the range {o.. 1 }. Itis only used in cases where
the square root must exist.

Va', where a : [F,, means an arbitrary square root of a in I, or L if no such square root exists.
b?x:ymeansx whenb=1,orywhenb=0.

a’, for a an integer or finite field element and b : Z, means the result of raising a to the exponent b, i.e.
b .
[I_, a ifo>0

b .
H_ -, otherwise.
i=1q

The [k] P notation for scalar multiplication in a group is defined in §4.1.8 ‘Represented Group’ on p. 26.

The convention of affixing x to a variable name is used for variables that denote bit-sequence representations of
group elements.

The binary relations <, <, =, >, and > have their conventional meanings on integers and rationals, and are defined
lexicographically on sequences of integers.

floor(z) means the largest integer < z. ceiling () means the smallest integer > x.
bitlength(z), for z : N, means the smallest integer ¢ such that 2 > z.
The following integer constants will be instantiated in §5.3 ‘Constants’ on p. 54:

Sprout Sapling /Sprout ,Sapling old new Sprout Sprout
MerkleDepth ’ MerkleDepth ’ EMerkIe' gMerkIe ’ N ’ N ’ gvalue' ghSig' KPRF ’ fPRFexpandr gPRanSaplingr Ercm ’ gSeed'

la,. Ei,pm”t, Uy, £y, fﬁlip“ng, Covie Effaﬁgfg, MAX_MONEY, SlowStartInterval, Halvinglnterval, MaxBlockSubsidy,

NumFounderAddresses, PoWLimit, PoWAveragingWindow, PoWMedianBlockSpan, PoWDampingFactor, and
PoWTargetSpacing.

The rational constants FoundersFraction, PoWMaxAdjustDown, and PoWMaxAdjustUp, and the bit sequence constants
Sprout Sapling
]

Uncommitted P!t ¢ Bleel Uncommitted®?P"e « Blfvene] will also be defined in that section.

We use the abbreviation “ctEdwards” to refer to complete twisted Edwards elliptic curves and coordinates (see
§5.4.8.3 “Jubjub’ on p. 73).

1



3 Concepts

3.1 Payment Addresses and Keys

Users who wish to receive shielded payments in the Zcash protocol must have a shielded payment address, which
is generated from a spending key.

The following diagram depicts the relations between key components in Sprout and Sapling. Arrows point from a
component to any other component(s) that can be derived from it. Double lines indicate that the same component
is used in multiple abstractions.

Sprout Sapling
Shielded payment address Shielded payment address
—
Paying key Apk PKene ) Transmission key Diversifier d — pky ) Transmission key

Incomin .. Incoming ]
viewing kgy { (apk SkE"D Receiving key viewing key < vk )
Full
viewing key { C ak r]kk X OVk)
Proof author- Cak nsk>
izing key
Expanded { (ask nst ovk)
spending key & 2 .

Spending key

Spending key

[Sprout] The receiving key ske,., incoming viewing key ivk = (ay, skenc), and shielded payment address addr,,, =
(apk, Pkenc) are derived from the spending key ag, as described in §4.2.1 ‘Sprout Key Components’ on p. 29.

[Sapling onward] An expanded spending key is composed of a Spend authorizing key ask, a nullifier private key nsk,
and an outgoing viewing key ovk. From these components we can derive an proof authorizing key (ak, nsk), a full
viewing key (ak, nk, ovk), an incoming viewing key ivk, and a set of diversified payment addresses addry = (d, pky),
as described in §4.2.2 ‘Sapling Key Components’ on p. 29.

The consensus protocol does not depend on how an expanded spending key is constructed. Two methods of doing
so are defined:

1. Generate a spending key sk at random and derive the expanded spending key (ask, nsk, ovk) from it, as shown
in the diagram above and described in §4.2.2 ‘Sapling Key Components’ on p. 29.

2. Obtain an extended spending key as specified in [ZIP-32]; this includes a superset of the components of an
expanded spending key. This method is used in the context of a Hierarchical Deterministic Wallet.

Non-normative note: In zcashd, all Sapling keys and addresses are derived according to [ZIP-32].
The composition of shielded payment addresses, incoming viewing keys, full viewing keys, and spending keys is
a cryptographic protocol detail that should not normally be exposed to users. However, user-visible operations

should be provided to obtain a shielded payment address, incoming viewing key, or full viewing key from a
spending key or extended spending key.

12


https://zips.z.cash/protocol/sapling.pdf#concepts
https://zips.z.cash/protocol/sapling.pdf#addressesandkeys

Users can accept payment from multiple parties with a single shielded payment address and the fact that these
payments are destined to the same payee is not revealed on the block chain, even to the paying parties. However if
two parties collude to compare a shielded payment address they can trivially determine they are the same. In the
case that a payee wishes to prevent this they should create a distinct shielded payment address for each payer.

[Sapling onward] Sapling provides a mechanism to allow the efficient creation of diversified payment addresses
with the same spending authority. A group of such addresses shares the same full viewing key and incoming
viewing key, and so creating as many unlinkable addresses as needed does not increase the cost of scanning the
block chain for relevant transactions.

Note: It is conventional in cryptography to call the key used to encrypt a message in an asymmetric encryption
scheme a “public key” However, the public key used as the transmission key component of an address (pkepe O pky)
need not be publically distributed; it has the same distribution as the shielded payment address itself. As mentioned
above, limiting the distribution of the shielded payment address is important for some use cases. This also helps
to reduce reliance of the overall protocol on the security of the cryptosystem used for note encryption (see §4.16
‘In-band secret distribution (Sprout)’ on p.46 and § 4.17 ‘In-band secret distribution (Sapling)’ on p.47), since an
adversary would have to know pk,,. or some pky in order to exploit a hypothetical weakness in that cryptosystem.

3.2 Notes

A note (denoted n) can be a Sprout note or a Sapling note. In each case it represents that a value v is spendable by
the recipient who holds the spending key corresponding to a given shielded payment address.

Let MAX_MONEY, 6?,‘,’{;“, CpREnfsapling: and /4 be as defined in § 5.3 ‘Constants’ on p. 54.

Let NoteCommit>™°" be as defined in § 5.4.7.1 ‘Sprout Note Commitments’ on p. 68.

Let NoteCommit>**"™ be as defined in §5.4.7.2 ‘Windowed Pedersen commitments’ on p. 69.
Let KA>**'"8 he as defined in §5.4.4.3 ‘Sapling Key Agreement’ on p. 63.

Let DiversifyHash>*"™ be as defined in § 5.4.1.6 ‘DiversifyHash>*"""8 Hash Function’ on p.57.

A Sprout note is a tuple (ay, v, p, rcm), where:

Sprout

©Apk Blre | s the paying key of the recipient’s shielded payment address;
- v:{0..MAX_MONEY} is an integer representing the value of the note in zatoshi (1 ZEC = 10® zatoshi);

Sprout]

. ml nfSprout
. p: Bl Fof

is used as input to PR to derive the nullifier of the note;

- rem : NoteCommit®™°"" Trapdoor is a random commitment trapdoor as defined in §4.1.7 ‘Commitment’ on
p. 24.

Let Note®>™"* be the type of a Sprout note, i.e.

Sprout Sprout
Note3P ™'t .= Bl | x {0..MAX_MONEY} x B | % NoteCommit®™°"%, Trapdoor.

A Sapling note is a tuple (d, pky, v, rcm), where:
. d : Bl is the diversifier of the recipient’s shielded payment address;

- pkq = KA®®'"€ pyblicPrimeSubgroup is the diversified transmission key of the recipient’s shielded payment
address;

- v {0..MAX_MONEY} is an integer representing the value of the note in zatoshi;

- rem ¢ NoteCommit>*P"8 Trapdoor is a random commitment trapdoor as defined in §4.1.7 ‘Commitment’ on
p. 24.

13


https://zips.z.cash/protocol/sapling.pdf#notes

Let Note®>*"8 be the type of a Sapling note, i.e.

Note>*P'"e .— Blfa) 5 KASP"e pyplicPrimeSubgroup x {0.. MAX_MONEY} x NoteCommit>**"& Trapdoor.

Creation of new notes is described in §4.6 ‘Sending Notes’ on p.34. When notes are sent, only a commitment (see
§4.1.7 ‘Commitment’ on p.24) to the above values is disclosed publically, and added to a data structure called the
note commitment tree. This allows the value and recipient to be kept private, while the commitment is used by the
zk-SNARK proof when the note is spent, to check that it exists on the block chain.

A Sprout note commitment on a note n = (ay, v, p, rcm) is computed as

NoteCommitment>P*"(n) = NoteCommitrSCpr:’“t(apk, v, p),

where NoteCommit®*°"*is instantiated in §5.4.7.1 ‘Sprout Note Commitments’ on p. 68.

A Sapling note commitment on a note n = (d, pkq, v, rcm) is computed as
g4 := DiversifyHash>*""&(d)
(reprj(gq), repry(pky),v), otherwise.

)

Sapling(n> L 1

NoteCommitment = )
NoteCommit

Sapling
rcm

where NoteCommit>*"™" is instantiated in § 5.4.7.2 ‘Windowed Pedersen commitments’ on p. 69.

Notice that the above definition of a Sapling note does not have a p field. There is in fact a p value associated with
each Sapling note, but this can only be computed once its position in the note commitment tree is known (see § 3.4
‘“Transactions and Treestates’ on p.15 and § 3.7 ‘Note Commitment Trees’ on p.17). We refer to the combination
of a note and its note position pos, as a positioned note.

For a positioned note, we can compute the value p as described in §4.14 ‘Note Commitments and Nullifiers’ on
p-42.

The nullifier of a note is denoted nf.

A nullifier for a Sprout note is derived from the p value and the recipient’s spending key a.

A nullifier for a Sapling note is derived from the p value and the recipient’s nullifier deriving key nk.

The nullifier computation uses a Pseudo Random Function (see §4.1.2 ‘Pseudo Random Functions’ on p.19), as

described in §4.14 ‘Note Commitments and Nullifiers’ on p.42.

A note is spent by proving knowledge of (p, ay) or (p, ak, nsk) in zero knowledge while publically disclosing the
note’s nullifier nf, allowing nf to be used to prevent double-spending. For Sapling, a spend authorization signature
is also required, in order to demonstrate knowledge of ask.

3.2.1 Note Plaintexts and Memo Fields

Transmitted notes are stored on the block chain in encrypted form, together with a representation of the note
commitment cm.

The note plaintexts in each JoinSplit description are encrypted to the respective transmission keys pkgne | yrew.

Each Sprout note plaintext (denoted np) consists of

Sprout

(leadByte : BY, v : {0..2%—1} p: BI& | rem 2 NoteCommit P Trapdoor, memo : ]B%Y[Su]).

[Sapling onward] The note plaintext in each Output description is encrypted to the diversified payment address
(da pkd)

14


https://zips.z.cash/protocol/sapling.pdf#noteptconcept

Each Sapling note plaintext (denoted np) consists of

(leadByte : BY, d : Bl v {0..2%we—1} rcm : B memo : IB%Y[BH])

The fields d, v, and rcm are as defined in § 3.2 ‘Notes’ on p.13.

memo represents a 512-byte memo field associated with this note. The usage of the memo field is by agreement
between the sender and recipient of the note.

Encodings are given in § 5.5 ‘Encodings of Note Plaintexts and Memo Fields’ on p.78. The result of encryption
forms part of a transmitted note(s) ciphertext. For further details, see §4.16 ‘In-band secret distribution (Sprout’
on p.46 and §4.17 ‘In-band secret distribution (Sapling)’ on p.47.

3.3 The Block Chain

At a given point in time, each full validator is aware of a set of candidate blocks. These form a tree rooted at the
genesis block, where each node in the tree refers to its parent via the hashPrevBlock block header field (see § 7.5
‘Block Header Encoding and Consensus’ on p.90).

A path from the root toward the leaves of the tree consisting of a sequence of one or more valid blocks consistent
with consensus rules, is called a valid block chain.

Each block in a block chain has a block height. The block height of the genesis block is 0, and the block height of
each subsequent block in the block chain increments by 1.

In order to choose the best valid block chain in its view of the overall block tree, a node sums the work, as defined
in §7.6.5 ‘Definition of Work’ on p. 94, of all blocks in each valid block chain, and considers the valid block chain
with greatest total work to be best. To break ties between leaf blocks, a node will prefer the block that it received
first.

The consensus protocol is designed to ensure that for any given block height, the vast majority of nodes should
eventually agree on their best valid block chain up to that height.

3.4 Transactions and Treestates

Each block contains one or more transactions.

Transparent inputs to a transaction insert value into a transparent transaction value pool associated with the
transaction, and transparent outputs remove value from this pool. As in Bitcoin, the remaining value in the pool is
available to miners as a fee.

Consensus rule: The remaining value in the transparent transaction value pool MUST be nonnegative.

To each transaction there are associated initial treestates for Sprout and for Sapling. Each treestate consists of:

- a note commitment tree (§ 3.7 ‘Note Commitment Trees’ on p.17);

- a nullifier set (§ 3.8 ‘Nullifier Sets’ on p.18).

Validation state associated with transparent inputs and outputs, such as the UTXO (Unspent Transaction Output)
set, is not described in this document; it is used in essentially the same way as in Bitcoin.

An anchor is a Merkle tree root of a note commitment tree (either the Sprout tree or the Sapling tree). It uniquely
identifies a note commitment tree state given the assumed security properties of the Merkle tree’s hash function.
Since the nullifier set is always updated together with the note commitment tree, this also identifies a particular
state of the associated nullifier set.

15


https://zips.z.cash/protocol/sapling.pdf#blockchain
https://zips.z.cash/protocol/sapling.pdf#transactions

In a given block chain, for each of Sprout and Sapling, treestates are chained as follows:
- The input treestate of the first block is the empty treestate.
- The input treestate of the first transaction of a block is the final treestate of the immediately preceding block.

- The input treestate of each subsequent transaction in a block is the output treestate of the immediately
preceding transaction.

- The final treestate of a block is the output treestate of its last transaction.

JoinSplit descriptions also have interstitial input and output treestates for Sprout, explained in the following section.
There is no equivalent of interstitial treestates for Sapling.

3.5 JoinSplit Transfers and Descriptions

A JoinSplit description is data included in a transaction that describes a JoinSplit transfer, i.e. a shielded value
transfer. In Sprout, this kind of value transfer was the primary Zcash-specific operation performed by transactions.

old new

A JoinSplit transfer spends N°“ notes ncl"lc_iNo\d and transparent input v3.,, and creates N™" notes n}®y and trans-
parent output vpop. It is associated with a JoinSplit statement instance (§ 4.15.1 ‘JoinSplit Statement (Sprout)’ on
p.43), for which it provides a zk-SNARK proof .

Each transaction has a sequence of JoinSplit descriptions.

The total v,y value adds to, and the total vglfb value subtracts from the transparent transaction value pool of the
containing transaction.

The anchor of each JoinSplit description in a transaction refers to a Sprout treestate.

For each of the N° shielded inputs, a nullifier is revealed. This allows detection of double-spends as described in
§ 3.8 ‘Nullifier Sets’ on p.18.

For each JoinSplit description in a transaction, an interstitial output treestate is constructed which adds the note
commitments and nullifiers specified in that JoinSplit description to the input treestate referred to by its anchor.
This interstitial output treestate is available for use as the anchor of subsequent joinSplit descriptions in the same
transaction. In general, therefore, the set of interstitial treestates associated with a transaction forms a tree in which
the parent of each node is determined by its anchor.

Interstitial treestates are necessary because when a transaction is constructed, it is not known where it will
eventually appear in a mined block. Therefore the anchors that it uses must be independent of its eventual position.

Consensus rules:

- The input and output values of each joinSplit transfer MUST balance exactly.

- For the first JoinSplit description of a transaction, the anchor MUST be the output Sprout treestate of a
previous block.

- The anchor of each JoinSplit description in a transaction MUST refer to either some earlier block’s final
Sprout treestate, or to the interstitial output treestate of any prior JoinSplit description in the same transaction.

3.6 Spend Transfers, Output Transfers, and their Descriptions

JoinSplit transfers are not used for Sapling notes. Instead, there is a separate Spend transfer for each shielded
input, and a separate Output transter for each shielded output.

Spend descriptions and Output descriptions are data included in a transaction that describe Spend transfers and
Output transfers, respectively.

A Spend transfer spends a note n®°. Its Spend description includes a Pedersen value commitment to the value of

the note. It is associated with an instance of a Spend statement (§4.15.2 ‘Spend Statement (Sapling)’ on p. 44) for
which it provides a zk-SNARK proof .

16


https://zips.z.cash/protocol/sapling.pdf#joinsplit
https://zips.z.cash/protocol/sapling.pdf#spendsandoutputs

new

An Output transfer creates a note n""". Similarly, its Output description includes a Pedersen value commitment to
the note value. It is associated with an instance of an Output statement (§4.15.3 ‘Output Statement (Sapling)’ on
p. 45) for which it provides a zk-SNARK proof .

Each transaction has a sequence of Spend descriptions and a sequence of Output descriptions.

To ensure balance, we use a homomorphic property of Pedersen commitments that allows them to be added and
subtracted, as elliptic curve points (§5.4.7.3 ‘Homomorphic Pedersen commitments (Sapling)’ on p.69). The result
of adding two Pedersen value commitments, committing to values v, and vy, is a new Pedersen value commitment
that commits to v; + v,. Subtraction works similarly.

Therefore, balance can be enforced by adding all of the value commitments for shielded inputs, subtracting all of
the value commitments for shielded outputs, and proving by use of a Sapling binding signature (as described in
§4.12 ‘Balance and Binding Signature (Sapling)’ on p. 39) that the result commits to a value consistent with the
net transparent value change. This approach allows all of the zk-SNARK statements to be independent of each
other, potentially increasing opportunities for precomputation.

A Spend description specifies an anchor, which refers to the output Sapling treestate of a previous block. It also
reveals a nullifier, which allows detection of double-spends as described in § 3.8 ‘Nullifier Sets’ on p.18.

Non-normative note: Interstitial treestates are not necessary for Sapling, because a Spend transfer in a given
transaction cannot spend any of the shielded outputs of the same transaction. This is not an onerous restriction
because, unlike Sprout where each JoinSplit transfer must balance individually, in Sapling it is only necessary for
the whole transaction to balance.

Consensus rules:

balanceSapling

- The Spend transfers and Action transfers of a transaction MUST be consistent with its v value as

specified in §4.12 ‘Balance and Binding Signature (Sapling)’ on p. 39.

- The anchor of each Spend description MUST refer to some earlier block’s final Sapling treestate.

3.7 Note Commitment Trees

rt
/\
?
cmy cm, cm, cmy cmy ?

A note commitment tree is an incremental Merkle tree of fixed depth used to store note commitments that JoinSplit
transters or Spend transfers produce. Just as the unspent transaction output set (UTXO set) used in Bitcoin, it is
used to express the existence of value and the capability to spend it. However, unlike the UTXO set, it is not the job
of this tree to protect against double-spending, as it is append-only.

A root of a note commitment tree is associated with each treestate (§ 3.4 “Transactions and Treestates’ on p.15).

Each node in the incremental Merkle tree is associated with a hash value of size (45 or (72PI" bits. The layer
numbered h, counting from layer 0 at the root, has 2" nodes with indices 0 to 2" — 1 inclusive. The hash value
associated with the node at index i in layer h is denoted M!.

The index of a note’s commitment at the leafmost layer (MerkleDepth>™°"t or MerkleDepth®?'"®) is called its note
position.

17


https://zips.z.cash/protocol/sapling.pdf#merkletree

3.8 Nullifier Sets

Each full validator maintains a nullifier set logically associated with each treestate. As valid transactions containing
JoinSplit transfers or Spend transfers are processed, the nullifiers revealed in JoinSplit descriptions and Spend
descriptions are inserted into the nullifier set associated with the new treestate. Nullifiers are enforced to be
unique within a valid block chain, in order to prevent double-spends.

Consensus rule: A nullifier MUST NOT repeat either within a transaction, or across transactions in a valid block
chain. Sprout and Sapling nullifiers are considered disjoint, even if they have the same bit pattern.

3.9 Block Subsidy and Founders’ Reward

Like Bitcoin, Zcash creates currency when blocks are mined. The value created on mining a block is called the
block subsidy .

The block subsidy is composed of a miner subsidy and a Founders’Reward.

As in Bitcoin, the miner of a block also receives transaction fees.

The calculations of the block subsidy, miner subsidy, and Founders’Reward depend on the block height, as defined
in §3.3 “The Block Chain’ on p.15.

The calculations are described in § 7.7 ‘Calculation of Block Subsidy and Founders’ Reward’ on p. 95.

3.10 Coinbase Transactions
The first (and only the first) transaction in a block is a coinbase transaction, which collects and spends any miner
subsidy and transaction fees paid by transactions included in this block.

Asdescribedin § 7.8 ‘Payment of Founders’ Reward’ onp. 95, the coinbase transaction MUST also pay the Founders’
Reward.

3.11 Mainnet and Testnet

The production Zcash network, which supports the ZEC token, is called Mainnet. Governance of its protocol is
by agreement between the Electric Coin Company and the Zcash Foundation [ECCZF2019]. Subject to errors and
omissions, each version of this document intends to describe some version (or planned version) of that agreed
protocol.

All block hashes given in this section are in RPC byte order (that is, byte-reversed relative to the normal order for a
SHA-256 hash).

Mainnet genesis block: 00040fe8ec8471911baaldb1266eal5dd06b4a8a5c453883c000b031973dce08
Mainnet Canopy activation block: 00000000002038016£976744c369dce7419fca30e7171dfac703afbebf7ad1d4

There is also a public test network called Testnet. It supports a TAZ token which is intended to have no monetary
value. By convention, Testnet activates network upgrades (as described in § 6 ‘Network Upgrades’ on p. 84) before
Mainnet, in order to allow for errors or ambiguities in their specification and implementation to be discovered.
The Testnet block chain is subject to being rolled back to a prior block at any time.

Testnet genesis block: 056a60a92d99d85997cce3b87616c089f6124d7342af37106edc76126334a2c38

Testnet Canopy activation block: 01a4d7c6aada30c87762c1bf33ff£5df7266b1fd7616bfdb5227fa59bd79e7a2
We call the smallest units of currency (on either network) zatoshi.

On Mainnet, 1 ZEC = 10° zatoshi. On Testnet, 1 TAZ = 10° zatoshi.

Other networks using variants of the Zcash protocol may exist, but are not described by this specification.

18


https://zips.z.cash/protocol/sapling.pdf#nullifierset
https://zips.z.cash/protocol/sapling.pdf#subsidyconcepts
https://zips.z.cash/protocol/sapling.pdf#coinbasetransactions
https://zips.z.cash/protocol/sapling.pdf#networks

4 Abstract Protocol

4.1 Abstract Cryptographic Schemes
4.1.1 Hash Functions

Let MerkleDepth> ", (pPo%  MerkleDepth®™'"8, (p2Pi"8, (>2PI"8 1 po o\, 322", £y, and N° be as defined in §5.3
‘Constants’ on p.54.

Let J, J@, 1% r;, and ¢; be as defined in §5.4.8.3 “Jubjub’ on p.73.
The following hash functions are used in § 4.8 ‘Merkle Path Validity’ on p. 36:

Sprout Sprout Sprout
MerkleCRHP™"® : {0 .. MerkleDepth>™®" — 1} x Blwenel » Bllmenel _y llmenc]

Sapling Sapling Sapling

MerkleCRH>*™™ : {0 .. MerkleDepth>®"8 — 1} 5 Blfvenel 5 Bllvenie] _; Bllene]

HSapImg

MerkleCRH®P™" is collision-resistant except on its first argument. MerkleCR is collision-resistant on all its

arguments.

These functions are instantiated in §5.4.1.3 ‘Merkle Tree Hash Function’ on p. 56.

Sprout old

hSigCRH : Bléseeal  ploere 1INTT o JoinSplitSig.Public — Bl%sel is a collision-resistant hash function used in §4.3
‘JoinSplit Descriptions’ on p.31. It is instantiated in §5.4.1.4 ‘*hs;, Hash Function’ on p.57.

EquihashGen : (n : NT) x N* x BY™ x N* — B" is another hash function, used in §7.6.1 ‘Equihash’ on p-92 to
generate input to the Equihash solver. The first two arguments, representing the Equihash parameters n and k, are
written subscripted. It is instantiated in § 5.4.1.9 ‘Equihash Generator’ on p. 60.

CRHY : B! x B4 {0.. gl " 1} is a collision-resistant hash function used in §4.2.2 ‘Sapling Key Components’
on p. 29 to derive an incoming viewing key for a Sapling shielded payment address. It is also used in the Spend
statement (§4.15.2 ‘Spend Statement (Sapling)’ on p. 44) to confirm use of the correct keys for the note being spent.
It is instantiated in §5.4.1.5 ‘CRH"* Hash Function’ on p.57.

MixingPedersenHash : J x {0..r; — 1} — J is a hash function used in §4.14 ‘Note Commitments and Nullifiers’ on
p.42 to derive the unique p value for a Sapling note. It is also used in the Spend statement to confirm use of the
correct p value as an input to nullifier derivation. It is instantiated in § 5.4.1.8 ‘Mixing Pedersen Hash Function’ on
p- 60.

DiversifyHash>*™& : Bl — 70% {1} is a hash function instantiated in § 5.4.1.6 ‘DiversifyHash®>**""& Hash Function’
on p. 57, satisfying the Unlinkability security property described in that section. It is used to derive a diversified
base from a diversifier, which is specified in §4.2.2 ‘Sapling Key Components’ on p.29.

4.1.2 Pseudo Random Functions

PRF, denotes a Pseudo Random Function keyed by x.

Let £, . lusig, E,S)',?{E”t, éf'ppm”t, Lok Louk: LpRFexpand: UPREnfSapling: N°? and N"™" be as defined in § 5.3 ‘Constants’ on p. 54.
Let Sym be as defined in §5.4.3 ‘Symmetric Encryption’ on p.62.

Let £; and J% be as defined in §5.4.8.3 Jubjub’ on p.73.

19


https://zips.z.cash/protocol/sapling.pdf#abstractprotocol
https://zips.z.cash/protocol/sapling.pdf#abstractschemes
https://zips.z.cash/protocol/sapling.pdf#abstracthashes
https://zips.z.cash/protocol/sapling.pdf#abstractprfs

For Sprout, four independent PRF, are needed:

Sprout.

PRFaddr : B[Zask] x BY N B[ZPRF ]
Sprout

PREPK . B[Zask] « {1..N0|d} % B[ehSig] _>B[€PRF

PRFP : BT x (1N x Bl _, gl

Sprout:

— B[ZPRF

Sprout]

PRanSprout . B[ﬁask] « B[ZPRF

These are used in §4.15.1 ‘JoinSplit Statement (Sprout)’ on p.43; PRF**"" is also used to derive a shielded payment
address from a spending key in §4.2.1 ‘Sprout Key Components’ on p. 29.

For Sapling, three additional PRF_, are needed:

pRFexpand . B[Zsk] > By[N] - BY[ZPRFexpand/s]
PRFOCkSBP“"g . IB%YMovk/S] % BY[EL/g] % By[@/g] % By[@/g] — Sym.K
PRFNfSaP“ng . JSZ”) % IB%V»J] N BYVPRanSapHng/S]

PRF®®*" is used in the following places:
- §4.2.2 Sapling Key Components’ on p. 29, with inputs [0], [1], [2], and [3,7 : BY];

- sending (§4.6.2 ‘Sending Notes (Sapling)’ on p. 34) and receiving (§ 4.17 ‘In-band secret distribution (Sapling)’
on p.47) Sapling notes, with inputs [4] and [5];

- in [ZIP-32], with inputs [0], [1], [2] (intentionally matching §4.2.2 on p.29), [¢ : {16 .. 22}], and [0x80].

PRF°®S%Ine i yysed in §4.17 In-band secret distribution (Sapling)’ on p.47.

PRF"%!"€ js used in §4.15.2 ‘Spend Statement (Sapling)’ on p. 44.

All of these Pseudo Random Functions are instantiated in §5.4.2 ‘Pseudo Random Functions’ on p. 61.

Security requirements:
- Security definitions for Pseudo Random Functions are given in [BDJR2000, section 4].

. In addition to being Pseudo Random Functions, it is required that PRF2Y", PRF?, PRFPt and PRF!2Pline
be collision-resistant across all z — i.e. finding (,y) # (¢, y') such that PRF3*"(y) = PRF2*(y) should not
be feasible, and similarly for PRF?, PRF"*P"t and PRF">2Pline,

Non-normative note: PRF"*P°"* was called PRF*" in Zerocash [BCGGMTV2014], and just PRF" in some previous
versions of this specification.

4.1.3 Symmetric Encryption

Let Sym be an authenticated one-time symmetric encryption scheme with keyspace Sym.K, encrypting plaintexts
in Sym.P to produce ciphertexts in Sym.C.

Sym.Encrypt : Sym.K x Sym.P — Sym.C is the encryption algorithm.

Sym.Decrypt : Sym.K x Sym.C — Sym.P U {L} is the decryption algorithm, such that for any K € Sym.K and
P € Sym.P, Sym.Decrypty (Sym.Encryptk (P)) = P. L is used to represent the decryption of an invalid ciphertext.

Security requirement: Sym must be one-time (INT-CTXT A IND-CPA)-secure [BN2007]. “One-time” here means
that an honest protocol participant will almost surely encrypt only one message with a given key; however, the
adversary may make many adaptive chosen ciphertext queries for a given key.

20


https://zips.z.cash/protocol/sapling.pdf#abstractsym

414 Key Agreement

A key agreement scheme is a cryptographic protocol in which two parties agree a shared secret, each using their
private key and the other party’'s public key.

A key agreement scheme KA defines a type of public keys KA.Public, a type of private keys KA.Private, and a type of
shared secrets KA.SharedSecret. Optionally, it also defines a type KA.PublicPrimeSubgroup C KA.Public.

Sprout
Optional: Let KA.FormatPrivate : B | — KA Private be a function to convert a bit string of length 03P to a KA

private key.

Let KA.DerivePublic : KA.Private x KA.Public — KA.Public be a function that derives the KA public key corresponding
to a given KA private key and base point.

Let KA.Agree : KA.Private x KA.Public — KA.SharedSecret be the agreement function.
Optional: Let KA.Base : KA.Public be a public base point.

Note: The range of KA.DerivePublic may be a strict subset of KA.Public.

Security requirements:
- KA.FormatPrivate must preserve sufficient entropy from its input to be used as a secure KA private key.

- The key agreement and the KDF defined in the next section must together satisfy a suitable adaptive security
assumption along the lines of [Bernstein2006, section 3] or [ABR1999, Definition 3].

More precise formalization of these requirements is beyond the scope of this specification.

4.1.5 Key Derivation

A Key Derivation Function is defined for a particular key agreement scheme and authenticated one-time symmetric
encryption scheme; it takes the shared secret produced by the key agreement and additional arguments, and
derives a key suitable for the encryption scheme.

The inputs to the Key Derivation Function differ between the Sprout and Sapling KDFs:

new

KDF°P°" takes as input an output index in {1..N""}, the value hg;,, the shared Diffie-Hellman secret sharedSecret,

the ephemeral public key epk, and the recipient’s public transmission key pken. It is suitable for use with KASP™*
and derives keys for Sym.Encrypt.

KDFSPUt: (1. N""} x Blsi) x KASP©"* SharedSecret x KASP™“ Public x KA Public — Sym.K

KDF>?P"€ takes as input the shared Diffie-Hellman secret sharedSecret and the ephemeral public key epk. (It does

not have inputs taking the place of the output index, hg;g, or pkenc.) It is suitable for use with KA®**"™ and derives
keys for Sym.Encrypt.

KDFS#Pline . K ASPINE SharedSecret x BY/® - Sym.K

Security requirements:

- The asymmetric encryption scheme in §4.16 In-band secret distribution (Sprout)’ on p.46, constructed
from KAt KDF*P®"* and Sym, is required to be IND-CCA2-secure and key-private.

- The asymmetric encryption scheme in §4.17 Tn-band secret distribution (Sapling)’ on p.47, constructed
from KA®'"& KDF®*P"8 and Sym, is required to be IND-CCA2-secure and key-private.

Key privacy is defined in [BBDP2001].

21


https://zips.z.cash/protocol/sapling.pdf#abstractkeyagreement
https://zips.z.cash/protocol/sapling.pdf#abstractkdf

4.1.6 Signature

A signature scheme Sig defines:
- atype of signing keys Sig.Private;
- atype of validating keys Sig.Public;
- a type of messages Sig.Message;
- atype of signatures Sig.Signature;
- arandomized signing key generation algorithm Sig.GenPrivate : () & Sig.Private;
- an injective validating key derivation algorithm Sig.DerivePublic : Sig.Private — Sig.Public;
- arandomized signing algorithm Sig.Sign : Sig.Private x Sig.Message & Sig.Signature;
- avalidating algorithm Sig.Validate : Sig.Public x Sig.Message x Sig.Signature — B;

such that for any signing key sk <% Sig.GenPrivate() and corresponding validating key vk = Sig.DerivePublic(sk), and
any m : Sig.Message and s : Sig.Signature < Sig.Sign,, (m), Sig.Validate,, (m, s) = 1.

Zcash uses four signature schemes:

- one used for signatures that can be validated by script operations such as 0P_CHECKSIG and OP_CHECKMULTISIG
as in Bitcoin;

- one called JoinSplitSig which is used to sign transactions that contain at least one JoinSplit description
(instantiated in §5.4.5 ‘Ed25519’ on p. 64);

- [Sapling onward] one called SpendAuthSig which is used to sign authorizations of Spend transfers (instantiated
in §5.4.6.1 ‘Spend Authorization Signature (Sapling)’ on p. 68);

- [Sapling onward] one called BindingSig. A Sapling binding signature is used to enforce balance of Spend
transfers and Output transters, and to prevent their replay across transactions. BindingSig is instantiated in
§5.4.6.2 ‘Binding Signature (Sapling)’ on p.68.

The signature scheme used in script operations is instantiated by ECDSA on the secp256k1 curve. JoinSplitSig is
instantiated by Ed25519. SpendAuthSig and BindingSig are instantiated by RedDSA; on the Jubjub curve in Sapling.

The following security property is needed for JoinSplitSig and BindingSig. Security requirements for SpendAuthSigare
defined in the next section, §4.1.6.1 ‘Signature with Re-Randomizable Keys’ on p.23. An additional requirement
for BindingSig is defined in §4.1.6.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on p. 24.

Security requirement:  JoinSplitSig and BindingSig must be Strongly Unforgeable under (non-adaptive) Chosen
Message Attack (SU-CMA), as defined for example in [BDEHR2011, Definition 6].* This allows an adversary to obtain
signatures on chosen messages, and then requires it to be infeasible for the adversary to forge a previously unseen
valid (message, signature) pair without access to the signing key .

Non-normative notes:

- We need separate signing key generation and validating key derivation algorithms, rather than the more
conventional combined key pair generation algorithm Sig.Gen : () & Sig.Private x Sig.Public, to support the
key derivation in §4.2.2 ‘Sapling Key Components’ on p.29.

The definitions of schemes with additional features in §4.1.6.1 ‘Signature with Re-Randomizable Keys’ on
p-23 and in §4.1.6.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on p. 24 also become
simpler.

- A fresh signature key pair is generated for each transaction containing a JoinSplit description. Since each
key pair is only used for one signature (see §4.10 ‘Non-malleability (Sprout) on p.38), a one-time signature
scheme would suffice for JoinSplitSig. This is also the reason why only security against non-adaptive chosen
message attack is needed. In fact the instantiation of JoinSplitSig uses a scheme designed for security under
adaptive attack even when multiple signatures are signed under the same key.

* The scheme defined in that paper was attacked in [LM2017], but this has no impact on the applicability of the definition.

22


https://zips.z.cash/protocol/sapling.pdf#abstractsig

- [Sapling onward] The same remarks as above apply to BindingSig, except that the key is derived from the
randomness of value commitments. This results in the same distribution as of freshly generated key pairs, for
each transaction containing Spend descriptions or Output descriptions.

- SU-CMA security requires it to be infeasible for the adversary, not knowing the private key, to forge a distinct
signature on a previously seen message. That is, JoinSplit signatures and Sapling binding signatures are
intended to be nonmalleable in the sense of [BIP-62].

- The terminology used in this specification is that we “validate” signatures, and “verify” zk-SNARK proofs.

4.1.6.1 Signature with Re-Randomizable Keys

A signature scheme with re-randomizable keys Sig is a signature scheme that additionally defines:
- atype of randomizers Sig.Random;
- a randomizer generator Sig.GenRandom : () & Sig.Random;
- a signing key randomization algorithm Sig.RandomizePrivate : Sig.Random X Sig.Private — Sig.Private;
- a validating key randomization algorithm Sig.RandomizePublic : Sig.Random x Sig.Public — Sig.Public;

- adistinguished “identity” randomizer Os;; random ¢ Sig-Random
such that:

- for any « ¢ Sig.Random, Sig.RandomizePrivate,, : Sig.Private — Sig.Private is injective and easily invertible;
- Sig.RandomizePrivatep, . . is the identity function on Sig.Private.
- for any sk : Sig.Private,
Sig.RandomizePrivate(a, sk) : a & Sig.GenRandom()
is identically distributed to Sig.GenPrivate().

- for any sk : Sig.Private and « : Sig.Random,
Sig.RandomizePublic(a, Sig.DerivePublic(sk)) = Sig.DerivePublic(Sig.RandomizePrivate(a, sk)).

The following security requirement for such signature schemes is based on that given in [FKMSSS2016, section 3].
Note that we require Strong Unforgeability with Re-randomized Keys, not Existential Unforgeability with Re-
randomized Keys (the latter is called “Unforgeability under Re-randomized Keys" in [FKMSSS2016, Definition 8]).
Unlike the case for JoinSplitSig, we require security under adaptive chosen message attack with multiple messages
signed using a given key. (Although each note uses a different re-randomized key pair, the same original key pair
can be re-randomized for multiple notes, and also it can happen that multiple transactions spending the same
note are revealed to an adversary.)

Security requirement: Strong Unforgeability with Re-randomized Keys under adaptive Chosen Message At-
tack (SURK-CMA)

For any sk : Sig.Private, let
O : Sig.-Message x Sig.Random — Sig.Signature

be a signing oracle with state Q : 9P(Sig.Message x Sig.Signature) initialized to {} that records queried messages
and corresponding signatures.

Oy := let mutable @ < {} in (m : Sig.Message, « ¢ Sig.Random) —
leto = Sig'SignSig.RandomizePrivate(a,sk) (m)
setQ «+ QU {(m,o)}

return o : Sig.Signature.

For random sk <* Sig.GenPrivate() and vk = Sig.DerivePublic(sk), it must be infeasible for an adversary given vk and
a new instance of Og, to find (m',o’, o’) such that Sig.Validateg, ¢, qomizepublic(a’.vio) (™ 0') = L and (m’,0") & Og.Q.

23


https://zips.z.cash/protocol/sapling.pdf#abstractsigrerand

Non-normative notes:

- The randomizer and key arguments to Sig.RandomizePrivate and Sig.RandomizePublic are swapped relative to
[FKMSSS2016, section 3].

- The requirement for the identity randomizer Og;g random simplifies the definition of SURK-CMA by removing
the need for two oracles (because the oracle for original keys, called O, in [FKMSSS2016], is a special case of
the oracle for randomized keys).

- Since Sig.RandomizePrivate(a, sk) : @ ¢ Sig.Random has an identical distribution to Sig.GenPrivate(), and since
Sig.DerivePublic is a deterministic function, the combination of a re-randomized validating key and signature(s)
under that key do not reveal the key from which it was re-randomized.

- Since Sig.RandomizePrivate,, is injective and easily invertible, knowledge of Sig.RandomizePrivate(«, sk) and «
implies knowledge of sk.

4.1.6.2 Signature with Signing Key to Validating Key Monomorphism

A signature scheme with key monomorphism Sig is a signature scheme that additionally defines:

- an abelian group on signing keys, with operation & : Sig.Private x Sig.Private — Sig.Private and identity Og;

- an abelian group on validating keys, with operation ¢ ¢ Sig.Public x Sig.Public — Sig.Public and identity O,,.

such that for any sk, _, : Sig.Private, Sig.DerivePublic(sk; B sk,) = Sig.DerivePublic(sk;) 4 Sig.DerivePublic(sk,).

In other words, Sig.DerivePublic is a monomorphism (that is, an injective homomorphism) from the signing key
group to the validating key group.

For N : N¥,
N
. Hi:fki means sk; B sky B - - - B sky;

N
: Q}izlvki means vk, ¢ vky @ - - - & vky.

. . . . . O O
When N = 0 these yield the appropriate group identity, i.e. HﬂiZISki = Og and $¢:1Vki = 0.
Bsk means the signing key such that (8sk) @ sk = Og, and sk, 8 sk, means sk; B (Bsk,).
& vk means the validating key such that (¢ vk) ¢ vk = O, and vk; & vk, means vk; ¢ (& vky).
With a change of notation from p to Sig.DerivePublic, 4+ to &, and - to ¢, this is similar to the definition of a “Signature

with Secret Key to Public Key Homomorphism” in [DS2016, Definition 13], except for an additional requirement for
the homomorphism to be injective.

Security requirement:  For any sk, : Sig.Private, and an unknown sk, <* Sig.GenPrivate() chosen independently
of sky, the distribution of sk, B sk, is computationally indistinguishable from that of Sig.GenPrivate(). (Since &

n

is an abelian group operation, this implies that for n : NT, HHiZISki is computationally indistinguishable from
Sig.GenPrivate() when at least one of sk; ,, is unknown.)

417 Commitment

A commitment scheme is a function that, given a commitment trapdoor generated at random and an input, can be
used to commit to the input in such a way that:

- no information is revealed about it without the trapdoor (“hiding”); and

- given the trapdoor and input, the commitment can be verified to “open” to that input and no other ("binding”).

24


https://zips.z.cash/protocol/sapling.pdf#abstractsigmono
https://zips.z.cash/protocol/sapling.pdf#abstractcommit

A commitment scheme COMM defines a type of inputs COMM.Input, a type of commitments COMM.Output, a type
of commitment trapdoors COMM. Trapdoor, and a trapdoor generator COMM.GenTrapdoor : () & COMM.Trapdoor.

Let COMM : COMM.Trapdoor x COMM.Input — COMM.Output be a function satisfying the following security
requirements.

Security requirements:

. Computational hiding: For all z, 2" : COMM.Input, the distributions { COMM,.(z) | » & COMM.GenTrapdoor() }
and { COMM,.(z") | » & COMM.GenTrapdoor() } are computationally indistinguishable.

. Computational binding: It is infeasible to find z, 2" : COMM.Input and r," : COMM.Trapdoor such that = # '
and COMM,.(z) = COMM ., (z").

Notes:

- COMM.GenTrapdoor need not produce the uniform distribution on COMM.Trapdoor. In that case, it is incorrect
to choose a trapdoor from the latter distribution.

. If it were only feasible to find # : COMM.Input and 7, 7" : COMM.Trapdoor such that  # " and COMM,.(z) =
COMM /(x), this would not contradict the computational binding security requirement. (In fact, this is feasible

for NoteCommit>*P"€ and ValueCommit>*P""€ because trapdoors are equivalent modulo rj, and the range of a

Sapling

Saplin,
trapdoor for those algorithms is {0 .. 9fsclar 1} where 2% > ;)

Let (30revt, goprout 3preut and £,,,,e be as defined in §5.3 ‘Constants’ on p. 54.

Sprout]

Sprout
Define NoteCommit>P" Trapdoor := Bl | and NoteCommit>™°".Output := Bmere]

Sprout uses a note commitment scheme

Sprout Sprout
NoteCommit>P®"* : NoteCommit®™°" Trapdoor x BIPr | x {0, 2%ae—1} x Bléeer |

— NoteCommit>°"".Output,

instantiated in §5.4.7.1 ‘Sprout Note Commitments’ on p. 68.

Let (22" he as defined in § 5.3 ‘Constants’ on p. 54.

“scalar

Let J©, {5, and 7y be as defined in §5.4.8.3 ‘Jubjub’ on p.73.
Define:
. Saplin, .
NoteCommit>**""& Trapdoor := {0.. 2185;‘3'%—1} and NoteCommit>*P""€ Qutput := J;

. Sapling .
ValueCommit®*""8 Trapdoor := {0.. 2% —1} and ValueCommit>*"""€ Qutput := J.
Sapling uses two additional commitment schemes:

NoteCommit>*™™ : NoteCommit>*™""¢ Trapdoor x BI%) x B4 x {0..2%m_1} — NoteCommit>**™"& Qutput

. . f - —1 =1 . i
Sapling . \/alueCommit>*P""8 Trapdoor x (-~ .. 5=} — ValueCommit>*"""€ Output

ValueCommit 3 3

Sapling -

NoteCommit>**"" is instantiated in §5.4.7.2 ‘Windowed Pedersen commitments’ on p.69, and ValueCommit is

instantiated in §5.4.7.3 ‘Homomorphic Pedersen commitments (Sapling)’ on p. 69.

Sapling Sapling

Non-normative note: NoteCommit and ValueCommit always return points in the subgroup J ™) However,
we declare the type of these commitment outputs to be J because they are not directly checked to be in the subgroup
SPling 5 utputs appear in Spend descriptions and Output descriptions, or when the cmu field
derived from a NoteCommit>*P""€ appears in an Output description.

when ValueCommit

25



4.1.8 Represented Group

A represented group G consists of:
- a subgroup order parameter r¢ : N*, which must be prime;
- a cofactor parameter hg : NT;
- agroup G of order hg - rg, written additively with operation + : G x G — G, and additive identity Og;
- a bit-length parameter {; : N;
- arepresentation function reprg : G — B} and an abstraction function abstg ¢ B! - Gu {1}, such that

abstg is a left inverse of repr, i.e. for all P € G, abstg (reprg (P)) = P.

Note: Ideally, we would also have that for all S not in the image of reprg;, abstg (.S) = L. This may not be true in all
cases, i.e. there can be non-canonical encodings P« such that repr (abstg (P*)) # Px.

Define G" as the order-rg subgroup of G, which is called a represented subgroup. Note that this includes Og. For
the set of points of order rg (which excludes Og), we write G"~.

Define GY) := {reprg(P) : Blte] | P € G"}. (This intentionally excludes non-canonical encodings if there are any.)
For G : G we write —G for the negation of G, such that (—G) + G = Og. We write G — H for G + (—H).

We also extend the Z notation to addition on group elements.

For G : G and k : Z we write [k] G for scalar multiplication on the group, i.e.

Z;G, ifk>0

k

Zi:l(_G)7 otherwise.

k]G :=

For G': G and a : I, , we may also write [a] G meaning [a mod r¢] G as defined above. (This variant is not defined
for fields other than , )

419 Coordinate Extractor

A coordinate extractor for a represented group G is a function Extract e ¢ G" = T for some type T'.

c"

Note:  Unlike the representation function reprg, Extract «» need not have an efficiently computable left inverse.

4.110 Group Hash

> @
Given a represented subgroup G, a family of group hashes into the subgroup, denoted GroupHash® , consists of:

®
- a type GroupHash® .URSType of Uniform Random Strings;
@
. atype GroupHash® .Input of inputs;
(r) G () -
- a function GroupHashG s GroupHash™ .URSType x GroupHashG JInput — G".

In §5.4.8.5 ‘Group Hash into Jubjub’ on p.75, we instantiate a family of group hashes into the Jubjub curve defined
by §5.4.8.3 ‘Jubjub’ on p.73.

&
Security requirement:  For a randomly selected URS : GroupHash® .URSType, it must be reasonable to model

®
GroupHashS”RS (restricted to inputs for which it does not return L) as a random oracle.

26


https://zips.z.cash/protocol/sapling.pdf#abstractgroup
https://zips.z.cash/protocol/sapling.pdf#abstractextractor
https://zips.z.cash/protocol/sapling.pdf#abstractgrouphash

Non-normative notes:

- Grou pHasth* is used to obtain generators of the Jubjub curve for various purposes: the bases G>*"" and
#{°*P'"8 ysed in Sapling key generation, the Pedersen hash defined in §5.4.1.7 ‘Pedersen Hash Function’ on
p.59, and the commitment schemes defined in §5.4.7.2 ‘Windowed Pedersen commitments’ on p.69 and in
§5.4.7.3 ‘Homomorphic Pedersen commitments (Sapling)’ on p. 69.

The security property needed for these uses can alternatively be defined in the standard model as follows:

®
Discrete Logarithm Independence: For a randomly selected member GroupHash(S’RS of the family, it is infeasi-

(r) 7
ble to find a sequence of distinct inputsm,_,, : GroupHash® Input™ and a sequence of nonzero z; ,, : F,fﬁ[ g

n ()
such that Zi:l([mi] GroupHashE’RS(mi)) = Og.

- Under the Discrete Logarithm assumption on G, a random oracle almost surely satisfies Discrete Logarithm
Independence. Discrete Logarithm Independence implies collision resistance, since a collision (my, m,) for

™
Grou pHash(S’RS trivially gives a discrete logarithm relation with z; = 1 and xy = —1.

()= . )
. GroupHash” * is used in §5.4.1.6 ‘DiversifyHash>*"""8 Hash Function’ on p.57 to instantiate DiversifyHash>?P'"®
We do not know how to prove the Unlinkability property defined in that section in the standard model, but in
(r)*
amodel where GroupHash’ ~ (restricted to inputs for which it does not return L) is taken as a random oracle,
it is implied by the Decisional Ditfie-Hellman assumption on J ®,
- URS is a Uniform Random String; we chose it verifiably at random (see § 5.9 ‘Randomness Beacon’ on p. 83),

after fixing the concrete group hash algorithm to be used. This mitigates the possibility that the group hash
algorithm could have been backdoored.

4.1.11 Represented Pairing

A represented pairing PAIR consists of:

- a group order parameter rp,;, : N* which must be prime;

- two represented subgroups PA]IR?:)Q, both of order rp,g;

- agroup IF’A]IRS:) of order rp,,, written multiplicatively with operation - ¢ IP’A]I]RS:) X PAHR%’:) — IP’A]IR,(;:) and group

identity 1p,p;

- three generators Pp,y, of ]P’A]HRY)Q r respectively;

- a pairing function ép,y, : PR x Pame{’) — Pae! satisfying:

- (Bilinearity) foralla,b: F:, P : Par)”, and Q : PARY, ép,([a] P, [b] Q) = épue(P, Q)% and

- (Nondegeneracy) there does not exist P : PA]IRY)* such that for all @ : ]PMRS"), epam (P, Q)= 1pp.

4112 Zero-Knowledge Proving System
A zero-knowledge proving system is a cryptographic protocol that allows proving a particular statement, dependent
on primary and auxiliary inputs, in zero knowledge — that is, without revealing information about the auxiliary

inputs other than that implied by the statement. The type of zero-knowledge proving system needed by Zcash is a
preprocessing zk-SNARK [BCCGLRT2014].

27


https://zips.z.cash/protocol/sapling.pdf#abstractpairing
https://zips.z.cash/protocol/sapling.pdf#abstractzk

A preprocessing zk-SNARK instance ZK defines:
- a type of zero-knowledge proving keys, ZK.ProvingKey;
- a type of zero-knowledge verifying keys, ZK VerifyingKey;
- atype of primary inputs ZK.Primarylnput;
- atype of auxiliary inputs ZK.Auxiliarylnput;
- atype of zk-SNARK proofs ZK.Proof;
- atype ZK.Satisfyinglnputs C ZK.Primarylnput x ZK.Auxiliarylnput of inputs satisfying the statement;
- arandomized key pair generation algorithm ZK.Gen : () & ZK.ProvingKey x ZK.VerifyingKey;
- a proving algorithm ZK.Prove : ZK.ProvingKey x ZK.Satisfyinglnputs — ZK.Proof;
- averifying algorithm ZK.Verify : ZK.VerifyingKey x ZK.Primarylnput x ZK.Proof — B;

The security requirements below are supposed to hold with overwhelming probability for (pk, vk) <& ZK.Gen().

Security requirements:
- Completeness: An honestly generated proof will convince a verifier: for any (z,w) € ZK.Satisfyinglnputs, if
ZK.Prove, (z,w) outputs 7, then ZK.Verify,, (z,7) = 1.

- Knowledge Soundness: For any adversary A able to find an = : ZK.Primarylnput and proof = : ZK.Proof
such that ZK.Verify,, (z,7) = 1, there is an efficient extractor £, such that if £,(vk, pk) returns w, then the
probability that (z, w) ¢ ZK.Satisfyinglnputs is insignificant.

- Statistical Zero Knowledge: An honestly generated proof is statistical zero knowledge. That is, there is a
feasible stateful simulator S such that, for all stateful distinguishers D, the following two probabilities are not
significantly different:
k,vk) & ZK.G k,vk) & S

(pk,vi) en() (z,w) € ZK.Satisfyinglnputs (pk,vk) < S0

(z,w) & D(pk,vk) and Pr (z,w) & D(pk,vk)

R D(m =1 R
7 <= ZK.Provey (z, w) m < S(x)

(z,w) € ZK.Satisfyinglnputs
r
D(m) =1

P

These definitions are derived from those in [BCTV2014b, Appendix C|, adapted to state concrete security for a fixed
circuit, rather than asymptotic security for arbitrary circuits. (ZK.Prove corresponds to P, ZK.Verify corresponds
to V, and ZK.Satisfyinglnputs corresponds to R in the notation of that appendix.)

The Knowledge Soundness definition is a way to formalize the property that it is infeasible to find a new proof
mwhere ZK.Verify,, (z, 7) = 1 without knowing an auxiliary input w such that (z, w) € ZK.Satisfyinglnputs. Note
that Knowledge Soundness implies Soundness — i.e. the property that it is infeasible to find a new proof = where
ZK.Verify,, (z,m) = 1 without there existing an auxiliary input w such that (z, w) € ZK.SatisfyingInputs.

Non-normative notes:

- The above properties do not include nonmalleability [DSDCOPS2001], and the design of the protocol using
the zero-knowledge proving system must take this into account.

- The terminology used in this specification is that we “validate” signatures, and “verify” zk-SNARK proofs.

Zcash uses two proving systems:

- BCTV14 (§5.4.9.1 ‘BCTV14’ on p.76) is used with the BN-254 pairing (§5.4.8.1 ‘BN-254’ on p.70), to prove
and verify the Sprout joinSplit statement (§4.15.1 ‘JoinSplit Statement (Sprout)’ on p.43) before Sapling
activation.

- Groth16 (§5.4.9.2 ‘Groth16’ on p. 77) is used with the BLS12-381 pairing (§ 5.4.8.2 ‘BLS12-381" on p.72), to prove
and verify the Sapling Spend statement (§4.15.2 ‘Spend Statement (Sapling)’ on p.44) and Output statement
(§4.15.3 ‘Output Statement (Sapling)’ on p.45). It is also used to prove and verify the JoinSplit statement after
Sapling activation.

28



These specializations are:

- ZKJoinSplit for the Sprout JoinSplit statement (with BCTV14 and BN-254, or Groth16 and BLS12-381);

- ZKSpend for the Sapling Spend statement;

- ZKOutput for the Sapling Output statement.
We omit key subscripts on ZKJoinSplit.Prove and ZKJoinSplit.Verify, taking them to be either the BCTV14 proving
key and verifying key defined in §5.7 ‘BCTV14 zk-SNARK Parameters’ on p. 83, or the sprout-groth16.params

Groth16 proving key and verifying key defined in §5.8 ‘Groth16 zk-SNARK Parameters’ on p. 83, according to
whether the proof appears in a block before or after Sapling activation.

We also omit subscripts on ZKSpend.Prove, ZKSpend.Verify, ZKOutput.Prove, and ZKOutput.Verify, taking them to be
the relevant Groth16 proving keys and verifying keys defined in § 5.8 ‘Groth16 zk-SNARK Parameters’ on p. 83.

4.2 Key Components

4.21 Sprout Key Components

Let £, be as defined in § 5.3 ‘Constants’ on p. 54.
Let PRF*"" be a Pseudo Random Function, instantiated in §5.4.2 ‘Pseudo Random Functions’ on p. 61.

Let KA be a key agreement scheme, instantiated in § 5.4.4.1 ‘Sprout Key Agreement’ on p. 62.

A new Sprout spending key a is generated by choosing a bit sequence uniformly at random from Blta].

apk: SKenc and pke,c are derived from ag as follows:
dd
ap := PRF2(0)
S .
Skenc := KA FormatPrivate(PRF32" (1))
Pkene 1= KA " DerivePublic(skenc, KA. Base).

4.2.2 Sapling Key Components

Let {pRrexpand: Lsk- éﬁlipli“gi ok and ¢4 be as defined in § 5.3 ‘Constants’ on p. 54.

)=
Let J, J©*, 39, repry, and 7y be as defined in §5.4.8.3 ‘Jubjub’ on p.73, and let FindGroupHash’  be as defined in
§5.4.8.5 ‘Group Hash into Jubjub’ on p.75.

Let PRF®®™ and PRF°*S*P"e instantiated in §5.4.2 ‘Pseudo Random Functions’ on p.6l, be Pseudo Random
Functions.

Let KA instantiated in §5.4.4.3 ‘Sapling Key Agreement’ on p.63, be a key agreement scheme.

Let CRH", instantiated in §5.4.1.5 ‘CRH"* Hash Function’ on p.57, be a hash function.

Let DiversifyHash>*"'"™ instantiated in §5.4.1.6 ‘DiversifyHash>**""8 Hash Function’ on p.57, be a hash function.

Let SpendAuthSig®*" instantiated in § 5.4.6.1 ‘Spend Authorization Signature (Sapling)’ on p. 68, be a signature
scheme with re-randomizable keys.

Let LEBS20SP : (¢ : N) x Bl — Byl=line®/®)] and LEOS2IP : (¢ : N| £mod 8 = 0) x BY/® 5 {0..2°~1} be as
defined in § 5.2 Integers, Bit Sequences, and Endianness’ on p.53.

i ()=
Define H°*""" .— FindGroupHash’  (“Zcash_H_",“").

Define ToScalar®®"™(z; : BY!‘ewreons/®l) .= LEOS2IP,, (z) (mod ry).

29


https://zips.z.cash/protocol/sapling.pdf#keycomponents
https://zips.z.cash/protocol/sapling.pdf#sproutkeycomponents
https://zips.z.cash/protocol/sapling.pdf#saplingkeycomponents

A new Sapling spending key sk is generated by choosing a bit sequence uniformly at random from B,

From this spending key, the Spend authorizing key ask : IF,. , the proof authorizing key nsk : F, , and the outgoing
viewing key ovk : BY\“*/®l are derived as follows:

ask := ToScalar>®""8(PRFSP™ ([0]))
nsk := ToScaIarsap”ng(PRF:EPa"d([1]))
ovk := truncate(y_, /s) (PRFEP2M([2]))

If ask = 0, discard this key and repeat with a new sk.

in|

ak : JO% nk : J, and the incoming viewing key ivk ¢ {0 .. ZZ?VQKPI - 1} are then derived as:
ak := SpendAuthSig®>*P""€ DerivePublic(ask)
nk := [nsk] 7 Sapling
ivk := CRH" (repry(ak), repry(nk)).

If ivk = 0, discard this key and repeat with a new sk.

As explained in § 3.1 ‘Payment Addresses and Keys’ on p.12, Sapling allows the efficient creation of multiple di-
versified payment addresses with the same spending authority. A group of such addresses shares the same full
viewing key and incoming viewing key .

To create a new diversified payment address given an incoming viewing key ivk, repeatedly pick a diversifier d

uniformly at random from B%! until the diversified base g, = DiversifyH ash>*'"&(d) is not L. Then calculate the
diversified transmission key pky:

pkq := KA>P'" DerivePublic(ivk, g4).
The resulting diversified payment address is (d : B!, pky ¢ KAS*P'"e pyblicPrimeSubgroup).

For each spending key, there is also a default diversified payment address with a “random-looking” diversifier.
This allows an implementation that does not expose diversified addresses as a user-visible feature, to use a default
address that cannot be distinguished (without knowledge of the spending key) from one with a random diversifier
as above. Note however that the zcashd wallet picks diversifiers as in [ZIP-32], rather than using this procedure.

Let first s (BY - TU{L}) - TU{L} be as defined in §5.4.8.5 ‘Group Hash into Jubjub’ on p.75. Define:

1, if DiversifyHash®®"¢(d) = 1

CheckDiversifier(d ¢ IB%[M) = i
d, otherwise

DefaultDiversifier(sk : Bl := first(i : BY CheckDiversifier(truncate(gd/s)(PRF::pand([?), N ER T {1}).

—256.

For a random spending key, DefaultDiversifier returns L with probability approximately 27°; if this happens,

discard the key and repeat with a different sk.

Notes:

- The protocol does not prevent using the diversifier d to produce “vanity " addresses that start with a meaningful
string when encoded in Bech32 (see §5.6.3.1 ‘Sapling Payment Addresses’ on p.81). Users and writers of
software that generates addresses should be aware that this provides weaker privacy properties than a
randomly chosen diversifier, since a vanity address can obviously be distinguished, and might leak more
information than intended as to who created it.

- Similarly, address generators MAY encode information in the diversifier that can be recovered by the recipient
of a payment to determine which diversified payment address was used. It is RECOMMENDED that such
diversifiers be randomly chosen unique values used to index into a database, rather than directly encoding
the needed data.

30



Non-normative notes:

. Assume that PRF®P is a PRF with output range BY!‘rreen/8l \yhere 2o is Jarge compared to ry.
Define f : B x BYYl — F, by £, (t) := ToScalar*P"8(PRFEP*™ (1)).

[ is also a PRF since LEOS2IP,,_  : By ferreand/ 8l _ {0.. 2%Frrewnd_1} is injective; the bias introduced by
reduction modulo 7y is small because § 5.3 ‘Constants’ on p. 54 defines {pgrpexpand s 512, while ry has length 252
bits. It follows that the distribution of ask, i.e. PRFE®2"([0]) : sk & B/, is computationally indistinguishable
from SpendAuthSig>*P""€ GenPrivate() defined in §5.4.6.1 ‘Spend Authorization Signature (Sapling’ on p.68.

. The distribution of nsk, i.e. ToScalar™™""&(PRFSP™ ([1])) : sk & Bl is computationally indistinguishable
from the uniform distribution on F,. . Since nsk : F, + repr;([nsk] H>2Pine JS:)) is bijective, the distribution of

repr;(nk) will be computationally indistinguishable from uniform on J$ (the keyspace of PRF"P"e).

4.3 JoinSplit Descriptions

A JoinSplit transfer, as specified in § 3.5 ‘JoinSplit Transfers and Descriptions’ on p.16, is encoded in transactions
as a JoinSplit description.

Each transaction includes a sequence of zero or more JoinSplit descriptions. When this sequence is non-empty,
the transaction also includes encodings of a JoinSplitSig public validating key and signature.

Let /pProut 9Pt fe g, N9, N™, and MAX_MONEY be as defined in §5.3 ‘Constants’ on p. 54.
Let hSigCRH be as defined in §4.1.1 ‘Hash Functions’ on p.19.

Let NoteCommit>™*" be as defined in §4.1.7 ‘Commitment’ on p.24.

Let KASP®" be as defined in §4.1.4 ‘Key Agreement’ on p.21.
Let Sym be as defined in § 4.1.3 ‘Symmetric Encryption’ on p. 20.
Let ZKJoinSplit be as defined in §4.1.12 Zero-Knowledge Proving System’ on p.27.

. . . : Id t  cold
A JoinSplit description comprises (Vpub: Vpub » rtoProut nf{ o, cM* Xnew, epk, randomSeed, h, L eio, Tz joinsplits C1 e )
where

. vg'fb : {0.. MAX_MONEY} is the value that the JoinSplit transfer removes from the transparent transaction

value pool;

new

* Vpub ¢ 10.. MAX_MONEY} is the value that the JoinSplit transfer inserts into the transparent transaction value
pool;

Sprout
. rt®Pout . Bl is an anchor, as defined in §3.3 ‘The Block Chain’ on p. 15, for the output treestate of either

a previous block, or a previous JoinSplit transfer in this transaction.

Spvout] [Nold ]

. nf‘l"_‘?No.d : Bléeer is the sequence of nullifiers for the input notes;

- em®ew : NoteCommit™ . Qutput™ ! is the sequence of note commitments for the output notes;

- epk : KAP®* Public is a key agreement public key, used to derive the key for encryption of the transmitted
notes ciphertext (§4.16 In-band secret distribution (Sprout) on p.46);

- randomSeed : Bl is a seed that must be chosen independently at random for each JoinSplit description;
Sprout; rold
]

N L D SB[ZPRF IN

1N is a sequence of tags that bind hg;, to each ay of the input notes;

- TzKkJoinsplit ¢ ZKJoinSplit.Proof is a zk proof with primary input (rt N cm??ylvvnew,vg{f'b, Voub > Nsigr N o)

for the JoinSplit statement defined in §4.15.1 ‘JoinSplit Statement (Sprout)’ on p.43 (this is a BCTV14 proof
before Sapling activation, and a Groth16 proof after Sapling activation);

- € e £ Sym.CIN

S t Id
prou ’ mc<1>

new]

is a sequence of ciphertext components for the encrypted output notes.

31


https://zips.z.cash/protocol/sapling.pdf#joinsplitdesc

The ephemeralKey and encCiphertexts fields together form the transmitted notes ciphertext.

The value hg, is also computed from randomSeed, nf‘;l“‘jNou, and the joinSplitPubKey of the containing transaction:
hs;z := hSigCRH(randomSeed, nf‘;'fNoud,joinSplitPubKey).

Consensus rules:

- Elements of a JoinSplit description MUST have the types given above (for example: 0 < vglfb < MAX_MONEY
and 0 < vy < MAX_MONEY).

- The proof 77k jeinspit MUST be valid given a primary input formed from the relevant other fields and hg;, —i.e.

. . . Sprout old new old new
ZKJomSlet.Verlfy((rt ,NF5 o5 €M e, Vi, Viub » Nsig hlnNold)’WZKJoinSp“t) =1

- Either v, or viel MUST be zero.

4.4 Spend Descriptions

A Spend transter, as specified in § 3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’ on p.16, is
encoded in transactions as a Spend description.

Each transaction includes a sequence of zero or more Spend descriptions.
Each Spend description is authorized by a signature, called the spend authorization signature.
Let (32Pi"8 and CpREnfsapling D€ as defined in §5.3 ‘Constants’ on p. 54.

Let Oy, absty, repr;, and hj be as defined in §5.4.8.3 ‘Jubjub’ on p.73.
Let ValueCommit>®""€ Output be as defined in §4.1.7 ‘Commitment’ on p. 24.

Let SpendAuthSig>*"8 be as defined in §4.13 ‘Spend Authorization Signature (Sapling)’ on p.41.
Let ZKSpend be as defined in §4.1.12 Zero-Knowledge Proving System’ on p.27.

Sapling

A Spend description comprises (cv, rt ,nf, rk, TzKspends SPendAuthSig) where

- cv ¢ ValueCommit>*™™™ Qutput is the value commitment to the value of the input note;

Sapling

. rt5Pne . gl is an anchor, as defined in §3.3 ‘The Block Chain’ on p.15, for the output treestate of a
previous block;

- nf : Blrrsaing/S] is the nullifier for the input note;
- rk : SpendAuthSig®>*"€ Public is a randomized validating key that should be used to validate spendAuthSig;

- Tzkspend ¢ ZKSpend.Proof is a zk-SNARK proof with primary input (cv, rt>?P"€ nf rk) for the Spend statement
defined in §4.15.2 ‘Spend Statement (Sapling)’ on p. 44;

. spendAuthSig : SpendAuthSig>*"™"8 Signature is a spend authorization signature, validated as specified in §4.13
‘Spend Authorization Signature (Sapling)’ on p.41.

Consensus rules:
- Elements of a Spend description MUST be valid encodings of the types given above.
- cvand rk MUST NOT be of small order, i.e. [hj] cv MUST NOT be Oy and [h;] rk MUST NOT be O;.
- The proof mzkgpend MUST be valid given a primary input formed from the other fields except spendAuthSig —
ie. ZKSpend.Verify((cv7 rtsa'[’“"g7 nf, rk), WZKSpend) =1

- Let SigHash be the SIGHASH transaction hash of this transaction, not associated with an input, as defined in
§4.9 ‘SIGHASH Transaction Hashing’ on p.37 using SIGHASH_ALL.

The spend authorization signature MUST be a valid SpendAuthSig>*"™™ signature over SigHash using rk as the
validating key — i.e. SpendAuthSig>*"'"€ Validate, (SigHash, spendAuthSig) = 1.

32


https://zips.z.cash/protocol/sapling.pdf#spenddesc

Non-normative notes:

- The check that rk is not of small order is technically redundant with a check in the Spend circuit, but it is
simple and cheap to also check this outside the circuit.

- The rule that cv and rk MUST not be small-order has the effect of also preventing non-canonical encodings
of these fields. That is, it is necessarily the case that repr;(abst;(cv)) = cv and repry (abst;(rk)) = rk.

4.5 Output Descriptions

An Output transfer, as specified in § 3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’ on p.16, is
encoded in transactions as an Output description.

Each transaction includes a sequence of zero or more Output descriptions. There are no signatures associated
with Output descriptions.

Let (72PI"8 be as defined in §5.3 ‘Constants’ on p. 54.

Let Oy, absty, repr;, and hy be as defined in §5.4.8.3 ‘Jubjub’ on p.73.

Let ValueCommit>**"& Qutput be as defined in §4.1.7 ‘Commitment’ on p.24.

Let KAS*P"€ e as defined in §4.1.4 ‘Key Agreement’ on p.21.

Let Sym be as defined in §4.1.3 ‘Symmetric Encryption’ on p. 20.

Let ZKOutput be as defined in § 4.1.12 Zero-Knowledge Proving System’ on p.27.

enc out

An Output description comprises (cv, cm,,, epk, C°, C°™, Tzkoutput) Where

- cv : ValueCommit®>*"™ Qutput is the value commitment to the value of the output note;
Sapling
]

- cm, ¢ Blwewe] is the result of applying ExtractJ(r) (defined in §5.4.8.4 ‘Coordinate Extractor for Jubjub’ on p.74)
to the note commitment for the output note;

- epk : KA®P'"8 pyblic is a key agreement public key, used to derive the key for encryption of the transmitted
note ciphertext (§4.17 ‘In-band secret distribution (Sapling)’ on p.47);

- C*" : Sym.C is a ciphertext component for the encrypted output note;

- C*" ¢ Sym.C is a ciphertext component that allows the holder of the outgoing cipher key (which can be
derived from a full viewing key) to recover the recipient diversified transmission key pky and the ephemeral
private key esk, hence the entire note plaintext;

- Tzkoutput © ZKOutput.Proof is a zk-SNARK proof with primary input (cv,cm,,, epk) for the Output statement
defined in §4.15.3 ‘Output Statement (Sapling)’ on p.45.

Consensus rules:
- Elements of an Output description MUST be valid encodings of the types given above.
- cv and epk MUST NOT be of small order, i.e. [h;] cv MUST NOT be Oy and [hj] epk MUST NOT be 0.
- The proof mzkoutpu: MUST be valid given a primary input formed from the other fields except C*" and C*** —
i.e. ZKOutput.Verify((cv, cm,,, epk), Tzkoutput) = 1.

Non-normative note: The rule that cv and epk MUST not be small-order, has the effect of also preventing non-
canonical encodings of these fields. That is, it is necessarily the case that repry (abst;(cv)) = cv and repr; (abst;(epk)) =
epk.

33


https://zips.z.cash/protocol/sapling.pdf#outputdesc

4.6 Sending Notes
4.6.1 Sending Notes (Sprout)

In order to send Sprout shielded value, the sender constructs a transaction containing one or more joinSplit
descriptions.

Let JoinSplitSig be as specified in §4.1.6 ‘Signature’ on p. 22.

Let NoteCommit>™"* be as specified in §4.1.7 ‘Commitment’ on p. 24.

Let £s..q and Ef’ppm”t be as specified in § 5.3 ‘Constants’ on p. 54.

Sending a fransaction containing JoinSplit descriptions involves first generating a new JoinSplitSig key pair:
joinSplitPrivKey <* JoinSplitSig.GenPrivate()
joinSplitPubKey := JoinSplitSig.DerivePublic(joinSplitPrivKey).

For each JoinSplit description, the sender chooses randomSeed uniformly at random on Bl‘«! and selects the input

notes. At this point there is sufficient information to compute hg;, as described in the previous section. The sender
also chooses @ uniformly at random on B!» | Then it creates each output note with index i : {1..N""}

. Choose uniformly random rcm; <& NoteCommit>™°"".GenTrapdoor ().

- Compute p; = PRF{, (i, hg;g).

- Compute cm; = NoteCommitfcpr::“t(apm,vi, ;).

- Let np; = (0x00, v;, p;, rcm;, memo;).
np, e are then encrypted to the recipient transmission keys pke,. 1 x, giving the transmitted notes ciphertext
(epk, C{" ), as described in §4.16 Tn-band secret distribution (Sprout) on p.46.

In order to minimize information leakage, the sender SHOULD randomize the order of the input notes and of the
output notes. Other considerations relating to information leakage from the structure of transactions are beyond
the scope of this specification.

After generating all of the JoinSplit descriptions, the sender obtains dataToBeSigned : By ™ as described in §4.10
‘Non-malleability (Sprout)’ on p. 38, and signs it with the private JoinSplit signing key:

joinSplitSig < JoinSplitSig.SignjoinSplitPrivkey(dataToBeSigned)

Then the encoded transaction including joinSplitSig is submitted to the peer-to-peer network.

The facility to send to Sprout addresses is OPTIONAL for a particular node or wallet implementation.

4.6.2 Sending Notes (Sapling)

In order to send Sapling shielded value, the sender constructs a transaction with one or more Output descriptions.

52P"g 5 nd NoteCommit>*"™8 be as specified in §4.1.7 ‘Commitment’ on p. 24.

Let ValueCommit
Let KA>*'"8 he as specified in §4.1.4 ‘Key Agreement’ on p. 21.

Let DiversifyHash>*P""€ be as specified in §4.11 ‘Hash Functions’ on p.19.

Let ToScalar"®™""€ be as specified in §4.2.2 ‘Sapling Key Components’ on p. 29.

Let repr; and r be as defined in §5.4.8.3 “Jubjub’ on p.73.

34


https://zips.z.cash/protocol/sapling.pdf#send
https://zips.z.cash/protocol/sapling.pdf#sproutsend
https://zips.z.cash/protocol/sapling.pdf#saplingsend

Let ovk be a Sapling outgoing viewing key that is intended to be able to decrypt this payment. This may be one of:
- the outgoing viewing key for the address (or one of the addresses) from which the payment was sent;
- the outgoing viewing key for all payments associated with an “account”, to be defined in [ZIP-32];
- L, if the sender should not be able to decrypt the payment once it has deleted its own copy:.

Note: Choosingovk = L is useful if the sender prefers to obtain forward secrecy of the payment information with
respect to compromise of its own secrets.

For each Output description, the sender selects a value v : {0.. MAX_MONEY} and a destination Sapling shielded
payment address (d, pky), and then performs the following steps:
Check that pky is of type KA PyblicPrimeSubgroup, i.e. it MUST be a valid ctEdwards curve point on the
Jubjub curve (as defined in § 5.4.8.3 Jubjub’ on p.73), and [r}] pky = Oj.
Calculate gy = DiversifyHash>*"(d) and check that g4 # L.
Choose a uniformly random commitment trapdoor rcv & ValueCommit>*""& GenTrapdoor ().
Choose a uniformly random ephemeral private key esk <& KAS*™" Private \ {0}.
Choose a uniformly random commitment trapdoor rcm & NoteCommit.GenTrapdoor().
Set rcm = I2LEOSP256(rCm).
Let cv = ValueCommito2Pi"g(y).
Letcm = NoteCommitfcarf:“"g(reprJ(gd)7 repry(pkq), v).
Let np = (leadByte, d, v, rcm, memo).
Encrypt np to the recipient diversified transmission key pkq with diversified base g4, and to the outgoing
viewing key ovk, giving the transmitted note ciphertext (epk, C*"°, C°""). This procedure is described in §4.17.1
‘Encryption (Sapling)’ on p.48; it also uses cv and cmu to derive ock, and takes esk as input.

Generate a proof mzkoutput for the Output statement in §4.15.3 ‘Output Statement (Sapling)’ on p.45.

enc out
Return (cv, cm, epk, C™, C™, zk0utput)-

In order to minimize information leakage, the sender SHOULD randomize the order of Output descriptions in a
transaction. Other considerations relating to information leakage from the structure of transactions are beyond the
scope of this specification. The encoded transaction is submitted to the peer-to-peer network.

4.7 Dummy Notes
4.71 Dummy Notes (Sprout)

The fields in a JoinSplit description allow for N°® input notes, and N" output notes. In practice, we may wish to
encode a JoinSplit transfer with fewer input or output notes. This is achieved using dummy notes.

Let £, and (p?" be as defined in §5.3 ‘Constants’ on p. 54.
Let PRF"™P! be as defined in §4.1.2 ‘Pseudo Random Functions’ on p.19.
Let NoteCommit>™*" be as defined in §4.1.7 ‘Commitment’ on p.24.

A dummy Sprout input note, with index i in the JoinSplit description, is constructed as follows:

- Generate a new uniformly random spending key a;'fi & Bl and derive its paying key agllf"i.
. Setv = 0.
Sprout old

- Choose uniformly random p%¢ & B= | and rem & NoteCommit>*°**. GenTrapdoor().
. Compute nf?' = PRF:I;’_’“’“t(p‘Z'd).

- Let path; be a dummy Merkle path for the auxiliary input to the JoinSplit statement (this will not be checked).
- When generating the JoinSplit proof, set enforceMerklePath; to 0.

A dummy Sprout output note is constructed as normal but with zero value, and sent to a random shielded payment
address.

35


https://zips.z.cash/protocol/sapling.pdf#dummynotes
https://zips.z.cash/protocol/sapling.pdf#sproutdummynotes

4.7.2 Dummy Notes (Sapling)

In Sapling there is no need to use dummy notes simply in order to fill otherwise unused inputs as in the case of a
JoinSplit description; nevertheless it may be useful for privacy to obscure the number of real shielded inputs from
Sapling notes.

Let £y be as defined in § 5.3 ‘Constants’ on p. 54.
Let ValueCommit>**"& and NoteCommit>*"""€ be as defined in §4.1.7 ‘Commitment’ on p. 24.

Let DiversifyHash>*P""€ be as specified in §4.11 ‘Hash Functions’ on p.19.

Let ToScalar®®™"€ be as specified in §4.2.2 ‘Sapling Key Components’ on p. 29.
Let repry and 7y be as defined in §5.4.8.3 Jubjub’ on p. 73.

Let PRF"®%P" be a5 defined in §4.1.2 ‘Pseudo Random Functions’ on p.19.

Let NoteCommit>*"""€ be as defined in §4.1.7 ‘Commitment’ on p. 24.

A Spend description for a dummy Sapling input note is constructed as follows:
. Choose uniformly random sk & Bl

- Generate a full viewing key (ak, nk) and a diversified payment address (d, pky) for sk as described in §4.2.2
‘Sapling Key Components’ on p. 29.

- Letv =0and pos = 0.
. Choose uniformly random rev & ValueCommit>**"& GenTrapdoor ().
- Choose uniformly random rseed By

- Derive rcm = ToScaIarsapli"g(PRFeXpa"d([5])).

rseed

. Letcv = VaIueCommitff\,p“ng(V)A

- Let cm = NoteCommit>2>"™(repr;(gy), repry(pkq), v).
- Let px = reprJ(MixingPedersenHash(cm, pos)).
- Let nkx = repry(nk).
fSapli
- Let nf = PRF, 22" (px).
- Construct a dummy Merkle path path for use in the auxiliary input to the Spend statement (this will not be
checked, because v = 0).

As in Sprout, a dummy Sapling output note is constructed as normal but with zero value, and sent to a random
shielded payment address.

4.8 Merkle Path Validity

Let MerkleDepth be MerkleDepth®™"* for the Sprout note commitment tree, or MerkleDepth®**" for the Sapling
note commitment tree. These constants are defined in § 5.3 ‘Constants’ on p. 54.

Similarly, let MerkleCRH be MerkleCRH®P"* for Sprout, or MerkleCRH>*"'"" for Sapling.

The following discussion applies independently to the Sprout and Sapling note commitment trees.
Each node in the incremental Merkle tree is associated with a hash value, which is a bit sequence.

The Jayer numbered h, counting from layer 0 at the root, has 2" nodes with indices 0 to 2" — 1 inclusive.
Let MY be the hash value associated with the node at index i in layer h.

The nodes at layer MerkleDepth are called leaf nodes. When a note commitment is added to the tree, it occupies
the leaf node hash value MY PP for the next available i.

36


https://zips.z.cash/protocol/sapling.pdf#saplingdummynotes
https://zips.z.cash/protocol/sapling.pdf#merklepath

As-yet unused leaf nodes are associated with a distinguished hash value Uncommitted®™°"* or Uncommitted>*""". It

is assumed to be infeasible to find a preimage note n such that NoteCommitment®®°"{(n) = Uncommitted>™°"*. (No
similar assumption is needed for Sapling because we use a representation for Uncommitted®®"" that cannot occur
as an output of NoteCommitment>2*'"8)

The nodes at layers 0 to MerkleDepth — 1 inclusive are called internal nodes, and are associated with MerkleCRH
outputs. Internal nodes are computed from their children in the next layer as follows: for 0 < h < MerkleDepth and
0<i<2"

M} := MerkleCRH(M5 ™, MEEL ).

A Merkle path from leaf node MY*™P" in the incremental Merkle tree is the sequence

[ I\/I:ib”ng(h’i) for h from MerkleDepth down to 1],

where
sibling(h, 1) := ﬂoor<2meémh_h) ©1

Mz_\/lerkleDepth

Given such a Merkle path, it is possible to verify that leaf node is in a tree with a given root rt = Mg,

Note: For Sapling, Merkle hash values are specified to be encoded as bit sequences, but the root rt>2Pi"€ s encoded
for the primary input of a Spend proof as an element of I, , as specified in § A4 “The Sapling Spend circuit’ on

p.152. The Spend circuit allows inputs to MerkleCRH>2P'ne

in §A.3.4 ‘Merkle path check’ on p.148.

at each node to be non-canonically encoded, as specified

4.9 SIGHASH Transaction Hashing

Bitcoin and Zcash use signatures and/or non-interactive proofs associated with transaction inputs to authorize
spending. Because these signatures or proofs could otherwise be replayed in a different transaction, it is necessary
to “bind” them to the transaction for which they are intended. This is done by hashing information about the
transaction and (where applicable) the specific input, to give a SIGHASH transaction hash which is then used for
the Spend authorization. The means of authorization differs between transparent inputs, inputs to Sprout joinSplit
transfers, and Sapling Spend transfers but for a given transaction version the same SIGHASH transaction hash
algorithm is used.

In the case of Zcash, the BCTV14 and Groth16 proving systems used are malleable, meaning that there is the
potential for an adversary who does not know all of the auxiliary inputs to a proof, to malleate it in order to create a
new proof involving related auxiliary inputs [DSDCOPS2001]. This can be understood as similar to a malleability
attack on an encryption scheme, in which an adversary can malleate a ciphertext in order to create an encryption of
a related plaintext, without knowing the original plaintext. Zcash has been designed to mitigate malleability attacks,
as described in §4.10 ‘Non-malleability (Sprout) on p.38, §4.12 ‘Balance and Binding Signature (Sapling)’ on
p-39, and §4.13 ‘Spend Authorization Signature (Sapling)’ on p.41.

To provide additional flexibility when combining spend authorizations from different sources, Bitcoin defines sev-
eral SIGHASH types that cover various parts of a transaction [Bitcoin-SigHash]. One of these types is SIGHASH_ALL,
which is used for Zcash-specific signatures, i.e. JoinSplit signatures, spend authorization signatures, and Sapling
binding signatures. In these cases the SIGHASH transaction hash is not associated with a transparent input, and so
the input to hashing excludes all of the scriptSig fields in the non-Zcash-specific parts of the transaction.

In Zcash, all SIGHASH types are extended to cover the Zcash-specific fields nJoinSplit, vJoinSplit, and if present
joinSplitPubKey. These fields are described in § 7.1 “Transaction Encoding and Consensus’ on p.85. The hash
does not cover the field joinSplitSig. After Overwinter activation, all SIGHASH types are also extended to cover
transaction fields introduced in that upgrade, and similarly after Sapling activation.

The original SIGHASH algorithm defined by Bitcoin suffered from some deficiencies as described in [ZIP-143]; in
Zcash these were addressed by changing this algorithm as part of the Overwinter upgrade.

37


https://zips.z.cash/protocol/sapling.pdf#sighash

[Pre-Overwinter] The SIGHASH algorithm used prior to Overwinter activation, i.e. for version 1 and 2 transactions,
will be defined in [ZIP-76] (to be written).

[Overwinter only, pre-Sapling] The SIGHASH algorithm used after Overwinter activation and before Sapling
activation, i.e. for version 3 transactions, is defined in [ZIP-143].

[Sapling onward] The SIGHASH algorithm used after Sapling activation, i.e. for version 4 transactions, is defined in
[Z1P-243].

410 Non-malleability (Sprout)

Let dataToBeSigned be the hash of the transaction, not associated with an input, using the SIGHASH_ALL SIGHASH
type.
In order to ensure that a JoinSplit description is cryptographically bound to the transparent inputs and outputs

corresponding to vy and vgludb, and to the other JoinSplit descriptions in the same transaction, an ephemeral

JoinSplitSig key pair is generated for each transaction, and the dataToBeSigned is signed with the private signing key
of this key pair. The corresponding public validating key is included in the transaction encoding as joinSplitPubKey.

JoinSplitSig is instantiated in §5.4.5 ‘Ed25519” on p. 64.

If nJoinSplit is zero, the joinSplitPubKey and joinSplitSig fields are omitted. Otherwise, a transaction has a
correct JoinSplit signature if and only if JoinSplitSig.Validate;oinsp1itPubkey (dataToBeSigned, joinSplitSig) = 1.

Let hg;; be computed as specified in §4.3 ‘JoinSplit Descriptions’ on p. 31.
Let PRF?* be as defined in §4.1.2 ‘Pseudo Random Functions’ on p.19.

For each i € {1..N°}, the creator of a JoinSplit description calculates h; = PRFPS, (i, hsig)-

Ask,i
The correctness of h, 4 is enforced by the JoinSplit statement given in §4.15.1 ‘JoinSplit Statement (Sprout)’ on
p.43. This ensures that a holder of all of the a:l'(dl__N
the use of the private signing key corresponding to joinSplitPubKey to sign this transaction.

.4 for every JoinSplit description in the transaction has authorized

4.11 Balance (Sprout)

In Bitcoin, all inputs to and outputs from a transaction are transparent. The total value of transparent outputs must
not exceed the total value of transparent inputs. The net value of transparent inputs minus transparent outputs is
transferred to the miner of the block containing the transaction; it is added to the miner subsidy in the coinbase
transaction of the block.

Zcash Sprout extends this by adding JoinSplit transfers. Each JoinSplit transfer can be seen, from the perspective
of the transparent transaction value pool, as an input and an output simultaneously.

old new

Voub takes value from the transparent transaction value pool and v, adds value to the transparent transaction

value pool. As a result, vg'fb is treated like an output value, whereas vy, is treated like an input value.

As defined in [ZIP-209], the Sprout chain value pool balance for a given block chain is the sum of all vglfb field

new

values for transactions in the block chain, minus the sum of all vy, fields values for transactions in the block chain.

Consensus rule: If the Sprout chain value pool balance would become negative in the block chain created as a
result of accepting a block, then all nodes MUST reject the block as invalid.

Unlike original Zerocash [BCGGMTV2014], Zcash does not have a distinction between Mint and Pour operations.
The addition of vg'fb to a JoinSplit description subsumes the functionality of both Mint and Pour.

Also, a difference in the number of real input notes does not by itself cause two JoinSplit descriptions to be
distinguishable.

38


https://zips.z.cash/protocol/sapling.pdf#sproutnonmalleability
https://zips.z.cash/protocol/sapling.pdf#joinsplitbalance

new

As stated in §4.3 ‘JoinSplit Descriptions’ on p. 31, either vg'fb or vy, MUST be zero. No generality is lost because,

if a transaction in which both v;'udb and vp,p were nonzero were allowed, it could be replaced by an equivalent

one in which min(ngdb, Vpub ) is subtracted from both of these values. This restriction helps to avoid unnecessary

distinctions between transactions according to client implementation.

412 Balance and Binding Signature (Sapling)

Sapling adds Spend transfers and Output transfers to the transparent and JoinSplit transfers present in Sprout.
The net value of Spend transfers minus Output transfers in a transaction is called the Sapling balancing value,
measured in zatoshi as a signed integer v>22"ee52Pling,

: . ‘ : . | ling .
is encoded in a transaction as the field valueBalanceSapling. For a v4 transaction, v**"*>?" is always

explicitly encoded. Transaction fields are described in § 7.1 “Transaction Encoding and Consensus’ on p. 85.

balanceSaplin
v pling

A positive Sapling balancing value takes value from the Sapling transaction value pool and adds it to the transparent
transaction value pool. A negative Sapling balancing value does the reverse. As a result, positive y?2"cS2pline

is
treated like an input to the transparent transaction value pool, whereas negative v*22"®>%"8 js treated like an
output from that pool.

As defined in [ZIP-209], the Sapling chain value pool balance for a given block chain is the negation of the sum of
all valueBalanceSapling field values for transactions in the block chain.

Consensus rule: If the Sapling chain value pool balance would become negative in the block chain created as a
result of accepting a block, then all nodes MUST reject the block as invalid.

Consistency of v?2"®>?P"€ with the value commitments in Spend descriptions and Output descriptions is enforced

by the Sapling binding signature. This signature has a dual réle in the Sapling protocol:

- To prove that the total value spent by Spend transfers, minus that produced by Output transfers, is consistent
with the v?2"<®5%P"8 feld of the transaction;

- To prove that the signer knew the randomness used for the Spend and Output value commitments, in order
to prevent Output descriptions from being replayed by an adversary in a different transaction. (A Spend
description already cannot be replayed due to its spend authorization signature.)

Instead of generating a key pair at random, we generate it as a function of the value commitments in the Spend
descriptions and Output descriptions of the transaction, and the Sapling balancing value.

Let J, 1% and ry be as defined in §5.4.8.3 Jubjub’ on p.73.

§5.4.7.3 ‘Homomorphic Pedersen commitments (Sapling)’ on p. 69 instantiates:

- - I -
ValueCommit>®"""€ : ValueCommit>*P""& Trapdoor x {(-8-=. 2=} > ValueCommit>*""8 Output;
YSeFline . 1% the value base in ValueCommit>*P™",

RSPIne . 1% the randomness base in ValueCommit>®P"e,

BindingSig>**"™ ¢, and @ are instantiated in § 5.4.6.2 ‘Binding Signature (Sapling)’ on p. 68.

§4.1.6.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on p. 24 specifies these operations and

N N
the derived notation &, Q}__l, 8, and BE"—f which in this section are to be interpreted as operating on the
prime-order subgroup of the Jubjub curve and its scalar field.

39


https://zips.z.cash/protocol/sapling.pdf#saplingbalance

Suppose that the transaction has:

Id

o . . - d . Id
- n Spend descriptions with value commitments cv{",,, committing to values v{°,, with randomness revy’,,;

- m Output descriptions with value commitments cv'®,,, committing to values vi*, with randomness revi®},

- Sapling balancing value y*2"¢>2"ng.

In a correctly constructed transaction, v*2"<*Ping — %~ 1vf'd > Vi, but validators cannot check this directly
= J=
because the values are hidden by the commitments.
Instead, validators calculate the transaction binding validating key as:
kaSapIing — CV(?ld N CVr!ew N Valuecommitgapling(vbalanceSapling).
R M

(This key is not encoded explicitly in the transaction and must be recalculated.)

. Id . .
The signer knows revi,, and revi®,,, and so can calculate the corresponding signing key as:

n m
bsk>*Pi"e . — (Bﬂ rcvfld> =] (Bﬂ rcv;ew)
i=1 =1

In order to check for implementation faults, the signer SHOULD also check that
bvk>*®""8 — BindingSig>*"""€. DerivePublic(bsk>*"").

Let SigHash be the SIGHASH transaction hash as defined in [ZIP-243] for a version 4 transaction, not associated
with an input, using the SIGHASH type SIGHASH_ALL.

A validator checks balance by validating that BindingSigsap“"g.Validatebvkswnng(SigHash, bindingSigSapling) = 1.
We now explain why this works.

A Sapling binding signature proves knowledge of the discrete logarithm bsk>*"™™ of bvk>**'""8 with respect to R>*P"
That is, bvk®*"™8 — [bsk>*Pi"€] R5%P"8 56 the value 0 and randomness bsk®>*™™ is an opening of the Pedersen
commitment bvk>*"8 — ValueCommltsapS"agﬁg(O). By the binding property of the Pedersen commitment, it is

infeasible to find another opening of thls commitment to a different value.

Similarly, the binding property of the value commitments in the Spend descriptions and Output descriptions
ensures that an adversary cannot find an opening to more than one value for any of those commitments, i.e. we
may assume that v, are determined by cv$,, and that v{*¥, are determined by cv®¥,. We may also assume, from
Knowledge Soundness of Groth16, that the Spend proofs could not have been generated without knowing revdd
(mod ry), and the Output proofs could not have been generated without knowing revi®), (mod ry).

Using the fact that ValueCommito2P"8(v) = [v] V5*P"€ & [rcv] R>*™, the expression for bvk®®P"€ above is equivalent

to:
n m m
Sapling __ old new balanceSapling Sapllng old new Sapling
bvk = Bﬂ v, |8 Hﬂ v; Bv & Hﬂ rev, |8 Hﬂ rcv; R
i=1 j=1 j=1
n m
o Sapling old new balanceSapling
VaIueCommlt  Sapine Zvi - Vi =V .
i=1 j=1
n m
Id bal li
Let V* _ ZV? _ V;ew —v alanceSap |ng'

i=1 j=1

Suppose that v =" = 0 (mod ;). Then bvk®*"8 — VaIueCommltSapllng (v**%). If the adversary were able to find

Saplmg
the discrete logarithm of this bvk®®" with respect to R>**™" say bsk (as needed to create a valid Sapling binding

signature), then (v"* bsk®*"™™) and (0, bsk’) would be distinct openings of bvk>*P™ to different values, breaking
the binding property of the value commitment scheme.

40



The above argument shows only that v = 0 (mod r;}); in order to show that v* = 0, we will also demonstrate that it

TJ2—1 . TJ2—1 }

does not overflow {—

The Spend statements (§4.15.2 ‘Spend Statement (Sapling)’ on p. 44) prove that all of v{'®, are in {0 .. 2%—1}. Simi-
larly the Output statements (§ 4.15.3 ‘Output Statement (Sapling)’ on p.45) prove that all of vi®%, are in {0.. 2%w—1}.
ybalanceSapling j5 encoded in the transaction as a signed two's complement 64-bit integer in the range {—2%% .. 2% — 1}.
{,ave is defined as 64, so v* is in the range {—m - (2°* —1) = 2% + 1. n- (2% — 1) + 2°%} The maximum transaction
size is 2 MB, and the minimum contributions of a Spend description and an Output description to transac-
tion size are 384 bytes and 948 bytes respectively, limiting n to at most floor(22399%) = 5208 and m to at most

floor (29595%%) = 2109.

This ensures that v € {—38913406623490299131842 .. 96079866507916199586728}, a subrange of {—”;1 . ”;1 b

Thus checking the Sapling binding signature ensures that the Spend transfers and Output transfers in the transaction
balance, without their individual values being revealed.

In addition this proves that the signer, knowing the H§-sum of the Sapling value commitment randomnesses,
authorized a transaction with the given SIGHASH transaction hash by signing SigHash.

Note: The spender MAY reveal any strict subset of the Sapling value commitment randomnesses to other parties
that are cooperating to create the transaction. If all of the value commitment randomnesses are revealed, that
could allow replaying the Output descriptions of the transaction.

Non-normative note:  The technique of checking signatures using a validating key derived from a sum of
Pedersen commitments is also used in the Mimblewimble protocol [Jedusor2016]. The private key bsk>*"™™ acts

as a “synthetic blinding factor”, in the sense that it is synthesized from the other blinding factors (trapdoors) rev$,

new

and rev],; this technique is also used in Bulletproofs [Dalek-notes].

413 Spend Authorization Signature (Sapling)

SpendAuthSig is used in Sapling to prove knowledge of the spending key authorizing spending of an input note. It
is instantiated in §5.4.6.1 ‘Spend Authorization Signature (Sapling)’ on p. 68.

We use SpendAuthSig>®P"" to refer to the spend authorization signature scheme for Sapling, which is instantiated
on the Jubjub curve.

Knowledge of the spending key could have been proven directly in the Spend statement, similar to the check in
§4.15.1 ‘JoinSplit Statement (Sprout)’ on p. 43 that is part of the JoinSplit statement. The motivation for a separate
signature is to allow devices that are limited in memory and computational capacity, such as hardware wallets, to
authorize a Sapling shielded Spend. Typically such devices cannot create, and may not be able to verify, zk-SNARK
proofs for a statement of the size needed using the BCTV14 or Groth16 proving systems.

The validating key of the signature must be revealed in the Spend description so that the signature can be checked
by validators. To ensure that the validating key cannot be linked to the shielded payment address or spending key
from which the note was spent, we use a signature scheme with re-randomizable keys. The Spend statement
proves that this validating key is a re-randomization of the spend authorization address key ak with a randomizer
known to the signer. The spend authorization signature is over the SIGHASH transaction hash, so that it cannot be
replayed in other transactions.

Let SigHash be the SIGHASH transaction hash as defined in [ZIP-243], not associated with an input, using the
SIGHASH type SIGHASH_ALL.

Let ask be the spend authorization private key as defined in §4.2.2 ‘Sapling Key Components’ on p. 29.

41


https://zips.z.cash/protocol/sapling.pdf#spendauthsig

For each Spend description, the signer chooses a fresh spend authorization randomizer «:

1. Choose o & SpendAuthSig®*""€ GenRandom().
Let rsk = SpendAuthSig>*"""& RandomizePrivate(, ask).
Let rk = SpendAuthSig>®"""€ DerivePublic(rsk).

Generate a proof 7 of the Spend statement (§4.15.2 ‘Spend Statement (Sapling) on p.44), with « in the
auxiliary input and rk in the primary input.

5. Let spendAuthSig = SpendAuthSig>*P"€ Sign ., (SigHash).

W N

The resulting spendAuthSig and 7 are included in the Spend description.

Note: If the spender is computationally or memory-limited, step 4 (and only step 4) MAY be delegated to a
different party that is capable of performing the zk-SNARK proof . In this case privacy will be lost to that party
since it needs ak and the proof authorizing key nsk; this allows also deriving the nk component of the full viewing
key. Together ak and nk are sufficient to recognize spent notes and to recognize and decrypt incoming notes.
However, the other party will not obtain spending authority for other transactions, since it is not able to create a
spend authorization signature by itself.

4.14 Note Commitments and Nullifiers

A transaction that contains one or more JoinSplit descriptions or Spend descriptions, when entered into the block
chain, appends to the note commitment tree with all constituent note commitments.

All of the constituent nullifiers are also entered into the nullifier set of the associated treestate. A transaction is not
valid if it would have added a nullifier to the nullifier set that already exists in the set (see § 3.8 ‘Nullifier Sets’ on
p.18).

In Sprout, each note has a p component.
In Sapling, each positioned note has an associated p value which is computed from its note commitment cm and

note position pos as follows:

p := MixingPedersenHash(cm, pos).
MixingPedersenHash is defined in §5.4.1.8 ‘Mixing Pedersen Hash Function’ on p.60.
Let PRF"°Pt and PRF"™*"""8 he as instantiated in §5.4.2 ‘Pseudo Random Functions’ on p.61.

For a Sprout note, the nullifier is derived as PRngme“t(p), where a,, is the spending key associated with the note.

For a Sapling note, the nullifier is derived as PRF">?P"8 (0,0} where nkx is a representation of the nullifier deriving
key associated with the note and px = repr;(p).

Security requirement:  For each shielded protocol, the requirements on nullifier derivation are as follows:

- The derived nullifier must be determined completely by the fields of the note, and possibly its position, in a
way that can be checked in the corresponding statement that controls spends (i.e. the joinSplit statement,
Spend statement).

- Under the assumption that p values are unique, it must not be possible to generate two notes with distinct note
commitments but the same nullifier. (See §8.4 ‘Faerie Gold attack and fix’ on p. 98 for further discussion.)

- Given a set of nullifiers of a priori unknown notes, they must not be linkable to those notes with probability
greater than expected by chance, even to an adversary with the corresponding incoming viewing keys (but
not full viewing keys), and even if the adversary may have created the notes.

42


https://zips.z.cash/protocol/sapling.pdf#commitmentsandnullifiers

4.15 Zk-SNARK Statements
4.15.1 JoinSplit Statement (Sprout)

Let fpost, €222, MerkleDepth®™°", € 1ue. Lo, €57, lrsig, N, N™" be as defined in §5.3 ‘Constants’ on p. 54.
Let PRF*" PRF"Pt PRFPX and PRF? be as defined in §4.1.2 ‘Pseudo Random Functions’ on p.19.

Let NoteCommit>™°"* be as defined in §4.1.7 ‘Commitment’ on p.24, and let Note®™°"*
as defined in § 3.2 ‘Notes’ on p.13.

and NoteCommitment Pt be

A valid instance of a JoinSplit statement, Tz joinspiit- @ssures that given a primary input:

Sprou
(rtSP"OUt . B[eMperklz]

b
Sprout old
nf?ldNom iB[ZPRF [N ],
N new
cmy S grew ¢ NoteCommit>™°".Output™
|
voub ¢ {0 201},

Ve ¢ {0, 201},
Ve
s B
h, el :B[ZPPRF J[IN ])‘
the prover knows an auxiliary input:
(path, e . B{arene] [MerkleDepth*™*"] [N°"’]7

0. 2Merk|eDepthS"'°“‘_ 1) [N

poslnNold . y
old . Sprout[N°"]
n; (o Note . s
old - ey JINT]
aSk,l..NOId s B ok s

new . Sprout[N"*"]
n; e 2 Note ,

(p . }B[Z?;rout]
enforceMerkIePathluNo.d - BN

where:

old]

)

, Id Id ld _old old Id
foreachi € {1.N"}: 0 = (ap;, v, 07 ,rem;°);

for eachi € {1.N""}: 0™ = (agi%,vi,pi  rem;™)
such that the following conditions hold:

Merkle path validity ~for each i € {1..N°“} | enforceMerklePath; = 1: (path;, pos;) is a valid Merkle path (see §4.8
‘Merkle Path Validity’ on p.36) of depth MerkleDepth>™°"* from NoteCommitment>°*'(n%) to the anchor rt>™°"".

Note: Merkle path validity covers conditions 1.(a) and 1. (d) of the NP statement in [BCGGMTV2014, section 4.2].

Merkle path enforcement for each i € {1..N%?},if v2'® 2 0 then enforceMerklePath; = 1.

Id W

N°‘ N
old old new new 4
Balance v, + Zizlvi = vieh + 27_:1 VI € {0.. 2511,

Nullifier integrity  for each i € {1.N°}: nfS'd = PRE"SProut (p2!d),

ask,i

Spend authority for each i € {1.N°“}: a3, = PRF:gfr(O),

sk,

Non-malleability  for each i € {1.N°}: h; = PRFZ})(Id (i, hsig)-
sk,
Uniqueness of p;**  for each i € {1.N""}: pi®" = PRF{, (i, hg;g).

Sprout( r_1eW)
i .

Note commitment integrity for each i € {1.N"""}: cm{*" = NoteCommitment n

For details of the form and encoding of proofs, see §5.4.9.1 ‘BCTV14’ on p. 76.

43


https://zips.z.cash/protocol/sapling.pdf#snarkstatements
https://zips.z.cash/protocol/sapling.pdf#joinsplitstatement

4.15.2 Spend Statement (Sapling)

Let (52PN, foppntsaping: Lorn®, and MerkleDepth®*™™ be as defined in §5.3 ‘Constants’ on p. 54.
52Pl"g 5 nd NoteCommit>*™"€ be as specified in §4.1.7 ‘Commitment’ on p. 24.
Let SpendAuthSig>**""€ be as defined in §5.4.6.1 ‘Spend Authorization Signature (Sapling’ on p. 68.

Let J, J©, repry, gy, 73, and hy be as defined in §5.4.8.3 ‘Jubjub’ on p.73.

Let ValueCommit

Sapling

Let Extract o) : J @ _; Blwente) be as defined in §5.4.8.4 ‘Coordinate Extractor for Jubjub’ on p.74.
Let #°°"'"8 be as defined in §4.2.2 ‘Sapling Key Components’ on p.29.

Avalid instance of a Spend statement, Tzkspend, @ssures that given a primary input:

) Sapling
(rtSapllng . B[ZMerkle ]

)

ov®? : ValueCommit>*™™"8 Output,
nfOId . BY[ZPRanSapIing/g]7
rk : SpendAuthSig>*"""& Public),
the prover knows an auxiliary input:
(path : Blfaimic] MerkleDepth™™]
pos : {0. oMerkleDepth™™"™ _ 1}

gd - J)
pkd . J)
Vo9 e {0, 20eme—1],
Saplin,
revd ;{0 28 1},
CmoId 3v]],
Saplin
rem® ¢ {0, 2% 1},
Sapling

a:{0.. 25 —1},
ak : SpendAuthSig>*"""8 Public,

nsk < {0 25" 1))
such that the following conditions hold:

Sapling old)

Note commitment integrity cm®® = NoteCommit (repry(gq), repry(pkq), v

old
rcm

Merkle path validity ~ Either v°* = 0; or (path, pos) is a valid Merkle path of depth MerkleDepth®*""™ as defined in

§4.8 ‘Merkle Path Validity’ on p.36, from cm,, = ExtractJ@ (cm°'d) to the anchor rt>*"'"e.

Sapling(vold)

Value commitment integrity ov® = ValueCommit 1
AY)

Small order checks g4 and ak are not of small order, i.e. [h;] gg # Oy and [hj] ak # Oy.
Nullifier integrity  nf*? = PRFT>"P"8 (o) where

nkx = repry ([nsk] ’Hsap""g)

px = repr; (MixingPedersenHash(cm®, pos)).

Spend authority  rk = SpendAuthSig>**""8 RandomizePublic(c, ak).

Diversified address integrity  pky = [ivk] g4 where
ivk = CRH™  (akx, nkx)
akx = repry(ak).

For details of the form and encoding of Spend statement proofs, see §5.4.9.2 ‘Groth16’ on p.77.

44


https://zips.z.cash/protocol/sapling.pdf#spendstatement

Notes:

- Primary and auxiliary inputs MUST be constrained to have the types specified. In particular, see § A.3.3.2
‘ctEdwards [deJcompression and validation’ on p.140, for required validity checks on compressed repre-
sentations of Jubjub curve points.

The ValueCommit>**"€ Output and SpendAuthSig>*"""€ Public types also represent points, i.e. J.

- In the Merkle path validity check, each layer does not check that its input bit sequence is a canonical encoding
(in {0.. ¢y — 1}) of the integer from the previous layer.

- Itis not checked in the Spend statement that rk is not of small order. However, this is checked outside the
Spend statement, as specified in §4.4 ‘Spend Descriptions’ on p. 32.

. Itis not checked that rev® < r; or that rem®® < ry.
. SpendAuthSigsap“ng.RandomizePuinc(a, ak) = ak + [a] g>erling
(G>*'"€is as defined in §5.4.6.1 ‘Spend Authorization Signature (Sapling)’ on p.68.)

4.15.3 Output Statement (Sapling)

Let (2P and ¢22PI"8 he as defined in §5.3 ‘Constants’ on p. 54.

Let ValueCommit®>**"8 and NoteCommit>**"8 be as specified in §4.1.7 ‘Commitment’ on p. 24.

Let J, repry, and hj be as defined in §5.4.8.3 ‘Jubjub’ on p. 73.
A valid instance of an Output statement, Tzxoutpyt @ssures that given a primary input:

(V™ e ValueCommit>"™"€ Output,
[Zsapling]
Cmu ° B Merkle R

epk : J),
the prover knows an auxiliary input:

(gd B Ja
pk*d : B[ej]7
V' 2 {0, 201},

new Esapling
rev' 2 {0.. 2%l — 1}
Sapling

rem™" ¢ {0.. 2% —1},
(Svling
esk ¢ {0.. 2%k —1})

such that the following conditions hold:

Note commitment integrity =~ cm, = Extract;c) (NoteCommitf:r:'ni?Wg(g*d, pkag, V")), where gxy = repr;(gq).

Value commitment integrity —cv"®" = VaIueCommitfcav‘iLiﬂg(v"ew)‘
Small order check g4 is not of small order, i.e. [hj] g4 # Oj.
Ephemeral public key integrity  epk = [esk] gy.

For details of the form and encoding of Output statement proofs, see §5.4.9.2 ‘Groth16’ on p.77.

45


https://zips.z.cash/protocol/sapling.pdf#outputstatement

Notes:

- Primary and auxiliary inputs MUST be constrained to have the types specified. In particular, see § A.3.3.2
‘ctEdwards [deJcompression and validation’ on p.140, for required validity checks on compressed repre-

sentations of Jubjub curve points. The ValueCommit>**""8 Output type also represents points, i.e. Jl.

- The validity of pkxq is not checked in this circuit.

. Itis not checked that rcv®® < 7 or that rem®? < ry.

416 In-band secret distribution (Sprout)

In Sprout, the secrets that need to be transmitted to a recipient of funds in order for them to later spend, are v, p,
and rem. A memo field (§3.2.1 ‘Note Plaintexts and Memo Fields’ on p.14) is also transmitted.

To transmit these secrets securely to a recipient without requiring an out-of-band communication channel, the
transmission key pk.,. is used to encrypt them. The recipient’s possession of the associated incoming viewing key
ivk is used to reconstruct the original note and memo field.

A single ephemeral public key is shared between encryptions of the N shielded outputs in a JoinSplit description.
All of the resulting ciphertexts are combined to form a transmitted notes ciphertext.

For both encryption and decryption,
- let Sym be the scheme instantiated in § 5.4.3 ‘Symmetric Encryption’ on p. 62;
- let KDF*P™"" be the Key Derivation Function instantiated in §5.4.4.2 ‘Sprout Key Derivation’ on p. 63;

- let KASP™"* be the key agreement scheme instantiated in § 5.4.4.1 ‘Sprout Key Agreement’ on p. 62;
- let hg;, be the value computed for this JoinSplit description in §4.3 ‘JoinSplit Descriptions’ on p. 31.

4.16.1 Encryption (Sprout)

Let KA be the key agreement scheme instantiated in §5.4.4.1 ‘Sprout Key Agreement’ on p. 62.
Let pke,c 1 N be the transmission keys for the intended recipient addresses of each new note.

Let np, yr be Sprout note plaintexts defined in § 5.5 ‘Encodings of Note Plaintexts and Memo Fields’ on p.78.

Then to encrypt:

. Generate a new KA (public, private) key pair (epk, esk).
- Fori e {1.N""},

- Let P{"™ be the raw encoding of np,.
Let sharedSecret; = KA Agree(esk, PKenc.i)-
Let K" = KDF>*"(4, hg;g, sharedSecret;, epk, pkenc.;)-
Let Ci™ = Sym.Encryptycer (P5™).

The resulting transmitted notes ciphertext is (epk, C{" nrev).

Note: It is technically possible to replace C;" for a given note with a random (and undecryptable) dummy
ciphertext, relying instead on out-of-band transmission of the note to the recipient. In this case the ephemeral key
MUST still be generated as a random public key (rather than a random bit sequence) to ensure indistinguishability
from other JoinSplit descriptions. This mode of operation raises further security considerations, for example of
how to validate a Sprout note received out-of-band, which are not addressed in this document.

46


https://zips.z.cash/protocol/sapling.pdf#sproutinband
https://zips.z.cash/protocol/sapling.pdf#sproutencrypt

4.16.2 Decryption (Sprout)

Let ivk = (apk, skenc) b€ the recipient’s incoming viewing key, and let pk.,. be the corresponding transmission key
derived from sk, as specified in §4.2.1 ‘Sprout Key Components’ on p.29.

Let cm; yrev be the note commitments of each output coin.
Then for each i € {1..N"*"}, the recipient will attempt to decrypt that ciphertext component (epk, C;") as follows:
let sharedSecret, = KA®P®"" Agree(skenc, epk)

let K& = KDF>PUt(4, hsig, sharedSecret;, epk, pkenc)
return DecryptNoteSprout (K™, C5", cm;, ay).

DecryptNoteSprout (K;", C5™, cm;, a) is defined as follows:
let P{™ = Sym.Decryptyer<(C;™)
if P§" = 1, return L
Sprout:

extract np; = (leadByte; : BY, v, : {0..2%w—1} p, BI& | rem; : NoteCommit
from P{"™

SProUt Trapdoor, memo; IB%Y[512])

let n; = (ap, v;, p;, rcm;)
if leadByte, # 0x00 or NoteCommitmentSprOUt(nZ—) # cm,, return L

return (n;, memo;).

Notes:

- The decryption algorithm corresponds to step 3 (b) i. and ii. (first bullet point) of the Receive algorithm shown
in [BCGGMTV2014, Figure 2].

- To test whether a note is unspent in a particular block chain also requires the spending key a,; the coin is
unspent if and only if nf = PRFZ:kSpm“t(p) is not in the nullifier set for that block chain.

- A note can change from being unspent to spent as a node’s view of the best valid block chain is extended by
new transactions. Also, block chain reorganizations can cause a node to switch to a different best valid block
chain that does not contain the transaction in which a note was output.

See §8.7 In-band secret distribution’ on p.101 for further discussion of the security and engineering rationale
behind this encryption scheme.

4.17 In-band secret distribution (Sapling)

In Sapling, the secrets that need to be transmitted to a recipient of a note so that they can later spend it, are d, v,
and rem. A memo field (§ 3.2.1 ‘Note Plaintexts and Memo Fields’ on p.14) is also transmitted.

To transmit these secrets securely to a recipient without requiring an out-of-band communication channel, the
diversified transmission key pky is used to encrypt them. The recipient’s possession of the associated KA>*""8
private key ivk is used to reconstruct the original note and memo field.

Unlike in Sprout, each Sapling shielded output is encrypted by a fresh ephemeral public key .

For both encryption and decryption,
- let 4, be as defined in §5.3 ‘Constants’ on p. 54;
- let Sym be the encryption scheme instantiated in §5.4.3 ‘Symmetric Encryption’ on p.62;
. let KA be the key agreement scheme KA>*™™ instantiated in § 5.4.4.3 ‘Sapling Key Agreement’ on p. 63;

. let KDF be the Key Derivation Function KDF**P""€ instantiated in § 5.4.4.4 ‘Sapling Key Derivation’ on p. 64;
- let G, {g, and reprg be instantiated as J, £, and repr; defined in §5.4.8.3 ‘Jubjub’ on p.73;

47


https://zips.z.cash/protocol/sapling.pdf#sproutdecrypt
https://zips.z.cash/protocol/sapling.pdf#saplingandorchardinband

. let ExtractGm be ExtractJ(r) as defined in §5.4.8.4 ‘Coordinate Extractor for Jubjub’ on p.74;

- let PRF°™ be PRF°%**"8 instantiated in § 5.4.2 ‘Pseudo Random Functions’ on p. 61;

- let DiversifyHash be DiversifyHash®>**" in §5.4.1.6 ‘DiversifyHash>*"""¢ Hash Function’ on p.57;

Sapling .

- let NoteCommitment be NoteCommitment instantiated in §3.2 ‘Notes’ on p.13;

- let ToScalar be ToScalar*®™™ defined in §4.2.2 ‘Sapling Key Components’ on p. 29;

- LEBS20SP, LEOS2IP, I2LEBSP, and I2LEOSP are defined in § 5.2 ‘Integers, Bit Sequences, and Endianness’
on p.53.

4.17.1 Encryption (Sapling)

Let pky ¢ KA.PublicPrimeSubgroup be the diversified transmission key for the intended recipient address of a
new Sapling note, and let g4 : KA.PublicPrimeSubgroup be the corresponding diversified base computed as
DiversifyHash(d).

Since Sapling note encryption is used only in the context of §4.6.2 ‘Sending Notes (Sapling)’ on p. 34, we may
assume that g4 has already been calculated and is not L. Also, the ephemeral private key esk has been chosen.

Let ovk : Bylfew/8 {L} be as described in §4.6.2 on p. 34, i.e. the outgoing viewing key of the shielded payment
address from which the note is being spent, or an outgoing viewing key associated with a [ZIP-32] account, or L.

Let np = (leadByte, d, v, rcm, memo) be the Sapling note plaintext.
np is encoded as defined in § 5.5 ‘Encodings of Note Plaintexts and Memo Fields’ on p.78.

Let cv be the value commitment for the Output description, and let cm be the note commitment. These are needed
out

to derive the outgoing cipher key ock in order to produce the outgoing ciphertext C°*.

Then to encrypt:
let P*"® be the raw encoding of np
let epk = KA.DerivePublic(esk, gq)
let ephemeralKey = LEBS20SP,_ (repr (epk))
let sharedSecret = KA.Agree(esk, pkyq)
let K" = KDF(sharedSecret, ephemeralKey)
let C*" = Sym.Encryptenc (P")
if ovk = L
choose random ock & Sym.K and op & pyl(fc+256)/8]
else:
let cv = LEBS20SP,_ (reprg (cv))
let cms = LEBS20SP 54 (Extract ) (cm))
let ock = PRFSK (cv, cm¥, ephemeralKey)

let op = LEBS20SP,_ 256 (reprg (pkq) || I2LEBSPy5(esk))
let C*"* = Sym.Encrypt,, (op)
The resulting transmitted note ciphertext is (ephemeralKey, C*", C°").

Note: It is technically possible to replace C*" for a given note with a random (and undecryptable) dummy
ciphertext, relying instead on out-of-band transmission of the note to the recipient. In this case the ephemeral key
MUST still be generated as a random public key (rather than a random bit sequence) to ensure indistinguishability
from other Output descriptions. This mode of operation raises further security considerations, for example of how
to validate a Sapling note received out-of-band, which are not addressed in this document.

48


https://zips.z.cash/protocol/sapling.pdf#saplingandorchardencrypt

4.17.2 Decryption using an Incoming Viewing Key (Sapling)

Saplin .
Letivk : {0.. ol 1} be the recipient's KAS*P'"€ private key, as specified in §4.2.2 ‘Sapling Key Components’ on
p-29.

Let (ephemeralKey, C*", C°") be the transmitted note ciphertext from the Output description. Let cmx be the cmu
field of the Output description. (This encodes the u-coordinate of the note commitment, i.e. Extract ¢ (cm).)

enc

The recipient will attempt to decrypt the ephemeralkKey and C*™ components of the transmitted note ciphertext:

let epk = abstg (ephemeralKey)

if epk = L, return L

let sharedSecret = KA.Agree(ivk, epk)

let K*" = KDF(sharedSecret, ephemeralKey)

let P*" = Sym.Decrypt,er (C*"™)

if P*"“ = 1, return L

extract np = (leadByte : BY,d : B! v : {0..2%u—1} rem : BY®? memo : BY*'?) from P
if leadByte # 0x01, return L

let rem = rseed

let rcm = LEOS2IP,54(rcm) and gy = DiversifyHash(d)
ifrem > rg orgg = L, return L

let pky = KA.DerivePublic(ivk, gq)

let n = (d, pkg, v, rcm)

let cm] = NoteCommitment(n)

if I2LEOSP 56 (Extract ¢y (cmy)) # cm, return L

return (n, memo).

Notes:

- gq has already been computed when applying NoteCommitment, and need not be computed again.

- For Sapling, as explained in the note in §5.4.8.3 ‘Jubjub’ on p. 73, absty accepts non-canonical compressed
encodings of Jubjub curve points. Therefore, an implementation MUST use the original ephemeralKey field as
encoded in the transaction as input to KDF>2P"€

- Normally only transmitted note ciphertexts of transactions in blocks need to be decrypted. In that case, any
received Sapling note is necessarily a positioned note, so its p value can immediately be calculated per §4.14
‘Note Commitments and Nullifiers’ on p.42. To test whether a Sapling note is unspent in a particular block
chain also requires the nullifier deriving key nk; the coin is unspent if and only if the nullifier computed as in
§4.14 on p.42 is not in the nullifier set for that block chain.

- A note can change from being unspent to spent as a node’s view of the best valid block chain is extended by
new transactions. Also, block chain reorganizations can cause a node to switch to a different best valid block
chain that does not contain the transaction in which a note was output.

- A client MAY attempt to decrypt a transmitted note ciphertext of a transaction in the mempool. However, in
that case it MUST NOT assume that the transaction will be mined and MUST treat the decrypted information
as provisional, and private.

4.17.3 Decryption using a Full Viewing Key (Sapling)

Let ovk : BY“w/8] be the outgoing viewing key, as specified in §4.2.2 ‘Sapling Key Components’ on p. 29, that is to
be used for decryption. (If ovk = L was used for encryption, the payment is not decryptable by this method.)
Let (ephemeralKey, C*"°, C°"*) be the transmitted note ciphertext.

For a Sapling transmitted note ciphertext, let cv and cmx be the cv and cmu fields of the Output description.

49


https://zips.z.cash/protocol/sapling.pdf#decryptivk
https://zips.z.cash/protocol/sapling.pdf#decryptovk

The outgoing viewing key holder will attempt to decrypt the transmitted note ciphertext as follows:
let ock = PRF%f (cv, cm, ephemeralKey)
let op = Sym.Decrypt,, (C°")
ifop = L, return L
extract (pkxg ¢ B[Z‘G],gk : IB%Y[gz]) from op
let esk = LEOS2IPy5¢(esk) and pky = abstg (pkxq)
if esk > rg or pky = L, return |
let sharedSecret = KA.Agree(esk, pky)
let K" = KDF(sharedSecret, ephemeralKey)
let P*"® = Sym.Decryptyen (C*™)
if P"“ = 1, return L
extract np = (leadByte : BY, d : By {0.. 251} rcm : B2 memo : ]BY[MQ}) from P
if leadByte # 0x01, return L
let rem = rseed
let rem = LEOS2IP,54(rcm) and gy = DiversifyHash(d)
if rem > rg orgy = L or pky & J©, return L
let n = (d, pkg, v, rcm)
let cm, = NoteCommitment(n)
if I2LEOSP 56 (Extract ¢ (cm’)) # cm, return L
if reprg (KA.DerivePublic(esk, g4)) # ephemeralKey, return L

return (n, memo).

Notes:
- g4 has already been computed when applying NoteCommitment, and need not be computed again.
- A previous version of this specification did not have the requirement for the decoded point pky of a Sapling
note to be in the subgroup J ®) (e "if .. pky & J), return L"). That did not match the implementation in zcashd.

- As explained in the note in §5.4.8.3 “Jubjub’ on p. 73, abst; accepts non-canonical compressed encodings of
Jubjub curve points. Therefore, an implementation MUST use the original ephemeralKey field as encoded in the
transaction as input to PRF°* and KDF***"™ and in the comparison against reprg; (KA>**"™. DerivePublic(esk, g4)).

- pkx4 can also be non-canonical. Since 1 is returnedif gy & J ® the only accepted non-canonical encoding
for pkxq of a Sapling note is I2LEBSP,56(2%°° + 1).

- The comments in §4.17.2 ‘Decryption using an Incoming Viewing Key (Sapling)’ on p.49 concerning calcu-
lation of p, detection of spent notes, and decryption of transmitted note ciphertexts for transactions in the
mempool also apply to notes decrypted by this procedure.

Non-normative note: Implementors should pay close attention to similarities and differences between this
procedure and §4.17.2 ‘Decryption using an Incoming Viewing Key (Sapling)’ on p.49.

50



4.18 Block Chain Scanning (Sprout)

Let /272" be as defined in §5.3 ‘Constants’ on p. 54.
Let Note*™ " be as defined in §3.2 ‘Notes’ on p.13.
Let KASP®" be as defined in § 5.4.4.1 ‘Sprout Key Agreement’ on p. 62.

Sprout

Letivk = (ap : Blre | sk, : KASP™! Private) be the incoming viewing key corresponding to ag,, and let pkg,. be
the associated transmission key, as specified in §4.2.1 ‘Sprout Key Components’ on p. 29.

The following algorithm can be used, given the block chain and a Sprout spending key ay, to obtain each note sent
to the corresponding shielded payment address, its memo field, and its final status (spent or unspent).

let mutable ReceivedSet : 9P(Note>™ " x Br*'?)) « (}
let mutable SpentSet : 9P(Note®™°") « {}
let mutable NullifierMap : BIPR _y NoteSP™™  the empty mapping
for each transaction tx:
for each JoinSplit description in tx:
let (epk, C{"rev) be the transmitted notes ciphertext of the JoinSplit description
for i in 1.N"":

Attempt to decrypt the transmitted notes ciphertext component (epk, C;"°) using ivk with the
algorithm in §4.16.2 ‘Decryption (Sprout)’ on p.47. If this succeeds with (n, memo):

Add (n, memo) to ReceivedSet.
Calculate the nullifier nf of n using a, as described in § 3.2 ‘Notes’ on p.13.

Add the mapping nf — n to NullifierMap.

let nf, o be the nullifiers of the JoinSplit description

for i in 1..N°4:

if nf; is present in NullifierMap, add NullifierMap(nf;) to SpentSet

return (ReceivedSet, SpentSet).

4.19 Block Chain Scanning (Sapling)

In Sapling, block chain scanning requires only the nk and ivk key components, rather than a spending key as in
Sprout.

Typically, these components are derived from a full viewing key as described in §4.2.2 ‘Sapling Key Components’
on p.29.

Let £pRrrnfsapling D€ as defined in §5.3 ‘Constants’ on p. 54.
Let Note be Note>*P"" a5 defined in §3.2 ‘Notes’ on p. 13.
Let KA be KAS*™™ 55 defined in §5.4.4.3 ‘Sapling Key Agreement’ on p. 63.

Let NullifierType be BY‘Prrutssping/S],

51


https://zips.z.cash/protocol/sapling.pdf#sproutscan
https://zips.z.cash/protocol/sapling.pdf#scan

The following algorithm can be used, given the block chain and (nk, ivk), to obtain each note sent to the corre-
sponding shielded payment address, its memo field, and its final status (spent or unspent).
let mutable ReceivedSet : %P(Note x BY™'?) « {}
let mutable SpentSet : 92(Note) « {}
let mutable NullifierMap ¢ (NullifierType — Note) < the empty mapping
for each transaction tx:
for each Output description in tx:
Attempt to decrypt the transmitted note ciphertext components epk and C*" using ivk with the algorithm
§4.17.2 ‘Decryption using an Incoming Viewing Key (Sapling)’ on p.49. If this succeeds with (n, memo):
Add (n, memo) to ReceivedSet.

Calculate the nullifier nf of n using nk as described in § 3.2 ‘Notes’ on p.13. (This also requires pos
from the Output description.)

Add the mapping nf — n to NullifierMap.

for each nullifier nf of a Spend description in tx:

if nf is present in NullifierMap, add NullifierMap(nf) to SpentSet

return (ReceivedSet, SpentSet).

Non-normative notes:

- The above algorithm does not use the ovk key component, or the C*** transmitted note ciphertext component.
When scanning the whole block chain, these are indeed not necessary. The advantage of supporting decryption
using ovk as described in §4.17.3 ‘Decryption using a Full Viewing Key (Sapling)’ on p. 49, is that it allows
recovering information about the note plaintexts sent in a transaction from that transaction alone.

- When scanning only part of a block chain, it may be useful to augment the above algorithm with decryption

of C°** components for each transaction, in order to obtain information about notes that were spent in the
scanned period but received outside it.

- The above algorithm does not detect notes that were sent “out-of-band” or with incorrect transmitted note
ciphertexts. It is possible to detect whether such notes were spent only if their nullifiers are known.

5 Concrete Protocol

5.1 Caution

‘We all know that the only mental tool by means of which a very finite piece of reasoning
can cover a myriad cases is called “abstraction”; as a result the effective exploitation of
[their] powers of abstraction must be regarded as one of the most vital activities of a
competent programmer. In this connection it might be worth-while to point out that the
purpose of abstracting is not to be vague, but to create a new semantic level in which
one can be absolutely precise.’

— Edsger Dijkstra, “The Humble Programmer” [EWD-340]

Abstraction is an incredibly important idea in the design of any complex system. Without abstraction, we would
not be able to design anything as ambitious as a computer, or a cryptographic protocol. Were we to attempt it, the
computer would be hopelessly unreliable or the protocol would be insecure, if they could be completed at all.

The aim of abstraction is primarily to limit how much a human working on a piece of a system has to keep in mind
at one time, in order to apprehend the connections of that piece to the remainder. The work could be to extend or
maintain the system, to understand its security or other properties, or to explain it to others.

52


https://zips.z.cash/protocol/sapling.pdf#concreteprotocol
https://zips.z.cash/protocol/sapling.pdf#cautionlinkage

In this specification, we make use wherever possible of abstractions that have been developed by the cryptography
community to model cryptographic primitives: Pseudo Random Functions, commitment schemes, signature
schemes, etc. Each abstract primitive has associated syntax (its interface as used by the rest of the system) and
security properties, as documented in part §4 ‘Abstract Protocol’ on p.19. Their instantiations are documented in
this Concrete Protocol part.

In some cases this syntax or these security requirements have been extended to meet the needs of the Zcash
protocol. For example, some of the PRFs used in Zcash need to be collision-resistant, which is not part of the usual
security requirement for a PRF; some signature schemes need to support additional functionality and security
properties; and so on. Also, security requirements are sometimes intentionally stronger than what is known to be
needed, because the stronger property is simpler or less error-prone to work with, and/or because it has been
studied in the cryptographic literature in more depth.

We explicitly do not claim, however, that all of these instantiations satisfying their documented syntax and security
requirements would be sufficient for security or correctness of the overall Zcash protocol, or that it is always
necessary. The claim is only that it helps to understand the protocol; that is, that analysis or extension is simplified by
making use of the abstraction. In other words, a good way to understand the use of that primitive in the protocol
is to model it as an instance of the given abstraction. And furthermore, if the instantiated primitive does not in fact
satisfy the requirements of the abstraction, then this is an error that should be corrected -whether or not it leads to
a vulnerability- since that would compromise the facility to understand its use in terms of the abstraction.

In this respect the abstractions play a similar réle to that of a type system (which we also use): they add a form of
redundancy to the specification that helps to express the intent.

Each property is a claim that may be incorrect (or that may be insufficiently precisely stated to determine whether
it is correct). An example of an incorrect security claim occurs in the Zerocash protocol: the instantiation of
the note commitment scheme used in Zerocash failed to be binding at the intended security level (see §8.5
‘Internal hash collision attack and fix’ on p.100).

Another hazard that we should be aware of is that abstractions can be “leaky” an instantiation may impose
conditions on its correct or secure use that are not captured by the abstraction’s interface and semantics. Ideally,
the abstraction would be changed to explicitly document these conditions, or the protocol changed to rely only on
the original abstraction.

An abstraction can also be incomplete (not quite the same thing as being leaky): it intentionally -usually for
simplicity- does not model an aspect of behaviour that is important to security or correctness. An example would
be resistance to side-channel attacks; this specification says little about side-channel defence, among many other
implementation concerns.

5.2 Integers, Bit Sequences, and Endianness

All integers in Zcash-specific encodings are unsigned, have a fixed bit length, and are encoded in little-endian byte
order unless otherwise specified .

The following functions convert between sequences of bits, sequences of bytes, and integers:
- I2LEBSP : (£ : N) x {0..2°~1} — B, such that I2LEBSP,(z) is the sequence of ¢ bits representing z in
little-endian order;

- I2LEOSP : (¢ : N) x {0..2°—1} — Byl=lnel?/3)] sych that 12LEBSP,(x) is the sequence of ceiling (¢/8) bytes
representing z in little-endian order;

- 12BEBSP : (£ : N) x {0..2°~1} — B such that I2BEBSP,(x) is the sequence of ¢ bits representing z in
big-endian order.

- LEBS2IP : (£ : N) x Bl — {0..2°~1} such that LEBS2IP,(S) is the integer represented in little-endian order
by the bit sequence S of length .

- LEOS2IP ¢ (¢ : N| £ mod 8 = 0) x Bl¢/8l {0.. 24—1} such that LEOS2IP,(S) is the integer represented in
little-endian order by the byte sequence S of length ¢/8.

53


https://zips.z.cash/protocol/sapling.pdf#endian

. LEBS20SP : (¢ : N) x Bl — By(<eine(*/®)] defined as follows: pad the input on the right with 8 - ceiling (£/8) — ¢
zero bits so that its length is a multiple of 8 bits. Then convert each group of 8 bits to a byte value with the
least significant bit first, and concatenate the resulting bytes in the same order as the groups.

. LEOS2BSP : (¢ : N| £ mod 8 = 0) x B/<""e(¢/8)] _, Bl defined as follows: convert each byte to a group of 8
bits with the least significant bit first, and concatenate the resulting groups in the same order as the bytes.

In bit layout diagrams, each box of the diagram represents a sequence of bits. Diagrams are read from left-to-right,
with lines read from top-to-bottom; the breaking of boxes across lines has no significance. The bit length ¢ is

given explicitly in each box, except when it is obvious (e.g. for a single bit, or for the notation (o] representing the
sequence of ¢ zero bits, or for the output of LEBS20SP,).

The entire diagram represents the sequence of bytes formed by first concatenating these bit sequences, and then
treating each subsequence of 8 bits as a byte with the bits ordered from most significant to least significant. Thus
the most significant bit in each byte is toward the left of a diagram. (This convention is used only in descriptions of
the Sprout design; in the Sapling additions, bit/byte sequence conversions are always specified explicitly.) Where
bit fields are used, the text will clarify their position in each case.

5.3 Constants

Define:
MerkleDepth®P°"t : N := 29
MerkleDepth®*'"¢ : N := 32
3Pt s N = 256

Sapling . Ny .__ 9r=x
Lorerkle © N := 255

N N:=2
N™:N:=2
évalue :N:=64
‘ehSig : N := 256

3Pt 2 N = 256
CpRFexpand : N := 512
CpREnfsapling * N := 256
3Pt s N = 256

l5eeq © N := 256
0, ¢+ N:=252
7P o N = 252
ly 2 N := 256
ly:N:=88
(33pling; N .= 251
louk = N := 256

(32Pling . 1y .— 2592

scalar

Sprout Sprout

Uncommitted>Po"t : Blfmercel . — [0] e
. Saplin
Uncommitted>*™ : Blew] :— 2L EBSP,supins (1)
“Merkle

MAX_MONEY : N := 2.1-10'° (zatoshi)

54


https://zips.z.cash/protocol/sapling.pdf#constants

SlowStartInterval : N := 20000
HalvinglInterval : N := 840000
MaxBlockSubsidy : N := 1.25-10° (zatoshi)
NumFounderAddresses : N := 48

FoundersFraction : Q := 1

24
23

— 1, for Mainnet
PoWLimit : N := {2251 , joramne

— 1, for Testnet
PoWAveragingWindow : N := 17
PoWMedianBlockSpan : N := 11
PoWMaxAdjustDown : Q := %
PoWMaxAdjustUp : Q := %
PoWDampingFactor : N := 4
PoWTargetSpacing : N := 150 (seconds).

5.4 Concrete Cryptographic Schemes
5.4.1 Hash Functions

5.41.1 SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions

SHA-256 and SHA-512 are defined by [NIST2015].

Zcash uses the full SHA-256 hash function to instantiate NoteCommitment P!t

SHA-256 : BY[N s pyl3?]

[NIST2015] strictly speaking only specifies the application of SHA-256 to messages that are bit sequences, producing
outputs (“‘message digests”) that are also bit sequences. In practice, SHA-256 is universally implemented with a
byte-sequence interface for messages and outputs, such that the most significant bit of each byte corresponds to
the first bit of the associated bit sequence. (In the NIST specification “first” is conflated with “leftmost”)

SHA-256d, defined as a double application of SHA-256, is used to hash block headers:

SHA-256d : BYI"l — BYl®?)
Zcash also uses the SHA-256 compression function, SHA256Compress. This operates on a single 512-bit block and
excludes the padding step specified in [NIST2015, section 5.1].

That is, the input to SHA256Compress is what [NIST2015, section 5.2] refers to as “the message and its padding” The
Initial Hash Value is the same as for full SHA-256.

SHA256Compress is used to instantiate several Pseudo Random Functions and MerkleCRH>P°"",
SHA256Compress : BI12 — B[2%¢]

The ordering of bits within words in the interface to SHA256Compress is consistent with [NIST2015, section 3.1], i.e.
big-endian.

Ed25519 uses SHA-512:
SHA-512 : BY[N _y pyl64]

The comment above concerning bit vs byte-sequence interfaces also applies to SHA-512.

55


https://zips.z.cash/protocol/sapling.pdf#concreteschemes
https://zips.z.cash/protocol/sapling.pdf#concretehashes
https://zips.z.cash/protocol/sapling.pdf#concretesha

5.4.1.2 BLAKE2 Hash Functions

BLAKE? is defined by [ANWW?2013]. Zcash uses both the BLAKE2b and BLAKE2s variants.

BLAKE2b-/(p, x) refers to unkeyed BLAKE2b-/ in sequential mode, with an output digest length of ¢/8 bytes, 16-byte
personalization string p, and input z.

BLAKE2b is used to instantiate hSigCRH, EquihashGen, and KDF>P™"*, From Overwinter onward, it is used to compute
SIGHASH transaction hashes as specified in [ZIP-143], or as in [ZIP-243] after Sapling activation. For Sapling, it is
also used to instantiate PRF®®*" pRFok>2Plng K DF>2PI"E and in the RedJubjub signature scheme which instantiates
SpendAuthSig®*"™ and BindingSig>**""e.

BLAKE2b-¢ : B0 5 gyIN ., pyl¢/8]

Note: BLAKE2b-/ is not the same as BLAKE2b-512 truncated to ¢ bits, because the digest length is encoded in the
parameter block.

BLAKE2s-/(p, z) refers to unkeyed BLAKE2s-¢ in sequential mode, with an output digest length of ¢/8 bytes, 8-byte
personalization string p, and input z.

. . )+
BLAKE?2s is used to instantiate PRF"°2P"¢ CRHY and GroupHash? .

BLAKE2s-¢ : BYI®! « pyIN _, pyl¢/8]

5.4.1.3 Merkle Tree Hash Function

MerkleCRH>"""* and MerkleCRH®*"""€ are used to hash incremental Merkle tree hash values for Sprout and Sapling
respectively.

MerkleCRH>P""* Hash Function

Sprout Sprout Sprout

MerkleCRH®P™" : {0 .. MerkleDepth®P"®"* — 1} x Blfwerel 5 Blovenel _y Bllwenie] js defined as follows:

MerkleCRHSP®"(layer, left, right«) := SHA256Compress ( | 256-bit lefux 256-bit right+ | )

SHA256Compress is defined in §5.4.1.1 ‘SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions’ on
p- 55.

Security requirement: SHA256Compress must be collision-resistant, and it must be infeasible to find a preimage
2 such that SHA256Compress(z) = [0]*°°.

Notes:
- The layer argument does not affect the output.

- SHA256Compress is not the same as the SHA-256 function, which hashes arbitrary-length byte sequences.

MerkleCRH>*"""8 Hash Function
Let PedersenHash be as specified in §5.4.1.7 ‘Pedersen Hash Function’ on p.59.
Sapling pSapling (Sapling

MerkleCRH*™ : {0 MerkleDepth>*P"8 — 1} x Bl‘mene]  plévensc] _, plévenic] s defined as follows:

MerkleCRH®*P""¢(|ayer, leftx, rightx) := PedersenHash(“Zcash_PH”", [ || leftx || rights)
where Ix = I2LEBSP (MerkleDepth>*™™ — 1 — layer).

56


https://zips.z.cash/protocol/sapling.pdf#concreteblake2
https://zips.z.cash/protocol/sapling.pdf#merklecrh
https://zips.z.cash/protocol/sapling.pdf#sproutmerklecrh
https://zips.z.cash/protocol/sapling.pdf#saplingmerklecrh

Security requirement: PedersenHash must be collision-resistant.

Note: The prefix | provides domain separation between inputs at different layers of the note commitment tree.

NoteCommit>*""" |ike PedersenHash, is defined in terms of PedersenHash ToPoint, but using a prefix that cannot collide
with a layer prefix, as noted in § 5.4.7.2 ‘Windowed Pedersen commitments’ on p.69.

5.4.14 hg, Hash Function

hSigCRH is used to compute the value hg;, in §4.3 ‘JoinSplit Descriptions’ on p.31.

hSigCRH(randomSeed, nf‘il".jNom, joinSplitPubKey) := BLAKE2b-256(“ZcashComputehSig”, hSiglnput)
where

hSiglnput ;=\ 256-bit randomSeed | 256-bit nf$" | 256-bit nf s 256-bit joinSplitPubKey |.

BLAKE2b-256(p, ) is defined in § 5.4.1.2 ‘BLAKE2 Hash Functions’ on p. 56.

Security requirement: BLAKE2b-256(“ZcashComputehSig”, x) must be collision-resistant on .

5.4.1.5 CRH“* Hash Function

CRHY is used to derive the incoming viewing key ivk for a Sapling shielded payment address. For its use when
generating an address see §4.2.2 ‘Sapling Key Components’ on p. 29, and for its use in the Spend statement see
§4.15.2 ‘Spend Statement (Sapling)’ on p. 44.

It is defined as follows:

Sapling

CRHY (akx, nkx) := LEOS2IP54(BLAKE2s-256(“Zcashivk”, crhlnput)) mod 2
where

crhlnput::’ LEBS20SP 55 (aks) | LEBS20SP 55 (nks) \

BLAKE2b-256(p, x) is defined in § 5.4.1.2 ‘BLAKE2 Hash Functions’ on p. 56.

Sapling

Security requirement: LEOS2IP,5¢(BLAKE2s-256(“Zcashivk”, z)) mod 2% must be collision-resistant on a 64-
byte input z. Note that this does not follow from collision resistance of BLAKE2s-256 (and the best possible concrete
security is that of a 251-bit hash rather than a 256-bit hash), but it is a reasonable assumption given the design,
structure, and cryptanalysis to date of BLAKE2s.

Non-normative note: BLAKE2s has a variable output digest length feature, but it does not support arbitrary

bit lengths, otherwise it would have been used rather than external truncation. However, the protocol-specific
personalization string together with truncation achieve essentially the same effect as using that feature.

5.4.1.6 DiversifyHash®>*""® Hash Function
DiversifyHash>®™¢ : Bl _5 10 {1} is used to derive a diversified base in §4.2.2 ‘Sapling Key Components’ on
p- 29.

()=
Let GroupHash!  and U be as defined in §5.4.8.5 ‘Group Hash into Jubjub’ on p.-75.

57


https://zips.z.cash/protocol/sapling.pdf#hsigcrh
https://zips.z.cash/protocol/sapling.pdf#concretecrhivk
https://zips.z.cash/protocol/sapling.pdf#concretediversifyhash

Define
. ()%
DiversifyHash>**"(d) := GroupHash}, (“Zcash_gd”, LEBS20SP,, (d)).

Security requirement:  Unlinkability: Given two randomly selected shielded payment addresses from different
spend authorities, and a third shielded payment address which could be derived from either of those authorities,
such that the three addresses use different diversifiers, it is not possible to tell which authority the third address
was derived from.

Non-normative notes:

()=

. Suppose that GroupHash’  (restricted to inputs for which it does not return 1) is modelled as a random oracle

from diversifiers to points of order r; on the Jubjub curve. In this model, Unlinkability of DiversifyHash>*"""
holds under the Decisional Diffie-Hellman assumption on the prime-order subgroup of the Jubjub curve.

To prove this, consider the ElGamal encryption scheme [EIGamall1985] on this prime-order subgroup, re-
stricted to encrypting plaintexts encoded as the group identity O;. (ElGamal was originally defined for F,,
but works in any prime-order group.) ElGamal public keys then have the same form as diversified payment

addresses. If we make the assumption above on Grou pHashJ(m, then generating a new diversified payment
address from a given address pk, gives the same distribution of (g4, pky’) pairs as the distribution of ElGamal
ciphertexts obtained by encrypting O under pk. TODO: check whether this is justified. Then, the definition
of key privacy (IK-CPA as defined in [BBDP2001, Definition 1]) for ElGamal corresponds to the definition
of Unlinkability for DiversifyHash>®'""8 (IK-CCA corresponds to the potentially stronger requirement that
DiversifyHash>*"™ remains Unlinkable when given Diffie-Hellman key agreement oracles for each of the
candidate diversified payment addresses.) So if ElGamal is key-private, then DiversifyHash>*"""€ is Unlinkable
under the same conditions. [BBDP2001, Appendix A] gives a security proof for key privacy (both IK-CPA and
[K-CCA) of ElGamal under the Decisional Diffie-Hellman assumption on the relevant group. (In fact the proof
needed is the “small modification” described in the last paragraph in which the generator is chosen at random
for each key.)

- Itis assumed (also for the security of other uses of the group hash, such as Pedersen hashes and commitments)
that the discrete logarithm of the output group element with respect to any other generator is unknown. This
assumption is justified if the group hash acts as a random oracle. Essentially, diversifiers act as handles to
unknown random numbers. (The group hash inputs used with different personalizations are in different
“namespaces”)

- Informally, the random self-reducibility property of DDH implies that an adversary would gain no advantage
from being able to query an oracle for additional (gg4, pky) pairs with the same spend authority as an existing
shielded payment address, since they could also create such pairs on their own. This justifies only considering
two shielded payment addresses in the security definition.

TODO: FIXME This is not correct, because additional pairs don't quite follow the same distribution as an address
with a valid diversifier. The security definition may need to be more complex to model this properly.

- An 88-bit diversifier cannot be considered cryptographically unguessable at a 128-bit security level; also,

randomly chosen diversifiers are likely to suffer birthday collisions when the number of choices approaches
2%,
If most users are choosing diversifiers randomly (as recommended in §4.2.2 ‘Sapling Key Components’ on
p.29), then the fact that they may accidentally choose diversifiers that collide (and therefore reveal the fact
that they are not derived from the same incoming viewing key) does not appreciably reduce the anonymity
set.

In [ZIP-32] an 88-bit Pseudo Random Permutation, keyed differently for each node of the derivation tree, is
used to select new diversifiers. This resolves the potential problem, provided that the input to the Pseudo
Random Permutation does not repeat for a given node.

- If the holder of an incoming viewing key permits an adversary to ask for a new address for that incoming
viewing key with a given diversifier, then it can trivially break Unlinkability for the other diversified payment
addresses associated with the incoming viewing key (this does not compromise other privacy properties).
Implementations SHOULD avoid providing such a “chosen diversifier” oracle.

58



5.4.1.7 Pedersen Hash Function

PedersenHash is an algebraic hash function with collision resistance (for fixed input length) derived from assumed
hardness of the Discrete Logarithm Problem on the Jubjub curve. It is based on the work of David Chaum, Ivan
Damgard, Jeroen van de Graaf, Jurjen Bos, George Purdy, Eugéne van Heijst and Birgit Pfitzmann in [CDvdG1987],
[BCP1988] and [CvHP1991], and of Mihir Bellare, Oded Goldreich, and Shafi Goldwasser in [BGG1995], with optimiza-
tions for efficient instantiation in zk-SNARK circuits by Sean Bowe and Daira Hopwood.

PedersenHash is used in the definitions of Pedersen commitments (§5.4.7.2 ‘Windowed Pedersen commitments’ on
p.69), and of the Pedersen hash for the Sapling incremental Merkle tree (§5.4.1.3 ‘MerkleCRH>*""" Hash Function’
on p. 56).

LetJ, J©, O1. g5, r3. ay, and dj be as defined in §5.4.8.3 “Jubjub’ on p.73.

Sapling

Let Extract o) : J @ _; Blwene) be as defined in §5.4.8.4 ‘Coordinate Extractor for Jubjub’ on p.74.

()=
Let FindGroupHashJ be as defined in §5.4.8.5 ‘Group Hash into Jubjub’ on p.75.

Let Uncommitted®**""€ be as defined in §5.3 ‘Constants’ on p. 54.

24»0_1 <7>,]]71

Let ¢ be the largest integer such that 4 - S ie c:=63.

Define 7 : BY® x N — J* by:

(M=
Z(D, i) := FindGroupHash® (D,

32-biti — 1 D

+
Define PedersenHashToPoint(D : B ar: BN ]) — I as follows:

Pad M to a multiple of 3 bits by appending zero bits, giving M".

|ength(M’))

Letn = ceiling( o

Split M" into n segments M, _,, so that M’ = concatg(M; _,), and each of M; ,,_; is of length 3-¢ bits. (M,, may
be shorter.)

Return Y [(M,)]Z(D,i) : J7.

where (+) : B -l B2 B2 (0} s defined as:

2 2
Let k; = length(M;)/3.

Split M; into 3-bit chunks m; _j so that M; = concatg(m; ).

Write each m;; as [s), 51, s3], and let enc(m;) = (1 - 2-50) - (148 +25]): Z.

kz (7 —
Let (M;) = Y " enc(m;)- 2"~V

Savling

Finally, define PedersenHash : Byl 5 BV _, plticne] by:
PedersenHash(D, M) := Extract (, (PedersenHashToPoint(D, M)).

See § A.3.3.9 Pedersen hash’ on p. 145 for rationale and efficient circuit implementation of these functions.

Security requirement:  PedersenHash and PedersenHashToPoint are required to be collision-resistant between
inputs of fixed length, for a given personalization input D. No other security properties commonly associated with
hash functions are needed.

Non-normative note: These hash functions are not collision-resistant for variable-length inputs.

59


https://zips.z.cash/protocol/sapling.pdf#concretepedersenhash

Theorem 5.4.1. The encoding function (+) is injective.

ki
Proof. We first check that the range of » enc(m;) - 27U~ is a subset of the allowable range {— TJ; . TJ; F\ {0}.

j=1
2te _q

The range of this expression is a subset of {~A .. A} \ {0} where A =4- > 2t =) —yg. 5

i=1

When ¢ = 63, we have

4-c
2 1;1 = 0x444444444444444444444444444444444444444444444444444444444444444

4 .

r

J; ! — 0x73EDA753299D7D483339D80809A1D8053341049E6640841684B87 2F6B7BIG5B

gt (=)

ks
so the required condition is met. This implies that there is no “wrap around” and so Z _ 1enc(mj) may be
=

treated as an integer expression.

encis injective. In order to prove that (-) is injective, consider (+)* : p-1-edl {0..2-A} such that (M,)* = (M,)+A.
k; i—

With k; and m; defined as above, we have (M)™ = Eli:lenc/(mj) 240~ where enc’(m;) = enc(m;) + 4 is in

{0..8} and enc’ is injective. Express this sum in hexadecimal; then each m; affects only one hex digit, and it is easy

to see that (-} is injective. Therefore so is (+). O

Since the security proof from [BGG1995, Appendix Al depends only on the encoding being injective and its range not
including zero, the proof can be adapted straightforwardly to show that PedersenHashToPoint is collision-resistant
under the same assumptions and security bounds. Because Extract ¢ is injective, it follows that PedersenHash is

equally collision-resistant.

5.4.1.8 Mixing Pedersen Hash Function

A mixing Pedersen hash is used to compute p from cm and pos in §4.14 ‘Note Commitments and Nullifiers’ on
p.42. It takes as input a Pedersen commitment P, and hashes it with another input .

Define J5%Pne . — FindGroupHashJW (“Zcash_J_",*")
We define MixingPedersenHash : J x {0..r; — 1} — J by:
MixingPedersenHash(P, z) := P + [z] J°*"™"e.
Security requirement: The function
(ry,M,z):{0..r; — 1} x BN'] & {0..73 — 1} — MixingPedersenHash(WindowedPedersenCommit,.(M ), z) ¢ J
must be collision-resistant on (r, M, x).

See § A.3.3.10 ‘Mixing Pedersen hash’ on p.147 for efficient circuit implementation of this function.

5.4.1.9 Equihash Generator

EquihashGen,, , is a specialized hash function that maps an input and an index to an output of length n bits. It is
used in §7.6.1 ‘Equihash’ on p.92.

Let powtag ::\ 64-bit “ZcashPoW” | 32-bitn | 32-bitk

Let powcount(g) := | 32-bitg |.

60


https://zips.z.cash/protocol/sapling.pdf#thmpedersenencodeinjective
https://zips.z.cash/protocol/sapling.pdf#concretemixinghash
https://zips.z.cash/protocol/sapling.pdf#equihashgen

Let EquihashGen,, ;. (S,17) := T}, 11 . p4n, Where

m = floor(%);
h = (i —1mod m) - n;

T = BLAKE2b-(n - m)(powtag, S || powcount(floor(:-1))).

m

Indices of bits in T are 1-based.

BLAKE2b-/(p, z) is defined in § 5.4.1.2 ‘BLAKE2 Hash Functions’ on p. 56.

Security requirement: BLAKE2b-¢(powtag, ) must generate output that is sufficiently unpredictable to avoid
short-cuts to the Equihash solution process. It would suffice to model it as a random oracle.

Note: When EquihashGen is evaluated for sequential indices, as in the Equihash solving process (§ 7.6.1 ‘Equihash’
on p. 92), the number of calls to BLAKE2b can be reduced by a factor of floor (£12) in the best case (which is a factor
of 2 for n = 200).

5.4.2 Pseudo Random Functions

Let SHA256Compress be as given in §5.4.1.1 ‘SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions’
on p.55.

The Pseudo Random Functions PRF2" PRE"Put PREPK and PRFP from §4.1.2 ‘Pseudo Random Functions’ on
p.19, are all instantiated using SHA256Compress:

PRF2Y (1) := SHA256Compress (] 1] 1]o]o] 252-bit z |8-bitt | [0)*** D
PRFL™P° (p) := SHA256Compress (’ 1| 1| 1 0| 252-bit ag, | 256-bit p D
PRFESkk (4, hgig) := SHA256Compress (’0 i-110 0| 252-Dbit ag | 256-bit hg;q D
PRF® (i, hgg) := SHA256Compress (]0 i1 1|0| 252-bit @ | 256-bit hsig D

Security requirements:
- SHA256Compress must be collision-resistant .

- SHA256Compress must be a PRF when keyed by the bits corresponding to z, a or ¢ in the above diagrams,
with input in the remaining bits.

Note: The first four bits -i.e. the most significant four bits of the first byte- are used to separate distinct uses of
SHA256Compress, ensuring that the functions are independent. As well as the inputs shown here, bits 1011 in this
position are used to distinguish uses of the full SHA-256 hash function; see § 5.4.71 Sprout Note Commitments’ on
p- 68.

(The specific bit patterns chosen here were motivated by the possibility of future extensions that might have
increased N and/or N™" to 3, or added an additional bit to ag to encode a new key type, or that would have
required an additional PRF. In fact since Sapling switches to non-SHA256Compress-based cryptographic primitives,
these extensions are unlikely to be necessary.)

PRF®* js used in §4.2.2 ‘Sapling Key Components’ on p. 29 to derive the Spend authorizing key ask and the proof
authorizing key nsk.

It is instantiated using the BLAKE2b hash function defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p. 56:

PRFEP (1) := BLAKE2b-512(“Zcash_ExpandSeed”, LEBS20SP,s(sk) || ¢)

61


https://zips.z.cash/protocol/sapling.pdf#concreteprfs

Security requirement: BLAKE2b-512(“Zcash_ExpandSeed”, LEBS20SP,54(sk) || t) must be a PRF for output range
By [ferreoma/ 8 when keyed by the bits corresponding to sk, with input in the bits corresponding to t.

PRF°kS2P8 i yysed in §4.17.1 ‘Encryption (Sapling)’ on p. 48 to derive the outgoing cipher key ock used to encrypt
an outgoing ciphertext.

It is instantiated using the BLAKE2b hash function defined in §55.4.1.2 ‘BLAKE2 Hash Functions’ on p. 56:

PRFoKS2PI"g (cy ey, ephemeralKey) := BLAKE2b-256(“Zcash_Derive_ock”, ocklnput)

ovk

where ocklnput = ’ LEBS20SP 54 (ovk) | 32-byte cv | 32-byte cmu |32—byte ephemeralKey|.

Security requirement: BLAKE2b-512(“Zcash_Derive_ock”, ocklnput) must be a PRF for output range Sym.K (de-
fined in §5.4.3 ‘Symmetric Encryption’ on p.62) when keyed by the bits corresponding to ovk, with input in the
bits corresponding to cv, cmu, and ephemeralKey.

PRF"S%P¢ is ysed to derive the nullifier for a Sapling note. It is instantiated using the BLAKE2s hash function
defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p. 56:

nk*

PRF"S%Pne (04) .— BLAKE25-256 (“ansh_nf",

LEBS20SP y55(nkx) | LEBS20SPy54(p¥) D

Security requirement: BLAKE2s—256(“ansh_nf", LEBS20SP 54 (nkx) | LEBS20SP 54 (p*) D must be a col-

lision-resistant PRF for output range BY*? when keyed by the bits corresponding to nk*, with input in the bits
corresponding to px. Note that nkx : 1% isa representation of a point in the rj-order subgroup of the Jubjub curve,
and therefore is not uniformly distributed on B!, 1 is defined in § 5.4.8.3 Jubjub’ on p.-73.

5.4.3 Symmetric Encryption

Let Sym.K := B, Sym.P := B"™ and Sym.C = By,

Let the authenticated one-time symmetric encryption scheme Sym.Encrypty (P) be authenticated encryption using
AEAD_CHACHA20_POLY1305 [RFC-7539] encryption of plaintext P € Sym.P, with empty “associated data’, all-zero
nonce [0]%°, and 256-bit key K € Sym.K.

Similarly, let Sym.Decrypty (C) be AEAD_CHACHA20_POLY1305 decryption of ciphertext C € Sym.C, with empty
“associated data’, all-zero nonce [0]°°, and 256-bit key K € Sym.K. The result is either the plaintext byte sequence,
or L indicating failure to decrypt.

Note: The “IETF" definition of AEAD_CHACHA20_POLY1305 from [RFC-7539] is used; this has a 32-bit block count
and a 96-bit nonce, rather than a 64-bit block count and 64-bit nonce as in the original definition of ChaCha20.

5.4.4 Key Agreement And Derivation

5.4.4.1 Sprout Key Agreement

KASP™"tis a key agreement scheme as specified in §4.1.4 ‘Key Agreement’ on p. 21.
It is instantiated as Curve25519 key agreement, described in [Bernstein2006], as follows.

Let KASP™® Public and KASP™"" SharedSecret be the type of Curve25519 public keys (i.e. BY*?), and let KA Private
be the type of Curve25519 secret keys.

Let Curve25519(n, ¢) be the result of point multiplication of the Curve25519 public key represented by the byte se-
quence g by the Curve25519 secret key represented by the byte sequence n, as defined in [Bernstein2006, section 2].

62


https://zips.z.cash/protocol/sapling.pdf#concretesym
https://zips.z.cash/protocol/sapling.pdf#concretekaandkdf
https://zips.z.cash/protocol/sapling.pdf#concretesproutkeyagreement

Let KASP™“t Base := 9 be the public byte sequence representing the Curve25519 base point.

Let clampc,neassio(2) take a 32-byte sequence z as input and return a byte sequence representing a Curve25519

private key, with bits “clamped” as described in [Bernstein2006, section 3]: “clear bits 0, 1, 2 of the first byte, clear

bit 7 of the last byte, and set bit 6 of the last byte.” Here the bits of a byte are numbered such that bit b has numeric
4 b

weight 2”.

Define KA FormatPrivate(z) := clampcymesssio(Z)-
Define KA DerivePublic(n, ¢) := Curve25519(n, q).
Define KA®P®"® Agree(n, q) := Curve25519(n, q).

5.4.4.2 Sprout Key Derivation

KDF*P"tis a Key Derivation Function as specified in §4.1.5 ‘Key Derivation’ on p.2l.

It is instantiated using BLAKE2b-256 as follows:

KDF®Pout(;, hsig, sharedSecret;, epk, pkenc ;) := BLAKE2b-256(kdftag, kdfinput)

where:
kdftag := | 64-bit “ZcashKDF" | 8-biti—1] 0] |
kdfinput := ’ 256-bit hg;, | 256-bit sharedSecret; 256-bit epk 256-bit pkene i

BLAKE2b-256(p, x) is defined in § 5.4.1.2 ‘BLAKEZ2 Hash Functions’ on p. 56.

5.4.4.3 Sapling Key Agreement

KA is 4 key agreement scheme as specified in §4.1.4 ‘Key Agreement’ on p. 21.

It is instantiated as Diffie-Hellman with cofactor multiplication on Jubjub as follows:
Let J, I, J™* and the cofactor h; be as defined in §5.4.8.3 ‘Jubjub’ on p.73.

Define KA>*P"™.Public := J.

Define KAS?"™& pyblicPrimeSubgroup := J.

Define KAS*P'"& SharedSecret := J.

Define KAS*"™™8 Private := F,,-

Define KAS*P'"& DerivePublic(sk, B) := [sk] B.

Define KA Agree(sk, P) := [hy - sk] P.

63


https://zips.z.cash/protocol/sapling.pdf#concretesproutkdf
https://zips.z.cash/protocol/sapling.pdf#concretesaplingkeyagreement

5.4.4.4 Sapling Key Derivation

KDF®*P"€ is a Key Derivation Function as specified in §4.1.5 ‘Key Derivation’ on p.21.
It is instantiated using BLAKE2b-256 as follows:
KDF>*P"&(sharedSecret, ephemeralKey) := BLAKE2b-256(“Zcash_SaplingKDF”, kdfinput).

where:

kdfinput := ’ LEBS20SP,5 (repr(sharedSecret)) | ephemeralKey ‘

BLAKE2b-256(p, x) is defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p. 56.

5.4.5 Ed25519

Ed25519 is a signature scheme as specified in §4.1.6 ‘Signature’ on p.22. It is used to instantiate JoinSplitSig as
described in §4.10 ‘Non-malleability (Sprout)’ on p. 38.

Let ExcludedPointEncodings : @(]B%Y[gz]) ={

[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 |,
[0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ],
[0x26, 0xe8, 0x95, 0x8f, 0xc2, 0xb2, 0x27, 0xb0, 0x45, 0xc3, 0x£4, 0x89, 0x£2, Oxef, 0x98, 0x£0, 0xd5, 0xdf, Oxac, 0x05, 0xd3, 0xc6, 0x33, 0x39, 0xb1, 0x38, 0x02, 0x88, 0x6d, 0x53, 0xfc, 0x05],
[0xc7,0x17, 0x6a, 0x70, 0x3d, 0x4d, 0xd8, 0x4f, Oxba, 0x3c, 0xOb, 0x76, 0x0d, 0x10, 0x67, 0x0f, 0x2a, 0x20, 0x53, 0xfa, 0x2c, 0x39, Oxcc, 0xc6, Oxde, 0xc7, 0xfd, 0x77, 0x92, Oxac, 0x03, 0x7a],
[0x13, 0xe8, 0x95, 0x8f, 0xc2, 0xb2, 0x27, 0xb0, 0x45, 0xc3, 0x£4, 0x89, 0x£2, Oxef, 0x98, 0x£0, 0xd5, 0xdf, Oxac, 0x05, 0xd3, 0xc6, 0x33, 0x39, 0xb1, 0x38, 0x02, 0x88, 0x6d, 0x53, 0xfc, 0x85],
[0xb4, 0x17, 0x6a, 0x70, 0x3d, 0x4d, 0xd8, 0x4f, Oxba, 0x3c, 0x0b, 0x76, 0x0d, 0x10, 0x67, 0x0f, 0x2a, 0x20, 0x53, Oxfa, 0x2c, 0x39, Oxcc, 0xc6, Oxde, 0xc7, 0xfd, 0x77, 0x92, Oxac, 0x03, Oxfa |,
[Oxec, 0xff, 0xff, 0xff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxEf, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxEf, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Ox£ff, OxTE ],
[Oxed, 0x£ff, 0xff, 0xff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxTf, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxEf, Ox£f, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxEf, Ox£ff, OXTE ],
[Oxee, 0x£ff, Oxff, 0xff, Oxff, Oxff, Oxff, Oxff, Oxff, OxEf, Oxff, OxTf, Oxff, OxEf, Oxff, OxEf, Oxff, Oxff, Oxff, Oxff, OxEf, Ox£f, OxEf, Oxff, OxEf, Oxff, OxEf, Oxff, OxEf, Oxff, Ox£Ef, Ox7E ],
[0xd9, 0x£ff, 0xff, 0xff, Oxff, Oxff, Oxff, Oxff, Oxff, OxEf, Oxff, OxLf, Oxff, Oxff, Oxff, OxEf, Oxff, OxEff, Oxff, Oxff, OxEf, Ox£ff, OxEf, Oxff, OxEf, Oxff, OxEf, Oxff, Oxff, Oxff, Ox£Ef, OxLf],
[Oxda, 0x£ff, 0xff, 0xff, Oxff, Oxff, Oxff, Oxff, Oxff, OxEf, Oxff, OxEf, Oxff, Oxff, Oxff, Oxff, Oxff, OxEff, Oxff, OxEf, OxEf, Oxff, OxEf, Oxff, OxEf, Oxff, OxEf, Oxff, Ox£f, Oxff, Ox£ff, Oxff |

}.

Let p = 22%° — 19.

Leta = —1.

Letd = —121665/121666 (mod p).

Let ¢ = 2%°% 4 27742317777372353535851937790883648493 (the order of the Ed25519 curve's prime-order subgroup).
Let B be the base point given in [BDLSY2012].

Define I2LEOSP, LEOS2BSP, and LEBS2IP as in § 5.2 ‘Integers, Bit Sequences, and Endianness’ on p.53.

Define reprBytesgyoss19 : Ed25519 — BY*? such that reprBytesgqpss10((2, y)) = 12LEOSP56 ((y mod p) +2255~j), here
i=xzmod2°

Define abstBytesgqos519 BY*2 s Ed25519 U {L} such that abstBytesgys5519(P)is computed as follows:
let y* : B*® be the first 255 bits of LEOS2BSP,54(P) and let Z : B be the last bit.
let y : I, = LEBS2IPo55(yx) (mod p).

?/1— 2 . . . .
letz =,/ % . (The denominator a — d-y° cannot be zero, since % is not square in I, )
a—dy

ifzx = 1, return L.
if £ mod 2 = 7 then return (z, y) else return (p — z, y).

® Here we use the (z,y) naming of coordinates in [BDLSY2012], which is different from the (u, v) naming used for coordinates of ctEdwards
curves in §5.4.8.3 Jubjub’ on p.73 and in § A.2 ‘Elliptic curve background’ on p.135.

64


https://zips.z.cash/protocol/sapling.pdf#concretesaplingkdf
https://zips.z.cash/protocol/sapling.pdf#concreteed25519

Note: This definition of point decoding differs from that of [RFC-8032, section 5.1.3, as corrected by the erratal.

In the latter there is an additional step “If x = 0, and x_0 = 1, decoding fails.”, which rejects the encodings {
(001, 0x00, 0x00, 0x00, 000, 0x00, 0x00, 0%00, 0x00, 000, 0x00, 0x00, 0%00, 0x00, 0x00, 0x00, 0x00, 0%00, 0x00, 0x00, 0x00, 0x00, 0%00, 0x00, 000, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80],
[Oxee, 0x£ff, Oxff, 0xff, Oxff, Oxff, Oxff, Oxff, Oxff, OxEf, Oxff, OxTf, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxEf, Ox£f, OxEf, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Ox£ff, OxEf],
[Oxec, 0x£f, Oxf{, OxEf, OxEf, Ox£f, Ox£f, Oxff, OxEf, OXEf, OXEf, Ox£f, Oxff, OxEf, OXEf, Ox£f, Oxf1, Oxft, OXEf, OXEf, Ox£f, Oxff, OxEf, OxEf, Ox£f, Ox£f, Oxff, OxEt, OXEf, OEf, Ox£f, Oxft]

}.
In this specification, the first two of these are accepted as encodings of (0,1), and the third is accepted as an
encoding of (0, —1).

Ed25519 is defined as in [BDLSY2012], using SHA-512 as the internal hash function, with the additional requirements
below. A valid Ed25519 validating key is defined as a sequence of 32 bytes encoding a point on the Ed25519 curve.
All conversions between Ed25519 points, byte sequences, and integers used in this section are as specified in
[BDLSY2012].

The requirements on a signature (R, S) with validating key A on a message M are:
- S MUST represent an integer less than .
- R and A MUST be encodings of points R and A respectively on the Ed25519 curve;
- R MUST NOT be in ExcludedPointEncodings;
- The validation equation MUST be equivalent to [S] B = R + [c] A.
where ¢ is computed as the integer corresponding to SHA-512(R || A || M) as specified in [BDLSY2012].

If these requirements are not met or the validation equation does not hold, then the signature is considered invalid.

The encoding of an Ed25519 signature is:

256-bit R 256-bit §

where R and S are as defined in [BDLSY2012].

Notes:

. Itis not required that the integer encoding of the y-coordinate® of the points represented by R or A are less
than 2*%° — 19,

- Itis not required that A ¢ ExcludedPointEncodings.

Non-normative note: The exclusion of ExcludedPointEncodings from R is due to a quirk of version 1.0.15 of the
libsodium library [libsodium| which was initially used to implement Ed25519 signature validation in zcashd. (The
ED25519_COMPAT compile-time option was not set.) The intent was to exclude points of order less than ¢; however,
not all such points were covered. It is possible, with due attention to detail, to reproduce this quirk without using
libsodium v1.0.15.

5.4.6 RedDSA and RedJubjub

RedDSA is a Schnorr-based signature scheme, optionally supporting key re-randomization as described in §4.1.6.1
‘Signature with Re-Randomizable Keys’ on p.23. It also supports a Secret Key to Public Key Monomorphism as
described in §4.1.6.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on p.24. It is based on a
scheme from [FKMSSS2016, section 3], with some ideas from EdDSA [BJLSY2015].

RedJubjub is a specialization of RedDSA to the Jubjub curve (§5.4.8.3 ‘Jubjub’ on p.73), using the BLAKE2b-512 hash
function.

The spend authorization signature scheme SpendAuthSig>*""8is instantiated by Red Jubjub, using parameters defined

in §5.4.6.1 ‘Spend Authorization Signature (Sapling)’ on p. 68.

The binding signature scheme BindingSig>*"""® is instantiated by RedJubjub without key re-randomization, using

parameters defined in § 5.4.6.2 ‘Binding Signature (Sapling)’ on p. 68.

Let I2LEBSP, I2LEOSP, LEOS2IP, and LEBS20SP be as defined in § 5.2 ‘Integers, Bit Sequences, and Endianness’
on p.53.

65


https://zips.z.cash/protocol/sapling.pdf#concretereddsa

We first describe the scheme RedDSA over a general represented group. Its parameters are:

- arepresented group G, which also defines a subgroup G of order rg, a cofactor hg, a group operation +, an
additive identity O, a bit-length /g, a representation function reprg, and an abstraction function abstg, as
specified in §4.1.8 ‘Represented Group’ on p. 26;

. Pg, a generator of G;
- a bit-length ¢y : N such that 2128 > 1. and ¢ mod 8 = 0;

- a cryptographic hash function H : By _y pyln/8l,

Its associated types are defined as follows:
RedDSA.Message := By
RedDSA Signature :— BYIling((c /8) + ceiling(bitlength(r)/8)]
RedDSA.Public := G
RedDSA.Private := I, .
RedDSA.Random :=F, .

Define H® : B - F, by:
H®(B) = LEOS2IP,, (H(B)) (mod rg)

Define RedDSA.GenPrivate : () & RedDSA.Private as:

Returnsk & F

rg”

Define RedDSA.DerivePublic : RedDSA.Private — RedDSA.Public by:
RedDSA.DerivePublic(sk) := [sk] Pg.

Define RedDSA.GenRandom : () & RedDSA.Random as:

Choose a byte sequence T uniformly at random on By[(fnT128)/8]

Return H®(T).

Define Oregpsa Random := 0 (mod 7g).

Define RedDSA.RandomizePrivate : RedDSA.Random x RedDSA.Private — RedDSA.Private by:
RedDSA.RandomizePrivate(a, sk) := sk 4+ o (mod rg).

Define RedDSA.RandomizePublic : RedDSA.Random x RedDSA.Public — RedDSA.Public as:
RedDSA.RandomizePublic(a, vk) := vk + [o] Pg.

Define RedDSA .Sign : (sk : RedDSA Private) x (M : RedDSA.Message) X RedDSA.Signature as:

Choose a byte sequence T uniformly at random on By[(nF128)/8]

Let vk = LEBS20SP,_ (reprg (RedDSA.DerivePublic(sk))).
Let r = H®(T'|| vk || M).

Let R = [r] Pg.

Let R = LEBS20SP,_(reprg (R)).

Let S = (r +H®(R || vk || M) - sk) mod rg.

Let S = 12LEOSPytjengtn(re) (5)-

Return R || S.

66



Define RedDSA.Validate : (vk : RedDSA.Public) x (M : RedDSA.Message) x (o : RedDSA.Signature) — B as:

Let R be the first ceiling ({5 /8) bytes of ¢, and let S be the remaining ceiling (bitlength(rg)/8) bytes.
Let R = abstg (LEOS2BSP,_(R)), and let § = LEOS2IPy jengen(s) (S)-

Let vk = LEBS20SP,_ (reprg; (vk). -

Lete = H(R || vk || M).

Return 1if R # 1L and S < rg and [hg] (—[S] Pg + R + [c] vk) = Og, otherwise 0.

Notes:
- The validation algorithm does not check that R is a point of order at least rg.
- The value R used as part of the input to H® MUST be exactly as encoded in the signature.

- Appendix § B.1 ‘RedDSA batch validation’ on p.155 describes an optimization that MAY be used to speed up
validation of batches of RedDSA signatures.

Non-normative notes:

- The randomization used in RedDSA.RandomizePrivate and RedDSA.RandomizePublic may interact with other
uses of additive properties of keys for Schnorr-based signature schemes. In the Zcash protocol, such prop-
erties are used for binding signatures but not at the same time as key randomization. They are also used in
[Z1P-32] when deriving child extended keys, but this does not result in any practical security weakness as
long as the security recommendations of ZIP-32 are followed. If RedDSA is reused in other protocols making
use of these additive properties, careful analysis of potential interactions is required.

- It is RECOMMENDED that, for deployments of RedDSA in other protocols than Zcash, the requirement for R
to be canonically encoded is always enforced (which was the original intent of the design).

The two abelian groups specified in §4.1.6.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on
p. 24 are instantiated for RedDSA as follows:

- Og:=0 (mod rg)

- sky B sky :=sk; +sky (mod rg)
- Op = 0Og

- vky @ vky := vk + vks.

As required, RedDSA . DerivePublic is a group monomorphism, since it is injective and:

RedDSA .DerivePublic(sk, & sky) = [sk; + sky (mod rg)] Pg
= [skq] Pg + [sko] Pg (since Pg has order rg)
= RedDSA.DerivePublic(sk; ) ¢ RedDSA.DerivePublic(sky).

A RedDSA validating key vk can be encoded as a bit sequence reprg; (vk) of length ¢ bits (or as a corresponding byte
sequence vk by then applying LEBS20SP,_).

The scheme RedJubjub specializes RedDSA with:
- G := J as defined in §5.4.8.3 ‘Jubjub’ on p.73;
-l =512
- H(z) := BLAKE2b-512(“Zcash_RedJubjubH”", x) as defined in § 5.4.1.2 ‘BLAKE?2 Hash Functions’ on p. 56.

The generator Pg : G is left as an unspecified parameter, different between BindingSig®>*""8 and SpendAuthSig>*"™"e.

67



5.4.6.1 Spend Authorization Signature (Sapling)

Let RedJubjub be as defined in §5.4.6 ‘RedDSA and RedJubjub’ on p. 65.

i () *
Define G>*P"8 .— FindGroupHashJ (“Zcash_G_",“")

Sapling .

The spend authorization signature scheme SpendAuthSig is instantiated as RedJubjub with key re-randomization

and with generator Pg = GSapling
See §4.13 ‘Spend Authorization Signature (Sapling)’ on p.41 for details on the use of this signature scheme.

Security requirement: ~ SpendAuthSig must be a SURK-CMA secure signature scheme with re-randomizable
keys as defined in §4.1.6.1 ‘Signature with Re-Randomizable Keys’ on p.23.

5.4.6.2 Binding Signature (Sapling)

Let RedJubjub be as defined in §5.4.6 ‘RedDSA and RedJubjub’ on p. 65.

The Sapling binding signature scheme, BindingSig>®"® is instantiated as RedJubjub without key re-randomization,

using generator Pg = R>*"€ defined in §5.4.7.3 ‘Homomorphic Pedersen commitments (Sapling) on p.69. See
§4.12 ‘Balance and Binding Signature (Sapling)’ on p. 39 for details on the use of this signature scheme.

Security requirement:  BindingSig must be a SUF-CMA secure signature scheme with key monomorphism as
defined in §4.1.6.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on p.24. A signature must
prove knowledge of the discrete logarithm of the validating key with respect to the base R>*P"®,

5.4.7 Commitment schemes

5.471 Sprout Note Commitments

The commitment scheme NoteCommit>"" specified in §4.1.7 ‘Commitment’ on p.24 is instantiated using SHA-256
as follows:

NoteCommit>”*i(a ., v, p) := SHA-256(]1|0|1|1|0|0|0|0| 256-bita,, |64-bitv] 256-bitp | 256-bit rem D

rcm

NoteCommit>™"°"* GenTrapdoor() generates the uniform distribution on NoteCommit>P*" Trapdoor.

Note: The leading byte of the SHA-256 input is 0xBO.

Security requirements:
- SHA256Compress must be collision-resistant .

- SHA256Compress must be a PRF when keyed by the bits corresponding to the position of rcm in the second
block of SHA-256 input, with input to the PRF in the remaining bits of the block and the chaining variable.

68


https://zips.z.cash/protocol/sapling.pdf#concretespendauthsig
https://zips.z.cash/protocol/sapling.pdf#concretebindingsig
https://zips.z.cash/protocol/sapling.pdf#concretecommit
https://zips.z.cash/protocol/sapling.pdf#concretesproutnotecommit

5.4.7.2 Windowed Pedersen commitments

§5.4.1.7 ‘Pedersen Hash Function’ on p.59 defines a Pedersen hash construction. We construct “windowed” Ped-
ersen commitments by reusing that construction, and adding a randomized point on the Jubjub curve (see §5.4.8.3
Jubjub’ on p.73):

)=
WindowedPedersenCommit,.(s) := PedersenHashToPoint(“Zcash_PH”, s) + [r] FindGroupHash’ = (“Zcash_PH”, “r”)

See § A.3.5 ‘Windowed Pedersen Commitment’ on p.148 for rationale and efficient circuit implementation of this
function.

The commitment scheme NoteCommit>**" specified in §4.1.7 ‘Commitment’ on p. 24 is instantiated as follows
using WindowedPedersenCommit:

rcm

NoteCommit>2P""&(gu,, pkiy, v) := WindowedPedersenCommit,cm ([1}6 || 1”2LEBSPg4(v) || g*q4 || pk*d>

NoteCommit>*"""& GenTrapdoor() generates the uniform distribution on ..

Security requirements:

Sapling

- WindowedPedersenCommit, and hence NoteCommit , must be computationally binding and at least com-

putationally hiding commitment schemes.

(They are in fact unconditionally hiding commitment schemes.)

Notes:

- MerkleCRH>*"""€s also defined in terms of PedersenHashToPoint (see § 5.4.1.3 ‘Merkle Tree Hash Function’ on
p.56). The prefix [1]° distinguishes the use of WindowedPedersenCommit in NoteCommit>**""€ from the layer
prefix used in MerkleCRH>*"™ That layer prefix is a 6-bit little-endian encoding of an integer in the range
{0... MerkleDepth®*"8 — 1}: because MerkleDepth®®™""€ < 64, it cannot collide with [1]°.

. The arguments to NoteCommit>*"""€ are in a different order to their encodings in WindowedPedersenCommit.
There is no particularly good reason for this.

Theorem 5.4.2. Uncommitted>**™™ is not in the range of NoteCommit>*"'"

Proof. Uncommitted®® ™" is defined as I2LEBSP sapine (1). By injectivity of I2LEBSP swin; and definitions of Extract e,

Merkle Merkle

WindowedPedersenCommit, and NoteCommit>*"™"¢ I2LEBSP jssins (1) can be in the range of NoteCommit

Merkle

there exist rem : NoteCommit>*™™ Trapdoor, D : BY®) and M : B | such that U(WindowedPedersenCommit,., (D, M))
= 1. The latter can only be the affine-ctEdwards u-coordinate of a point in J. We show that there are no points in J
with affine-ctEdwards u-coordinate 1. Suppose for a contradiction that (u,v) € J for u = 1 and some v : F,_. By
writing the curve equation as v’ = (1 — ay-u”)/(1 — dy-u”), and noting that 1 — dy-u® # 0 because d; is nonsquare, we
have v’ = (1 — ay)/(1 — dy). The right-hand-side is a nonsquare in I, (for the Jubjub curve parameters), so there
are no solutions for v (contradiction). ‘ O

Sapling only if

5.4.7.3 Homomorphic Pedersen commitments (Sapling)

The windowed Pedersen commitments defined in the preceding section are highly efficient, but they do not support
the homomorphic property we need when instantiating ValueCommit.

For more details on the use of this property, see §4.12 ‘Balance and Binding Signature (Sapling)’ on p. 39.
Useful background is given in § 3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’ on p.16.

69


https://zips.z.cash/protocol/sapling.pdf#concretewindowedcommit
https://zips.z.cash/protocol/sapling.pdf#thmuncommittedsapling
https://zips.z.cash/protocol/sapling.pdf#concretehomomorphiccommit

In order to support this property, we also define homomorphic Pedersen commitments for Sapling:
. ()= ()
HomomorphicPedersenCommit>2P""&( D, v) := [v] FindGroupHash” (D, “v”)+ [rcv] FindGroupHash® (D, “r”)

ValueCommit>*""8 GenTrapdoor() generates the uniform distribution on -

See § A.3.6 ‘Homomorphic Pedersen Commitment’ on p.148 for rationale and efficient circuit implementation of
this function.

Define:

. )=
VS2Ping . FindGroupHash®  (“Zcash_cv”, “v”)

. )+
R .— FindGroupHash®  (“Zcash_cv”, “r”)

)

The commitment scheme ValueCommit>*"""¢ specified in §4.1.7 ‘Commitment’ on p.24 is instantiated as follows
using HomomorphicPedersenCommit>**""€ on the Jubjub curve:

Sapling

ValueCommit"(v) := HomomorphicPedersenCommit,

(“Zcash_cv”,v).
which is equivalent to:

ValueCommit;2PM8(y) := [v] V>*P"8 4 [rcy] ROZPIE

Security requirements:

. HomomorphicPedersenCommit>**"8 must be a computationally binding and at least computationally hiding

commitment scheme, for a given personalization input D.

. ValueCommit>2P'"&

scheme.

must be a computationally binding and at least computationally hiding commitment

(They are in fact unconditionally hiding commitment schemes.)

5.4.8 Represented Groups and Pairings

5.4.8.1 BN-254

The represented pairing BN-254 is defined in this section.

Let gg := 21888242871839275222246405745257275088696311157297823662689037894645226208583.
Let rg := 21888242871839275222246405745257275088548364400416034343698204186575808495617.
Let bg := 3.

(¢g and rg are prime.)

Let (GY) be the group (of order rg) of rational points on a Barreto-Naehrig ((BN2005]) curve Eg, over with
equation y*> = 2* + bg. This curve has embedding degree 12 with respect to rg.

Let Gg) be the subgroup of order r¢ in the sextic twist Eg, of Eg, over F, > with equation v =20+ %G where
£:F o )
96

We represent elements of I, 2 as polynomials a; -t + aq ¢ I, [t], modulo the irreducible polynomial t* 4 1; in this
representation, £ is given by ¢ + 9.

Let G(TT) be the subgroup of " roots of unity in ]F;Gm with multiplicative identity 1¢.

Let ég be the optimal ate pairing (see [Vercauter2009] and [AKLGL2010, section 2]) of type GY) X (Gg) — Ggf).

70


https://zips.z.cash/protocol/sapling.pdf#concretepairing
https://zips.z.cash/protocol/sapling.pdf#bnpairing

Fori: {1..2}, let Og, be the point at infinity (which is the additive identity) in G andlet GI"* := G\ {Og,}.
Let P, : G" = (1,2).
Let Pg, : G(’)* (11559732032986387107991004021392285783925812861821192530917403151452391805634 - ¢t +
10857046999023057135944570762232829481370756359578518086990519993285655852781,
4082367875863433681332203403145435568316851327593401208105741076214120093531 - t +
8495653923123431417604973247489272438418190587263600148770280649306958101930).

Pg, and Pg, are generators of Gg " and GQ respectively.

Define I2BEBSP : (£: N) x {0..2°~1} — B as in § 5.2 ‘Integers, Bit Sequences, and Endianness’ on p.53.

For a point P : G@* = (zp,yp):
- The field elements xp and yp : [, are represented as integers z and y ¢ {0..¢—1}.
- Let y = y mod 2.
. Pis encoded as ]0|0|0|0|o|0| 1| 1-bit § | 256-bit 12BEBSP s (1) ‘ .

For a point P : GU* = (zp, yp):

- Define FE2IP : F,_[t]/(t* + 1) — {0..q¢" —1} such that FE2IP(a,, ; *t + ay0) = Gyt - @+ Gy p-
- Letz = FE2IP(zp), y = FE2IP(yp), and 3y = FE2IP(—yp).

1, ify >
Cletj={ " Y7Y
0, otherwise.

. Pisencoded as ]o|0|0|0| 1|0| 1| 1-bit § | 512-bit 12BEBSP;,5(x)

Non-normative notes:

- Only the rg-order subgroups GQ r are used in the protocol, not their containing groups G, 7. Points in G(r)*
are always checked to be of order rg when decoding from external representation. (The group of ratlonal

points G, on Eg, /I, is of order rg so no subgroup checks are needed in that case, and elements of G(T) are

never represented externally.) The (r) superscripts on G 5.7 are used for consistency with notation elsewhere
in this specification.

- The points at infinity Og, , never occur in proofs and have no defined encodings in this protocol.

- Arational point P # Og, on the curve Eg, can be verified to be of order r¢, and therefore in (Gg)*, by checking
that reg - P = OG2.

- The use of big-endian order by I2BEBSP is different from the encoding of most other integers in this pro-
tocol. The encodings for G?); are consistent with the definition of EC20SP for compressed curve points

in [IEEE2004, section 5.5.6.2]. The LSB compressed form (i.e. EC20SP-XL) is used for points in G@*, and the
SORT compressed form (i.e. EC20SP-XS) for points in Gg)*.

- Testing y > ¢/ for the compression of Gg)* points is equivalent to testing whether (a, 1,a, ) > (a_, 1,a_,0)
in lexicographic order.

- Algorithms for decompressing points from the above encodings are given in [IEEE2000, Appendix A.12.8] for
G{"*, and [IEEE2004, Appendix A 12.11] for GJ*.

When computing square roots in F, or F, 21in order to decompress a point encoding, the implementation MUST
NOT assume that the square root ex1sts or ¢ that the encoding represents a point on the curve.

71



5.4.8.2 BLS12-381

The represented pairing BLS12-381 is defined in this section. Parameters are taken from [Bowe2017].

Let gg := 4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787.
Let rg := 52435875175126190479447740508185965837690552500527637822603658699938581184513

Let ug := —15132376222941642752.

Let bg := 4.

(gs and rg are prime.)

Let S:(LT) be the subgroup of order rg of the group of rational points on a Barreto-Lynn-Scott ((BLS2002]) curve Eg
over F, with equation y* = 2° + bg. This curve has embedding degree 12 with respect to rs.

Let Sg) be the subgroup of order rg in the sextic twist Eg, of Eg over F, » with equation y> = +4(i + 1), where
i o,
ds

We represent elements of I, 2 as polynomials a; - + ag ¢ F,_[t], modulo the irreducible polynomial t* + 1; in this
representation, i is given by t.
Let ng) be the subgroup of 74" roots of unity in F;sm' with multiplicative identity 1g.
Let ¢ be the optimal ate pairing of type S x §J) — s¥).
Fori: {1..2}, let Og be the point at infinity in s and let S7* := s \ {Os, }.
Let Pg, ¢ si* =
(3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507,
1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391 756441569 ).
Let Pg, ¢ sO* .=
(3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758 - ¢ +
352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160,
927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582 - ¢ +
1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905).
Ps, and P, are generators of S and SY” respectively.
Define I2BEBSP : (£: N) x {0..2°~1} — Bl as in §5.2 Integers, Bit Sequences, and Endianness’ on p.53.
For a point P : S = (zp,yp):

- The field elements zp and yp ¢ [, are represented as integers z and y : {0.. gs—1}.

1, ify >qg —
Clety=1{ Yo d Y
0, otherwise.

. Pis encoded as ] 1|0| 1-bit § | 381-bit 2BEBSPag, (2) \ .

72


https://zips.z.cash/protocol/sapling.pdf#blspairing

For a point P : S{* = (zp,yp):
- Define FE2IPP : F,_[t]/(t* + 1) — {0..qs— 1} such that FE2IPP(ay, 1 -  + a4y ) = [ 1+ Gu o).
. Let z = FE2IPP(zp), y = FE2IPP(yp), and 3/ = FE2IPP(—yp).

Letj— 1, ify > y/ lexicographically
0, otherwise.

. Pisencoded as ]1|o| 1-bit y| 381-bit 2BEBSPag, (7,) | 384-bit 12BEBSPag, (75) \

Non-normative notes:
- Only the rg-order subgroups S 12,7 are used in the protocol, not their containing groups S, 5 7. Points in SY);

are always checked to be of order rg when decoding from external representation. (Elements of ST are

never represented externally.) The (r) superscripts on S@ZT are used for consistency with notation elsewhere
in this specification.

- The points at infinity Og , never occur in proofs and have no defined encodings in this protocol.

- In contrast to the corresponding BN-254 curve, s over [F,_is not of prime order.

- Arational point P # Og on the curve Eg fori € {1,2} can be verified to be of order rg, and therefore in SET)*,
by checking that rg - P = Og .

- The use of big-endian order by I2BEBSP is different from the encoding of most other integers in this protocol.

- The encodings for SYQ are specific to Zcash.

- Algorithms for decompressing points from the encodings of S 1 are defined analogously to those for (G(T
§5.4.8.1 ‘BN-254 on p. 70, taking into account that the SORT compressed form (not the LSB compressed form)

is used for S{*.

When computing square roots in I, or F, 2in order to decompress a point encoding, the implementation MUST
NOT assume that the square root ex1sts or - that the encoding represents a point on the curve.

5.4.8.3 Jubjub

“You boil it in sawdust: you salt it in glue:
You condense it with locusts and tape:
Still keeping one principal object in view—
To preserve its symmetrical shape.”
— Lewis Carroll, “The Hunting of the Snark” [Carroll1876]

Sapling uses an elliptic curve, Jubjub, designed to be efficiently implementable in zk-SNARK circuits. The repre-
sented group J of points on this curve is defined in this section.

A complete twisted Edwards elliptic curve, as defined in [BL2017, section 4.3.4], is an elliptic curve F over a non-
binary field F,, parameterized by distinct a,d : T, \ {0} such that a is square and d is nonsquare, with equation

E:a-u®+v’ =1+ d-u”-v’. We use the abbreviation “ctEdwards” to refer to complete twisted Edwards elliptic
curves and coordinates.

Let gy := rg, as defined in §5.4.8.2 ‘BLS12-381" on p. 72.
Let ry := 6554484396890773809930967563523245729705921265872317281365359162392183254199.

(¢y and ry are prime.)
Let hJ = 8.
Let ap = —1.

73


https://zips.z.cash/protocol/sapling.pdf#jubjub

Let dy := —10240/10241 (mod qy).

Let J be the group of points (u,v) on a ctEdwards curve Ej over I, with equation a; w? +v? =1+ dj-u®-v?. The
zero point with coordinates (0, 1) is denoted Oj. J has order hj-ry.

Let (5 := 256.

Define I2LEBSP : (¢ : N) x {0.. 22—1} — B asin §5.2 ‘Integers, Bit Sequences, and Endianness’ on p.53, and
similarly for LEBS2IP : (¢: N) x B — {0..2°~1}.
Define repr; : J — B! such that repr; ((u, v)) = I2LEBSPys4 (v mod g;) + 2°°°-@), where @ = u mod 2.
Define abstj : B! — JU {1} such that abst;(Px)is computed as follows:
let v+ : B**®) be the first 255 bits of P« and let @ : B be the last bit.
if LEBS2IPy55(vx) > gy then return L, otherwise let v : I, = LEBS2IPy55(v«) (mod gy).

1—v?

letu = 5
ay—dy-v

. 2 . ay . .
. (The denominator aj — dj-v~ cannot be zero, since d—J is not square in F, .)
J

ifu=_1, return L.

if w mod 2 = @ then return (u, v) else return (¢; — u, v).

Note: In earlier versions of this specification, abst; was defined as the left inverse of repr; such that if S'is not in
the range of repry, then abst;(S) = L. This differs from the specification above:

- Previously, abst; (I2LEBSP256 (2255 + 1)) and abstj (I2LEBSP256 (2255 +q5— 1)) were defined as L.

- In the current specification, abst (I2LEBSP256(2255 + 1)) = abst;(I2LEBSPy54(1)) = (0,1) = Oy, and also
abst; (12LEBSPsq(2%” + ; — 1)) = abst; (12LEBSPas0(q — 1)) = (0, 1)

Define J as the order-r; subgroup of J. Note that this includes Oy. For the set of points of order r; (which excludes
Oy), we write J*.
Define J¥) := {repr;(P) : B! | P € J"}.

Non-normative notes:

- The ctEdwards compressed encoding used here is consistent with that used in EdDSA [BJLSY2015] for
validating keys and the R element of a signature.

- [BJLSY2015, “Encoding and parsing curve points”] gives algorithms for decompressing points from the encod-
ing of J.

- [BJLSY2015, “Encoding and parsing integers”] describes several possibilities for parsing of integers; the speci-
fication of abst; above requires “strict” parsing.

When computing square roots in F, in order to decompress a point encoding, the implementation MUST NOT
assume that the square root exists, or that the encoding represents a point on the curve.

Note that algorithms elsewhere in this specification that use Jubjub may impose other conditions on points, for
example that they have order at least ry.

5.4.8.4 Coordinate Extractor for Jubjub

Let U((u,v)) = uandlet V((u,v)) =v.

Sapling

Define Extract ¢ : J @ _y Blovene] by

EXtraCtﬂ(r) (P) = I2LEBSP Sapling ('U/(P))

KMerkIe

Facts: The point (0,1) = Oy, and the point (0, —1) has order 2 in J. I is of odd-prime order.

74


https://zips.z.cash/protocol/sapling.pdf#concreteextractorjubjub

Lemma 5.4.3. Let P = (u,v) € J”. Then (u, —v) ¢ J©.

Proof. If P = Oy then (u, —v) = (0,—1) ¢ 10 Else, Pis of odd-prime order. Note that v # 0. (If v = O then a - u* = 1,
and so applying the doubling formula gives [2] P = (0,—1), then [4] P = (0,1) = Oj; contradiction since then
P would not be of odd-prime order.) Therefore, —v # v. Now suppose (u, —v) = @ is a point in J. Then by
applying the doubling formula we have [2] Q = —[2] P. But also [2] (—P) = —[2] P. Therefore either Q = —P (then

V(Q) = V(- P); contradiction since —v # v), or doubling is not injective on J* (contradiction since J® is of odd
order [KvE2013]). O

Theorem 5.4.4. 1 is injective on J")

Proof. By writing the curve equation as v> = (1 — a-u?)/(1 — d-u*), and noting that the potentially exceptional case
1 — d-u* = 0 does not occur for a ctEdwards curve, we see that for a given u there can be at most two possible
solutions for v, and that if there are two solutions they can be written as v and —v. In that case by the Lemma, at

most one of (u,v) and (u, —v) is in J*. Therefore, U is injective on points in J*. O

Since I2LEBSP sain: is injective, it follows that Extract ) is injective on 70
Merkle

5.4.8.5 Group Hash into Jubjub

Let URS be the MPC randomness beacon defined in §5.9 ‘Randomness Beacon’ on p. 83.
Let BLAKE2s-256 be as defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p. 56.
Let LEOS2IP be as defined in § 5.2 ‘Integers, Bit Sequences, and Endianness’ on p.53.

Let J, J)*, and abst; be as defined in §5.4.8.3 Jubjub’ on p. 73.

()= ()
Let GroupHash“lI Unput := BY® x BYN and let GroupHashJ .URSType := B4,

(The input element with type B is intended to act as a “personalization” parameter to distinguish uses of the
group hash for different purposes.)

Let D : BY® be an 8-byte domain separator, and let M : B be the hash input.

The hash GroupHashﬂ(;; (D, M) : J* is calculated as follows:
let H = BLAKE2s-256(D, URS || M)
let P = abst; (LEOS2BSP54(H))
if P = 1 thenreturn L
let @ = [hy] P
if Q = Oy then return L, else return Q.

Notes:

- The use of GroupHashURS for Dlver5|fyHashSapllng and to generate independent bases needs a random oracle
(for inputs on which GroupHashURS does not return L); here we show that it is sufficient to employ a simpler
random oracle instantiated by BLAKE2s-256 in the security analysis.

H: Bvi*? F (L, 05, (0,-1)} abst; (LEOS2BSPys6(H)) = J is injective, and both it and its inverse are efficiently
computable.

P:J—=groyh] P:J % js exactly hy-to-1, and both it and its inverse relation are efficiently computable.

It follows that when (D : BY® a7 : Yy s BLAKE2s 256(D, URS || M) : BY®? is modelled as a random
oracle, (D : BY® M BN ) p GroupHashURS (D, M) : ] also acts as a random oracle.

- The BLAKE2s-256 chaining variable after processing URS may be precomputed.

75


https://zips.z.cash/protocol/sapling.pdf#lemmasubgroupnegation
https://zips.z.cash/protocol/sapling.pdf#thmselectuinjective
https://zips.z.cash/protocol/sapling.pdf#concretegrouphashjubjub

Define first : (BY — T U {L}) — T U{L} sothatfirst(f) = f(i) where i is the least integer in BY such that f(i) # L,
or L if no such i exists.

() ()
Define FindGroupHash’ (D, M) :=first(i : BY — GroupHash{rs (D, M || [i]) : IO UL,

—256

(r)
Note: For random input, FindGroupHash’ ~ returns L with probability approximately 2~2°°. In the Zcash protocol,

8
most uses of FindGroupHash’  are for constants and do not return L; the only use that could potentially return L
is in the computation of a default diversified payment address in § 4.2.2 ‘Sapling Key Components’ on p. 29.

5.4.9 Zero-Knowledge Proving Systems
5.49.1 BCTV14

Before Sapling activation, Zcash uses zk-SNARKs generated by a fork of libsnark [Zcash-libsnark] with the BCTV14
proving system described in [BCTV2014al, which is a modification of the systems in [PHGR2013] and [BCGTV2013].

A BCTV14 proof comprises (m4 : GV, 7y : G, 7 : GU* 7y : GV, 7 : GV 7l : G, e : GOy = GO,
It is computed as described in [BCTV2014a, Appendix B, using the pairing parameters specified in §5.4.8.1 ‘BN-254’
on p.70.

Note: Many details of the proving system are beyond the scope of this protocol document. For example, the
quadratic constraint program verifying the JoinSplit statement, or its translation to a Quadratic Arithmetic Program
[BCTV2014a, section 2.3], are not specified in this document. In 2015, Bryan Parno found a bug in this translation,
which is corrected by the libsnark implementationi [WCBTV2015] [Parno2015] [BCTV2014a, Remark 2.5]. In practice
it will be necessary to use the specific proving and verifying keys that were generated for the Zcash production block
chain, given in §5.7 ‘BCTV14 zk-SNARK Parameters’ on p. 83, together with a proving system implementation
that is interoperable with the Zcash fork of libsnark, to ensure compatibility.

Vulnerability disclosure: BCTV14is subject to a security vulnerability, separate from [Parno2015], that could allow
violation of Knowledge Soundness (and Soundness) [CVE-2019-7167] [SWB2019] [Gabizon2019]. The consequence
for Zcash is that balance violation could have occurred before activation of the Sapling network upgrade, although
there is no evidence of this having happened. Use of the vulnerability to produce false proofs is believed to have
been fully mitigated by activation of Sapling. The use of BCTV14 in Zcash is now limited to verifying proofs that
were made prior to the Sapling network upgrade.

Due to this issue, new forks of Zcash MUST NOT use BCTV14, and any other users of the Zcash protocol SHOULD
discontinue use of BCTV14 as soon as possible.

The vulnerability does not affect the Zero Knowledge property of the scheme (as described in any version of
[BCTV2014a] or as implemented in any version of libsnark that has been used in Zcash), even under subversion of
the parameter generation [BGG2017, Theorem 4.10].

[Sapling onward] An implementation of Zcash that checkpoints on a block after Sapling MAY choose to skip
verification of BCTV14 proofs. In this case, the implementation MUST only accept blocks that are descendants of
the known Sapling activation block on the appropriate network.

Encoding of BCTV14 Proofs

A BCTV14 proof is encoded by concatenating the encodings of its elements; for the BN-254 pairing this is:

264-bit 7, | 264-bit 74 520-bit 264-bit 7 | 264-bit 1o | 264-bit 1/, | 264-bit 1 | 264-bit 1y

The resulting proof size is 296 bytes.

6 Confusingly, the bug found by Bryan Parno was fixed in libsnark in 2015, but that fix was incompletely described in the May 2015 update
[BCTV2014a-old, Theorem 2.4]. It is described completely in [BCTV2014a, Theorem 2.4] and in [Gabizon2019].

76


https://zips.z.cash/protocol/sapling.pdf#concretezk
https://zips.z.cash/protocol/sapling.pdf#bctv
https://zips.z.cash/protocol/sapling.pdf#bctvencoding

In addition to the steps to verify a proof given in [BCTV2014a, Appendix B, the verifier MUST check, for the encoding
of each element, that:

- the lead byte is of the required form:;

- the remaining bytes encode a big-endian representation of an integer in {0..gs—1} or (in the case of 7g)
{0..¢5 1}

- the encoding represents a point in Gﬁ”* or (in the case of ng) Gg)*, including checking that it is of order r¢ in
the latter case.

5.4.9.2 Grothl6

After Sapling activation, Zcash uses zk-SNARKs with the Groth16 proving system described in [BGM2017], which is
a modification of the system in [Groth2016]. An independent security proof of this system and its setup is given in
[Maller2018].

Groth16 zk-SNARK proofs are used in transaction version 4 and later (§ 71 Transaction Encoding and Consensus’
on p. 85), both in Sprout JoinSplit descriptions and in Sapling Spend descriptions and Output descriptions. They
are generated by the bellman library [Bowe-bellman].

A Groth16 proof comprises (14 : S*, m5 : SU* 7o 2 S17%). It is computed as described in [Groth2016, section 3.2],
using the pairing parameters specified in § 5.4.8.2 ‘BLS12-381" on p.72. The proof elements are in a different order
to the presentation in [Groth2016].

Note: The quadratic constraint programs verifying the Spend statement and Output statement are described
in Appendix § A ‘Circuit Design’ on p.135. However, many other details of the proving system are beyond the
scope of this protocol document. For example, certain details of the translations of the Spend statement and
Output statement to Quadratic Arithmetic Programs are not specified in this document. In practice it will be
necessary to use the specific proving and verifying keys generated for the Zcash production block chain (see §5.8
‘Groth16 zk-SNARK Parameters’ on p.83), and a proving system implementation that is interoperable with the
bellman library used by Zcash, to ensure compatibility.

Encoding of Groth16 Proofs

A Groth16 proof is encoded by concatenating the encodings of its elements; for the BLS12-381 pairing this is:

384-bit 74 768-bit 384-bit

The resulting proof size is 192 bytes.

In addition to the steps to verify a proof given in [Groth2016], the verifier MUST check, for the encoding of each
element, that:

- the leading bitfield is of the required form:;

- the remaining bits encode a big-endian representation of an integer in {0.. ggs—1} or (in the case of g) two
integers in that range;

- the encoding represents a point in SY)* or (in the case of 7p) Sg)*, including checking that it is of order rg in
each case.

77


https://zips.z.cash/protocol/sapling.pdf#groth
https://zips.z.cash/protocol/sapling.pdf#grothencoding

5.5 Encodings of Note Plaintexts and Memo Fields

As explained in § 3.2.1 ‘Note Plaintexts and Memo Fields’ on p.14, transmitted notes are stored on the block chain
in encrypted form.

The note plaintexts in a JoinSplit description are encrypted to the respective transmission keys pkgy. | . Each
Sprout note plaintext (denoted np) consists of:

Sprout

(leadByte : BY,v : {0..2%—1},p: Bl= | rcm 2 NoteCommitSP

.Output, memo : IBBY[MQ])

[Sapling onward] The note plaintext in each Output description is encrypted to the diversified transmission key
pky. Each Sapling note plaintext (denoted np) consists of:

(leadByte : BY,d : Bl v {0..2%w—1} rcm : B2 memo : IBSY[512])

memo is a 512-byte memo field associated with this note.

The usage of the memo field is by agreement between the sender and recipient of the note. Non-consensus
constraints on the memo field contents are specified in [ZIP-302].

Other fields are as defined in § 3.2 ‘Notes’ on p.13.

The encoding of a Sprout note plaintext consists of:

8-bit leadByte| 64-bitv 256-bit p 256-bit rcm memo (512 bytes)

- A byte, 0x00, indicating this version of the encoding of a Sprout note plaintext.
- 8 bytes specifying v.

- 32 bytes specifying p.

- 32 bytes specifying rcm.

- 512 bytes specifying memo.

The encoding of a Sapling note plaintext consists of:

8-bit leadByte 88-bit d 64-bit v 256-bit rcm memo (512 bytes)

- A byte, 0x01, indicating this version of the encoding of a Sapling note plaintext.
- 11 bytes specifying d.

- 8 bytes specifying v.

- 32 bytes specifying rcm.

- 512 bytes specifying memo.

5.6 Encodings of Addresses and Keys
This section describes how Zcash encodes shielded payment addresses, incoming viewing keys, and spending
keys.

Addresses and keys can be encoded as a byte sequence; this is called the raw encoding. For Sprout shielded
payment addresses, this byte sequence can then be further encoded using Base58Check. The Base58Check layer is
the same as for upstream Bitcoin addresses [Bitcoin-Base58].

For Sapling-specific key and address formats, Bech32 [ZIP-173] is used instead of Base58Check.

78


https://zips.z.cash/protocol/sapling.pdf#notept
https://zips.z.cash/protocol/sapling.pdf#addressandkeyencoding

Non-normative note: ZIP 173 is similar to Bitcoin's BIP 173, except for dropping the limit of 90 characters on an
encoded Bech32 string (which does not hold for Sapling viewing keys, for example), and requirements specific to
Bitcoin's Segwit addresses.

Payment addresses MAY be encoded as QR codes; in this case, the RECOMMENDED format for a Sapling payment
address is the Bech32 form converted to uppercase, using the Alphanumeric mode [ISO2015, sections 7.3.4 and 7.4.4].

5.6.1 Transparent Encodings

5.6.1.1 Transparent Addresses

Transparent addresses are either P2SH (Pay to Script Hash) addresses [BIP-13] or P2PKH (Pay to Public Key Hash)
addresses [Bitcoin-P2PKH].

The raw encoding of a P2SH address consists of:

| 8-bitoxtC |  8-bit 0xBD 160-bit script hash

- Two bytes [0x1C, 0xBD], indicating this version of the raw encoding of a P2SH address on Mainnet. (Addresses
on Testnet use [0x1C, 0xBA] instead.)

- 20 bytes specifying a script hash [Bitcoin-P2SH].

The raw encoding of a P2PKH address consists of:

| s-bitoxtC |  8-bit0xB8 160-bit validating key hash

- Two bytes [0x1C, 0xB8], indicating this version of the raw encoding of a P2PKH address on Mainnet. (Addresses
on Testnet use [0x1D, 0x25] instead.)

- 20 bytes specifying a validating key hash, which is a RIPEMD-160 hash [RIPEMDI160] of a SHA-256 hash
[NIST2015] of a compressed ECDSA key encoding.

Notes:

- In Bitcoin a single byte is used for the version field identifying the address type. In Zcash two bytes are used.
For addresses on Mainnet, this and the encoded length cause the first two characters of the Base58Check
encoding to be fixed as “t3” for P2SH addresses, and as “t1” for P2PKH addresses. (This does not imply that a
transparent Zcash address can be parsed identically to a Bitcoin address just by removing the “t”.)

- Zcash does not yet support Hierarchical Deterministic Wallet addresses [BIP-32].

5.6.1.2 Transparent Private Keys

These are encoded in the same way as in Bitcoin [Bitcoin-Base58], for both Mainnet and Testnet.

5.6.2 Sprout Encodings
5.6.2.1 Sprout Payment Addresses
Let KA®P™" e as defined in § 5.4.4.1 ‘Sprout Key Agreement’ on p. 62.

79


https://zips.z.cash/protocol/sapling.pdf#transparentencodings
https://zips.z.cash/protocol/sapling.pdf#transparentaddrencoding
https://zips.z.cash/protocol/sapling.pdf#transparentkeyencoding
https://zips.z.cash/protocol/sapling.pdf#sproutencodings
https://zips.z.cash/protocol/sapling.pdf#sproutpaymentaddrencoding

[Sprout

A Sprout shielded payment address consists of ay : Bl%r | and pke,. : KASP®"" Public.

ay is a SHA256Compress output. pkeye is a KA® " Public key, for use with the encryption scheme defined in §4.16
‘In-band secret distribution (Sprout)’ on p.46. These components are derived from a spending key as described
in §4.2.1 Sprout Key Components’ on p. 29.

The raw encoding of a Sprout shielded payment address consists of:

8-bit 0x16 | 8-bit 0x9A | 256-bit ay, 256-bit pkeyc

- Two bytes [0x16, 0x94], indicating this version of the raw encoding of a Sprout shielded payment address on
Mainnet. (Addresses on Testnet use [0x16, 0xB6] instead.)

- 32 bytes specifying a.
- 32 bytes specifying pkene, using the normal encoding of a Curve25519 public key [Bernstein2006].

Note: For addresses on Mainnet, the lead bytes and encoded length cause the first two characters of the
Base58Check encoding to be fixed as “zc”. For Testnet, the first two characters are fixed as “zt”.

5.6.2.2 Sprout Incoming Viewing Keys

Let KA®*® be as defined in §5.4.4.1 ‘Sprout Key Agreement’ on p. 62.

Sprout

A Sprout incoming viewing key consists of ay : Bl | and sk, @ KASP™U Private.

ap is a SHA256Compress output. ske,. is a KA®P°"* Private key, for use with the encryption scheme defined in §4.16
‘In-band secret distribution (Sprout)’ on p.46. These components are derived from a spending key as described
in §4.2.1 Sprout Key Components’ on p. 29.

The raw encoding of a Sprout incoming viewing key consists of:

8-bit 0xA8 | 8-bit 0xAB | 8-bit 0xD3 | 256-bit a,y, 256-bit sken

- Three bytes [0xA8, 0xAB, 0xD3], indicating this version of the raw encoding of a Zcash incoming viewing key
on Mainnet. (Addresses on Testnet use [0xA8, 0xAC, 0x0C] instead.)

- 32 bytes specifying a.
- 32 bytes specifying ske,., using the normal encoding of a Curve25519 private key [Bernstein2006].

Skene MUST be “clamped” using KA®P™" FormatPrivate as specified in §4.2.1 ‘Sprout Key Components’ on p.29. That
is, a decoded incoming viewing key MUST be considered invalid if ske,. # KASP™"t FormatPrivate(skgp. ).

KASP™“* FormatPrivate is defined in §5.4.4.1 ‘Sprout Key Agreement’ on p. 62.

Note: For addresses on Mainnet, the lead bytes and encoded length cause the first four characters of the
Base58Check encoding to be fixed as “ZiVK”. For Testnet, the first four characters are fixed as “ZiVt”.

5.6.2.3 Sprout Spending Keys

A Sprout spending key consists of ag, which is a sequence of 252 bits (see § 4.2.1 ‘Sprout Key Components’ on p. 29).

80


https://zips.z.cash/protocol/sapling.pdf#sproutinviewingkeyencoding
https://zips.z.cash/protocol/sapling.pdf#sproutspendingkeyencoding

The raw encoding of a Sprout spending key consists of:

| 8-bit 0xAB | 8-bit 0x36 | [0]' | 252-bit ay,

- Two bytes [0xAB, 0x36], indicating this version of the raw encoding of a Zcash spending key on Mainnet.
(Addresses on Testnet use [0xAC, 0x08] instead.)

- 32 bytes: 4 zero padding bits and 252 bits specifying ag.

The zero padding occupies the most significant 4 bits of the third byte.

Notes:

- If an implementation represents ag, internally as a sequence of 32 bytes with the 4 bits of zero padding intact,
it will be in the correct form for use as an input to PRF*¥" PRF"™P°“* and PRFP* without need for bit-shifting.
Future key representations may make use of these padding bits.

- For addresses on Mainnet, the lead bytes and encoded length cause the first two characters of the Base58Check
encoding to be fixed as “SK”. For Testnet, the first two characters are fixed as “ST”.

5.6.3 Sapling Encodings

5.6.3.1 Sapling Payment Addresses

Let KA®*P""€ he as defined in §5.4.4.3 ‘Sapling Key Agreement’ on p. 63.

Let /4 be as defined in §5.3 ‘Constants’ on p. 54.
Let J©, absty, and repr; be as defined in §5.4.8.3 ‘Jubjub’ on p.73.

Let LEBS20SP : (¢ : N) x Bl — pvlceme(/8)] he a5 defined in §5.2 ‘Integers, Bit Sequences, and Endianness’ on
p-53.

A Sapling shielded payment address consists of d : B! and pky : KAS*P'"8 PublicPrimeSubgroup.

pkq is an encoding of a KA public key of type KA>*'"& PublicPrimeSubgroup, for use with the encryption scheme
defined in §4.17 Tn-band secret distribution (Sapling)’ on p.47. d is a diversifier. These components are derived
as described in §4.2.2 ‘Sapling Key Components’ on p. 29.

The raw encoding of a Sapling shielded payment address consists of:

LEBS20SP4(d) | LEBS20SP.s4 (repr; (pkg)) ‘

- 11 bytes specifying d.
- 32 bytes specifying the ctEdwards compressed encoding of pky (see §5.4.8.3 ‘Jubjub’ on p.73).

When decoding the representation of pky, the address MUST be considered invalid if absty returns L.

For addresses on Mainnet, the Human-Readable Part (as defined in [ZIP-173]) is “zs”. For addresses on Testnet, the
Human-Readable Part is “ztestsapling”.

81


https://zips.z.cash/protocol/sapling.pdf#saplingencodings
https://zips.z.cash/protocol/sapling.pdf#saplingpaymentaddrencoding

5.6.3.2 Sapling Incoming Viewing Keys

Let KA>*P™ be as defined in §5.4.4.3 ‘Sapling Key Agreement’ on p. 63.

Let 22" be as defined in §5.3 ‘Constants’ on p. 54.

Sapling

A Sapling incoming viewing key consists of ivk : {0.. 2% —1}.

ivk is a KA®®P"™ Private key (restricted to £32P""€bits), derived as described in §4.2.2 ‘Sapling Key Components’ on
p.29. It is used with the encryption scheme defined in §4.17 ‘In-band secret distribution (Sapling)’ on p.47.

The raw encoding of a Sapling incoming viewing key consists of:

] 256-bit ivk

- 32 bytes (little-endian) specifying ivk, padded with zeros in the most significant bits.

Saplin,

ivk MUST be in the range {0.. 2% - 1} as specified in §4.2.2 ‘Sapling Key Components’ on p.29. That is, a decoded
incoming viewing key MUST be considered invalid if ivk is not in this range.

For incoming viewing keys on Mainnet, the Human-Readable Part is “zivks”. For incoming viewing keys on Testnet,
the Human-Readable Part is “zivktestsapling”.

5.6.3.3 Sapling Full Viewing Keys

Let KA>P™ be as defined in § 5.4.4.3 ‘Sapling Key Agreement’ on p. 63.

A Sapling full viewing key consists of ak : J** nk : J), and ovk : By!fe/8]

ak and nk are points on the Jubjub curve (see §5.4.8.3 ‘Jubjub’ on p.73). They are derived as described in §4.2.2
‘Sapling Key Components’ on p. 29.

The raw encoding of a Sapling full viewing key consists of:

LEBS20SP.s6 (repr;(ak)) | LEBS20SP 5 (repry(nk)) | 32-byte ovk

- 32 bytes specifying the ctEdwards compressed encoding of ak (see §5.4.8.3 ‘Jubjub’ on p.73).

- 32 bytes specifying the ctEdwards compressed encoding of nk.

- 32 bytes specifying the outgoing viewing key ovk.
When decoding this representation, the key MUST be considered invalid if abst; returns L for either ak or nk, or if
ak ¢ J7* orifnk ¢ J®.

For incoming viewing keys on Mainnet, the Human-Readable Part is “zviews”. For incoming viewing keys on
Testnet, the Human-Readable Part is “zviewtestsapling”.

5.6.3.4 Sapling Spending Keys

A Sapling spending key consists of sk : Bl (see §4.22 Sapling Key Components’ on p.29).

The raw encoding of a Sapling spending key consists of:

LEBS2OSP256(SK)

- 32 bytes specifying sk.

For spending keys on Mainnet, the Human-Readable Part is “secret-spending-key-main”. For spending keys on
Testnet, the Human-Readable Part is “secret-spending-key-test”.

82


https://zips.z.cash/protocol/sapling.pdf#saplinginviewingkeyencoding
https://zips.z.cash/protocol/sapling.pdf#saplingfullviewingkeyencoding
https://zips.z.cash/protocol/sapling.pdf#saplingspendingkeyencoding

5.7 BCTV14 zk-SNARK Parameters

The SHA-256 hashes of the proving key and verifying key for the Sprout JoinSplit circuit, encoded in libsnark
format, are:

8bc20a7£013b2b58970cddd2e7ea028975¢c88ae7ceb9259ab344a16bc2cOeef? sprout-proving.key
4bd498daelaacfd8e98dc306338d017d9¢c08dd0918ead18172bd0aec2fcbdf82 sprout-verifying.key

These parameters were obtained by a multi-party computation described in [BGG-mpc] and [BGG2017]. They are
used only before Sapling activation. Due to the security vulnerability described in §5.4.9.1 ‘BCTV14’ on p. 76, it
is not recommended to use these parameters in new protocols, and it is recommended to stop using them in
protocols other than Zcash where they are currently used.

5.8 Grothl6 zk-SNARK Parameters

bellman [Bowe-bellman] encodes the proving key and verifying key for a zk-SNARK circuit in a single parameters
file. The BLAKE2b-512 hashes of this file for the Sapling Spend circuit and Output circuit, and for the implementa-
tion of the Sprout JoinSplit circuit used after Sapling activation, are respectively:

8270785a21a0d0bc77196£000ee6d221c9c9894£55307bd9357c3£0105d31cab3
991ab91324160d8£53e2bbd3c2633a6eb8bdf5205d822e7£3f73edacb1b2b70c sapling-spend.params

657e3d38dbb5cbbe7dd2970e8b03d69b4787dd907285b5a7£0790dcc8072£60b
£593b32cc2d1c030e00ff5ae64bf84c5c3beb84ddc841d48264b4al71744d028 sapling-output.params

€9b238411bd6c0ecd791e9d04245ec350c9¢c574415610dfcced365d5cad9dfef
d5054e371842b3£88£a1b9d7e8e075249b3ebabd167fa8b0£3161292d36¢c180a sprout-grothl6.params

These parameters were obtained by a multi-party computation described in [BGM2017].

5.9 Randomness Beacon

Let URS := “096b36a5804bfacef1691e173c366a47ffbba84ad4f26ddd7e8d9f79d5b42df0".

()=
This value is used in the definition of GroupHashJ in §5.4.8.5 ‘Group Hash into Jubjub’ on p.75, and in the multi-
party computation to obtain the Sapling parameters given in § 5.8 ‘Groth16 zk-SNARK Parameters’ on p. 83.

It is derived as described in [Bowe2018]:

- Take the hash of the Bitcoin block at height 514200 in RPC byte order, i.e. the big-endian 32-byte representation
of 0x00000000000000000034b33e842ac1c50456abe5fa92b60f6b3dfc5d247£7b58

- Apply SHA-256 2** times.

- Convert to a US-ASCII lowercase hexadecimal string.

Note: URS is a 64-byte US-ASCII string, i.e. the first byte is 0x30, not 0x09.

83


https://zips.z.cash/protocol/sapling.pdf#bctvparameters
https://zips.z.cash/protocol/sapling.pdf#grothparameters
https://zips.z.cash/protocol/sapling.pdf#beacon

6 Network Upgrades

Zcash launched with a protocol revision that we call Sprout. A first network upgrade, called Overwinter, activated
on Mainnet on 26 June, 2018 at block height 347500 [Swihart2018] [ZIP-201]. A second upgrade, called Sapling,
activated on Mainnet on 28 October, 2018 at block height 419200 [Hamdon2018] [ZIP-205]. A third upgrade, called
Blossom, activated on Mainnet on 11 December, 2019 at block height 653600 [Zcash-Blossom| [ZIP-206]. A fourth
upgrade, called Heartwood, activated on Mainnet on 16 July, 2020 at block height 903000 [Zcash-Heartwd] [ZIP-250].
A fifth upgrade, called Canopy, activated on Mainnet on 18 November, 2020 at block height 1046400 (coinciding
with the first block subsidy halving) [Zcash-Canopy] [ZIP-251].

This section summarizes the strategy for upgrading from Sprout to subsequent versions of the protocol (Overwinter,
Sapling, Blossom, Heartwood, and Canopy), and for future upgrades.

The network upgrade mechanism is described in [ZIP-200].

The specifications of the Overwinter upgrade are described in this document, [ZIP-201], [ZIP-202], [ZIP-203], and
[ZIP-143].

The specifications of the Sapling upgrade are described in this document, [ZIP-205], and [ZIP-243].

Each network upgrade is introduced as a “bilateral consensus rule change”. In this kind of upgrade,
- there is an activation block height at which the consensus rule change takes effect;

- blocks and transactions that are valid according to the post-upgrade rules are not valid before the upgrade
block height;

- blocks and transactions that are valid according to the pre-upgrade rules are no longer valid at or after the
activation block height.

Full support for each network upgrade is indicated by a minimum version of the peer-to-peer protocol. At the
planned activation block height, nodes that support a given upgrade will disconnect from (and will not reconnect
to) nodes with a protocol version lower than this minimum. See [ZIP-201] for how this applies to the Overwinter
upgrade, for example.

This ensures that upgrade-supporting nodes transition cleanly from the old protocol to the new protocol. Nodes
that do not support the upgrade will find themselves on a network that uses the old protocol and is fully partitioned
from the upgrade-supporting network. This allows us to specify arbitrary protocol changes that take effect at a
given block height.

Note, however, that a block chain reorganization across the upgrade activation block height is possible. In the case
of such a reorganization, blocks at a height before the activation block height will still be created and validated
according to the pre-upgrade rules, and upgrade-supporting nodes MUST allow for this.

84


https://zips.z.cash/protocol/sapling.pdf#networkupgrades

7 Consensus Changes from Bitcoin

7.1 Transaction Encoding and Consensus

The Zcash transaction format up to and including transaction version 4 is as follows (this should be read in the
context of consensus rules later in the section):

Version® Bytes ‘ Name ‘ Data Type Description
1.4 4 header uint32 Contains:
- fOverwintered flag (bit 31)
- version (bits 30 .. 0) - transaction version.
3.4 4 nVersionGroupIld uint32 Version group ID (nonzero).
1..4 Varies tx_in_count compactSize Number of transparent inputs.
1.4 Varies tx_in tx_in Transparent inputs, encoded as in Bitcoin.
1.4 Varies tx_out_count compactSize Number of transparent outputs.
1.4 Varies tx_out tx_out Transparent outputs, encoded as in Bitcoin.
1.4 4 lock_time uint32 Unix-epoch UTC time or block height, encoded as in
Bitcoin.
3.4 4 nExpiryHeight uint32 A block height in the range {1 .. 499999999} after which
the transaction will expire, or 0 to disable expiry.
[Z1P-203]
4 8 valueBalanceSapling | int64 The net value of Sapling spends minus outputs.
4 Varies nSpendsSapling compactSize The number of Spend descriptions in vSpendsSapling.
4 384- vSpendsSapling SpendDescriptionV4 A sequence of Spend descriptions, encoded per §7.3
nSpendsSapling [nSpendsSapling] ‘Spend Description Encoding and Consensus’ on p.88.
4 Varies nOutputsSapling compactSize The number of Output descriptions in vOutputsSapling.
4 948- vOutputsSapling OutputDescriptionV4 | A sequence of Output descriptions, encoded per § 7.4
nOutputsSapling [nOutputsSapling] ‘Output Description Encoding and Consensus’ on
p- 89.
2. Varies nJoinSplit compactSize The number of JoinSplit descriptions in vJoinSplit.
1802- vJoinSplit JSDescriptionBCTV14 | A sequence of JoinSplit descriptions using BCTV14
nJoinSplit [nJoinSplit] proofs, encoded per § 7.2
‘JoinSplit Description Encoding and Consensus’ on
p. 88.
4 1698- vJoinSplit JSDescriptionGrothl6 | A sequence of JoinSplit descriptions using Groth16
nJoinSplit [nJoinSplit] proofs, encoded per §7.2
‘JoinSplit Description Encoding and Consensus’ on
p. 88.
2.4% 32 joinSplitPubKey byte[32] An encoding of a JoinSplitSig public validating key .
2.41% 64 joinSplitSig byte[64] A signature on a prefix of the transaction encoding,
validated using joinSplitPubKey as specified in §4.10
‘Non-malleability (Sprout)’ on p.38.
41 64 bindingSigSapling byte [64] A Sapling binding signature on the SIGHASH transaction
hash, validated as specified in §5.4.6.2
‘Binding Signature (Sapling)’ on p. 68.

Version constraints apply to the effectiveVersion, which is equal to min(2, version) when fOverwintered = 0 and
to version otherwise.

1 The joinSplitPubKey and joinSplitSig fields are present if and only if effectiveVersion > 2 and nJoinSplit > 0.
I DbindingSigSapling is present if and only if effectiveVersion = 4 and nSpendsSapling + nOutputsSapling > 0.

Note that the valueBalanceSapling field is always present for these transaction versions.

Several Sapling fields have been renamed from previous versions of this specification:
valueBalance — valueBalanceSapling; nShieldedSpend — nSpendsSapling; vShieldedSpend — vSpendsSapling;
nShieldedOutput — nOutputsSapling; vShieldedOutput — vOutputsSapling; bindingSig — bindingSigSapling.

85


https://zips.z.cash/protocol/sapling.pdf#consensusfrombitcoin
https://zips.z.cash/protocol/sapling.pdf#txnencodingandconsensus

Consensus rules:
- The transaction version number MUST be greater than or equal to 1.
- [Pre-Overwinter]| The fOverwintered flag MUST NOT be set.
- [Overwinter onward] The fOverwintered flag MUST be set.
- [Overwinter onward] The version group ID MUST be recognized.

- [Overwinter only, pre-Sapling] The transaction version number MUST be 3, and the version group ID MUST
be 0x03C48270.

- [Sapling onward] The transaction version number MUST be 4, and the version group ID MUST be
0x892F2085.

- [Pre-Sapling] The encoded size of the transaction MUST be less than or equal to 100000 bytes.

- [Pre-Sapling] If effectiveVersion = 1 or nJoinSplit = 0, then both tx_in_count and tx_out_count MUST be
nonzero.

- [Sapling onward] If effectiveVersion < 5, then at least one of tx_in_count, nSpendsSapling, and nJoinSplit
MUST be nonzero.

- [Sapling onward] If effectiveVersion < 5, then at least one of tx_out_count, nOutputsSapling, and nJoinSplit
MUST be nonzero.

- A transaction with one or more transparent inputs from coinbase transactions MUST have no transparent
outputs (i.e. tx_out_count MUST be 0). Inputs from coinbase transactions include Founders’ Reward outputs.

- If effectiveVersion > 2 and nJoinSplit > 0, then:
- joinSplitPubKey MUST be a valid encoding (see §5.4.5 ‘Ed25519’ on p. 64) of an Ed25519 validating key.

- joinSplitSig MUST represent a valid signature under joinSplitPubKey of dataToBeSigned, as defined
in §4.10 ‘Non-malleability (Sprout)’ on p. 38.

- [Sapling onward] If effectiveVersion > 4 and nSpendsSapling + nOutputsSapling > 0, then:
- let bvk®*'""¢ and SigHash be as defined in §4.12 ‘Balance and Binding Signature (Sapling)’ on p.39;

- bindingSigSapling MUST represent a valid signature under the transaction binding validating key
bvk>*P'"€ of SigHash — i.e. BindingSigsap""g.VaIidatebvkswnng(SigHash, bindingSigSapling) = 1.

- [Sapling onward] If effectiveVersion = 4 and there are no Spend descriptions or Output descriptions, then
valueBalanceSapling MUST be 0.

- The total value in zatoshi of transparent outputs from a coinbase transaction MUST NOT be greater than the
value in zatoshi of miner subsidy plus the transaction fees paid by transactions in this block.

- A coinbase transaction MUST NOT have any transparent inputs with non-null prevout fields, joinSplit
descriptions, Spend descriptions, or Output descriptions.

- A coinbase transaction for a block at block height greater than 0 MUST have a script that, as its first item,
encodes the block height as follows. Let heightBytes be the signed little-endian representation of the number,
using the minimum number of bytes such that the most significant byte is < 0x80. Then the encoding is the
length of heightBytes encoded as one byte, followed by heightBytes itself. This matches the encoding used by
Bitcoin in the implementation of [BIP-34] (but the description here is to be considered normative).

- A transaction MUST NOT spend a transparent output of a coinbase transaction from a block less than 100
blocks prior to the spend. Note that transparent outputs of coinbase transactions include Founders’Reward
outputs .

- A transaction MUST NOT spend an output of the genesis block coinbase transaction. (There is one such
zero-valued output, on each of Testnet and Mainnet.)

- [Overwinter onward] nExpiryHeight MUST be less than or equal to 499999999.

- [Overwinter onward] If a transaction is not a coinbase transaction and its nExpiryHeight field is nonzero,
then it MUST NOT be mined at a block height greater than its nExpiryHeight.

86



Consensus rules associated with each JoinSplit description (§7.2 ‘JoinSplit Description Encoding and Consensus

- [Sapling onward] valueBalance MUST be in the range { —MAX_MONEY .. MAX_MONEY}.
. TODO: Other rules inherited from Bitcoin.

2

on p. 88), each Spend description (§7.3 ‘Spend Description Encoding and Consensus’ on p.88), and each Output
description (§7.4 ‘Output Description Encoding and Consensus’ on p.89) MUST also be followed.

Notes:

- Previous versions of this specification defined what is now the header field as a signed int32 field which was
required to be positive. The consensus rule that the fOverwintered flag MUST NOT be set before Overwinter
has activated, has the same effect.

- The semantics of transactions with version number not equal to 1, 2, 3, or 4 is not currently defined.

- The exclusion of transactions with transaction version number greater than 2 is not a consensus rule before
Overwinter activation. Such transactions may exist in the block chain and MUST be treated identically to
version 2 transactions.

. [Overwinter onward] Once Overwinter has activated, limits on the maximum transaction version number
are consensus rules.

- The transaction version number 0x7FFFFFFF, and the version group ID OxFFFFFFFF, are reserved for use in
experimental extensions to transaction format or semantics on private testnets. They MUST NOT be used on
the Zcash Mainnet or Testnet.

- Note that a future upgrade might use any transaction version number or version group ID. It is likely that an
upgrade that changes the transaction version number or version group ID will also change the transaction
format, and software that parses transactions SHOULD take this into account.

- [Overwinter onward] The purpose of version group ID is to allow unambiguous parsing of “loose” transactions,
independent of the context of a block chain. Code that parses transactions is likely to be reused between
block chain branches as defined in [ZIP-200], and in that case the fOverwintered and version fields alone
may be insufficient to determine the format to be used for parsing.

- A transaction version number of 2 does not have the same meaning as in Bitcoin, where it is associated with
support for OP_CHECKSEQUENCEVERIFY as specified in [BIP-68]. Zcash was forked from Bitcoin v0.11.2 and does
not currently support BIP 68.

- [Sapling onward] Because coinbase transactions have no Spend descriptions or Output descriptions, the
valueBalanceSapling field of a coinbase transaction must have a zero value.

The changes relative to Bitcoin version 1 transactions as described in [Bitcoin-Format] are:

- Transaction version O is not supported.

- Aversion 1 transaction is equivalent to a version 2 transaction with nJoinSplit = 0.

- The fields nJoinSplit, vJoinSplit, joinSplitPubKey, and joinSplitSig have been added.
- [Overwinter onward] The field nVersionGroupId has been added.

- [Sapling onward] The following fields have been added: nSpendsSapling, vSpendsSapling, nOutputsSapling,
vOutputsSapling, and bindingSigSapling.

- In Zcash it is permitted for a transaction to have no transparent inputs, provided at least one of nJoinSplit,
nSpendsSapling, and nOutputsSapling are nonzero.

- A consensus rule limiting transaction size has been added. In Bitcoin there is a corresponding standard rule
but no consensus rule.

87



7.2 JoinSplit Description Encoding and Consensus

An abstract JoinSplit description, as described in § 3.5 ‘JoinSplit Transfers and Descriptions’ on p.16, is encoded

in a transaction as an instance of a JoinSplitDescription type:

Bytes Name Data Type Description
8 vpub_old uint64 A value vg'fb that the JoinSplit transfer removes from
the transparent transaction value pool.
8 vpub_new uint64 Avalue vy that the JoinSplit transfer inserts into the
transparent transaction value pool.
32 | anchor byte[32] A root rt>™°"* of the Sprout note commitment tree at
some block height in the past, or the root produced by
a previous JoinSplit transfer in this transaction.
64 | nullifiers byte[32] [N°] A sequence of nullifiers of the input notes nf‘l"_'f'Noml
64 | commitments byte[32] [IN™] | A sequence of note commitments for the output notes
emi e
32 ephemeralKey byte [32] A Curve25519 public key epk.
32 randomSeed byte[32] A 256-bit seed that must be chosen independently at
random for each JoinSplit description.
64 | vmacs byte[32] [N°] A sequence of message authentication tags h, o
binding hg;, to each ay of the JoinSplit description,
computed as described in §4.10
‘Non-malleability (Sprout)’ on p. 38.
296 1 | zkproof byte[296] An encoding of the zk-SNARK proof mzk jeinspiit (S€€
§5.4.9.1 ‘BCTV14’ on p.76).
192 1 | zkproof byte[192] An encoding of the zk-SNARK proof mzk jeinspiit (S€€
§5.4.9.2 ‘Groth16’ on p.77).
1202 | encCiphertexts | byte[601] [N"*] | A sequence of ciphertext components for the
encrypted output notes, C{"rew.

1 BCTV14 proofs are used when the transaction version is 2 or 3, i.e. before Sapling activation.

I Groth16 proofs are used when the transaction version is > 4, i.e. after Sapling activation.

The ephemeralKey and encCiphertexts fields together form the transmitted notes ciphertext, which is computed

as described in §4.16 ‘In-band secret distribution (Sprout)’ on p.46.

Consensus rules applying to a JoinSplit description are given in § 4.3 ‘JoinSplit Descriptions’ on p. 31.

7.3 Spend Description Encoding and Consensus

Let LEBS20SP be as defined in § 5.2 Tntegers, Bit Sequences, and Endianness’ on p.53.
Let repr; and ¢ be as defined in §5.4.8.3 “Jubjub’ on p.73.

Let spendAuthSig be the spend authorization signature for this Spend transfer, and let m7kspeng be the zk-SNARK
proof of the corresponding Spend statement. In a version 4 transaction these are encoded in the spendAuthSig

field and zkproof field respectively of the Spend description.

88



https://zips.z.cash/protocol/sapling.pdf#joinsplitencodingandconsensus
https://zips.z.cash/protocol/sapling.pdf#spendencodingandconsensus

An abstract Spend description, as described in § 3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’

on p.16, is encoded in a transaction as an instance of a SpendDescriptionV4 type:

Bytes Name Data Type Description

32 cv byte[32] | A value commitment to the value of the input note,
LEBS20SP,5 (repry(cv)).

32 anchor byte[32] | A root of the Sapling note commitment tree at some block
height in the past, LEBS20SP 5 (1t>*""8).

32 | nullifier byte[32] | The nullifier of the input note, nf.

32 rk byte[32] | The randomized validating key for spendAuthSig,
LEBS20SPy5 (repry(rk)).

192 | zkproof byte[192] | An encoding of the zk-SNARK proof mzkspend (se€ §5.4.9.2
‘Groth16’ on p.77).

64 spendAuthSig | byte[64] | A signature authorizing this Spend.

Consensus rule:

LEOS2IP,54(anchorSapling) MUST be less than gj.

Other consensus rules applying to a Spend description are given in §4.4 ‘Spend Descriptions’ on p.32.

7.4 Output Description Encoding and Consensus

Let LEBS20SP be as defined in § 5.2 Tntegers, Bit Sequences, and Endianness’ on p.53.

Let repr; and ¢; be as in §5.4.8.3 Jubjub’ on p. 73, and Extract

p.74.

Let Tzkoutput € the zk-SNARK proof of the Output statement for this Output statement. In a version 4 transaction

7

this is encoded in the zkproof field of the Spend description.

An abstract Output description, described in § 3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’

on p. 16, is encoded in a transaction as an instance of an OutputDescriptionV4 type:

Bytes Name Data Type Description

32 cv byte[32] | A value commitment to the value of the output note,
LEBS20SPy5 (repry(cv)).

32 cmu byte[32] | The u-coordinate of the note commitment for the output note,
LEBS20SPy54(cm,, ) where cm,, = Extract ) (cm).

32 ephemeralKey | byte[32] | An encoding of an ephemeral Jubjub public key,
LEBS20SP 54 (reprJ(epk)).

580 | encCiphertext | byte[580] | A ciphertext component for the encrypted output note, C*"“.

80 outCiphertext | byte[80] | A ciphertext component that allows the holder of the outgoing
cipher key to recover the diversified transmission key pky and
ephemeral private key esk, hence the entire note plaintext.

192 | zkproof byte[192] | An encoding of the zk-SNARK proof Tzxoutput (s€€ §5.4.9.2
‘Groth16’ on p.77).

The ephemeralKey, encCiphertext, and outCiphertext fields together form the transmitted note ciphertext, which

is computed as described in §4.17 ‘In-band secret distribution (Sapling)’ on p.47.

Consensus rule:

LEOS2IP,55(cmu) MUST be less than g;.

Other consensus rules applying to an Output description are given in §4.5 ‘Output Descriptions’ on p. 33.

89

y asin §5.4.8.4 ‘Coordinate Extractor for Jubjub’ on



https://zips.z.cash/protocol/sapling.pdf#outputencodingandconsensus

7.5 Block Header Encoding and Consensus

The Zcash block header format is as follows (this should be read in the context of consensus rules later in the
section):

Bytes Name Data Type Description

4 nVersion int32 The block version number indicates which set of
block validation rules to follow. The current and
only defined block version number for Zcash is 4.

32 | hashPrevBlock byte[32] A SHA-256d hash in internal byte order of the
previous block’s header. This ensures no previous

block can be changed without also changing this
block's header.

32 hashMerkleRoot byte [32] A SHA-256d hash in internal byte order. The merkle
root is derived from the hashes of all transactions
included in this block, ensuring that none of those
transactions can be modified without modifying the

header.
32 hashReserved / byte [32] [Pre-Sapling] A reserved field, to be ignored.
hashFinalSaplingRoot [Sapling] The root LEBS20SP5 (rtsapl'"g) of the

Sapling note commitment tree corresponding to
the final Sapling treestate of this block.

4 nTime uint32 The block timestamp is a Unix epoch time (UTC)
when the miner started hashing the header
(according to the miner).

4 nBits uint32 An encoded version of the target threshold this
block’s header hash must be less than or equal to,
in the same nBits format used by Bitcoin.
[Bitcoin-nBits]

32 | nNonce byte[32] An arbitrary field that miners can change to modify
the header hash in order to produce a hash less
than or equal to the target threshold.

3 solutionSize compactSize The size of an Equihash solution in bytes (always
1344).
1344 | solution byte [1344] The Equihash solution.

A block consists of a block header and a sequence of transactions. How transactions are encoded in a block is part
of the Zcash peer-to-peer protocol but not part of the consensus protocol.

Let ThresholdBits be as defined in § 7.6.3 ‘Difficulty adjustment’ on p.93, and let PoWMedianBlockSpan be the con-
stant defined in § 5.3 ‘Constants’ on p.54.

Define the median-time-past of a block to be the median (as defined in §7.6.3 ‘Difficulty adjustment’ on p.93)
of the nTime fields of the preceding PoWMedianBlockSpan blocks (or all preceding blocks if there are fewer than
PoWMedianBlockSpan). The median-time-past of a genesis block is not defined.

90


https://zips.z.cash/protocol/sapling.pdf#blockheader

Consensus rules:
- The block version number MUST be greater than or equal to 4.

- For a block at block height height, nBits MUST be equal to ThresholdBits(height).
- The block MUST pass the difficulty filter defined in § 7.6.2 ‘Difficulty filter’ on p.93.
- solution MUST represent a valid Equihash solution as defined in § 7.6.1 ‘Equihash’ on p.92.

- For each block other than the genesis block, nTime MUST be strictly greater than the median-time-past of
that block.

- For each block at block height 2 or greater on Mainnet, or block height 653606 or greater on Testnet, nTime
MUST be less than or equal to the median-time-past of that block plus 90 - 60 seconds.

- The size of a block MUST be less than or equal to 2000000 bytes.

- [Sapling onward] hashFinalSaplingRoot MUST be LEBS20SP;5 (rtsap“"g) where rt>*""" is the root of the
Sapling note commitment tree for the final Sapling treestate of this block.

. TODO: Other rules inherited from Bitcoin.

In addition, a full validator MUST NOT accept blocks with nTime more than two hours in the future according to its
clock. This is not strictly a consensus rule because it is nondeterministic, and clock time varies between nodes.
Also note that a block that is rejected by this rule at a given point in time may later be accepted.

Notes:
- The semantics of blocks with block version number not equal to 4 is not currently defined. Miners MUST
NOT create such blocks.

- The exclusion of blocks with block version number greater than 4 is not a consensus rule; such blocks may
exist in the block chain and MUST be treated identically to version 4 blocks by full validators. Note that a
future upgrade might use block version number either greater than or less than 4. It is likely that such an
upgrade will change the block header and/or transaction format, and software that parses blocks SHOULD
take this into account.

- The nVersion field is a signed integer. (It was specified as unsigned in a previous version of this specification.)
A future upgrade might use negative values for this field, or otherwise change its interpretation.

. There is no relation between the values of the version field of a transaction, and the nVersion field of a block
header.

- Like other serialized fields of type compactSize, the solutionSize field MUST be encoded with the minimum
number of bytes (3 in this case), and other encodings MUST be rejected. This is necessary to avoid a potential
attack in which a miner could test several distinct encodings of each Equihash solution against the difficulty
filter, rather than only the single intended encoding.

- As in Bitcoin, the nTime field MUST represent a time strictly greater than the median of the timestamps
of the past PoWMedianBlockSpan blocks. The Bitcoin Developer Reference [Bitcoin-Block] was previously in
error on this point, but has now been corrected.

- The rule limiting nTime to be no later than 90 - 60 seconds after the median-time-past is a retrospective
consensus change, applied as a soft fork in zcashd v2.1.1-1. It had not been violated by any block from the
given block heights in the consensus block chains of either Mainnet or Testnet.

- There are no changes to the block version number or format for Overwinter.

- Although the block version number does not change for Sapling, the previously reserved (and ignored) field
hashReserved has been repurposed for hashFinalSaplingRoot. There are no other format changes.

The changes relative to Bitcoin version 4 blocks as described in [Bitcoin-Block] are:
- Block versions less than 4 are not supported.
- The hashReserved (or hashFinalSaplingRoot), solutionSize, and solution fields have been added.
- The type of the nNonce field has changed from uint32 to byte [32].
- The maximum block size has been doubled to 2000000 bytes.

91



7.6 Proof of Work

Zcash uses Equihash [BK2016] as its Proof of Work. The original motivations for changing the Proof of Work from
SHA-256d used by Bitcoin were described in [WG2016].

A block satisfies the Proof of Work if and only if:

- The solution field encodes a valid Equihash solution according to §7.6.1 ‘Equihash’ on p.92.
- The block header satisfies the difficulty check according to §7.6.2 ‘Difficulty filter’ on p.93.

7.6.1 Equihash

An instance of the Equihash algorithm is parameterized by positive integers n and k, such that n is a multiple of
k + 1. We assume k > 3.

The Equihash parameters for Mainnet and Testnet are n = 200,k = 9.

Equihash is based on a variation of the Generalized Birthday Problem [AR2017]: given a sequence X, _ of n-bit
strings, find 2F distinct Xi, such that @j;Xij =0.

In Equihash, N = 271 and the sequence X, y is derived from the block header and a nonce.

Let powheader := |32_hit nVersion| 256-bit hashPrevBlock 256-bit hashMerkleRoot
256-bit hashReserved | 32-bit nTime 32-bitnBits 256-bit nNonce

Fori € {1.. N}, let X; = EquihashGen,, ; (powheader, 7).
EquihashGen is instantiated in § 5.4.1.9 ‘Equihash Generator’ on p.60.

Define I2BEBSP : (¢: N) x {0..2°~1} — B as in § 5.2 ‘Integers, Bit Sequences, and Endianness’ on p.53.

.
A valid Equihash solution is then a sequence i : {1.. N}* that satisfies the following conditions:

2k
Generalized Birthday condition P X;, =0.
j=1

Algorithm Binding conditions i

2

. Forallr € {1..k—1} forallw e {0..2""—1} : X

j=1

n-T 3 .
. has o leading zeros; and

- Forallr € {1..k}, forallw e {0..28F""—1} : Gopam i 1o 2m—1 < Gyor i or=1 1 .07 4o l€XicOgraphically.

Notes:

- This does not include a difficulty condition, because here we are defining validity of an Equihash solution
independent of difficulty.

- Previous versions of this specification incorrectly specified the range of r to be {1.. k—1} for both parts of the
algorithm binding condition. The implementation in zcashd was as intended.

An Equihash solution with n = 200 and k£ = 9 is encoded in the solution field of a block header as follows:

I2BEBSP,, (i, — 1) | 12BEBSP,, (iy — 1) | | I2BEBSP,; (i512 — 1)\

92


https://zips.z.cash/protocol/sapling.pdf#pow
https://zips.z.cash/protocol/sapling.pdf#equihash

Recall from §5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 53 that bits in the above diagram are ordered
from most to least significant in each byte. For example, if the first 3 elements of i are [69,42,2*!], then the
corresponding bit array is:

I2BEBSP,, (68) I2BEBSP,; (41) I2BEBSP,, (22! — 1)
0|o|0|0|0|0|0|0 o|o|0|0|0|0| 1|0 0|0|1|0|0 0|0|0 o|0|0|0|0|0|0|0 0|0|0|0|1|0| 1|o 0|1 1|1| 1| 1| 1|1 1|1|1|1| 1| 1| 1|1 1|1|1| 1| 1| 1|1
8-bit 0 8-bit 2 8-bit 32 8-bit 0 8-bit10 | 8-bit127 | 8-bit 255 -

and so the first 7 bytes of solution would be [0, 2, 32,0, 10, 127, 255].

Note: 12BEBSP is big-endian, while integer field encodings in powheader and in the instantiation of EquihashGen
are little-endian. The rationale for this is that little-endian serialization of block headers is consistent with Bitcoin,
but little-endian ordering of bits in the solution encoding would require bit-reversal (as opposed to only shifting).

7.6.2 Difficulty filter

Let ToTarget be as defined in §7.6.4 ‘nBits conversion’ on p. 94.

Difficulty is defined in terms of a target threshold, which is adjusted for each block according to the algorithm
defined in §7.6.3 ‘Difficulty adjustment’ on p.93.

The difficulty filter is unchanged from Bitcoin, and is calculated using SHA-256d on the whole block header
(including solutionSize and solution). The result is interpreted as a 256-bit integer represented in little-endian
byte order, which MUST be less than or equal to the target threshold given by ToTarget(nBits).

7.6.3 Difficulty adjustment

The desired time between blocks is called the block target spacing. Zcash uses a difficulty adjustment algorithm
based on DigiShield v3/v4 [DigiByte-PoW], with simplifications and altered parameters, to adjust difficulty to target
the desired block target spacing. Unlike Bitcoin, the difficulty adjustment occurs after every block.

PoWLimit, Halvinglnterval, PoWAveragingWindow, PoWMaxAdjustDown, PoWMaxAdjustUp, PoWDampingFactor, and
PoWTargetSpacing are specified in section § 5.3 ‘Constants’ on p. 54.

Let ToCompact and ToTarget be as defined in § 7.6.4 ‘nBits conversion’ on p. 94.

Let nTime(height) be the value of the nTime field in the header of the block at block height height.
Let nBits(height) be the value of the nBits field in the header of the block at block height height.
Block header fields are specified in § 7.5 ‘Block Header Encoding and Consensus’ on p.90.

Define:

Zlength(S)S‘
length(9)
median (S) = sorted(S)ceiling((Iength(S)+1)/2)

bound PP () := max(lower, min(upper, )))

mean(S) =

floor(z) , ifr >0
trunc(z) := _

—floor(—z), otherwise
AveragingWindow Timespan := PoWAveragingWindow - PoW TargetSpacing
MinActualTimespan := floor(AveragingWindowTimespan - (1 — PoWMaxAdjustUp))
MaxActual Timespan := floor(AveragingWindowTimespan - (1 + PoWMaxAdjustDown))

MedianTime(height : N) := median([ nTime(7) for ¢ from max(0, height — PoWMedianBlockSpan) up to height — 1])

93


https://zips.z.cash/protocol/sapling.pdf#difficulty
https://zips.z.cash/protocol/sapling.pdf#diffadjustment

ActualTimespan(height : N) := MedianTime(height) — MedianTime(height — PoWAveragingWindow)
ActualTimespanDamped (height : N) :=

AveragingWindow Timespan + trunc(ActuaIT|mespan(he|g,‘ht) - A_veraglnngdolemespan)
PoWDampingFactor

Actual TimespanBounded (height : N) := bound p2actualTimespan (a5  TimespanDamped (height))

MinActual Timespan

PoWLimit, if height < PoWAveragingWindow
MeanTarget(height : N) := < mean(| ToTarget(nBits(i)) for i from height — PoWAveragingWindow up to height—1]),
otherwise.

The target threshold for a given block height height is then calculated as:

PoWLimit, if height =0
Threshold(height : N) := < min(PoWLimit, roor( Mean Target (height) ) - Actual TimespanBounded(height)),

AveragingWindow Timespan

otherwise
ThresholdBits(height ¢ N) := ToCompact(Threshold(height)).

Notes:

- The convention used for the height parameters to the functions MedianTime, MeanTarget, ActualTimespan,
ActualTimespanDamped, ActualTimespanBounded, Threshold, and ThresholdBits is that these functions use only
information from blocks preceding the given block height.

- When the median function is applied to a sequence of even length (which only happens in the definition of
MedianTime during the first PoWAveragingWindow — 1 blocks of the block chain), the element that begins the
second half of the sequence is taken. This corresponds to the zcashd implementation, but was not specified
correctly in versions of this specification prior to 2019.0-beta-40.

On Testnet from block height 299188 onward, the difficulty adjustment algorithm is changed to allow minimum-
difficulty blocks, as described in [ZIP-205]. This change does not apply to Mainnet.

7.6.4 nBits conversion

Deterministic conversions between a target threshold and a “compact” nBits value are not fully defined in the
Bitcoin documentation [Bitcoin-nBits], and so we define them here:

bitlength(,r))

size(x) := ceiling( S

mantissa(z) := floor(:zz . 2563*Size(r)>

ToC mantissa(z) + 2**-size(z), if mantissa(z) < 2%
t = i
oCompact(z) roor(%sza(x)) + 2% (size(z) 4 1), otherwise
0, if x & 2%% = 273

ToT: t =
orerget(s) {(m & (28 — 1)) - 256"(#/2") =3 otherwise.

7.6.5 Definition of Work

As explained in § 3.3 The Block Chain’ on p.15, a node chooses the “best” block chain visible to it by finding the
chain of valid blocks with the greatest total work.

Let ToTarget be as defined in §7.6.4 ‘nBits conversion’ on p. 94.

256
The work of a block with value nBits for the nBits field in its block header is defined as floor (2> .
ToTarget(nBits) + 1

94


https://zips.z.cash/protocol/sapling.pdf#nbits
https://zips.z.cash/protocol/sapling.pdf#workdef

7.7 Calculation of Block Subsidy and Founders’ Reward

§3.9 ‘Block Subsidy and Founders’ Reward’ on p.18 defines the block subsidy, miner subsidy, and Founders’
Reward. Their amounts in zatoshi are calculated from the block height using the formulae below.

Let SlowStartlnterval, Halvinglnterval, MaxBlockSubsidy, and FoundersFraction be as defined in §5.3 ‘Constants’ on

p- 54.

SlowStartShift : N := SlowStartinterval

SlowStartRate : N :

Halving(height : N) := {ﬂ;or(height — SlowStartShift

Halvinglinterval

BlockSubsidy(height : N) :=

FoundersReward(height : N) := {

2
_ MaxBlockSubsidy
" SlowStartInterval

0

if height < SlowStartShift

SlowStartRate -

SlowStartRate -

floor(

0,

MaxBlockSubsidy
2Ha|ving(height) ?

), otherwise

height, if height < SlowStartShift

(height + 1), if SlowStartShift < height

and height < SlowStartInterval

otherwise

BlockSubsidy (height) - FoundersFraction, if Halving(height) < 1

otherwise

MinerSubsidy(height) := BlockSubsidy(height) — FoundersReward(height).

7.8

The Founders’ Reward is paid by a transparent output in the coinbase transaction, to one of NumFounderAddresses

Payment of Founders’ Reward

transparent addresses, depending on the block height.

For Mainnet, FounderAddressList; NumFounderAddresses 1S:

[ “t3Vz22vK5z2LcKEdg16YvAFFneEL1zg90jd”,
“t3fqvkzrrNaMcamkQMwAyHR j£DdM2xQvDTR”,
“t3SpkcPQPfuRYHsP5vz3Pv86PgKo5m9KVmx”,
“t3ayBkZ4wbkKXynwoHZFUSSgXRKtogTXNgb”,
“t3K4aLYagSSBySdrfAGGeUd5HIz5Qvz88t2”",
“t3Ut4KUq2ZSMTPNE67pBUSLqYCi2q36KpXQ”,
“t3fB9cB3eSYim64BS9xfwAHQUKLgQQroBDG”,
“t3YcoujXfspWy7rbNUsGKxFEWZqNstGpeG4”,
“t3VvHWa7r30y67YtU4LZKGCWa2J6eGHvShi”,
“t3esCNwwmcyc8i9qQfyTbYhTqmYXZ9AwK3X",
“t3gGWxdC67CYNoBbP jNvrrWLAWXPqZLxrVY”,
“t3P5KKX97gXYFSasjJPiruQEX84yF52z3Tq",
“t3Rqonuzz7afkF7156ZA4vidiimRSEnd1hj”,
“t3Pnbg7XjP7TFGPBUuz75H65aczphHgkpoJW”,
“t3Y9FNi26J7UtAUC4moaETLbMo8KS1Be6ME”,
“t3gQDEavk5VzAAHK8TrQu2BWDLXEiF1unBm”,
“t3aaW4aTdP7a8d1VTE1Bod2yhbeggHgMajR”,
“t3g1yUUwt2PbmDvMDevTCPWUcbDatL2iQGP”,
“t3QRZXHDPh2hwU461iQs2776kRuuWfwFp4dV”,
“t3PkLgT71TnF112nSwBToXsD77yNbx2gJJY”",
“t3fNcdBUbycvbCtsD2n9q3LuxG7 jVPVFBSL”,
“t3aKH6NiWN10fGd8c19rZiqgYpkJ3n679ME",
“t3WDhPfik343yNmPTqtkZAoQZeqA83K7Y3£",
“t3R3Y5vnBLrEn8L6WF jPjBLnxSUQsKnmFpv”,

“t3cL9AucCajm3HXDhb5 jBnJK2vapVoXsop3”,
“t3TgZ9ZT2CTSK44AnUP16qeNaHa2eCTpUyF”,
“t3Xt40QMRPagwbpQqkgAViQgtST4VoSWRES”,
“t3adJBQuaa21u7NxbR8YMzp3km3TbSZ4MGB”,
“t3RYnscbnhEvKiva3ZPhfRSk7eyh1CrA6RK”,
“t3ZnCNAvgu6CSyHm1vWtrx3aiN98dSAGpnD”,
“t3cwZfKNNj2vXMAHBQeewm6pXhKFdhk18kD”,
“t3bLvCLigc6rbNrUTS5NwkgyVrZcZumTRa4”,
“t3eF9X6X2dSo7MCvTjfZEzwWrVzquxRLNeY",
“t3M4jN7hYE2e27yLsuQPPjuVek81WV3VbBj”,
“t3LTWeoxeWPbmdkUD3NWBquk4WkazhFBmvU”,
“t3£3T3nCWsEpzmD35VK62JgQf Fig74dV8Cy”,
“t3£JZ5jYsyxDtvNrWBeoMbvJaQCj4JJgbgX”,
“t3WeKQDxC1ijL5X7rwFem1MTLIZwVJIkUFhpF”,
“t3aNRLLsL2y8xcjPheZZwFy3Pcv7CsTwBec”,
“t3Rbykhx1TUFrgXrmBYrAJe2STxRKFL7GOr”,
“t3YEiAabuEjXwFL2v6ztU1fn3yKgzMQqNyo”,
“t3dPWnep6YqGPuY1CecgbeZrY9iUwH8Yd4z",
“t3enhACRx11ZD7e8ePomVGKn7wp7NILFJ3r”,
“t3LQtHUDoe7ZhhvddRv4vnaoNAhCr2f4oFN”,
“t3dKojUU2EMjs28nHV84TvkVEUDulM1FaEx”,
“t3MEXDF9Ws163KwpPuQdD6by32Mw2bNTbEa”,
“t3PSn5TbMMAEW7Eu36DYctFezRzpX1hzf3M”,
“t3Pcm737EsVkGTbhsu2NekKt JeG92mvYyoN”

95


https://zips.z.cash/protocol/sapling.pdf#subsidies
https://zips.z.cash/protocol/sapling.pdf#foundersreward

For Testnet, FounderAddressList; nNumFounderAddresses 1S:

[

“t2UNzUUx8mWBCRYPRezvA363EYXyEpHokyi”,
“t2NGQjYMQhFndDHguvUw4wZdNdsssA6K7x2",
“t2BkYdVCHzvTJJUTx4yZB8qeegD8QsPx8bo”,
“t2Crq9mydTm37kZokC68HzT6yez3t2FBnFj”,
“t2F9dtQc63JDDyrhnfpzvVYTJcr57MkqA12”,
“£26xfx0Sw2UVIPe503C8V4YybQDASESExtp”,
“t2DWYBkxKNivdmsMiivNJzutaQGqmoRjRnL",
“t2MnT5tzu9HSKcppRyUNwoTp8MUueuSGNaB”,
“t2Vf4wKcJ3ZFtLj4jezUUKkwYR92BLHnSUT",
“t2VEn3KiKyHSGyzd3nDw6ESWtaCQHwuvIWC”,
“t2BS7Mrbaef3fA4xrmkvDisFVXVrRBnZ6Qj",
“t25X3U8NtrT6gz5Db1AtQCSGjrpptr8JCEh”,
“t2FyTsLjjdm4jeVwirdxzj7FAkUidbrib4R”,
“t2NQTrStZHt JECNFT3dUBLYA9AErxPCmkka”,
“t2RpffkzyLRevGM3w9aWdqMX6bd8uuAK3vn”,
“t2AEefc72ieTnsXKmgK2bZNckiwvZe30PNL",
“t2ECCQPVcxUCSSQopdNquguEPE14HsVEcUn”,
“t2FGzW5Zdc8Cy98ZKmRygsVGi6oKcmYirdn”,
“t2U;jVSd3zheHPgAkuX8WQW2CiCIxHQBEVWD”,
“t2Tz3uCyhP6eizUWDc3bGH7XUCIGQSEYQNC”,
“t2KXJVVyyrjVxxSeazbY9ksGyft4qsXUNm9”,
“t2QgvW4sP9zaGpPMH1GRzy7 cpydmuRfB4AZ”,
“t29pHDBWQq7qNAE jwSEHg8WEQqYe9pkmVrtRP”,
“t2D5y7J5fpXa jLbGrMBQkFg2mFNSf03n8cX”

“t2N9PHOWk9xjqYg9iinlUa3aekJqf AtES43”,
“t2ENg7hHVqqs9JwU5cgjvSbxnT2a9USN£hy”,
“t2J8q1xH1EuigJ52MfExyy  YtN3VgvshKDE”,
“t2EaMPUiQ1kthqcP5UEKF42CAFKJqXCkXC9”,
“t2LPirmnfYSZc481GgZBab6xUGcooviytBnC”,
“t2D3k4fNdErd66YxtvXEdft9xuLoKD7CcVo”,
“t2C3KkFF91iQRxf c4B9zgbWo4dQLLqzqjpuGq’”,
“t2AREsWdoW1F8EQYsScs jkgqobmgrkKeUkK”,
“t2K3£dViH6R5tRuXLphKyoYXyZhyWGghDNY”,
“t2F8XouqdNMq6zzEvxQXHV1T jwZRHwRg8gC",
“t2FuSwoLCdBVPwdZuYoHrEzxAb9qy4qjbnL”,
“t2V51gZNSoJ5KRL74bf9YTtbZuv8Fcqx2FH",
“t2EYbGLekmpqHyn8UBF6kqgpahrYm7D6N1Le”,
“t2GSWZZJzoesYxfPTWXkFn5Uax jiYxGBU2a",
“t2JzjoQqnuXtTGSN7k7yk5keURBGvYofh1d”,
“t2NNs3ZGZFsNj2uvmVd8BSwSfvETgilrD8J”,
“t2JabDUkG8TaqVKYfqDJI3rqkVAHKp6hwXvG”,
“t2DUD8a21FtEFn420VLp5NGbogY13uyjyot”
“t2TBUAhELyHUn816SXYsXz5Lmy7kDzA1uT5”",
“t2NysJSZtLwMLWEJ6MH3BsxRh6h27mNcsSy”,
“t2J9YYtH31cveilZzjaE4AcuwVho6qjTNzp”,
“t2NDTJP9MosKpyFPHJInf jcbpGCvAU58XGad”,
“t2Ez9KM8V JLuArcxuEkNRAkhNvidKkzXcjJ",

“t2UV2wr1PTaUiybpkV3FdSdGxUJeZdZztyt"

]

Note: For Testnet only, the addresses from index 4 onward have been changed from what was implemented at
launch. This reflects an upgrade on Testnet, starting from block height 53127. [Zcash-Issue2113]

Each address representation in FounderAddressList denotes a transparent P2SH multisig address.
Let SlowStartShift and Halving be defined as in the previous section.

Define:
SlowStartShift + HalvinglInterval
NumFounderAddresses )
height
FounderAddressChangelnterval

FounderAddressChangelnterval := ceiling (

)

FoundersRewardLastBlockHeight := SlowStartShift + HalvingInterval — 1.

FounderAddressindex(height : N) := 1 + ﬂoor(

Let FounderRedeemScriptHash(height : N) be the standard redeem script hash, as specified in [Bitcoin-Multisig], for
the P2SH multisig address with Base58Check form given by FounderAddressList rounderaddressindex(height)-

Consensus rule: A coinbase transaction at height € {1 .. FoundersRewardLastBlockHeight} MUST include at least
one output that pays exactly FoundersReward(height) zatoshi with a standard P2SH script of the form 0P_HASH160
FounderRedeemScriptHash(height) OP_EQUAL as its scriptPubKey.

Notes:

- No Founders’Reward is required to be paid for height > FoundersRewardLastBlockHeight (i.e. after the first
halving), or for height = 0 (i.e. the genesis block).

- The Founders’Reward addresses are not treated specially in any other way, and there can be other outputs
to them, in coinbase transactions or otherwise. In particular, it is valid for a coinbase transaction with
height € {1.. FoundersRewardLastBlockHeight} to have other outputs, possibly to the same address, that do not
meet the criterion in the above consensus rule, as long as at least one output meets it.

- The assertion FounderAddressindex(FoundersRewardLastBlockHeight) < NumFounderAddresses holds, ensuring
that the Founders’ Reward address index remains in range for the whole period in which the Founders’
Reward is paid.

96



7.9 Changes to the Script System

The 0P_CODESEPARATOR opcode has been disabled. This opcode also no longer affects the calculation of SIGHASH
transaction hashes.

7.10 Bitcoin Improvement Proposals

In general, Bitcoin Improvement Proposals (BIPs) do not apply to Zcash unless otherwise specified in this section.

All of the BIPs referenced below should be interpreted by replacing “BTC’, or “bitcoin” used as a currency unit, with
“ZEC"; and “satoshi” with “zatoshi”.

The following BIPs apply, otherwise unchanged, to Zcash: [BIP-11], [BIP-14], [BIP-31], [BIP-35], [BIP-37], [BIP-61].

The following BIPs apply starting from the Zcash genesis block, i.e. any activation rules or exceptions for particular
blocks in the Bitcoin block chain are to be ignored: [BIP-16], [BIP-30], [BIP-65], [BIP-66].

The effect of [BIP-34] has been incorporated into the consensus rules (§ 71 Transaction Encoding and Consensus’
on p. 85). This excludes the Mainnet and Testnet genesis blocks, for which the “height in coinbase” was inadvertently
omitted.

[BIP-13] applies with the changes to address version bytes described in § 5.6.1.1 “Transparent Addresses’ on p.79.
[BIP-111] applies from peer-to-peer network protocol version 170004 onward; that is:

- references to protocol version 70002 are to be replaced by 170003;

- references to protocol version 70011 are to be replaced by 170004;

- the reference to protocol version 70000 is to be ignored (Zcash nodes have supported Bloom-filtered connec-
tions since launch).

8 Differences from the Zerocash paper

8.1 Transaction Structure

Zerocash introduces two new operations, which are described in the paper as new transaction types, in addition to
the original transaction type of the cryptocurrency on which it is based (e.g. Bitcoin).

In Zcash, there is only the original Bitcoin transaction type, which is extended to contain a sequence of zero or
more Zcash-specific operations.

This allows for the possibility of chaining transfers of shielded value in a single Zcash transaction, e.g. to spend a
shielded note that has just been created. (In Zcash, we refer to value stored in UTXOs as transparent, and value
stored in output notes of JoinSplit transfers or Output transters) as shielded.) This was not possible in the Zerocash
design without using multiple transactions. It also allows transparent and shielded transfers to happen atomically
— possibly under the control of nontrivial script conditions, at some cost in distinguishability.

Computation of SIGHASH transaction hashes, as described in §4.9 ‘SIGHASH Transaction Hashing’ on p.37,
was changed to clean up handling of an error case for SIGHASH_SINGLE, to remove the special treatment of
OP_CODESEPARATOR, and to include Zcash-specific fields in the hash [ZIP-76].

8.2 Memo Fields

Zcash adds a memo field sent from the creator of a JoinSplit description to the recipient of each output note. This
feature is described in more detail in §5.5 ‘Encodings of Note Plaintexts and Memo Fields’ on p.78.

97


https://zips.z.cash/protocol/sapling.pdf#scripts
https://zips.z.cash/protocol/sapling.pdf#bips
https://zips.z.cash/protocol/sapling.pdf#differences
https://zips.z.cash/protocol/sapling.pdf#trstructure
https://zips.z.cash/protocol/sapling.pdf#memodiffs

8.3 Unification of Mints and Pours

In the original Zerocash protocol, there were two kinds of transaction relating to shielded notes:

- a “Mint” transaction takes value from transparent UTXOs as input and produces a new shielded note as
output.

- a “Pour” transaction takes up to N° shielded notes as input, and produces up to N"*" shielded notes and a
transparent UTXO as output.

Only “Pour” transactions included a zk-SNARK proof.

[Pre-Sapling] In Zcash, the sequence of operations added to a transaction (see §8.1 ‘Transaction Structure’ on
p- 97) consists only of JoinSplit transfers. A JoinSplit transfer is a Pour operation generalized to take a transparent
UTXO as input, allowing JoinSplit transfers to subsume the functionality of Mints. An advantage of this is that a Zcash
transaction that takes input from an UTXO can produce up to N™" output notes, improving the indistinguishability
properties of the protocol. A related change conceals the input arity of the JoinSplit transfer: an unused (zero-value)
input is indistinguishable from an input that takes value from a note.

This unification also simplifies the fix to the Faerie Gold attack described below, since no special case is needed for
Mints.

[Sapling onward] In Sapling, there are still no “Mint” transactions. Instead of JoinSplit transters, there are Spend
transters and Output transters. These make use of Pedersen value commitments to represent the shielded values
that are transferred. Because these commitments are additively homomorphic, it is possible to check that all Spend
transfers and Output transfers balance; see §4.12 ‘Balance and Binding Signature (Sapling)’ on p. 39 for detail.
This reduces the granularity of the circuit, allowing a substantial performance improvement (orthogonal to other
Sapling circuit improvements) when the numbers of shielded inputs and outputs are significantly different. This
comes at the cost of revealing the exact number of shielded inputs and outputs, but dummy (zero-valued) outputs
are still possible.

8.4 Faerie Gold attack and fix

When a shielded note is created in Zerocash, the creator is supposed to choose a new p value at random. The
nullifier of the note is derived from its spending key (ay) and p. The note commitment is derived from the recipient
address component a,, the value v, and the commitment trapdoor rcm, as well as p. However nothing prevents
creating multiple notes with different v and rem (hence different note commitments) but the same p.

An adversary can use this to mislead a note recipient, by sending two notes both of which are verified as valid by
Receive (as defined in [BCGGMTV2014, Figure 2]), but only one of which can be spent.

We call this a “Faerie Gold” attack — referring to various Celtic legends in which faeries pay mortals in what appears
to be gold, but which soon after reveals itself to be leaves, gorse blossoms, gingerbread cakes, or other less valuable
things [LG2004].

This attack does not violate the security definitions given in [BCGGMTV2014]. The issue could be framed as a
problem either with the definition of Completeness, or the definition of Balance:

- The Completeness property asserts that a validly received note can be spent provided that its nullifier does
not appear on the ledger. This does not take into account the possibility that distinct notes, which are validly
received, could have the same nullifier. Thatis, the security definition depends on a protocol detail -nullifiers-
that is not part of the intended abstract security property, and that could be implemented incorrectly.

- The Balance property only asserts that an adversary cannot obtain more funds than they have minted or
received via payments. It does not prevent an adversary from causing others’ funds to decrease. In a Faerie
Gold attack, an adversary can cause spending of a note to reduce (to zero) the effective value of another note
for which the adversary does not know the spending key, which violates an intuitive conception of global
balance.

98


https://zips.z.cash/protocol/sapling.pdf#mintsandpours
https://zips.z.cash/protocol/sapling.pdf#faeriegold

These problems with the security definitions need to be repaired, but doing so is outside the scope of this specifi-
cation. Here we only describe how Zcash addresses the immediate attack.

It would be possible to address the attack by requiring that a recipient remember all of the p values for all notes they
have ever received, and reject duplicates (as proposed in [GGM2016]). However, this requirement would interfere
with the intended Zcash feature that a holder of a spending key can recover access to (and be sure that they are
able to spend) all of their funds, even if they have forgotten everything but the spending key.

[Sprout] Instead, Zcash enforces that an adversary must choose distinct values for each p, by making use of the
fact that all of the nullifiers in JoinSplit descriptions that appear in a valid block chain must be distinct. This is
true regardless of whether the nullifiers corresponded to real or dummy notes (see §4.7.1 ‘Dummy Notes (Sprout)’
on p.35). The nullifiers are used as input to hSigCRH to derive a public value hg,, which uniquely identifies the
transaction, as described in §4.3 ‘JoinSplit Descriptions’ on p.31. (hg;, was already used in Zerocash in a way that
requires it to be unique in order to maintain indistinguishability of JoinSplit descriptions; adding the nullifiers
to the input of the hash used to calculate it has the effect of making this uniqueness property robust even if the
transaction creator is an adversary.)

[Sprout] The p value for each output note is then derived from a random private seed ¢ and hg;, using PRF{,. The
correct construction of p for each output note is enforced by §4.15.1 ‘JoinSplit Statement (Sprout)’ on p.43 in the
JoinSplit statement .

[Sprout] Now even if the creator of a JoinSplit description does not choose ¢ randomly, uniqueness of nullifiers
and collision resistance of both hSigCRH and PRF will ensure that the derived p values are unique, at least for any
two JoinSplit descriptions that get into a valid block chain. This is sufficient to prevent the Faerie Gold attack.

A variation on the attack attempts to cause the nullifier of a sent note to be repeated, without repeating p. How-
ever, since the nullifier is computed as PRF;';S"m”t(p) or PRF™S%!Me(5.): this is only possible if the adversary

finds a collision across both inputs on PRF"=P"t or PRF"®?P"& \which is assumed to be infeasible — see §4.1.2
‘Pseudo Random Functions’ on p.19.

[Sprout] Crucially, “nullifier integrity” is enforced whether or not the enforceMerklePath; flag is set for an input
note (§4.15.1 ‘JoinSplit Statement (Sprout) on p.43). If this were not the case then an adversary could perform the
attack by creating a zero-valued note with a repeated nullifier, since the nullifier would not depend on the value.

[Sprout] Nullifier integrity also prevents a “roadblock attack” in which the adversary sees a victim's transaction,
and is able to publish another transaction that is mined first and blocks the victim'’s transaction. This attack would
be possible if the public value(s) used to enforce uniqueness of p could be chosen arbitrarily by the transaction
creator: the victim's transaction, rather than the adversary’s, would be considered to be repeating these values. In
the chosen solution that uses nullifiers for these public values, they are enforced to be dependent on spending keys
controlled by the original transaction creator (whether or not each input note is a dummy), and so a roadblock
attack cannot be performed by another party who does not know these keys.

[Sapling onward] In Sapling, uniqueness of p is ensured by making it dependent on the position of the note
commitment in the Sapling note commitment tree. Specifically, p = cm + [pos] 7°*"""8 where 7°*""" is a generator
independent of the generators used in NoteCommit>**""& Therefore, p commits uniquely to the note and its position,
and this commitment is collision-resistant by the same argument used to prove collision resistance of Pedersen
hashes. Note that it is possible for two distinct Sapling positioned notes (having different p values and nullifiers,
but different note positions) to have the same note commitment, but this causes no security problem. Roadblock
attacks are not possible because a given note position does not repeat for outputs of different transactions in the
same block chain. Note that this depends on the fact that the value is bound by the note commitment: it could
be the case that the adversary uses a dummy note that is not required to have a note commitment in the note
commitment tree when it is spent. If this happens and the victim's note is not a dummy, the note commitments
will differ and so will the nullifiers. If both notes are dummies, the adversary cannot know the inputs to the note
commitment since they are generated at random for the victim'’s spend, regardless of the adversary’s potential
knowledge of viewing keys.

99



8.5 Internal hash collision attack and fix

The Zerocash security proof requires that the composition of COMM,,, and COMM; is a computationally binding
commitment to its inputs a,, v, and p. However, the instantiation of COMM,,, and COMMy; in section 5.1 of the
paper did not meet the definition of a binding commitment at a 128-bit security level. Specifically, the internal hash
of a, and p is truncated to 128 bits (motivated by providing statistical hiding security). This allows an attacker, with
a work factor on the order of 2°4, to find distinct pairs (apk, p) and (a,, p') with colliding outputs of the truncated
hash, and therefore the same note commitment. This would have allowed such an attacker to break the Balance
property by double-spending notes, potentially creating arbitrary amounts of currency for themself [HW2016].

Zcash uses a simpler construction with a single hash evaluation for the commitment: SHA-256 for Sprout notes, and

PedersenHashToPoint for Sapling notes. The motivation for the nested construction in Zerocash was to allow Mint

transactions to be publically verified without requiring zk-SNARK proofs (BCGGMTV2014, section 1.3, under step 3]).
Since Zcash combines “Mint” and “Pour” transactions into generalized JoinSplit transfers (for Sprout), or Spend

transfers and Output transfers (for Sapling), and each transfer always uses a zk-SNARK proof, Zcash does not

require the nesting. A side benefit is that this reduces the cost of computing the note commitments: for Sprout it

reduces the number of SHA256Compress evaluations needed to compute each note commitment from three to

two, saving a total of four SHA256Compress evaluations in the JoinSplit statement.

[Sprout] Note:  Sprout note commitments are not statistically hiding, so for Sprout notes, Zcash does not support
the “everlasting anonymity” property described in [BCGGMTV2014, section 8.1], even when used as described in
that section. While it is possible to define a statistically hiding, computationally binding commitment scheme for
this use at a 128-bit security level, the overhead of doing so within the JoinSplit statement was not considered to
justify the benefits.

[Sapling onward] In Sapling, Pedersen commitments are used instead of SHA256Compress. These commitments
are statistically hiding, and so “everlasting anonymity” is supported for Sapling notes under the same conditions as
in Zerocash (by the protocol, not necessarily by zcashd). Note that diversified payment addresses can be linked if
the Decisional Diffie-Hellman Problem on the Jubjub curve can be broken.

8.6 Changes to PRF inputs and truncation

The format of inputs to the PRFs instantiated in §5.4.2 ‘Pseudo Random Functions’ on p. 61 has changed relative to
Zerocash. There is also a requirement for another PRF, PRF®, which must be domain-separated from the others.

In the Zerocash protocol, p2 is truncated from 256 to 254 bits in the input to PRF*" (which corresponds to PRF" =Pt

in Zcash). Also, hg, is truncated from 256 to 253 bits in the input to PRFP*. These truncations are not taken into
account in the security proofs.

Both truncations affect the validity of the proof sketch for Lemma D.2 in the proof of Ledger Indistinguishability in
[BCGGMTV2014, Appendix D].

In more detail:

- In the argument relating H and O,, it is stated that in O,, “for each i € {1,2},sn; := PRF}’ (p) for a random
(and not previously used) p” It is also argued that “the calls to PRF}" are each by definition unique”. The latter
assertion depends on the fact that p is “not previously used”. However, the argument is incorrect because the
truncated input to PRFJ] , i.e. [p]s54, may repeat even if p does not.

- Inthe same argument, it is stated that “with overwhelming probability, hg;, is unique”. In fact what is required

to be unique is the truncated input to PRFP ie. [hsigloss = [CRH(pkgg)]253. In practice this value will be unique
under a plausible assumption on CRH provided that pkg;, is chosen randomly, but no formal argument for
this is presented.

sig

Note that p is truncated in the input to PRF™" but not in the input to COMM,,,,, which further complicates the
analysis.

As further evidence that it is essential for the proofs to explicitly take any such truncations into account, consider a
slightly modified protocol in which p is truncated in the input to COMM,,,, but not in the input to PRF™". In that

100


https://zips.z.cash/protocol/sapling.pdf#internalh
https://zips.z.cash/protocol/sapling.pdf#truncation

case, it would be possible to violate balance by creating two notes for which p differs only in the truncated bits.
These notes would have the same note commitment but different nullifiers, so it would be possible to spend the
same value twice.

[Sprout] For resistance to Faerie Gold attacks as described in § 8.4 ‘Faerie Gold attack and fix’ on p. 98, Zcash
depends on collision resistance of hSigCRH and PRF® (instantiated using BLAKE2b-256 and SHA256Compress re-
spectively). Collision resistance of a truncated hash does not follow from collision resistance of the original hash,
even if the truncation is only by one bit. This motivated avoiding truncation along any path from the inputs to the
computation of hg;, to the uses of p.

[Sprout] Since the PRFs are instantiated using SHA256Compress which has an input block size of 512 bits (of which
256 bits are used for the PRF input and 4 bits are used for domain separation), it was necessary to reduce the size
of the PRF key to 252 bits. The key is set to ay, in the case of PRF*¥", PRF"™P" and PRFP*, and to ¢ (which does
not exist in Zerocash) for PRF?, and so those values have been reduced to 252 bits. This is preferable to requiring
reasoning about truncation, and 252 bits is quite sufficient for security of these cryptovalues.

Sapling uses Pedersen hashes and BLAKE2s where Sprout used SHA256Compress. Pedersen hashes can be efficiently
instantiated for arbitrary input lengths. BLAKE2s has an input block size of 512 bits, and uses a finalization flag rather
than padding of the last input block; it also supports domain separation via a personalization parameter distinct
from the input. Therefore, there is no need for truncation in the inputs to any of these hashes. Note however that
the output of CRH"™ is truncated, requiring a security assumption on BLAKE2s truncated to 251 bits (see §5.4.1.5
‘CRH"* Hash Function’ on p.57).

8.7 In-band secret distribution

Zerocash specified ECIES (referencing Certicom’s SEC 1 standard) as the encryption scheme used for the in-band
secret distribution. This has been changed to a key agreement scheme based on Curve25519 (for Sprout) or Jubjub
(for Sapling) and the authenticated encryption algorithm AEAD_CHACHA20_POLY1305. This scheme is still loosely
based on ECIES, and on the crypto_box_seal scheme defined in libsodium [libsodium-Seal].

The motivations for this change were as follows:

- The Zerocash paper did not specify the curve to be used. We believe that Curve25519 has significant side-
channel resistance, performance, implementation complexity, and robustness advantages over most other
available curve choices, as explained in [Bernstein2006]. For Sapling, the Jubjub curve was designed according
to a similar design process following the “Safe curves” criteria [BL-SafeCurves| [Hopwood2018]. This retains
Curve25519's advantages while keeping shielded payment address sizes short, because the same public key
material supports both encryption and spend authentication.

- ECIES permits many options, which were not specified. There are at least ~counting conservatively- 576
possible combinations of options and algorithms over the four standards (ANSI X9.63, IEEE Std 1363a-2004,
ISO/IEC 18033-2, and SEC 1) that define ECIES variants [MAEA2010].

- Although the Zerocash paper states that ECIES satisfies key privacy (as defined in [BBDP2001]), it is not
clear that this holds for all curve parameters and key distributions. For example, if a group of non-prime
order is used, the distribution of ciphertexts could be distinguishable depending on the order of the points
representing the ephemeral and recipient public keys. Public key validity is also a concern. Curve25519 (and
Jubjub) key agreement is defined in a way that avoids these concerns due to the curve structure and the
“clamping” of private keys (or explicit cofactor multiplication and point validation for Sapling).

- Unlike the DHAES/DHIES proposal on which it is based [ABR1999], ECIES does not require a representation
of the sender’s ephemeral public key to be included in the input to the KDF, which may impair the security
properties of the scheme. (The Std 1363a-2004 version of ECIES [IEEE2004] has a “DHAES mode” that allows
this, but the representation of the key input is underspecified, leading to incompatible implementations.)
The scheme we use for Sprout has both the ephemeral and recipient public key encodings -which are
unambiguous for Curve25519- and also hg;, and a nonce as described below, as input to the KDF. For Sapling,
it is only possible to include the ephemeral public key encoding, but this is sufficient to retain the original
security properties of DHAES. Note that being able to break the Elliptic Curve Diffie-Hellman Problem on

101


https://zips.z.cash/protocol/sapling.pdf#inbandrationale

Curve25519 or Jubjub (without breaking AEAD_CHACHA20_POLY1305 as an authenticated encryption scheme
or BLAKE2b-256 as a KDF) would not help to decrypt the transmitted note(s) ciphertext unless pke,. or pky is
known or guessed.

- [Sprout] The KDF also takes a public seed hg, as input. This can be modeled as using a different “randomness
extractor” for each JoinSplit transfer, which limits degradation of security with the number of JoinSplit
transfers. This facilitates security analysis as explained in [DGKM2011] — see section 7 of that paper for a
security proof that can be applied to this construction under the assumption that single-block BLAKE2b-256 is
a ‘weak PRF". Note that hg;, is authenticated, by the zk-SNARK proof, as having been chosen with knowledge

Id . g s . ’ . .
of a° (e, s0 an adversary cannot modify it in a ciphertext from someone else’s transaction for use in

a chosen-ciphertext attack without detection. (In Sapling, there is no equivalent to hg, but the binding
signature and spend authorization signatures prevent such modifications.)

- [Sprout] The scheme used by Sprout includes an optimization that reuses the same ephemeral key (with
different nonces) for the two ciphertexts encrypted in each joinSplit description.

The security proofs of [ABR1999] can be adapted straightforwardly to the resulting scheme. Although DHAES as
defined in that paper does not pass the recipient public key or a public seed to the hash function H, this does not
impair the proof because we can consider H to be the specialization of our KDF to a given recipient key and seed.
(Passing the recipient public key to the KDF could in principle compromise key privacy, but not confidentiality of
encryption.) [Sprout] It is necessary to adapt the “HDH independence” assumptions and the proof slightly to take
into account that the ephemeral key is reused for two encryptions.

Note that the 256-bit key for AEAD_CHACHA20_POLY1305 maintains a high concrete security level even under
attacks using parallel hardware [Bernstein2005] in the multi-user setting [Zaverucha2012]. This is especially neces-
sary because the privacy of Zcash transactions may need to be maintained far into the future, and upgrading the
encryption algorithm would not prevent a future adversary from attempting to decrypt ciphertexts encrypted before
the upgrade. Other cryptovalues that could be attacked to break the privacy of transactions are also sufficiently
long to resist parallel brute force in the multi-user setting: for Sprout, a is 252 bits, and sk, is no shorter than a.

In Sapling, ivk is an output of CRH", which is a 251-bit value. This degree of divergence from a uniform distribution
on the scalar field is not expected to cause any weakness in note encryption.

8.8 Omission in Zerocash security proof

The abstract Zerocash protocol requires PRF***" only to be a PRF; it is not specified to be collision-resistant . This

reveals a flaw in the proof of the Balance property.

Suppose that an adversary finds a collision on PRF*" such that a, and a2 are distinct spending keys for the same
apk- Because the note commitment is to a, but the nullifier is computed from a,, (and p), the adversary is able to
double-spend the note, once with each ag. This is not detected because each Spend reveals a different nullifier.
The JoinSplit statements are still valid because they can only check that the ag, in the witness is some preimage of
the a, used in the note commitment.

The error is in the proof of Balance in [BCGGMTV2014, Appendix D.3]. For the “A violates Condition I” case, the

proof says:
“0) If em$® = cm3?, then the fact that sn$® # sn3 implies that the witness a contains two distinct openings of
cm$ (the first opening contains (a?,'jl, 09, while the second opening contains (a?ﬂfk, p3%)). This violates the

binding property of the commitment scheme COMM

'fl (In Sprout cm?' opens directly to (ag'ﬁi, v 09 and in

(o]

In fact the openings do not contain a;'fi; they contain ay

Zerocash it opens to (vfld, COM Ms(ag'k‘{i, p;-"d),)
A similar error occurs in the argument for the “A4 violates Condition II” case.

The flaw is not exploitable for the actual instantiations of PRF**" in Zerocash and Sprout, which are collision-
resistant assuming that SHA256Compress is.

102


https://zips.z.cash/protocol/sapling.pdf#crprf

The proof can be straightforwardly repaired. The intuition is that we can rely on collision resistance of PRF*"

(on both its arguments) to argue that distinctness of a;'ffl and a:l'(%, together with constraint 1(b) of the joinSplit

statement (see §4.15.1 ‘JoinSplit Statement (Sprout)’ on p.43), implies distinctness of af,'ﬂl and ag'de, therefore

distinct openings of the note commitment when Condition I or II is violated.

8.9 Miscellaneous

- The paper defines a note as ((apk, Pkenc), v, P, rcm,s,cm), whereas this specification defines a Sprout note as

(apk, v, P, rcm). The instantiation of COMM; in section 5.1 of the paper did not actually use s, and neither does

the new instantiation of NoteCommit>*°"*in Sprout. pk.,. is also not needed as part of a note: it is not an input

to NoteCommit>™°"* nor is it constrained by the Zerocash POUR statement or the Zcash JoinSplit statement. cm
can be computed from the other fields. (The definition of notes for Sapling is different again.)

- The length of proof encodings given in the paper is 288 bytes. [Sprout] This differs from the 296 bytes specified
in §5.4.9.1 ‘BCTV14’ on p.76, because both the z-coordinate and compressed y-coordinate of each point
need to be represented. Although it is possible to encode a proof in 288 bytes by making use of the fact that
elements of [f, can be represented in 254 bits, we prefer to use the standard formats for points defined in
[IEEE2004]. The fork of libsnark used by Zcash uses this standard encoding rather than the less efficient
(uncompressed) one used by upstream libsnark. In Sapling, a customized encoding is used for BLS12-381
points in Groth16 proofs to minimize length.

- The range of monetary values differs. In Zcash this range is {0.. MAX_MONEY}, while in Zerocash it is
{0..2%u_1}. (The JoinSplit statement still only directly enforces that the sum of amounts in a given JoinSplit
transfer is in the latter range; this enforcement is technically redundant given that the Balance property holds.)

9 Acknowledgements

The inventors of Zerocash are Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza.

The designers of the Zcash protocol are the Zerocash inventors and also Daira Hopwood, Sean Bowe, Jack Grigg,
Simon Liu, Taylor Hornby, Nathan Wilcox, Zooko Wilcox, Jay Graber, Eirik Ogilvie-Wigley, Ariel Gabizon, George
Tankersley, Ying Tong Lai, Kris Nuttycombe, Jack Gavigan, and Steven Smith. The Equihash proof-of-work algorithm
was designed by Alex Biryukov and Dmitry Khovratovich.

The authors would like to thank everyone with whom they have discussed the Zerocash and Zcash protocol designs;
in addition to the preceding, this includes Mike Perry, isis agora lovecruft, Leif Ryge, Andrew Miller, Ben Blaxill,
Samantha Hulsey, Alex Balducci, Jake Tarren, Solar Designer, Ling Ren, John Tromp, Paige Peterson, jl777, Alison
Stevenson, Maureen Walsh, Filippo Valsorda, Zaki Manian, Tracy Hu, Brian Warner, Mary Maller, Michael Dixon,
Andrew Poelstra, Benjamin Winston, Kobi Gurkan, Weikeng Chen, Henry de Valence, Deirdre Connolly, Chelsea
Komlo, Zancas Wilcox, Jane Lusby, Teor, Izaak Meckler, Zac Williamson, Vitalik Buterin, Jakub Zalewski, Oana
Ciobotaru, Andre Serrano, Brad Miller, Charlie O’Keefe, David Campbell, Elena Giralt, Francisco Gindre, Joseph
Van Geffen, Josh Swihart, Kevin Gorham, Larry Ruane, Marshall Gaucher, Ryan Taylor, and no doubt others. We
would also like to thank the designers and developers of Bitcoin.

Zcash has benefited from security audits performed by NCC Group, Coinspect, Least Authority, Mary Maller,
Kudelski Security, QEDIT, and Trail of Bits.

The Faerie Gold attack was found by Zooko Wilcox; subsequent analysis of variations on the attack was performed
by Daira Hopwood and Sean Bowe. The internal hash collision attack was found by Taylor Hornby. The error in
the Zerocash proof of Balance relating to collision resistance of PRF**" was found by Daira Hopwood. The errors
in the proof of Ledger Indistinguishability mentioned in § 8.6 ‘Changes to PRF inputs and truncation’ on p.100
were also found by Daira Hopwood.

103


https://zips.z.cash/protocol/sapling.pdf#miscdiffs
https://zips.z.cash/protocol/sapling.pdf#acknowledgements

The 2015 Soundness vulnerability in BCTV14 [Parno2015] was found by Bryan Parno. An additional condition
needed to resist this attack was documented by Ariel Gabizon [Gabizon2019, section 3]. The 2019 Soundness
vulnerability in BCTV14 [Gabizon2019] was found by Ariel Gabizon.

The design of Sapling is primarily due to Matthew Green, Ian Miers, Daira Hopwood, Sean Bowe, Jack Grigg, and
Jack Gavigan. A potential attack linking diversified payment addresses, avoided in the adopted design, was found
by Brian Warner.

The design of Orchard is primarily due to Daira Hopwood, Sean Bowe, Jack Grigg, Kris Nuttycombe, Ying Tong Lai,
and Steven Smith.

The observation in §5.4.1.6 ‘DiversifyHash>*"""& Hash Function’ on p.57 that diversified payment address unlinka-
bility can be proven in the same way as key privacy for ElGamal, is due to Mary Maller.

We thank Ariel Gabizon for teaching us the techniques of [BFIJSV2010] used in § B.2 ‘Groth16 batch verification’
on p. 156, by applying them to BCTV14.

The arithmetization used by Halo 2 is based on that used by PLONK [GW(C2019], which was designed by Ariel
Gabizon, Zachary Williamson, and Oana Ciobotaru.

Numerous people have contributed to the science of zero-knowledge proving systems, but we would particularly
like to acknowledge the work of Shafi Goldwasser, Silvio Micali, Oded Goldreich, Charles Rackoff, Rosario Gennaro,
Bryan Parno, Jon Howell, Craig Gentry, Mariana Raykova, Jens Groth, Rafail Ostrovsky, and Amit Sahai.

We thank the organizers of the ZKProof standardization effort and workshops; and also Anna Rose and Fredrik
Harrysson for their work on the Zero Knowledge Podcast, ZK Summits, and ZK Study Club. These efforts have
enriched the zero knowledge community immeasurably.

Many of the ideas used in Zcash —including the use of zero-knowledge proofs to resolve the tension between
privacy and auditability, Merkle trees over note commitments (using Pedersen hashes as in Sapling), and the use
of “serial numbers” or nullifiers to detect or prevent double-spends— were first applied to privacy-preserving
digital currencies by Tomas Sander and Amnon Ta-Shma. To a large extent Zcash is a refinement of their “Auditable,
Anonymous Electronic Cash” proposal in [ST1999].

We thank Alexandra Elbakyan for her tireless work in dismantling barriers to scientific research.

Finally, we would like to thank the Internet Archive for their scan of Peter Newell's illustration of the Jubjub bird,
from [Carroll1902].

10 Change History

2021.2.2 2021-05-20
- No changes before NUS.
2021.21 2021-05-20

. Add a note to §4.8 ‘Merkle Path Validity’ on p. 36 clarifying the encoding of rt>*"™" as a primary input to the
Sapling Spend circuit, and that non-canonical encodings are allowed as input to MerkleCRH>*""",

. Change the notation Z? for a Sapling Pedersen generator to Z(D, i).

2021.2.0 2021-05-07

- Clarify notation by changing ,c,, to £5Pr"

20211.24 2021-04-23

- Explicitly say that coinbase transactions MUST NOT have transparent inputs (this is a consensus rule inherited
from Bitcoin which has been present since launch).

104


https://zips.z.cash/protocol/sapling.pdf#changehistory
https://zips.z.cash/protocol/sapling.pdf#2021.2.2
https://zips.z.cash/protocol/sapling.pdf#2021.2.1
https://zips.z.cash/protocol/sapling.pdf#2021.2.0
https://zips.z.cash/protocol/sapling.pdf#2021.1.24

2021.1.23 2021-04-19

. Fix some URLs in references.

2021.1.22 2021-04-05

- Correct ZKSpend.Verify to ZKOutput.Verify in §4.5 ‘Output Descriptions’ on p. 33.

- Make sure that Change History entries are URL destinations.

2021.1.21 2021-04-01

- Fix type error in kdfinput for KDF>*"'"& (ephemeralKey is already a byte sequence).

- Make a note in § 8.7 Tn-band secret distribution’ on p.101 of the divergence of ivk for Sapling from a uniform
scalar.

- Correct the set of inputs to PRF*®™ used for [ZIP-32] in §4.1.2 ‘Pseudo Random Functions’ on p.19.
- Write the caution about linkage between the abstract and concrete protocols in § 5.1 ‘Caution’ on p.52.
- Update the Sprout key component diagram in § 3.1 ‘Payment Addresses and Keys’ on p.12 to remove magenta

highlighting.

2021.1.20 2021-03-25

- Credit Eirik Ogilvie-Wigley as a designer of the Zcash protocol. Add Andre Serrano, Brad Miller, Charlie
O'Keefe, David Campbell, Elena Giralt, Francisco Gindre, Joseph Van Geffen, Josh Swihart, Kevin Gorham,
Larry Ruane, Marshall Gaucher, and Ryan Taylor to the acknowledgements.

- Describe the recommended way to encode a Sapling payment address as a QR code.
- Move the definition of L to before its first use.

- Delete a confusing part of the definition of concaty that we don't rely on.

- Add a definition for the § symbol in §1 Introduction’ on p.7, before its first use.

- Remove specification of memo field contents, which will be in [ZIP-302].

- Remove support for building the Sprout-only specification (sprout . pdf).

- Remove magenta highlighting of differences from Zerocash.

2021119 2021-03-17
- No changes before NUS.

2021118 2021-03-17

- The subgroup check added to §4.17.3 ‘Decryption using a Full Viewing Key (Sapling)’ on p. 49 for Sapling in
version 2021.1.17 was applied to the wrong variable (g4, when it should have been pky), despite being described
correctly in the Change History entry below.

2021117 2021-03-15

- The definition of an abstraction function in §4.1.8 ‘Represented Group’ on p. 26 incorrectly required canon-
icity, i.e. that abstg does not accept inputs outside the range of reprg. While this was originally intended, it
is not true of abst;. (It is also not true of abstBytesg 5519, but Ed25519 is not strictly defined as a represented
group in this specification.)

. Correct Theorem 5.4.2 on p. 69, which was proving the wrong thing. It needs to prove that NoteCommit>*"""

does not return Uncommitted>*™" but was previously proving that PedersenHash does not return that value.

- The note about non-canonical encodings in §5.4.8.3 ‘Jubjub’ on p.73 gave incorrect values for the encodings
of the point of order 2, by omitting a ¢; term.

105


https://zips.z.cash/protocol/sapling.pdf#2021.1.23
https://zips.z.cash/protocol/sapling.pdf#2021.1.22
https://zips.z.cash/protocol/sapling.pdf#2021.1.21
https://zips.z.cash/protocol/sapling.pdf#2021.1.20
https://zips.z.cash/protocol/sapling.pdf#2021.1.19
https://zips.z.cash/protocol/sapling.pdf#2021.1.18
https://zips.z.cash/protocol/sapling.pdf#2021.1.17

- The specification of decryption in §4.17.3 ‘Decryption using a Full Viewing Key (Sapling)’ on p.49 differed
from its implementation in zcashd, in two respects:

- The specification had a type error in that it failed to check whether abst;(pk+4) = L, which is needed in
order for its use as input to KA>*"" Agree to be well-typed.

- The specification did not require pky to be in the subgroup J ) while the implementation in zcashd
did. This check is not needed for security; however, since Jubjub public keys are normally of type
KA>*P'"e pyblicPrimeSubgroup, we change the specification to match zcashd.

- Correct the procedure for generating dummy Sapling notes in §4.7.2 ‘Dummy Notes (Sapling)’ on p. 36.

- Add anote in §5.4.9.1 ‘BCTV14’ on p. 76 describing conditions under which an implementation that check-
points on Sapling can omit verifying BCTV14 proofs.

- Rename “hash extractor” to coordinate extractor. This is a more accurate name since it is also used on
commitments.

- Rename char to byte in field type declarations.

2021116 2021-01-11
- Add macros and Makefile support for building the NUS5 draft specification.

- Clarify the encoding of block heights for the “height in coinbase” rule. The description of this rule has also
moved from §7.5 on p. 90 to § 7.1 “Transaction Encoding and Consensus’ on p.85.

- Include the activation dates of Heartwood and Canopy in § 6 ‘Network Upgrades’ on p. 84.

- Section links in the Heartwood and Canopy versions of the specification now go to the correct document
URL.

- Attempt to improve search and cut-and-paste behaviour for ligatures in some PDF readers.

2020.1.15 2020-11-06

- Add a missing consensus rule that has always been implemented in zcashd: there must be at least one
transparent output, Output description, or JoinSplit description in a transaction.

- Add a consensus rule that the (zero-valued) coinbase transaction output of the genesis block cannot be spent.

- Define Sprout chain value pool balance and Sapling chain value pool balance, and include consensus rules
from [ZIP-209].

- Correct the Sapling note decryption algorithms:
- ephemeralKey is kept as a byte sequence rather than immediately converted to a curve point; this matters
because of non-canonical encoding.

- The representation of pky in a note plaintext may also be non-canonical and need not be in the prime
subgroup.

- Move checking of cm,, in decryption with ivk to the end of the algorithm, to more closely match the
implementation.

- The note about decryption of outputs in mempool transactions should have been normative.
- Reserve transaction version number 0x7FFFFFFF and version group ID 0xFFFFFFFF for experimental use.

- Remove a statement that the language consisting of key and address encoding possibilities is prefix-free. (The
human-readable forms are prefix-free but the raw encodings are not; for example, the raw encoding of a
Sapling spending key can be a prefix of several of the other encodings.)

- Use “let mutable” to introduce mutable variables in algorithm:s.

- Include a reference to [BFIJSV2010] for batch pairing verification techniques.

- Acknowledge Jack Gavigan as a co-designer of Sapling and of the Zcash protocol.
- Acknowledge Izaak Meckler, Zac Williamson, Vitalik Buterin, and Jakub Zalewski.
- Acknowledge Alexandra Elbakyan.

106


https://zips.z.cash/protocol/sapling.pdf#2021.1.16
https://zips.z.cash/protocol/sapling.pdf#2020.1.15

2020.1.14 2020-08-19

- The consensus rule that a coinbase transaction must not spend more than is available from the block subsidy

and transaction fees, was not explicitly stated. (This rule was correctly implemented in zcashd.)
- Fix a type error in the output of PRF">*P""&. 4 Sapling nullifier is a sequence of 32 bytes, not a bit sequence.

- Correct an off-by-one in an expression used in the definition of ¢ in §5.4.1.7 ‘Pedersen Hash Function’ on
p. 59 (this does not change the value of ¢).

2020.1.13 2020-08-11

. Rename the type of Sapling transmission keys from KA>**'"& publicPrimeOrder to KA>*P'"€ publicPrimeSubgroup.

This type is defined as J @ which reflects the implementation in zcashd (subject to the next point below); it
was never enforced that a transmission key (pky) cannot be O;.

- Add a non-normative note saying that zcashd does not fully conform to the requirement to treat transmission
keys not in KA>*™"8 pyblicPrimeSubgroup as invalid when importing shielded payment addresses.

- Make Halving(height) return 0 (rather than —1) for height < SlowStartShift. This has no effect on consensus
since the Halving function is not used in that case, but it makes the definition match the intuitive meaning of
the function.

- Rename sections under § 7 ‘Consensus Changes from Bitcoin’ on p. 85 to clarify that these sections do not
only concern encoding, but also consensus rules.

- Make the Canopy specification the default.
2020.1.12 2020-08-03

- Include SHA-512 in §5.4.1.1 ‘SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions’ on p.55.
- Add a reference to [BCCGLRT2014] in §4.1.12 Zero-Knowledge Proving System’ on p. 27.

2020.1.11 2020-07-13

- Change instances of “the production network” to “Mainnet’, and “the test network” to Testnet. This follows
the terminology used in ZIPs.

- Update stale references to Bitcoin documentation.

2020.1.10 2020-07-05

- Corrections to a note in §5.4.5 ‘Ed25519” on p. 64.

2020.1.9 2020-07-05

- Add §3.11 ‘Mainnet and Testnet’ on p.18.
- Acknowledge Jane Lusby and Teor.
- Precisely specify the encoding and decoding of Ed25519 points.

- Correct an error introduced in 2020.1.8; “—O;" was incorrectly used when the point (0, —1) on Jubjub was
meant.

- Precisely specify the conversion from a bit sequence in abst;.

107


https://zips.z.cash/protocol/sapling.pdf#2020.1.14
https://zips.z.cash/protocol/sapling.pdf#2020.1.13
https://zips.z.cash/protocol/sapling.pdf#2020.1.12
https://zips.z.cash/protocol/sapling.pdf#2020.1.11
https://zips.z.cash/protocol/sapling.pdf#2020.1.10
https://zips.z.cash/protocol/sapling.pdf#2020.1.9

2020.1.8 2020-07-04

- Add Ying Tong Lai and Kris Nuttycombe as Zcash protocol designers.
- Change the specification of abst; in §5.4.8.3 ‘Jubjub’ on p. 73 to match the implementation.
()%
. Repair the argument for GroupHash},s being usable as a random oracle, which previously depended on abst;
being injective.
. In RedDSA verification, clarify that R used as part of the input to H® must be exactly as encoded in the

signature.

2020.1.7 2020-06-26

- Delete some ‘new’ superscripts that only added notational clutter.

- Add an explicit lead byte field to Sprout note plaintexts, and clearly specify the error handling when it is
invalid.

- Define a Sapling note plaintext lead byte as having type BY (so that decoding to a note plaintext always
succeeds, and error handling is more explicit).

- Fix a sign error in the fixed-base term of the batch validation equation in § B.1 ‘RedDSA batch validation’ on
p.155.

2020.1.6 2020-06-17

- Correct an error in the specification of Ed25519 validating keys: they should not have been specified to be
checked against ExcludedPointEncodings, since libsodium v1.0.15 does not do so.

- Consistently use “validating” for signatures and “verifying” for proofs.
. Use the symbol ¥/« for positive square root.

2020.1.5 2020-06-02

- Reference [ZIP-173] instead of BIP 173.

. Mark more index entries as definitions.

2020.1.4 2020-05-27

- Reference [BIP-32] and [ZIP-32] when describing keys and their encodings.

- Network Upgrade 4 has been given the name Canopy.
- Improve LaTeX portability of this specification.

2020.1.3 2020-04-22

- Correct a wording error transposing transparent inputs and transparent outputs in §4.11 ‘Balance (Sprout)’
on p.38.

2020.1.2 2020-03-20
- The implementation of Sprout Ed25519 signature validation in zcashd differed from what was specified in
§5.4.5 ‘Ed25519’ on p. 64. The specification has been changed to match the implementation.
- Remove “pvc” Makefile targets.
- Make the Heartwood specification the default.
- Add macros and Makefile support for building the Canopy specification.

108


https://zips.z.cash/protocol/sapling.pdf#2020.1.8
https://zips.z.cash/protocol/sapling.pdf#2020.1.7
https://zips.z.cash/protocol/sapling.pdf#2020.1.6
https://zips.z.cash/protocol/sapling.pdf#2020.1.5
https://zips.z.cash/protocol/sapling.pdf#2020.1.4
https://zips.z.cash/protocol/sapling.pdf#2020.1.3
https://zips.z.cash/protocol/sapling.pdf#2020.1.2

2020.11 2020-02-13

- Resolve conflicts in the specification of memo fields by deferring to [ZIP-302].

2020.1.0 2020-02-06
- Specify a retrospective soft fork implemented in zcashd v2.1.1-1 that limits the nTime field of a block relative to
its median-time-past.
- Correct the definition of median-time-past for the first PoWMedianBlockSpan blocks in a block chain.
- Add acknowledgements to Henry de Valence, Deirdre Connolly, Chelsea Komlo, and Zancas Wilcox.
- Add an acknowledgement to Trail of Bits for their security audit.
- Change indices in the incremental Merkle tree diagram to be zero-based.

- Use the term “monomorphism” for an injective homomorphism, in the context of a signature scheme with
key monomorphism.

2019.0.9 2019-12-27

- No changes to Sprout or Sapling.

- Makefile updates for Heartwood.

2019.0.8 2019-09-24

- Fix a typo in the generator Pg in §5.4.8.2 ‘BLS12-381" on p.72 found by magrady.
- Clarify the type of v**" in §4.6.2 ‘Sending Notes (Sapling)’ on p. 34.

2019.0.7 2019-09-24

- Fix a discrepancy in the number of constraints for BLAKE2s found by QED-it.

- Fix an error in the expression for A in § A.3.3.9 ‘Pedersen hash’ on p.145, and add acknowledgement to Kobi
Gurkan.

- Fix a typo in §4.8 ‘Merkle Path Validity’ on p.36 and add acknowledgement to Weikeng Chen.
- Update references to ZIPs and to the Electric Coin Company blog.

- Makefile improvements to suppress unneeded output.

2019.0.6 2019-08-23

- No changes to Sprout or Sapling.

2019.0.5 2019-08-23

°Y into input elements in § A4 ‘The Sapling Spend circuit’ on p.152.

- Correct the packing of n
- Add an epigraph from [Carroll1876] to the start of §5.4.8.3 ‘Jubjub’ on p. 73.
- Clarify how the constant ¢ in §5.4.1.7 ‘Pedersen Hash Function’ on p.59 is obtained.

- Add a footnote that zcashd uses [ZIP-32] extended spending keys instead of the derivation from sk in §3.1
‘Payment Addresses and Keys’ on p.12.

- Remove “optimized” Makefile targets (which actually produced a larger PDF, with TeXLive 2019).
- Remove “html” Makefile targets.

- Make the Blossom spec the default.

109


https://zips.z.cash/protocol/sapling.pdf#2020.1.1
https://zips.z.cash/protocol/sapling.pdf#2020.1.0
https://zips.z.cash/protocol/sapling.pdf#2019.0.9
https://zips.z.cash/protocol/sapling.pdf#2019.0.8
https://zips.z.cash/protocol/sapling.pdf#2019.0.7
https://zips.z.cash/protocol/sapling.pdf#2019.0.6
https://zips.z.cash/protocol/sapling.pdf#2019.0.5

2019.0.4 2019-07-23

- Clicking on a section heading now shows section labels.

. Add a List of Theorems and Lemmata.

- Changes needed to support TeXLive 2019.

2019.0.3 2019-07-08

- Experimental support for building using LuaTEX and XeTEX.
- Add an Index.

2019.0.2 2019-06-18

- Correct a misstatement in the security argument in §4.12 ‘Balance and Binding Signature (Sapling)’ on
p.39: binding for a commitment scheme does not imply that the commitment determines its randomness.
The rest of the security argument did not depend on this; it is simpler to rely on knowledge soundness of the
Spend and Output proofs.

- Give a definition for complete twisted Edwards elliptic curves in §5.4.8.3 ‘Jubjub’ on p.73.

- Clarify that Theorem 5.4.2 on p. 69 depends on the parameters of the Jubjub curve.
- Ensure that this document builds correctly and without missing characters on recent versions of TgXLive.
- Update the Makefile to use Ghostscript for PDF optimization.

- Ensure that hyperlinks are preserved, and available as “Destination names” in URL fragments and links from
other PDF documents.

2019.0.1 2019-05-20

- No changes to Sprout or Sapling.

2019.0.0 2019-05-01

- Fix a specification error in the Founders’ Reward calculation during the slow start period.

- Correct an inconsistency in difficulty adjustment between the spec and zcashd implementation for the first
PoWAveragingWindow — 1 blocks of the block chain. This inconsistency was pointed out by NCC Group in
their Blossom specification audit.

2019.0-beta-39 2019-04-18

- Change author affiliations from “Zerocoin Electric Coin Company” to “Electric Coin Company”.

- Add acknowledgement to Mary Maller for the observation that diversified payment address unlinkability can
be proven in the same way as key privacy for ElGamal.

2019.0-beta-38 2019-04-18

- Correct the generators Ps and Pg, for BLS12-381.
- Update README. rst to include Makefile targets for Blossom.

- Makefile updates:
- Fix a typo for the pvcblossom target.
- Update the pinned git hashes for sam2p and pdfsizeopt.

110


https://zips.z.cash/protocol/sapling.pdf#2019.0.4
https://zips.z.cash/protocol/sapling.pdf#2019.0.3
https://zips.z.cash/protocol/sapling.pdf#2019.0.2
https://zips.z.cash/protocol/sapling.pdf#2019.0.1
https://zips.z.cash/protocol/sapling.pdf#2019.0.0
https://zips.z.cash/protocol/sapling.pdf#2019.0-beta-39
https://zips.z.cash/protocol/sapling.pdf#2019.0-beta-38

2019.0-beta-37 2019-02-22

. The rule that miners SHOULD NOT mine blocks that chain to other blocks with a block version number
greater than 4, has been removed. This is because such blocks (mined nonconformantly) exist in the current
Mainnet consensus block chain.

- Clarify that Equihash is based on a variation of the Generalized Birthday Problem, and cite [AR2017].

- Update reference [BGG2017] (previously [BGG2016)).

- Clarify which transaction fields are added by Overwinter and Sapling.

- Correct the rule about when a transaction is permitted to have no transparent inputs.

- Explain the differences between the system in [Groth2016] and what we refer to as Groth16.

- Reference Mary Maller’s security proof for Groth16 [Maller2018].

- Correct [BGM2018] to [BGM2017].

- Fix a typo in § B.2 ‘Groth16 batch verification’ on p.156 and clarify the costs of Groth16 batch verification.

- Add macros and Makefile support for building the Blossom specification.

2019.0-beta-36 2019-02-09

- Correct isis agora lovecruft's name.

2019.0-beta-35 2019-02-08

- Cite [Gabizon2019] and acknowledge Ariel Gabizon.

- Correct [SBB2019] to [SWB2019].

- The [Gabizon2019] vulnerability affected Soundness of BCTV14 as well as Knowledge Soundness.
- Clarify the history of the [Parno2015] vulnerability and acknowledge Bryan Parno.

- Specify the difficulty adjustment change that occurred on Testnet at block height 299188.

- Add Eirik Ogilvie-Wigley and Benjamin Winston to acknowledgements.

- Rename zk-SNARK Parameters sections to be named according to the proving system (BCTV14 or Groth16),
not the shielded protocol construction (Sprout or Sapling).

- In §6 ‘Network Upgrades’ on p. 84, say when Sapling activated.

2019.0-beta-34 2019-02-05

- Disclose a security vulnerability in BCTV14 that affected Sprout before activation of the Sapling network
upgrade (see §5.4.9.1 ‘BCTV14’ on p.76).

- Rename PHGRI13 to BCTV2014.
- Rename reference [BCTV2015] to [BCTV2014a], and [BCTV2014] to [BCTV2014b].

2018.0-beta-33 2018-11-14

- Complete § A.4 The Sapling Spend circuit’ on p.152.
- Add § A.5 The Sapling Output circuit’ on p.154.

- Change the description of window lookup in § A.3.3.7 Fixed-base Affine-ctEdwards scalar multiplication’
on p. 143 to match sapling-crypto.

- Describe 2-bit window lookup with conditional negation in § A.3.3.9 ‘Pedersen hash’ on p.145.
- Fix or complete various calculations of constraint costs.

- Adjust the notation used for scalar multiplication in Appendix A to allow bit sequences as scalars.

111


https://zips.z.cash/protocol/sapling.pdf#2019.0-beta-37
https://zips.z.cash/protocol/sapling.pdf#2019.0-beta-36
https://zips.z.cash/protocol/sapling.pdf#2019.0-beta-35
https://zips.z.cash/protocol/sapling.pdf#2019.0-beta-34
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-33

2018.0-beta-32 2018-10-24

- Correct the input to H® used to derive the nonce r in RedDSA.Sign, from T'|| M to T || vk || M. This matches
the sapling-crypto implementation; the specification of this input was unintentionally changed in version
2018.0-beta-20.

- Clarify the description of the Merkle path check in § A.3.4 ‘Merkle path check’ on p.148.

2018.0-beta-31 2018-09-30

- Correct some uses of rj that should have been rg or g.

- Correct uses of LEOS2IP, in RedDSA .Validate and RedDSA.BatchValidate to ensure that ¢ is a multiple of 8 as
required.

- Minor changes to avoid clashing notation for Edwards curves Egqgyards(a,a). Montgomery curves Eyony(a, ),
and extractors € 4.

- Correct a use of J that should have been M in the proof of Theorem A.3.4 on p. 141, and make a minor tweak to
the theorem statement (k, # +k, instead of k; # +k,) to make the contradiction derived by the proof clearer.

- Clarify notation in the proof of Theorem A.3.3 on p. 141.

- Address some of the findings of the QED-it report:
- Improved cross-referencing in § 5.4.1.7 ‘Pedersen Hash Function’ on p.59.

- Clarify the notes concerning domain separation of prefixes in §5.4.1.3 ‘MerkleCRH>**""¢ Hash Function’
on p.56 and §5.4.7.2 ‘Windowed Pedersen commitments’ on p.69.

- Correct the statement and proof of Theorem A.3.2 on p. 141.

- Add the QED-it report to the acknowledgements.

2018.0-beta-30 2018-09-02

- Give an informal security argument for Unlinkability of diversified payment addresses based on reduction
to key privacy of ElGamal encryption, for which a security proof'is given in [BBDP2001]. (This argument has
gaps which will be addressed in a future version.)

- Add a reference to [BGM2017] for the Sapling zk-SNARK parameters.
- Write § A4 The Sapling Spend circuit’ on p.152 (draft).

- Add a reference to the ristretto_bulletproofs design notes [Dalek-notes] for the synthetic blinding factor
technique.

- Ensure that the constraint costs in § A.3.3.1 ‘Checking that Affine-ctEdwards coordinates are on the curve’
on p.140 and § A.3.3.6 ‘Affine-ctEdwards nonsmall-order check’ on p.143 accurately reflect the implementa-
tion in sapling-crypto.

- Minor correction to the non-normative note in § A.3.2.2 ‘Range check’ on p.138.

- Clarify non-normative note in §4.1.7 ‘Commitment’ on p. 24 about the definitions of ValueCommit>*"& Qutput
and NoteCommit>*"""& Output.
- Clarify that the signer of a spend authorization signature is supposed to choose the spend authorization

randomizer, o, itself. Only step 4 in §4.13 ‘Spend Authorization Signature (Sapling)’ on p.41 may securely
be delegated.

- Add a non-normative note to §5.4.6 ‘RedDSA and RedJubjub’ on p. 65 explaining that RedDSA key random-
ization may interact with other uses of additive properties of Schnorr keys.

- Add dates to Change History entries. (These are the dates of the git tags in local, i.e. UK, time.)

112


https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-32
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-31
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-30

2018.0-beta-29 2018-08-15

- Finish §A.3.2.2 ‘Range check’ on p.138.

- Change § A.3.7 ‘BLAKEZ2s hashes’ on p.149 to correct the constraint count and to describe batched equality
checks performed by the sapling-crypto implementation.

2018.0-beta-28 2018-08-14

- Finish § A.3.7 ‘BLAKEZ2s hashes’ on p.149.

- Minor corrections to § A.3.3.8 ‘Variable-base Affine-ctEdwards scalar multiplication’ on p.144.

2018.0-beta-27 2018-08-12

- Notational changes:

Use a superscript ™) t6 mark the subgroup order, instead of a subscript.

- Use G"* for the set of rg-order points in G.

Mark the subgroup order in pairing groups, e.g. use (Gr({) instead of G;.
Make the bit-representation indicator x an affix instead of a superscript.

- Clarify that when validating a Groth16 proof, it is necessary to perform a subgroup check for 7,4 and 7 as well
as for mp.

- Correct the description of Groth16 batch verification to explicitly take account of how verification depends on
primary inputs.

- Add Charles Rackoff, Rafail Ostrovsky, and Amit Sahai to the acknowledgements section for their work on
zero-knowledge proofs.

2018.0-beta-26 2018-08-05

- Add §B.2 ‘Groth16 batch verification’ on p.156.

2018.0-beta-25 2018-08-05

- Add the hashes of parameter files for Sapling.
- Add cross references for parameters and functions used in RedDSA batch validation.

- Makefile changes: name the PDF file for the Sprout version of the specification as sprout.pdf, and make
protocol.pdf link to the Sapling version.

2018.0-beta-24 2018-07-31

- Add a missing consensus rule for version 4 transactions: if there are no Sapling Spends or Outputs, then
valueBalanceSapling MUST be 0.

2018.0-beta-23 2018-07-27

- Update RedDSA validation to use cofactor multiplication. This is necessary in order for the output of batch
validation to match that of unbatched validation in all cases.

- Add §B.1 ‘RedDSA batch validation’ on p.155.

113


https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-29
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-28
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-27
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-26
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-25
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-24
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-23

2018.0-beta-22 2018-07-18

- Update § 6 ‘Network Upgrades’ on p. 84 to take account that Overwinter has activated.

- The recommendation for transactions without joinSplit descriptions to be version 1 applies only before
Overwinter, not before Sapling.

- Complete the proof of Theorem A.3.5 on p. 146.
- Add a note about redundancy in the nonsmall-order checking of rk.

€

- Clarify the use of cv™" and cm"™", and the selection of outgoing viewing key, in sending Sapling notes.

- Delete the description of optimizations for the affine twisted Edwards nonsmall-order check, since the
Sapling circuit does not use them. Also clarify that some other optimizations are not used.

2018.0-beta-21 2018-06-22
- Remove the consensus rule “If nJoinSplit > 0, the transaction MUST NOT use SIGHASH types other than
SIGHASH_ALL’, which was never implemented.
- Add section on signature hashing.
- Briefly describe the changes to computation of SIGHASH transaction hashes in Sprout.
- Clarify that interstitial treestates form a tree for each transaction containing JoinSplit descriptions.

- Correct the description of P2PKH addresses in §5.6.1.1 “Transparent Addresses’ on p.79 — they use a hash of
a compressed, not an uncompressed ECDSA key representation.

- Clarify the wording of the caveat® about the claimed security of shielded transactions.
- Correct the definition of set difference (S \ 7).

- Add a note concerning malleability of zk-SNARK proofs.

- Clarify attribution of the Zcash protocol design.

- Acknowledge Alex Biryukov and Dmitry Khovratovich as the designers of Equihash.

- Acknowledge Shafi Goldwasser, Silvio Micali, Oded Goldreich, Rosario Gennaro, Bryan Parno, Jon Howell,
Craig Gentry, Mariana Raykova, and Jens Groth for their work on zero-knowledge proving systems.

- Acknowledge Tomas Sander and Amnon Ta-Shma for [ST1999].
- Acknowledge Kudelski Security’s audit.

- Use the more precise subgroup types G" and J in preference to G and J where applicable.

- Change the types of auxiliary inputs to the Spend statement and Output statement, to be more faithful to the
implementation.

- Rename the cm field of an Output description to cmu, reflecting the fact that it is a Jubjub curve u-coordinate.

- Add explicit consensus rules that the anchorSapling field of a Spend description and the cmu field of an
Output description must be canonical encodings.

- Enforce that esk in outCiphertext is a canonical encoding.

- Add consensus rules that cv in a Spend description, and cv and epk in an Output description, are not of small
order. Exclude 0 from the range of esk when encrypting Sapling notes.

- Add a consensus rule that valueBalanceSapling is in the range { —MAX_MONEY .. MAX_MONEY}.
- Enforce stronger constraints on the types of key components pky, ak, and nk.

. Correct the conformance rule for fOverwintered (it must not be set before Overwinter has activated, not
before Sapling has activated).

- Correct the argument that v* is in range in §4.12 ‘Balance and Binding Signature (Sapling)’ on p. 39.

114


https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-22
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-21

- Correct an error in the algorithm for RedDSA .Validate: the validating key vk is given directly to this algorithm
and should not be computed from the unknown signing key sk.
R 8 .
- Correct or improve the types of GroupHash” ~, FindGroupHash’ Extract ), PRFeP | pREOKS2PINE 41
CRH™.
. Instantiate PRF°“5?P"¢ ysing BLAKE2b-256.

- Change the syntax of a commitment scheme to add COMM.GenTrapdoor. This is necessary because the
intended distribution of commitment trapdoors may not be uniform on all values that are acceptable trapdoor
inputs.

- Add notes on the purpose of outgoing viewing keys.

- Correct the encoding of a full viewing key (ovk was missing).

- Ensure that Sprout functions and values are given Sprout-specific types where appropriate.
- Improve cross-referencing.

- Clarify the use of BCTV14 vs Groth16 proofs in JoinSplit statements.

- Clarify that the ¥/a' notation refers to the positive square root. (This matters for the conversion in § A.3.3.3
‘ctEdwards +» Montgomery conversion’ on p.140.)

- Model the group hash as a random oracle. This appears to be unavoidable in order to allow proving unlink-
ability of DiversifyHash>**"& Explain how this relates to the Discrete Logarithm Independence assumption
used previously, and justify this modelling by showing that it follows from treating BLAKE2s-256 as a random

"=
oracle in the instantiation of GroupHash“]I .

- Rename CRS (Common Random String) to URS (Uniform Random String), to match the terminology adopted

at the first zkproof workshop held in Boston, Massachusetts on May 10-11, 2018.

- Generalize PRF¥P™" to accept an arbitrary-length input. (This specification does not use that generalization,
but [ZIP-32] does.)

- Change the notation for a multiplication constraint in Appendix § A ‘Circuit Design’ on p.135 to avoid potential
confusion with cartesian product.

- Clarify the wording of the abstract.
- Correct statements about which algorithms are instantiated by BLAKE2s and BLAKE2b.
- Add a note explaining which conformance requirements of BIP 173 (defining Bech32) apply.

- Add the Jubjub bird image to the title page. This image has been edited from a scan of Peter Newell's original
illustration (as it appeared in [Carroll1902]) to remove the background and Bandersnatch, and to restore the
bird’s clipped right wing.

- Change the light yellow background to white (indicating that this Overwinter and Sapling specification is no
longer a draft).

2018.0-beta-20 2018-05-22

- Add Michael Dixon and Andrew Poelstra to acknowledgements.

- Minor improvements to cross-references.

- Correct the order of arguments to RedDSA.RandomizePrivate and RedDSA.RandomizePublic.

- Correct a reference to RedDSA.RandomizePrivate that was intended to be RedDSA.RandomizePublic.

- Fix the description of the Sapling balancing value in §4.12 ‘Balance and Binding Signature (Sapling)’ on
p-39.

- Correct a type error in §5.4.8.5 ‘Group Hash into Jubjub’ on p.75.
- Correct a type error in RedDSA.Sign in §5.4.6 ‘RedDSA and RedJubjub’ on p. 65.

115


https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-20

. Ensure G°**'""8is defined in §5.4.6.1 ‘Spend Authorization Signature (Sapling)’ on p. 68.

- Make the validating key prefix part of the input to the hash function in RedDSA, not part of the message.

)

()=
. Correct the statement about FindGroupHash! = never returning 1.

- Correct an error in the computation of generators for Pedersen hashes.

- Change the order in which NoteCommit>2P'"e

tion.

commits to its inputs, to match the sapling-crypto implementa-

- Fail Sapling key generation if ivk = 0. (This has negligible probability.)

. Change the notation H* to H® in §5.4.6 ‘RedDSA and RedJubjub’ on p. 65, to avoid confusion with the * con-
vention for representations of group elements.

- cmu encodes only the u-coordinate of the note commitment, not the full curve point.
- rk is checked to be not of small order outside the Spend statement, not in the Spend statement.

- Change terminology describing constraint systems.

2018.0-beta-19 2018-04-23

- Minor clarifications.

2018.0-beta-18 2018-04-23

- Clarify the security argument for balance in Sapling.

. Correct a subtle problem with the type of the value input to ValueCommit>*"""&: although it is only directly

used to commit to values in {0 .. 2%—1}, the security argument depends on a sum of commitments being
rp—1  ryj—1 }
5 o |-

binding on {—
- Fix the loss of tightness in the use of PRF"™?"'"8 Ly specifying the keyspace more precisely.
- Correct type ambiguities for p.

- Specify the representation of 7 in group G, of BL512-381.

2018.0-beta-17 2018-04-21

. Correct an error in the definition of DefaultDiversifier.

2018.0-beta-16 2018-04-21

- Explicitly note that outputs from coinbase transactions include Founders’Reward outputs.

- The point represented by R in an Ed25519 signature is checked to not be of small order; this is not the same
as checking that it is of prime order .

- Specify support for [BIP-111] (the NODE_BLOOM service bit) in peer-to-peer network protocol version 170004.

- Give references [Vercauter2009] and [AKLGL2010] for the optimal ate pairing.

- Give references for BLS [BLS2002] and BN [BN2005] curves.

. Define KASP™"* DerivePublic for Curve25519.

- Caveat the claim about note traceability set in §1.2 ‘High-level Overview’ on p. 8 and link to [Peterson2017]
and [Quesnelle2017].

- Do not require a generator as part of the specification of a represented group; instead, define it in the
represented pairing or scheme using the group.

- Refactor the abstract definition of a signature scheme to allow derivation of validating keys independent of
key pair generation.

116


https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-19
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-18
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-17
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-16

- Correct the explanation in §1.2 ‘High-level Overview’ on p. 8 to apply to Sapling.

- Add the definition of a signing key to validating key homomorphism for signature schemes.
. Remove the output index as an input to KDF>?P'"&

- Allow dummy Sapling input notes.

- Specify RedDSA and RedJubjub.

- Specify Sapling binding signatures and spend authorization signatures.

- Specify the randomness beacon.

- Add outgoing ciphertexts and ock.

- Define DefaultDiversifier.

- Change the Spend circuit and Output circuit specifications to remove unintended differences from sapling-
crypto.

- Use hj to refer to the Jubjub curve cofactor, rather than 8.

- Correct an error in the y-coordinate formula for addition in § A.3.3.4 ‘Affine-Montgomery arithmetic’ on
p. 141 (the constraints were correct).

- Add acknowledgements for Brian Warner, Mary Maller, and the Least Authority audit.

- Makefile improvements.

2018.0-beta-15 2018-03-19

- Clarify the bit ordering of SHA-256.

- Drop _t from the names of representation types.

- Remove functions from the Sprout specification that it does not use.

- Updates to transaction format and consensus rules for Overwinter and Sapling.
- Add specification of the Output statement.

. Change MerkleDepth®>*"™™ from 29 to 32.

- Updates to Sapling construction, changing how the nullifier is computed and separating it from the random-
ized Spend validating key (rk).

- Clarify conversions between bit and byte sequences for sk, repr;(ak) and repr;(nk)
- Change the Makefile to avoid multiple reloads in PDF readers while rebuilding the PDF.

- Spacing and pagination improvements.
2018.0-beta-14 2018-03-11

- Only cosmetic changes to Sprout.

)=
- Simplify FindGroupHash? ~ to use a single-byte index.
- Changes to diversification for Pedersen hashes and Pedersen commitments.

- Improve security definitions for signatures.

117


https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-15
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-14

2018.0-beta-13 2018-03-11

- Only cosmetic changes to Sprout.
- Change how (ask, nsk) are derived from the spending key sk to ensure they are on the full range of F, .

- Change PRF"" to produce output computationally indistinguishable from uniform on F, .

- Change Uncommitted®*™"™ to be a u-coordinate for which there is no point on the curve.

- Appendix A updates:
- categorize components into larger sections
- fill in the [de]Jcompression and validation algorithm
- more precisely state the assumptions for inputs and outputs
- delete not-all-one component which is no longer needed
- factor out xor into its own component
- specify [un]packing more precisely; separate it from boolean constraints
- optimize checking for non-small order

- notation in variable-base multiplication algorithm.

2018.0-beta-12 2018-03-06

- Add references to Overwinter ZIPs and update the section on Overwinter/Sapling transitions.
- Add a section on re-randomizable signatures.

- Add definition of PRF™.

- Work-in-progress on Sapling statements.

- Rename “raw” to "homomorphic” Pedersen commitments.

- Add packing modulo the field size and range checks to Appendix A.

- Update the algorithm for variable-base scalar multiplication to what is implemented by sapling-crypto.

2018.0-beta-11 2018-02-26

- Add sections on Spend descriptions and Output descriptions.
- Swap order of cv and rt in a Spend description for consistency.

- Fix off-by-one error in the range of ivk.

2018.0-beta-10 2018-02-26
- Split the descriptions of SHA-256 and SHA256Compress, and of BLAKE2, into their own sections. Specify
SHA256Compress more precisely.

- Add Tracy Hu to acknowledgements (for the idea of explicitly encoding the root of the Sapling note commit-
ment tree in block headers).

- Move bit/byte/integer conversion primitives into § 5.2 ‘Integers, Bit Sequences, and Endianness’ on p.53.

- Refer to Overwinter and Sapling just as “upgrades” in the abstract, not as the next “minor version” and “major
version”.

- PRF" must be collision-resistant.
- Correct an error in the Pedersen hash specification.

- Use a named variable, ¢, for chunks per segment in the Pedersen hash specification, and change its value from
61 to 63. Add a proof justifying this value of c.

118


https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-13
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-12
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-11
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-10

- Specify Pedersen commitments.
- Notation changes.

- Generalize the distinct-x criterion (Theorem A.3.4 on p.141) to allow negative indices.

2018.0-beta-9 2018-02-10
- Specify the coinbase maturity rule, and the rule that coinbase transactions cannot contain joinSplit descrip-
tions, Spend descriptions, or Output descriptions.
- Delay lifting the 100000-byte transaction size limit from Overwinter to Sapling.

- Improve presentation of the proof of injectivity for Extract .

@
. Specify GroupHash’ .
- Specify Pedersen hashes.

2018.0-beta-8 2018-02-08

. Add instantiation of CRH™.
- Add instantiation of a hash extractor (later renamed to coordinate extractor) for Jubjub.

- Make the background lighter and the Sapling green darker, for contrast.

2018.0-beta-7 2018-02-07

- Specify the 100000-byte limit on transaction size. (The implementation in zcashd was as intended.)
- Specify that 0xF6 followed by 511 zero bytes encodes an empty memo field.
- Reference security definitions for Pseudo Random Functions and Pseudo Random Generators.

- Rename clamp to bound and ActualTimespanClamped to ActualTimespanBounded in the difficulty adjustment
algorithm, to avoid a name collision with Curve25519 scalar “clamping”

- Change uses of the term full node to full validator. A full node by definition participates in the peer-to-peer
network, whereas a full validator just needs a copy of the block chain from somewhere. The latter is what
was meant.

- Add an explanation of how Sapling prevents Faerie Gold and roadblock attacks.

- Sapling work in progress.
2018.0-beta-6 2018-01-31
- Sapling work in progress, mainly on Appendix § A ‘Circuit Design’ on p.135.

2018.0-beta-5 2018-01-30

- Specify more precisely the requirements on Ed25519 validating keys and signatures.

- Sapling work in progress.

2018.0-beta-4 2018-01-25

- Update key components diagram for Sapling.

119


https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-9
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-8
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-7
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-6
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-5
https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-4

2018.0-beta-3 2018-01-22

- Explain how the chosen fix to Faerie Gold avoids a potential “roadblock” attack.
- Update some explanations of changes from Zerocash for Sapling.

- Add a description of the Jubjub curve.

- Add an acknowledgement to George Tankersley.

- Add an appendix on the design of the Sapling circuits at the quadratic constraint program level.

2017.0-beta-2.9 2017-12-17

- Refer to sk, as a receiving key rather than as a viewing key.
- Updates for incoming viewing key support.

- Refer to Network Upgrade O as Overwinter.

2017.0-beta-2.8 2017-12-02

- Correct the non-normative note describing how to check the order of 7p.

- Initial version of draft Sapling protocol specification.

2017.0-beta-2.7 2017-07-10
- Fix an off-by-one error in the specification of the Equihash algorithm binding condition. (The implementation
in zcashd was as intended.)

- Correct the types and consensus rules for transaction version numbers and block version numbers. (Again,
the implementation in zcashd was as intended.)

- Clarify the computation of h; in a JoinSplit statement.

2017.0-beta-2.6 2017-05-09

- Be more precise when talking about curve points and pairing groups.

2017.0-beta-2.5 2017-03-07

- Clarify the consensus rule preventing double-spends.

- Clarify what a note commitment opens to in § 8.8 ‘Omission in Zerocash security proof on p.102.
- Correct the order of arguments to COMM in §5.4.7.1 ‘Sprout Note Commitments’ on p. 68.

- Correct a statement about indistinguishability of JoinSplit descriptions.

- Change the Founders’ Reward addresses, for Testnet only, to reflect the hard-fork upgrade described in
[Zcash-Issue2113].

2017.0-beta-2.4 2017-02-25

- Explain a variation on the Faerie Gold attack and why it is prevented.
- Generalize the description of the InternalH attack to include finding collisions on (a, p) rather than just on p.

- Rename enforce; to enforceMerklePath,.

120


https://zips.z.cash/protocol/sapling.pdf#2018.0-beta-3
https://zips.z.cash/protocol/sapling.pdf#2017.0-beta-2.9
https://zips.z.cash/protocol/sapling.pdf#2017.0-beta-2.8
https://zips.z.cash/protocol/sapling.pdf#2017.0-beta-2.7
https://zips.z.cash/protocol/sapling.pdf#2017.0-beta-2.6
https://zips.z.cash/protocol/sapling.pdf#2017.0-beta-2.5
https://zips.z.cash/protocol/sapling.pdf#2017.0-beta-2.4

2017.0-beta-2.3 2017-02-12

- Specify the security requirements on the SHA256Compress function in order for the scheme in §5.4.7.1
‘Sprout Note Commitments’ on p.68 to be a secure commitment.

- Specify G, more precisely.

- Explain the use of interstitial treestates in chained JoinSplit transfers.

2017.0-beta-2.2 2017-02-11

- Give definitions of computational binding and computational hiding for commitment schemes.
- Give a definition of statistical zero knowledge.

- Reference the white paper on MPC parameter generation [BGG2017].
2017.0-beta-2.1 2017-02-06

- Lyervie 18 @ bit length, not a byte length.

- Specify the maximum block size.
2017.0-beta-2 2017-02-04

- Add abstract and keywords.
- Fix a typo in the definition of nullifier integrity.

- Make the description of block chains more consistent with upstream Bitcoin documentation (referring to
“best” chains rather than using the concept of a block chain view).

. Define how nodes select a best valid block chain.
2016.0-beta-1.13 2017-01-20

- Specify the difficulty adjustment algorithm.
- Clarify some definitions of fields in a block header.

- Define PRF**" in §4.2.1 Sprout Key Components’ on p. 29.

2016.0-beta-1.12 2017-01-09

- Update the hashes of proving and verifying keys for the final Sprout parameters.

- Add cross references from shielded payment address and spending key encoding sections to where the key
components are specified.

- Add acknowledgements for Filippo Valsorda and Zaki Manian.

2016.0-beta-1.11 2016-12-19

- Specify a check on the order of 7y in a zk-SNARK proof.
- Note that due to an oversight, the Zcash genesis block does not follow [BIP-34].

2016.0-beta-1.10 2016-10-30

- Update reference to the Equihash paper [BK2016]. (The newer version has no algorithmic changes, but the
section discussing potential ASIC implementations is substantially expanded.)

- Clarify the discussion of proof size in “Differences from the Zerocash paper”.

121


https://zips.z.cash/protocol/sapling.pdf#2017.0-beta-2.3
https://zips.z.cash/protocol/sapling.pdf#2017.0-beta-2.2
https://zips.z.cash/protocol/sapling.pdf#2017.0-beta-2.1
https://zips.z.cash/protocol/sapling.pdf#2017.0-beta-2
https://zips.z.cash/protocol/sapling.pdf#2016.0-beta-1.13
https://zips.z.cash/protocol/sapling.pdf#2016.0-beta-1.12
https://zips.z.cash/protocol/sapling.pdf#2016.0-beta-1.11
https://zips.z.cash/protocol/sapling.pdf#2016.0-beta-1.10

2016.0-beta-1.9 2016-10-28

. Add Founders’ Reward addresses for Mainnet.

- Change “protected” terminology to “shielded”.

2016.0-beta-1.8 2016-10-04
- Revise the lead bytes for transparent P2SH and P2PKH addresses, and reencode the Testnet Founders’ Reward
addresses.
- Add a section on which BIPs apply to Zcash.
- Specify that OP_CODESEPARATOR has been disabled, and no longer affects SIGHASH transaction hashes.

- Change the representation type of vpub_old and vpub_new to uint64. (This is not a consensus change be-
cause the type of v3, and vieh was already specified to be {0.. MAX_MONEY}; it just better reflects the
implementation.)

- Correct the representation type of the block nVersion field to uint32.

2016.0-beta-1.7 2016-10-02

- Clarify the consensus rule for payment of the Founders’ Reward, in response to an issue raised by the NCC
audit.

2016.0-beta-1.6 2016-09-26

- Fix an error in the definition of the sortedness condition for Equihash: it is the sequences of indices that are
sorted, not the sequences of hashes.

- Correct the number of bytes in the encoding of solutionSize.

- Update the section on encoding of transparent addresses. (The precise prefixes are not decided yet.)
- Clarify why BLAKE2b-/ is different from truncated BLAKE2b-512.

- Clarify a note about SU-CMA security for signatures.

. Add a note about PRF"*P"* corresponding to PRF™" in Zerocash.

- Add a paragraph about key length in § 8.7 ‘In-band secret distribution’ on p.101.

- Add acknowledgements for John Tromp, Paige Peterson, Maureen Walsh, Jay Graber, and Jack Gavigan.

2016.0-beta-1.5 2016-09-22

- Update the Founders’Reward address list.

- Add some clarifications based on Eli Ben-Sasson’s review.
2016.0-beta-1.4 2016-09-19

- Specify the block subsidy, miner subsidy, and the Founders’ Reward.

- Specify coinbase transaction outputs to Founders’ Reward addresses.

- Improve notation (for example “-” for multiplication and 7" for sequence types) to avoid ambiguity.

122


https://zips.z.cash/protocol/sapling.pdf#2016.0-beta-1.9
https://zips.z.cash/protocol/sapling.pdf#2016.0-beta-1.8
https://zips.z.cash/protocol/sapling.pdf#2016.0-beta-1.7
https://zips.z.cash/protocol/sapling.pdf#2016.0-beta-1.6
https://zips.z.cash/protocol/sapling.pdf#2016.0-beta-1.5
https://zips.z.cash/protocol/sapling.pdf#2016.0-beta-1.4

2016.0-beta-1.3 2016-09-16

- Correct the omission of solutionSize from the block header format.
- Document that compactSize encodings must be canonical.
- Add a note about conformance language in the introduction.

- Add acknowledgements for Solar Designer, Ling Ren and Alison Stevenson, and for the NCC Group and
Coinspect security audits.

2016.0-beta-1.2 2016-09-11

- Remove GeneralCRH in favour of specifying hSigCRH and EquihashGen directly in terms of BLAKE2b-/.

- Correct the security requirement for EquihashGen.

2016.0-beta-1.1 2016-09-05

- Add a specification of abstract signatures.
- Clarify what is signed in the “Sending Notes” section.

- Specify ZK parameter generation as a randomized algorithm, rather than as a distribution of parameters.

2016.0-beta-1 2016-09-04

- Major reorganization to separate the abstract cryptographic protocol from the algorithm instantiations.
- Add type declarations.
- Add a “High-level Overview” section.

- Add a section specifying the zero-knowledge proving system and the encoding of proofs. Change the encoding
of points in proofs to follow IEEE Std 1363|al.

- Add a section on consensus changes from Bitcoin, and the specification of Equihash.

- Complete the “Differences from the Zerocash paper” section.

- Correct the Merkle tree depth to 29.

- Change the length of memo fields to 512 bytes.

- Switch the JoinSplit signature scheme to Ed25519, with consequent changes to the computation of hg.

- Fix the lead bytes in shielded payment address and spending key encodings to match the implemented
protocol.

- Add a consensus rule about the ranges of vg'fb and vpip.
- Clarify cryptographic security requirements and added definitions relating to the in-band secret distribution.

- Add various citations: the “Fixing Vulnerabilities in the Zcash Protocol” and “Why Equihash?” blog posts,
several crypto papers for security definitions, the Bitcoin whitepaper, the CryptoNote whitepaper, and several
references to Bitcoin documentation.

- Reference the extended version of the Zerocash paper rather than the Oakland proceedings version.
- Add JoinSplit transfers to the Concepts section.
- Add a section on Coinbase Transactions.

- Add acknowledgements for Jack Grigg, Simon Liu, Ariel Gabizon, j1777, Ben Blaxill, Alex Balducci, and Jake
Tarren.

- Fix a Makefile compatibility problem with the escaping behaviour of echo.

- Switch to biber for the bibliography generation, and add backreferences.

123


https://zips.z.cash/protocol/sapling.pdf#2016.0-beta-1.3
https://zips.z.cash/protocol/sapling.pdf#2016.0-beta-1.2
https://zips.z.cash/protocol/sapling.pdf#2016.0-beta-1.1
https://zips.z.cash/protocol/sapling.pdf#2016.0-beta-1

. Make the date format in references more consistent.

. Add visited dates to all URLs in references.

- Terminology changes.

2016.0-alpha-3.1 2016-05-20

- Change main font to Quattrocento.

2016.0-alpha-3 2016-05-09

- Change version numbering convention (no other changes).

2.0-alpha-3 2016-05-06

- Allow anchoring to any previous output treestate in the same transaction, rather than just the immediately
preceding output treestate.

- Add change history.

2.0-alpha-2 2016-04-21

- Change from truncated BLAKE2b-512 to BLAKE2b-256.
- Clarify endianness, and that uses of BLAKE2b are unkeyed.

- Minor correction to what SIGHASH types cover.

- Add “as intended for the Zcash release of summer 2016" to title page.

- Require PRF*" to be collision-resistant (see § 8.8 ‘Omission in Zerocash security proof on p.102).

- Add specification of path computation for the incremental Merkle tree.

- Add anote in §4.15.1 ‘JoinSplit Statement (Sprout)’ on p.43 about how this condition corresponds to condi-
tions in the Zerocash paper.

- Changes to terminology around keys.

2.0-alpha-1 2016-03-30

- First version intended for public review.

11 References

[ABR1999]

[AGRRT2017]

[AKLGL2010]

Michel Abdalla, Mihir Bellare, and Phillip Rogaway. DHAES: An Encryption Scheme Based on the
Diffie-Hellman Problem. Cryptology ePrint Archive: Report 1999/007. Received March 17, 1999.
September 1998. URL: https://eprint.iacr.org/1999/007 (visited on 2016-08-21) (1 p21, 101,
102).

Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. MiMC:
Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity. Cryp-
tology ePrint Archive: Report 2016/492. Received May 21, 2016. January 5, 2017. URL: https :
//eprint.iacr.org/2016/492 (visited on 2018-01-12) (1 p151).

Diego Aranha, Koray Karabina, Patrick Longa, Catherine Gebotys, and Julio Lopez. Faster Explicit
Formulas for Computing Pairings over Ordinary Curves. Cryptology ePrint Archive: Report
2010/526. Last revised September 12, 2011. URL: https://eprint.iacr.org/2010/526 (visited
on 2018-04-03) ( p70, 116).

124


https://zips.z.cash/protocol/sapling.pdf#2016.0-alpha-3.1
https://zips.z.cash/protocol/sapling.pdf#2016.0-alpha-3
https://zips.z.cash/protocol/sapling.pdf#2.0-alpha-3
https://zips.z.cash/protocol/sapling.pdf#2.0-alpha-2
https://zips.z.cash/protocol/sapling.pdf#2.0-alpha-1
https://zips.z.cash/protocol/sapling.pdf#references
https://eprint.iacr.org/1999/007
https://eprint.iacr.org/2016/492
https://eprint.iacr.org/2016/492
https://eprint.iacr.org/2010/526

[ANWW2013]

[AR2017]

[BBDP2001]

[BBJLP2008]

[BCCGLRT2014]

[BCGGMTV2014]

[BCGTV2013]

[BCP1988]

[BCTV2014al

[BCTV2014a-old]

[BCTV2014b]

[BDEHR2011]

Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O'Hearn, and Christian Winnerlein.
BLAKEZ: simpler, smaller, fast as MD5. January 29, 2013. URL: https://blake2.net/#sp (visited
on 2016-08-14) ( p56, 149).

Leo Alcock and Ling Ren. “A Note on the Security of Equihash”. In: CCSW 17. Proceedings of the
2017 Cloud Computing Security Workshop (Dallas, TX, USA, November 3, 2017); post-workshop
of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM. URL:
https://sci-hub.t£/10.1145/3140649.3140652 (visited on 2021-04-05) (1 p92, 111).

Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-Privacy in Public-
Key Encryption. September 2001. URL: https://cseweb.ucsd.edu/~mihir/papers/anonenc.
html (visited on 2016-08-14). Full version. (1 p21, 58, 101, 112).

Daniel Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters. Twisted Edwards
Curves. Cryptology ePrint Archive: Report 2008/013. Received January 8, 2008. March 13, 2008.
URL: https://eprint.iacr.org/2008/013 (visited on 2018-01-12) (1 p141, 142).

Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein, and
Eran Tromer. The Hunting of the SNARK. Cryptology ePrint Archive: Report 2014/580. Received
July 24, 2014. URL: https://eprint.iacr.org/2014/580 (visited on 2020-08-01) (t p27, 107).

Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized Anonymous Payments from Bitcoin (extended ver-
sion). Cryptology ePrint Archive: Report 2014/349. Received May 19, 2014. URL: https://eprint.
iacr.org/2014/349 (visited on 2021-04-05). A condensed version appeared in Proceedings of
the IEEE Symposium on Security and Privacy (Oakland) 2014, pages 459-474; IEEE, 2014. (1 p7, 8,

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs
for C: Verifying Program Executions Succinctly and in Zero Knowledge. Cryptology ePrint
Archive: Report 2013/507. Last revised October 7, 2013. URL: https://eprint.iacr.org/2013/
507 (visited on 2016-08-31). An earlier version appeared in Proceedings of the 33rd Annual
International Cryptology Conference, CRYPTO 2013, pages 90-108; IACR, 2013. (1 p76).

Jurgen Bos, David Chaum, and George Purdy. “A Voting Scheme”. Unpublished. Presented at
the rump session of CRYPTO '88 (Santa Barbara, California, USA, August 21-25, 1988); does not
appear in the proceedings. (1 p59).

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct Non-Interac-
tive Zero Knowledge for a von Neumann Architecture. Cryptology ePrint Archive: Report
2013/879. Last revised February 5, 2019. URL: https://eprint.iacr.org/2013/879 (visited on
2019-02-08) (1 p76, 77, 111, 135).

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct Non-Interactive
Zero Knowledge for a von Neumann Architecture (May 19, 2015 version). Cryptology ePrint
Archive: Report 2013/879. Version: 20150519:172604. URL: https://eprint.iacr.org/2013/
879/20150519: 172604 (visited on 2019-02-08) (1 p76).

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. “Scalable Zero Knowledge
via Cycles of Elliptic Curves (extended version)”. In: Advances in Cryptology - CRYPTO 2014.
Vol. 8617. Lecture Notes in Computer Science. Springer, 2014, pages 276-294. URL: https://www.
cs.tau.ac.il/~tromer/papers/scalablezk-20140803.pdf (visited on 2016-09-01) (1 p28, E)

Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hulsing, and Markus Ruckert. On the
Security of the Winternitz One-Time Signature Scheme (full version). Cryptology ePrint Archive:
Report 2011/191. Received April 13, 2011. URL: https://eprint.iacr.org/2011/191 (visited on
2016-09-05) ( p22).

125


https://blake2.net/#sp
https://sci-hub.tf/10.1145/3140649.3140652
https://cseweb.ucsd.edu/~mihir/papers/anonenc.html
https://cseweb.ucsd.edu/~mihir/papers/anonenc.html
https://eprint.iacr.org/2008/013
https://eprint.iacr.org/2014/580
https://eprint.iacr.org/2014/349
https://eprint.iacr.org/2014/349
https://eprint.iacr.org/2013/507
https://eprint.iacr.org/2013/507
https://eprint.iacr.org/2013/879
https://eprint.iacr.org/2013/879/20150519:172604
https://eprint.iacr.org/2013/879/20150519:172604
https://www.cs.tau.ac.il/~tromer/papers/scalablezk-20140803.pdf
https://www.cs.tau.ac.il/~tromer/papers/scalablezk-20140803.pdf
https://eprint.iacr.org/2011/191

[BDJR2000]

[BDLSY2012]

[Bernstein2001]

[Bernstein2005]

[Bernstein2006]

[BFIJSV2010]

[BGG-mpc]

[BGG1995]

[BGG2017]

[BGM2017]

[BIP-11]

[BIP-13]

Mihir Bellare, Anand Desali, Eric Jokipii, and Phillip Rogaway. A Concrete Security Treatment
of Symmetric Encryption: Analysis of the DES Modes of Operation. September 2000. URL:
https://cseweb.ucsd. edu/~mihir/papers/sym-enc . html (visited on 2018-02-07). An
extended abstract appeared in Proceedings of the 38th Annual Symposium on Foundations
of Computer Science (Miami Beach, Florida, USA, October 20-22, 1997), pages 394-403; IEEE
Computer Society Press, 1997; ISBN 0-8186-8197-7. (1 p20).

Daniel Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. “High-speed high-
security signatures”. In: Journal of Cryptographic Engineering 2 (September 26, 2011), pages 77-
89. URL: https://cr.yp.to/papers.html#ed25519 (visited on 2021-04-05). Document ID:
ala62a2f76d23f65d622484ddd09caf8. (T p64, 65, 156).

Daniel Bernstein. Pippenger's exponentiation algorithm. December 18, 2001. URL: https://
cr.yp.to/papers.html#pippenger (visited on 2018-07-27). Draft. Error pointed out by Sam
Hocevar: the example in Figure 4 needs 2 and is thus of length 18. (1 p156, 157).

Daniel Bernstein. “Understanding brute force”. In: ECRYPT STVL Workshop on Symmetric Key
Encryption, eSTREAM report 2005/036. April 25, 2005. URL: https://cr.yp.to/papers.
html#bruteforce (visited on 2016-09-24). Document ID: 73e92f5b71793b498288efe81fe55dee.
(1t p102).

Daniel Bernstein. “Curve25519: new Diffie-Hellman speed records”. In: Public Key Cryptography
- PKC 2006. Proceedings of the 9th International Conference on Theory and Practice in Public-
Key Cryptography (New York, NY, USA, April 24-26, 2006). Springer-Verlag, February 9, 2006.
URL: https://cr.yp.to/papers.html#curve25519 (visited on 2021-04-05). Document ID:

Olivier Blazy, Georg Fuchsbauer, Malika Izabachéne, Amandine Jambert, Hervé Sibert, and
Damien Vergnaud. Batch Groth-Sahai. Cryptology ePrint Archive: Report 2010/040. Last revised
February 3, 2010. URL: https://eprint.iacr.org/2010/040 (visited on 2020-10-17) (1 p104,
106, 156).

Sean Bowe, Ariel Gabizon, and Matthew Green. GitHub repository ‘zcash/mpc’: zk-SNARK
parameter multi-party computation protocol. URL: https://github. com/zcash/mpc (visited
on 2017-01-06) (1 p83).

Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. “Incremental Cryptography: The Case
of Hashing and Signing”. In: Advances in Cryptology - CRYPTO '94. Proceedings of the 14th
Annual International Cryptology Conference (Santa Barbara, California, USA, August 21-25, 1994).
Ed. by Yvo Desmedt. Vol. 839. Lecture Notes in Computer Science. Springer, October 20, 1995,
pages 216-233. ISBN: 978-3-540-48658-9. DOI: 10 . 1007 /3-540-48658-5_22. URL: https :
//cseweb.ucsd.edu/~mihir/papers/inc1l.pdf (visited on 2018-02-09) (T p59, 60, 145).

Sean Bowe, Ariel Gabizon, and Matthew Green. A multi-party protocol for constructing the
public parameters of the Pinocchio zk-SNARK. Cryptology ePrint Archive: Report 2017/602. Last
revised June 25, 2017. URL: https://eprint.iacr.org/2017/602 (visited on 2019-02-10) (1 p76,
83, 111, 121).

Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable Multi-party Computation for zk-SNARK
Parameters in the Random Beacon Model Cryptology ePrint Archive: Report 2017/1050. Last
revised November 5, 2017. URL: https://eprint.iacr.org/2017/1050 (visited on 2018-08-31)
(1 p77.83, 111, 112).

Gavin Andresen. M-of-N Standard Transactions. Bitcoin Improvement Proposal 11. Created Oc-
tober 18, 2011. URL: https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki
(visited on 2020-07-13) (1 p97).

Gavin Andresen. Address Format for pay-to-script-hash. Bitcoin Improvement Proposal 13.
Created October 18, 2011. URL: https : //github . com/bitcoin/bips/blob/master /bip-
0013.mediawiki (visited on 2020-07-13) (1 p79, 97).

126


https://cseweb.ucsd.edu/~mihir/papers/sym-enc.html
https://cr.yp.to/papers.html#ed25519
https://cr.yp.to/papers.html#pippenger
https://cr.yp.to/papers.html#pippenger
https://cr.yp.to/papers.html#bruteforce
https://cr.yp.to/papers.html#bruteforce
https://cr.yp.to/papers.html#curve25519
https://eprint.iacr.org/2010/040
https://github.com/zcash/mpc
https://doi.org/10.1007/3-540-48658-5_22
https://cseweb.ucsd.edu/~mihir/papers/inc1.pdf
https://cseweb.ucsd.edu/~mihir/papers/inc1.pdf
https://eprint.iacr.org/2017/602
https://eprint.iacr.org/2017/1050
https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0013.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0013.mediawiki

[BIP-14]

[BIP-16]

[BIP-30]

[BIP-31]

[BIP-32]

[BIP-34]

[BIP-35]

[BIP-37]

[BIP-61]

[BIP-62]

[BIP-65]

[BIP-66]

[BIP-68]

[BIP-111]

[Bitcoin-Base58]

[Bitcoin-Block]

Amir Taaki and Patrick Strateman. Protocol Version and User Agent. Bitcoin Improvement
Proposal 14. Created November 10, 2011. URL: https : //github. com/bitcoin/bips/blob/
master/bip-0014.mediawiki (visited on 2020-07-13) (1 p97).

Gavin Andresen. Pay to Script Hash. Bitcoin Improvement Proposal 16. Created January 3, 2012.
URL: https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki (visited on
2020-07-13) ( p97).

Pieter Wuille. Duplicate transactions. Bitcoin Improvement Proposal 30. Created February 22,
2012. URL: https://github.com/bitcoin/bips/blob/master/bip-0030.mediawiki (visited
on 2020-07-13) ( p97).

Mike Hearn. Pong message. Bitcoin Improvement Proposal 31. Created April 11, 2012. URL: https:
//github.com/bitcoin/bips/blob/master/bip-0031.mediawiki (visited on 2020-07-13)
(1T p97).

Pieter Wuille. Hierarchical Deterministic Wallets. Bitcoin Improvement Proposal 32. Created

February 11, 2012. Last updated January 15, 2014. URL: https://github. com/bitcoin/bips/
blob/master/bip-0032.mediawiki (visited on 2020-07-13) (1 p79, 108).

Gavin Andresen. Block v2, Height in Coinbase. Bitcoin Improvement Proposal 34. Created July 6,
2012. URL: https://github. com/bitcoin/bips/blob/master/bip-0034.mediawiki (visited
on 2020-07-13) ( p86, 97, 121).

Jeff Garzik. mempool message. Bitcoin Improvement Proposal 35. Created August 16, 2012.
URL: https://github.com/bitcoin/bips/blob/master/bip-0035.mediawiki (visited on
2020-07-13) (+ p97).

Mike Hearn and Matt Corallo. Connection Bloom filtering. Bitcoin Improvement Proposal 37.
Created October 24, 2012. URL: https ://github. com/bitcoin/bips/blob/master/bip-
0037 .mediawiki (visited on 2020-07-13) (t p97).

Gavin Andresen. Reject P2P message. Bitcoin Improvement Proposal 61. Created June 18, 2014.
URL: https://github.com/bitcoin/bips/blob/master/bip-0061.mediawiki (visited on
2020-07-13) (t p97).

Pieter Wuille. Dealing with malleability. Bitcoin Improvement Proposal 62. Withdrawn Novem-
ber 17, 2015. URL: https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
(visited on 2020-07-13) (1 p23).

Peter Todd. OP_CHECKLOCKTIMEVERIFY. Bitcoin Improvement Proposal 65. Created October 10,
2014. URL: https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki (visited
on 2020-07-13) ( p97).

Pieter Wuille. Strict DER signatures. Bitcoin Improvement Proposal 66. Created January 10, 2015.
URL: https://github.com/bitcoin/bips/blob/master/bip-0066 .mediawiki (visited on
2020-07-13) ( p97).

Mark Friedenbach, BtcDrak, Nicolas Dorier, and kinoshitajona. Relative lock-time using consen-
sus-enforced sequence numbers. Bitcoin Improvement Proposal 68. Last revised November 21,
2015. URL: https://github. com/bitcoin/bips/blob/master/bip-0068.mediawiki (visited
on 2020-07-13) (1 p87).

Matt Corallo and Peter Todd. NODE_BLOOM service bit. Bitcoin Improvement Proposal 111. Created
August 20, 2015. URL: https://github.com/bitcoin/bips/blob/master/bip-0111.mediawiki
(visited on 2020-07-13) ( p97, 116).

Base58Check encoding — Bitcoin Wiki. URL: https://en.bitcoin.it/wiki/Base58Check _
encoding (visited on 2020-07-13) (% p78, E)

Block Headers — Bitcoin Developer Reference. URL: https : / / developer . bitcoin . org/
reference/block_chain.html#block-headers (visited on 2020-07-13) (1 p91).

127


https://github.com/bitcoin/bips/blob/master/bip-0014.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0014.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0030.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0031.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0031.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0035.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0061.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0111.mediawiki
https://en.bitcoin.it/wiki/Base58Check_encoding
https://en.bitcoin.it/wiki/Base58Check_encoding
https://developer.bitcoin.org/reference/block_chain.html#block-headers
https://developer.bitcoin.org/reference/block_chain.html#block-headers

[Bitcoin-CoinJoin] Coinjoin — Bitcoin Wiki. URL: https://en.bitcoin.it/wiki/CoinJoin (visited on 2020-07-13)

[Bitcoin-Format]
[Bitcoin-Multisig]
[Bitcoin-nBits]

[Bitcoin-P2PKH]

[Bitcoin-P2SH]
[Bitcoin-Protocol]
[Bitcoin-SigHash]

[BJLSY2015]

[BK2016]

[BL-SafeCurves]

[BL2017]

[BLS2002]

[BN2005]

[BN2007]

[Bowe-bellman]

[Bowe2017]

[Bowe2018]

(tp9.

Raw Transaction Format — Bitcoin Developer Reference. URL: https://developer.bitcoin.
org/reference/transactions.html#raw-transaction-format (visited on 2020-07-13) (1 p87).

Transactions: Multisig — Bitcoin Developer Guide. URL: https: //developer .bitcoin. org/
devguide/transactions.html#multisig (visited on 2020-07-13) (1 p96).

Target nBits — Bitcoin Developer Reference. URL: https://developer.bitcoin.org/reference/
block_chain.html#target-nbits (visited on 2020-07-13) (T p90, 94).

Transactions: P2PKH Script Validation — Bitcoin Developer Guide. URL: https://developer.
bitcoin.org/devguide/transactions.html#p2pkh-script-validation (visited on 2020-07-

13) (1t p79).

Transactions: P2SH Scripts — Bitcoin Developer Guide. URL: https://developer.bitcoin.org/
devguide/transactions.html#pay-to-script-hash-p2sh (visited on 2020-07-13) (1 p79).

Protocol documentation — Bitcoin Wiki. URL: https://en.bitcoin. it/wiki/Protocol _
documentation (visited on 2020-07-13) (1 p8).

Signature Hash Types — Bitcoin Developer Guide. URL: https : //developer .bitcoin. org/
devguide/transactions.html#signature-hash-types (visited on 2020-07-13) (} p37).

Daniel Bernstein, Simon Josefsson, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. EdDSA for
more curves. Technical Report. July 4, 2015. URL: https://cr.yp.to/papers.html#eddsa
(visited on 2018-01-22) ( p65, 74).

Alex Biryukov and Dmitry Khovratovich. Equihash: Asymmetric Proof-of-Work Based on the
Generalized Birthday Problem (full version). Cryptology ePrint Archive: Report 2015/946. Last
revised October 27, 2016. URL: https://eprint.iacr.org/2015/946 (visited on 2016-10-30)
(1 p10, 92, 121).

Daniel Bernstein and Tanja Lange. SafeCurves: choosing safe curves for elliptic-curve cryptogra-
phy. URL: https://safecurves.cr.yp.to (visited on 2018-01-29) ( pl01, @)

Daniel Bernstein and Tanja Lange. Montgomery curves and the Montgomery ladder. Cryptology
ePrint Archive: Report 2017/293. Received March 30, 2017. URL: https://eprint.iacr.org/
2017/293 (visited on 2017-11-26) (1 p73, 135, 141, 142).

Paulo Barreto, Ben Lynn, and Michael Scott. Constructing Elliptic Curves with Prescribed Em-
bedding Degrees. Cryptology ePrint Archive: Report 2002/088. Last revised February 22, 2005.
URL: https://eprint.iacr.org/2002/088 (visited on 2018-04-20) (1 p72, 116).

Paulo Barreto and Michael Naehrig. Pairing-Friendly Elliptic Curves of Prime Order. Cryptology
ePrint Archive: Report 2005/133. Last revised February 28, 2006. URL: https://eprint.iacr.
org/2005/133 (visited on 2018-04-20) (1 p70, 116).

Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Relations among notions
and analysis of the generic composition paradigm. Cryptology ePrint Archive: Report 2000/025.
Last revised July 14, 2007. URL: https://eprint.iacr.org/2000/025 (visited on 2016-09-02)
(T p20).

Sean Bowe. bellman: zk-SNARK library. URL: https://github.com/ebfull/bellman (visited on
2018-04-03) (1 p77, 83).

Sean Bowe. ebfull/pairing source code, BLS12-381 - README.md as of commit e726600. URL:
https://github.com/ebfull/pairing/tree/e72660056e00c93d6b054dfb08ff34al1c67cb799/

src/bls12_381 (visited on 2017-07-16) (1 p72).

Sean Bowe. Random Beacon. March 22, 2018. URL: https://github. com/ZcashFoundation/
powersoftau-attestations/tree/master/0088 (visited on 2018-04-08) (1 p83).

128


https://en.bitcoin.it/wiki/CoinJoin
https://developer.bitcoin.org/reference/transactions.html#raw-transaction-format
https://developer.bitcoin.org/reference/transactions.html#raw-transaction-format
https://developer.bitcoin.org/devguide/transactions.html#multisig
https://developer.bitcoin.org/devguide/transactions.html#multisig
https://developer.bitcoin.org/reference/block_chain.html#target-nbits
https://developer.bitcoin.org/reference/block_chain.html#target-nbits
https://developer.bitcoin.org/devguide/transactions.html#p2pkh-script-validation
https://developer.bitcoin.org/devguide/transactions.html#p2pkh-script-validation
https://developer.bitcoin.org/devguide/transactions.html#pay-to-script-hash-p2sh
https://developer.bitcoin.org/devguide/transactions.html#pay-to-script-hash-p2sh
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://developer.bitcoin.org/devguide/transactions.html#signature-hash-types
https://developer.bitcoin.org/devguide/transactions.html#signature-hash-types
https://cr.yp.to/papers.html#eddsa
https://eprint.iacr.org/2015/946
https://safecurves.cr.yp.to
https://eprint.iacr.org/2017/293
https://eprint.iacr.org/2017/293
https://eprint.iacr.org/2002/088
https://eprint.iacr.org/2005/133
https://eprint.iacr.org/2005/133
https://eprint.iacr.org/2000/025
https://github.com/ebfull/bellman
https://github.com/ebfull/pairing/tree/e72660056e00c93d6b054dfb08ff34a1c67cb799/src/bls12_381
https://github.com/ebfull/pairing/tree/e72660056e00c93d6b054dfb08ff34a1c67cb799/src/bls12_381
https://github.com/ZcashFoundation/powersoftau-attestations/tree/master/0088
https://github.com/ZcashFoundation/powersoftau-attestations/tree/master/0088

[Carroll1876]

[Carroll1902]

[CDvdG1987]

[CVE-2019-7167]

[CvHP1991]

[Dalek-notes]

[deRo0ij1995]

[DGKM2011]

[DigiByte-PoW]

[DS2016]

[DSDCOPS2001]

Lewis Carroll. The Hunting of the Snark. With illustrations by Henry Holiday. MacMillan and
Co. London. March 29, 1876. URL: https://www.gutenberg.org/files/29888/29888-h/29888-
h.htm (visited on 2018-05-23) (t p73, 109).

Lewis Carroll. Through the Looking-Glass, and What Alice Found There (1902 edition). lllustrated
by Peter Newell and Robert Murray Wright. Harper and Brothers Publishers. New York. October
1902. URL: https://archive.org/details/throughlookinggl00carr4 (visited on 2018-06-20)
(1 p104, 115).

David Chaum, Ivan Damgard, and Jeroen van de Graaf. “Multiparty computations ensuring
privacy of each party’s input and correctness of the result”. In: Advances in Cryptology -
CRYPTO 87. Proceedings of the 14th Annual International Cryptology Conference (Santa Barbara,
California, USA, August 16-20, 1987). Ed. by Carl Pomerance. Vol. 293. Lecture Notes in Computer
Science. Springer, January 1988, pages 87-119. ISBN: 978-3-540-48184-3. DOI: 10 . 1007 /3 -
540-48184-2_7. URL: https://www.researchgate.net/profile/Jeroen_Van_de_Graaf/
publication/242379939 Multiparty_computations_ensuring_secrecy_of _each_party’
27s_input_and_correctness_of_the_output (visited on 2018-03-01) (t p59).

Common Vulnerabilities and Exposures. CVE-2019-7167. URL: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2019-7167 (visited on 2019-02-05) (1 p76).

David Chaum, Eugéne van Heijst, and Birgit Pfitzmann. Cryptographically Strong Undeniable
Signatures, Unconditionally Secure for the Signer. February 1991. URL: https://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.34.8570 (visited on 2021-04-05). An extended
abstract appeared in Advances in Cryptology - CRYPTO 91: Proceedings of the 1ith Annual
International Cryptology Conference (Santa Barbara, California, USA, August 11-15, 1991); Ed. by
Joan Feigenbaum; Vol. 576, Lecture Notes in Computer Science, pages 470-484; Springer, 1992;
ISBN 978-3-540-55188-1. (1 p59, 145).

Cathie Yun, Henry de Valence, Oleg Andreev, and Dimitris Apostolou. Dalek bulletproofs notes,
module rics_proof. URL: https://doc-internal . dalek.rs/bulletproofs/notes/rlcs _
proof/index.htnl (visited on 2021-04-07) (1 p41, 112).

Peter de Rooij. “Efficient exponentiation using precomputation and vector addition chains”.
In: Advances in Cryptology - EUROCRYPT '94. Proceedings, Workshop on the Theory and
Application of Cryptographic Techniques (Perugia, Italy, May 9-12, 1994). Ed. by Alfredo De Santis.
Vol. 950. Lecture Notes in Computer Science. Springer, pages 389-399. ISBN: 978-3-540-60176-0.
DOI: 10.1007/BFb0053453. URL: https://link.springer.com/chapter/10.1007/BFb0053453
(visited on 2018-07-27) (1 p156, 157).

Dana Dachman-Soled, Rosario Gennaro, Hugo Krawczyk, and Tal Malkin. Computational Ex-
tractors and Pseudorandomness. Cryptology ePrint Archive: Report 2011/708. December 28,
2011. URL: https://eprint.iacr.org/2011/708 (visited on 2016-09-02) (1 p102).

DigiByte Core Developers. DigiSpeed 4.0.0 source code, functions GetNextWorkRequiredV3/4
in src/main.cpp as of commit 178e134. URL: https://github.com/digibyte/digibyte/blob/
178e1348a67d9624db328062397fde0de03fe388/src/main . cpp#L1587 (visited on 2017-01-20)
(t p93).

David Derler and Daniel Slamanig. Key-Homomorphic Signatures and Applications to Multiparty
Signatures and Non-Interactive Zero-Knowledge. Cryptology ePrint Archive: Report 2016/792.
Last revised February 6, 2017. URL: https://eprint.iacr.org/2016/792 (visited on 2018-04-09)
(T p24).

Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Guiseppe Persiano, and Amit Sa-
hai. “Robust Non-Interactive Zero Knowledge”. In: Advances in Cryptology - CRYPTO 2001.
Proceedings of the 21st Annual International Cryptology Conference (Santa Barbara, Califor-
nia, USA, August 19-23, 2001). Ed. by Joe Kilian. Vol. 2139. Lecture Notes in Computer Science.
Springer, 2001, pages 566-598. ISBN: 978-3-540-42456-7. DOI: 10.1007/3-540-44647-8_33.
URL: https://www.iacr . org/archive/crypto2001/21390566 . pdf (visited on 2018-05-28)
(1 p28, 37).

129


https://www.gutenberg.org/files/29888/29888-h/29888-h.htm
https://www.gutenberg.org/files/29888/29888-h/29888-h.htm
https://archive.org/details/throughlookinggl00carr4
https://doi.org/10.1007/3-540-48184-2_7
https://doi.org/10.1007/3-540-48184-2_7
https://www.researchgate.net/profile/Jeroen_Van_de_Graaf/publication/242379939_Multiparty_computations_ensuring_secrecy_of_each_party%27s_input_and_correctness_of_the_output
https://www.researchgate.net/profile/Jeroen_Van_de_Graaf/publication/242379939_Multiparty_computations_ensuring_secrecy_of_each_party%27s_input_and_correctness_of_the_output
https://www.researchgate.net/profile/Jeroen_Van_de_Graaf/publication/242379939_Multiparty_computations_ensuring_secrecy_of_each_party%27s_input_and_correctness_of_the_output
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-7167
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-7167
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.8570
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.8570
https://doc-internal.dalek.rs/bulletproofs/notes/r1cs_proof/index.html
https://doc-internal.dalek.rs/bulletproofs/notes/r1cs_proof/index.html
https://doi.org/10.1007/BFb0053453
https://link.springer.com/chapter/10.1007/BFb0053453
https://eprint.iacr.org/2011/708
https://github.com/digibyte/digibyte/blob/178e1348a67d9624db328062397fde0de03fe388/src/main.cpp#L1587
https://github.com/digibyte/digibyte/blob/178e1348a67d9624db328062397fde0de03fe388/src/main.cpp#L1587
https://eprint.iacr.org/2016/792
https://doi.org/10.1007/3-540-44647-8_33
https://www.iacr.org/archive/crypto2001/21390566.pdf

[ECCZF2019]

[ElGamal1985]

[EWD-340]

[EWD-831]

[FKMSSS2016]

[Gabizon2019]

[GGM2016]

[Groth2016]

[GWC2019]

[Hamdon2018]

[Hopwood2018]

[HW2016]

[IEEE2000]

Electric Coin Company and Zcash Foundation. Zcash Trademark Donation and License Agree-
ment. November 6, 2019. URL: https://www.zfnd.org/about/contracts/2019_ECC_ZFND_TM_
agreement . pdf (visited on 2020-07-05) (1 p18).

Taher ElGamal. “A public key cryptosystem and a signature scheme based on discrete logarithms”.
In: IEEE Transactions on Information Theory 31.4 (July 1985), pages 469-472. ISSN: 0018-9448.
DOI: 10.1109/TIT.1985.1057074. URL: https://people.csail .mit.edu/alinush/6.857-
spring-2015/papers/elgamal . pdf (visited on 2018-08-17) (1 p58).

Edsger W. Dijkstra. The Humble Programmer. ACM Turing Lecture. August 14, 1972. URL:
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD340.html (visited on
2021-03-29) ( p52).

Edsger W. Dijkstra. Why numbering should start at zero. Manuscript. August 11, 1982. URL:
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html (visited on
2016-08-09) (1 p10).

Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Dominique Schréder,
and Mark Simkin. Efficient Unlinkable Sanitizable Signatures from Signatures with Re-
Randomizable Keys. Cryptology ePrint Archive: Report 2012/159. Last revised February 11, 2016.
URL: https://eprint . iacr.org/2015/395 (visited on 2018-03-03). An extended abstract
appeared in Public Key Cryptography - PKC 2016: 19th IACR International Conference on Practice
and Theory in Public-Key Cryptography (Taipei, Taiwan, March 6-9, 2016), Proceedings, Part I,
Ed. by Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang; Vol. 9614, Lecture
Notes in Computer Science, pages 301-330; Springer, 2016; ISBN 978-3-662-49384-7. (1 p23, 24,
65).

Ariel Gabizon. On the security of the BCTV Pinocchio zk-SNARK variant. Draft. February 5,
2019. URL: https://github. com/arielgabizon/bctv/blob/master/bctv. pdf (visited on
2019-02-07) ( p76, 104, 111).

Christina Garman, Matthew Green, and Ian Miers. Accountable Privacy for Decentralized
Anonymous Payments. Cryptology ePrint Archive: Report 2016/061. Last revised January 24,
2016. URL: https://eprint.iacr.org/2016/061 (visited on 2016-09-02) (1 p99).

Jens Groth. On the Size of Pairing-based Non-interactive Arguments. Cryptology ePrint Archive:
Report 2016/260. Last revised May 31, 2016. URL: https://eprint.iacr.org/2016/260 (visited
on 2017-08-03) ( p77, 111, 156).

Ariel Gabizon, Zachary Williamson, and Oana Ciobotaru. PLONK: Permutations over Lagrange-
bases for Oecumenical Noninteractive arguments of Knowledge. Cryptology ePrint Archive:
Report 2019/953. Last revised September 3, 2020. URL: https://eprint.iacr.org/2019/953
(visited on 2021-01-28) (1 p104).

Elise Hamdon. Sapling Activation Complete. Electric Coin Company blog. June 28, 2018. URL:
https://electriccoin.co/blog/sapling-activation-complete/ (visited on 2021-01-10)
(T p84).

Daira Hopwood. GitHub repository ‘daira/jubjub’: Supporting evidence for security of the Jubjub
curve to be used in Zcash. URL: https://github.com/daira/jubjub (visited on 2018-02-18).
Based on code written for SafeCurves [BL-SafeCurves] by Daniel Bernstein and Tanja Lange.
(+ p101).

Taylor Hornby and Zooko Wilcox. Fixing Vulnerabilities in the Zcash Protocol. Electric Coin
Company blog. April 26, 2016. URL: https://electriccoin.co/blog/fixing-zcash-vulns/
(visited on 2019-08-27). Updated December 26, 2017. (+ p100).

IEEE Computer Society. IEEE Std 1363-2000: Standard Specifications for Public-Key Cryptog-
raphy. IEEE, August 29, 2000. DOI: 10.1109/IEEESTD.2000.92292. URL: https://ieeexplore.
ieee.org/document/891000 (visited on 2021-04-05) (1 p71).

130


https://www.zfnd.org/about/contracts/2019_ECC_ZFND_TM_agreement.pdf
https://www.zfnd.org/about/contracts/2019_ECC_ZFND_TM_agreement.pdf
https://doi.org/10.1109/TIT.1985.1057074
https://people.csail.mit.edu/alinush/6.857-spring-2015/papers/elgamal.pdf
https://people.csail.mit.edu/alinush/6.857-spring-2015/papers/elgamal.pdf
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD340.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html
https://eprint.iacr.org/2015/395
https://github.com/arielgabizon/bctv/blob/master/bctv.pdf
https://eprint.iacr.org/2016/061
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2019/953
https://electriccoin.co/blog/sapling-activation-complete/
https://github.com/daira/jubjub
https://electriccoin.co/blog/fixing-zcash-vulns/
https://doi.org/10.1109/IEEESTD.2000.92292
https://ieeexplore.ieee.org/document/891000
https://ieeexplore.ieee.org/document/891000

[IEEE2004]

[Jedusor2016]

[KvE2013]

[KYMMZ2018]

[LG2004]

[libsodium]

[libsodium-Seal]

[LM2017]

[MAEA2010]

[Maller2018]

[1SO2015]

[Nakamoto2008]

[NIST2015]

[Parno2015]

[Peterson2017]

[PHGR2013]

IEEE Computer Society. [EEE Std 1363a-2004: Standard Specifications for Public-Key Cryptogra-
phy - Amendment 1: Additional Techniques. IEEE, September 2, 2004. DOI: 10.1109/IEEESTD.
2004.94612. URL: https://ieeexplore.ieee.org/document/1335427 (visited on 2021-04-05)
(t p71,101, 103).

Tom Elvis Jedusor. Mimblewimble. July 19, 2016. URL: https://diyhpl.us/~bryan/papers2/
bitcoin/mimblewimble.txt (visited on 2021-04-05) (1 p4l).

Kaalel and Hagen von Eitzen. If a group G has odd order, then the square function is injective
(answer). Mathematics Stack Exchange. URL: https://math. stackexchange . com/a/522277/
185422 (visited on 2018-02-08). Version: 2013-10-11. (1 p75).

George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn. An Empirical Analysis of
Anonymity in Zcash. Preprint, to be presented at the 27th Usenix Security Syposium (Baltimore,
Maryland, USA, August 15-17, 2018). May 8, 2018. URL: https://smeiklej.com/files/usenix18.
pdf (visited on 2018-06-05) (+ p9).

Eddie Lenihan and Carolyn Eve Green. Meeting the Other Crowd: The Fairy Stories of Hidden
Ireland. TarcherPerigee, February 2004, pages 109-110. ISBN: 1-58542-206-1 (1 p98).

libsodium documentation. URL: https://libsodium.org/ (visited on 2020-03-02) (1 p65).

Sealed boxes — libsodium. URL: https : //download . libsodium . org/doc/public-key _
cryptography/sealed_boxes.html (visited on 2016-02-01) (1 p101).

Philip Lafrance and Alfred Menezes. On the security of the WOTS-PRF signature scheme. Cryp-
tology ePrint Archive: Report 2017/938. Last revised February 5, 2018. URL: https://eprint.
iacr.org/2017/938 (visited on 2018-04-16) (1 p22).

V. Gayoso Martinez, F. Hernandez Alvarez, L. Hernandez Encinas, and C. Sanchez Avila. “A
Comparison of the Standardized Versions of ECIES". In: Proceedings of Sixth International
Conference on Information Assurance and Security (Atlanta, Georgia, USA, August 23-25,
2010). 1EEE, 2010, pages 1-4. ISBN: 978-1-4244-7407-3. DOI: 10.1109/ISIAS.2010.5604194. URL:
https://core.ac.uk/download/36042971.pdf (visited on 2021-04-08) (1 p101).

Mary Maller. A Proof of Security for the Sapling Generation of zk-SNARK Parameters in the
Generic Group Model. November 16, 2018. URL: https : // github . com / zcash / sapling -
security-analysis/blob/master/MaryMallerUpdated . pdf (visited on 2018-02-10) (T p77,
110).

ISO/IEC. International Standard ISO/IEC 18004:2015(E): Information Technology - Automatic
identification and data capture techniques - QR Code bar code symbology specification. Third
edition. February 1, 2015. URL: https://raw.githubusercontent . com/yansikeim/QR-Code/
master/IS0%20IEC%2018004%202015%20Standard . pdf (visited on 2021-03-22) (1 p79).

Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. October 31, 2008. URL:
https://bitcoin.org/en/bitcoin-paper (visited on 2016-08-14) (t p7).

NIST. FIPS 180-4: Secure Hash Standard (SHS). August 2015. DOI: 10.6028/NIST.FIPS.180-4.
URL: https://csrc.nist.gov/publications/detail/fips/180/4/final (visited on 2021-03-
08) (1 p55, 79).

Bryan Parno. A Note on the Unsoundness of vnTinyRAM's SNARK. Cryptology ePrint Archive:
Report 2015/437. Received May 6, 2015. URL: https://eprint.iacr.org/2015/437 (visited on
2019-02-08) (1 p76, 104, 111).

Paige Peterson. Transaction Linkability. Electric Coin Company blog. January 25, 2017. URL:
https://electriccoin.co/blog/transaction-linkability/ (visited on 2019-08-27) (1 p9,
116).

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly Practical Verifi-
able Computation. Cryptology ePrint Archive: Report 2013/279. Last revised May 13, 2013. URL:
https://eprint.iacr.org/2013/279 (visited on 2016-08-31) (1 p@).

131


https://doi.org/10.1109/IEEESTD.2004.94612
https://doi.org/10.1109/IEEESTD.2004.94612
https://ieeexplore.ieee.org/document/1335427
https://diyhpl.us/~bryan/papers2/bitcoin/mimblewimble.txt
https://diyhpl.us/~bryan/papers2/bitcoin/mimblewimble.txt
https://math.stackexchange.com/a/522277/185422
https://math.stackexchange.com/a/522277/185422
https://smeiklej.com/files/usenix18.pdf
https://smeiklej.com/files/usenix18.pdf
https://libsodium.org/
https://download.libsodium.org/doc/public-key_cryptography/sealed_boxes.html
https://download.libsodium.org/doc/public-key_cryptography/sealed_boxes.html
https://eprint.iacr.org/2017/938
https://eprint.iacr.org/2017/938
https://doi.org/10.1109/ISIAS.2010.5604194
https://core.ac.uk/download/36042971.pdf
https://github.com/zcash/sapling-security-analysis/blob/master/MaryMallerUpdated.pdf
https://github.com/zcash/sapling-security-analysis/blob/master/MaryMallerUpdated.pdf
https://raw.githubusercontent.com/yansikeim/QR-Code/master/ISO%20IEC%2018004%202015%20Standard.pdf
https://raw.githubusercontent.com/yansikeim/QR-Code/master/ISO%20IEC%2018004%202015%20Standard.pdf
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.6028/NIST.FIPS.180-4
https://csrc.nist.gov/publications/detail/fips/180/4/final
https://eprint.iacr.org/2015/437
https://electriccoin.co/blog/transaction-linkability/
https://eprint.iacr.org/2013/279

[Quesnelle2017]

[RFC-2119]

[RFC-7539]

[REC-8032]

[RIPEMD160]

[ST1999]

[SVPBABW2012]

[SWB2019]

[Swihart2018]

[vanSaberh2014]

[Vercauter2009]

[WCBTV2015]

[WG2016]

[Zaverucha2012]

Jeffrey Quesnelle. On the linkability of Zcash transactions. arXiv:1712.01210 [cs.CR]. December 4,
2017. URL: https://arxiv.org/abs/1712.01210 (visited on 2018-04-15) (1 P9 @).

Scott Bradner. Request for Comments 7693: Key words for use in RFCs to Indicate Requirement
Levels. Internet Engineering Task Force (IETF). March 1997. URL: https://www.rfc-editor.org/
rfc/rfc2119.html (visited on 2016-09-14) (1 p7).

Yoav Nir and Adam Langley. Request for Comments 7539: ChaCha20 and Poly1305 for IETF
Protocols. Internet Research Task Force (IRTF). May 2015. URL: https://www.rfc-editor.org/
rfc/rfc7539.html (visited on 2016-09-02). As modified by verified errata at https://www.rfc-

editor.org/errata_search.php?rfc=7539 (visited on 2016-09-02). (1 p62).

Simon Josefsson and Ilari Liusvaara. Request for Comments 8032: Edwards-Curve Digital Sig-
nature Algorithm (EdDSA). Internet Engineering Task Force (IETF). January 2017. URL: https:
//www.rfc-editor.org/rfc/rfc8032.html (visited on 2020-07-06). As modified by errata

at https://www.rfc-editor.org/errata_search.php?rfc=8032 (visited on 2020-07-06).
(1 p65).

Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160, a strengthened version
of RIPEMD. URL: https://homes. esat .kuleuven.be/~bosselae/ripemd160.html (visited on
2021-04-08) (1 p79).

Tomas Sander and Amnon Ta-Shma. “Auditable, Anonymous Electronic Cash”. In: Advances in
Cryptology - CRYPTO '99. Proceedings of the 19th Annual International Cryptology Conference
(Santa Barbara, California, USA, August 15-19, 1999). Ed. by Michael Wiener. Vol. 1666. Lecture
Notes in Computer Science. Springer, 1999, pages 555-572. ISBN: 978-3-540-66347-8. DOLI:
10.1007/3-540-48405-1_35. URL: https://link.springer.com/content/pdf/10.1007/3-

540-48405-1_35. pdf (visited on 2018-06-05) (1 p104, 114).

Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Mugeet Ali, Andrew J. Blumberg, and
Michael Walfish. Taking proof-based verified computation a few steps closer to practicality
(extended version). Cryptology ePrint Archive: Report 2012/598. Last revised February 28, 2013.
URL: https://eprint.iacr.org/2012/598.pdf (visited on 2018-04-25) (1 p137).

Josh Swihart, Benjamin Winston, and Sean Bowe. Zcash Counterfeiting Vulnerability Successfully
Remediated. February 5, 2019. URL: https://electriccoin.co/blog/zcash-counterfeiting-
vulnerability-successfully-remediated/ (visited on 2019-08-27) (1 p76, 111).

Josh Swihart. Overwinter Activated Successfully. Electric Coin Company blog. June 26, 2018.
URL: https://electriccoin.co/blog/overwinter-activated-successfully/ (visited on
2021-01-10) (1 p84).

Nicolas van Saberhagen. CryptoNote v 2.0. Date disputed. URL: https://bytecoin.org/old/
whitepaper.pdf (visited on 2021-04-07) (1 p9).

Frederik Vercauteren. Optimal pairings. Cryptology ePrint Archive: Report 2008/096. Last revised
March 7, 2008. URL: https://eprint.iacr.org/2008/096 (visited on 2018-04-06). A version
of this paper appeared in IEEE Transactions of Information Theory, Vol. 56, pages 455-461; IEEE,
2009. ( p70, 116).

Zooko Wilcox, Alessandro Chiesa, Eli Ben-Sasson, Eran Tromer, and Madars Virza. A Bug in
libsnark. Least Authority blog. May 16, 2015. URL: https://leastauthority.com/blog/a-bug-
in-1libsnark/ (visited on 2021-04-07) ( p76, 135).

Zooko Wilcox and Jack Grigg. Why Equihash? Electric Coin Company blog. April 15, 2016. URL:
https://electriccoin.co/blog/why-equihash/ (visited on 2019-08-27). Updated August 21,
2019. (1 p92).

Gregory M. Zaverucha. Hybrid Encryption in the Multi-User Setting. Cryptology ePrint Archive:
Report 2012/159. Received March 20, 2012. URL: https://eprint.iacr.org/2012/159 (visited
on 2016-09-24) (T p102).

132


https://arxiv.org/abs/1712.01210
https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/rfc/rfc7539.html
https://www.rfc-editor.org/rfc/rfc7539.html
https://www.rfc-editor.org/errata_search.php?rfc=7539
https://www.rfc-editor.org/errata_search.php?rfc=7539
https://www.rfc-editor.org/rfc/rfc8032.html
https://www.rfc-editor.org/rfc/rfc8032.html
https://www.rfc-editor.org/errata_search.php?rfc=8032
https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
https://doi.org/10.1007/3-540-48405-1_35
https://link.springer.com/content/pdf/10.1007/3-540-48405-1_35.pdf
https://link.springer.com/content/pdf/10.1007/3-540-48405-1_35.pdf
https://eprint.iacr.org/2012/598.pdf
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/overwinter-activated-successfully/
https://bytecoin.org/old/whitepaper.pdf
https://bytecoin.org/old/whitepaper.pdf
https://eprint.iacr.org/2008/096
https://leastauthority.com/blog/a-bug-in-libsnark/
https://leastauthority.com/blog/a-bug-in-libsnark/
https://electriccoin.co/blog/why-equihash/
https://eprint.iacr.org/2012/159

[Zcash-Blossom]
[Zcash-Canopy]
[Zcash-Heartwd]
[Zcash-Issue2113]
[Zcash-libsnark]

[zIP-32]

[ZIP-76]

[ZIP-143]

[Z1P-173]
[z1P-200]
[z1P-201]
[Z1P-202]
[z1P-203]

[ZIP-205]

[ZIP-206]

[ZIP-209]

[ZIP-243]

[zIP-250]

[zIP-251]

Electric Coin Company. Blossom. December 11, 2019. URL: https://z.cash/upgrade/blossom/
(visited on 2021-01-10) (1 p84).

Electric Coin Company. Canopy. November 18, 2020. URL: https://z.cash/upgrade/canopy/
(visited on 2021-01-10) (1 p84).

Electric Coin Company. Heartwood. July 16, 2020. URL: https://z.cash/upgrade/heartwood/
(visited on 2021-01-10) ( p84).

Simon Liu. GitHub repository ‘zcash/zcash’: Issue 2113. URL: https : //github. com/zcash/
zcash/issues/2113 (visited on 2017-02-20) (1 p9s, @)

libsnark: C++ library for zkSNARK proofs (Zcash fork). URL: https://github.com/zcash/zcash/
tree/v2.0.7-3/src/snark (visited on 2021-04-07) (1 p76).

Jack Grigg and Daira Hopwood. Shielded Hierarchical Deterministic Wallets. Zcash Improvement
Proposal 32. URL: https://zips.z.cash/zip-0032 (visited on 2019-08-28) (1 p12, 20, 30, 35,
48, 58, 67, 105, 108, 109, 115).

Jack Grigg and Daira Hopwood. Transaction Signature Validation before Overwinter. Zcash
Improvement Proposal 76 (in progress). (1 p38, 97).

Jack Grigg and Daira Hopwood. Transaction Signature Validation for Overwinter. Zcash Improve-
ment Proposal 143. Created December 27, 2017. URL: https://zips.z.cash/zip-0143 (visited
on 2019-08-28) (1 p37, 38, 56, 84).

Daira Hopwood. Bech32 Format. Zcash Improvement Proposal 173. Created June 13, 2018. URL:
https://zips.z.cash/zip-0173 (visited on 2020-06-01) (1 p78, 81, 108).

Jack Grigg. Network Upgrade Mechanism. Zcash Improvement Proposal 200. Created January 8,
2018. URL: https://zips.z.cash/zip-0200 (visited on 2019-08-28) (1 p84, Q)

Simon Liu. Network Peer Management for Overwinter. Zcash Improvement Proposal 201. Cre-
ated January 15, 2018. URL: https://zips.z.cash/zip-0201 (visited on 2019-08-28) (1 p84).

Simon Liu. Version 3 Transaction Format for Overwinter. Zcash Improvement Proposal 202.
Created January 10, 2018. URL: https://zips.z.cash/zip-0202 (visited on 2019-08-28) (1 p84).

Jay Graber. Transaction Expiry. Zcash Improvement Proposal 203. Created January 9, 2018. URL:
https://zips.z.cash/zip-0203 (visited on 2019-08-28) (1 p84, 85).

Daira Hopwood. Deployment of the Sapling Network Upgrade. Zcash Improvement Proposal
205. Created October 8, 2018. URL: https://zips.z.cash/zip-0205 (visited on 2019-08-28)
(1 p84, 94).

Daira Hopwood. Deployment of the Blossom Network Upgrade. Zcash Improvement Proposal
206. Created July 29, 2019. URL: https://zips .z . cash/zip-0206 (visited on 2019-08-28)
(T p84).

Sean Bowe. Prohibit Negative Shielded Value Pool Balances. Zcash Improvement Proposal 209.
Created February 25, 2019. URL: https://zips.z.cash/zip-0209 (visited on 2020-11-05) (1 p38,
39, 106).

Jack Grigg and Daira Hopwood. Transaction Signature Validation for Sapling. Zcash Improvement
Proposal 243. Created April 10, 2018. URL: https://zips.z.cash/zip-0243 (visited on 2019-08-
28) (1 p38, 40, 41, 56, 84).

Daira Hopwood. Deployment of the Heartwood Network Upgrade. Zcash Improvement Proposal
250. Created February 28, 2020. URL: https://zips.z.cash/zip-0250 (visited on 2020-03-20)
(1 p84).

Daira Hopwood. Deployment of the Canopy Network Upgrade. Zcash Improvement Proposal
251. Created February 28, 2020. URL: https://zips.z.cash/zip-0251 (visited on 2020-03-24)
(T p84).

133


https://z.cash/upgrade/blossom/
https://z.cash/upgrade/canopy/
https://z.cash/upgrade/heartwood/
https://github.com/zcash/zcash/issues/2113
https://github.com/zcash/zcash/issues/2113
https://github.com/zcash/zcash/tree/v2.0.7-3/src/snark
https://github.com/zcash/zcash/tree/v2.0.7-3/src/snark
https://zips.z.cash/zip-0032
https://zips.z.cash/zip-0143
https://zips.z.cash/zip-0173
https://zips.z.cash/zip-0200
https://zips.z.cash/zip-0201
https://zips.z.cash/zip-0202
https://zips.z.cash/zip-0203
https://zips.z.cash/zip-0205
https://zips.z.cash/zip-0206
https://zips.z.cash/zip-0209
https://zips.z.cash/zip-0243
https://zips.z.cash/zip-0250
https://zips.z.cash/zip-0251

[Z1P-302] Jay Graber and Jack Grigg. Standardized Memo Field Format. Zcash Improvement Proposal 302.
Reserved. URL: https://github.com/zcash/zips/pull/105 (visited on 2020-02-13) (1 p78,
105, 109).

134


https://github.com/zcash/zips/pull/105

Appendices

A Circuit Design

A.1 Quadratic Constraint Programs

Sapling defines two circuits, Spend and Output, each implementing an abstract statement described in §4.15.2
‘Spend Statement (Sapling)’ on p.44 and § 4.15.3 ‘Output Statement (Sapling)’ on p.45 respectively. It also adds a
Groth16 circuit for the JoinSplit statement described in §4.15.1 ‘“JoinSplit Statement (Sprout)’ on p.43.

At the next lower level, each circuit is defined in terms of a quadratic constraint program (specifying a Rank 1
Constraint System), as detailed in this section. In the BCTV14 or Groth16 proving systems, this program is translated
to a Quadratic Arithmetic Program [BCTV2014a, section 2.3] [WCBTV2015]. The circuit descriptions given here are
necessary to compute witness elements for each circuit, as well as the proving and verifying keys.

Let I, be the finite field over which Jubjub is defined, as given in §5.4.8.3 ‘Jubjub’ on p.73.

A quadratic constraint program consists of a set of constraints over variables in F,_, each of the form:

(4) x (B) = (C)
where (A), (B), and (C) are linear combinations of variables and constants in F,._.

Here X and - both represent multiplication in the field F,, but we use X for multiplications corresponding to gates
of the circuit, and - for multiplications by constants in the terms of a linear combination. X should not be confused
with x which is defined as cartesian product in § 2 ‘Notation’ on p.9.

A.2 Elliptic curve background

The Sapling circuits make use of a complete twisted Edwards elliptic curve (“ctEdwards curve”) Jubjub, defined in
§5.4.8.3 ‘Jubjub’ on p.73, and also a Montgomery elliptic curve M that is birationally equivalent to Jubjub. Following
the notation in [BL2017] we use (u, v) for affine coordinates on the ctEdwards curve, and (z, y) for affine coordinates
on the Montgomery curve.

A point P is normally represented by two F,_ variables, which we name as (P*, P") for an affine-ctEdwards point,
for instance.

The implementations of scalar multiplication require the scalar to be represented as a bit sequence. We there-
fore allow the notation [kx] P meaning [LEBS2IP¢ng4n (k4 (k*)] P. There will be no ambiguity because variables
representing bit sequences are named with a % suffix.

The Montgomery curve M has parameters Ay; = 40962 and By, = 1. We use an affine representation of this curve
with the formula:

By-y® =a° + A2’ + 2

Usually, elliptic curve arithmetic over prime fields is implemented using some form of projective coordinates,
in order to reduce the number of expensive inversions required. In the circuit, it turns out that a division can
be implemented at the same cost as a multiplication, i.e. one constraint. Therefore it is beneficial to use affine
coordinates for both curves.

We define the following types representing affine-ctEdwards and affine-Montgomery coordinates respectively:

AffineCtEdwardsJubjub := (u: F, ) x (v : F, ) s ag-u® +v* = 1+ dy-u’v°
AffineMontJubjub := (z : . ) x (y: ) : Byp-y® = 2° + Aypa” + o

Ts

135


https://zips.z.cash/protocol/sapling.pdf#appendices
https://zips.z.cash/protocol/sapling.pdf#circuitdesign
https://zips.z.cash/protocol/sapling.pdf#constraintprograms
https://zips.z.cash/protocol/sapling.pdf#ecbackground

We also define a type representing compressed, not necessarily valid, ctEdwards coordinates:

CompressedCtEdwardsJubjub := (@ : B) x (v: F,.))

Ts
See §5.4.8.3 Jubjub’ on p.73 for how this type is represented as a byte sequence in external encodings.
We use affine-Montgomery arithmetic in parts of the circuit because it is more efficient, in terms of the number of
constraints, than affine-ctEdwards arithmetic.

An important consideration when using Montgomery arithmetic is that the addition formula is not complete, that
is, there are cases where it produces the wrong answer. We must ensure that these cases do not arise.

We will need the theorem below about y-coordinates of points on Montgomery curves.

2 . .
Fact: Ay~ —4isanonsquareink, .

Theorem A.2.1. (0,0) is the only point withy = 0 on certain Montgomery curves.

Let P = (x,y) be a point other than (0,0) on a Montgomery curve Eyjon(a,5) over,, such that A® — 4 is a nonsquare
inF.. Theny # 0.

Proof. Substituting y = 0 into the Montgomery curve equation gives0 = 2> + A-2° + z =z - (¢ + A-z +1). So
either 2z = 0orz° + A~z +1 = 0. Since P # (0,0), the case z = 0 is excluded. In the other case, complete the square
for 2> + A- 41 = 0 to give the equivalent (2- = + A)> = A> — 4. The left-hand side is a square, so if the right-hand
side is a nonsquare, then there are no solutions for . O

A.3 Circuit Components
Each of the following sections describes how to implement a particular component of the circuit, and counts the
number of constraints required. Some components make use of others; the order of presentation is “bottom-up”.

It is important for security to ensure that variables intended to be of boolean type are boolean-constrained; and
for efficiency that they are boolean-constrained only once. We explicitly state for the boolean inputs and outputs
of each component whether they are boolean-constrained by the component, or are assumed to have been
boolean-constrained separately.

Affine coordinates for elliptic curve points are assumed to represent points on the relevant curve, unless otherwise
specified.

In this section, variables have type F, unless otherwise specified. In contrast to most of this document, we use
zero-based indexing in order to more closely match the implementation.

A.3.1 Operations on individual bits
A.3.1.1 Boolean constraints

A boolean constraint b € B can be implemented as:

(-5 x () = (0)

136


https://zips.z.cash/protocol/sapling.pdf#thmmontynotzero
https://zips.z.cash/protocol/sapling.pdf#cctcomponents
https://zips.z.cash/protocol/sapling.pdf#cctbitops
https://zips.z.cash/protocol/sapling.pdf#cctboolean

A.3.1.2 Conditional equality

The constraint “either a = 0 or b = ¢” can be implemented as:

(@) x (-¢) = ()

A.3.1.3 Selection constraints

A selection constraint (b ? « : y) = z, where b : B has been boolean-constrained, can be implemented as:

() x (y—2) = (y—=)

A.3.1.4 Nonzero constraints

Since only nonzero elements of F,  have a multiplicative inverse, the assertion a # 0 can be implemented by
witnessing the inverse, a;,, = a~ ' (mod rg):

(ain) X (a) = (1)

This technique comes from [SVPBABW?2012, Appendix D.1].

Non-normative note: A global optimization allows to use a single inverse computation outside the circuit for
any number of nonzero constraints. Suppose that we have n variables (or linear combinations) that are supposed

n—1

to be nonzero: a, _,_,. Multiply these together (using n—1 constraints) to give a* = H o @i then, constrain ™ to

be nonzero. This works because the product a” is nonzero if and only if all of a, _,,_; are nonzero. However, the
Sapling circuit does not use this optimization.

A.3.1.5 Exclusive-or constraints

An exclusive-or operation a ® b = ¢, where a,b : B are already boolean-constrained, can be implemented in one
constraint as:

(2-(1) X (b) = (a+b—c)
This automatically boolean-constrains c. Its correctness can be seen by checking the truth table of (a, b).
A.3.2 Operations on multiple bits

A.3.21 [Un]packing modulo rg

Let n : N' be a constant. The operation of converting a field element, a : F,, to a sequence of boolean variables

n—1 .
by n_1: B such that a = Zi:() b; - 2" (mod rg), is called “unpacking”. The inverse operation is called “packing”.

In the quadratic constraint program these are the same operation (but see the note about canonical representation
below). We assume that the variables b, ,,_; are boolean-constrained separately.

n—1 n—1
We have a mod rg = (Z b; - 2i> mod rg = <Z b; - (2" mod r§)> mod rg.
=0 i=0

137


https://zips.z.cash/protocol/sapling.pdf#cctcondeq
https://zips.z.cash/protocol/sapling.pdf#cctselection
https://zips.z.cash/protocol/sapling.pdf#cctnonzero
https://zips.z.cash/protocol/sapling.pdf#cctxor
https://zips.z.cash/protocol/sapling.pdf#cctmultibitops
https://zips.z.cash/protocol/sapling.pdf#cctmodpack

This can be implemented in one constraint:
n—1 )
(S moarm) 0 = 0
=0

Notes:
- The bit length n is not limited by the field element size.

- Since the constraint has only a trivial multiplication, it is possible to eliminate it by merging it into the boolean
constraint of one of the output bits, expressing that bit as a linear combination of the others and a. However,
this optimization requires substitutions that would interfere with the modularity of the circuit implementation
(for a saving of only one constraint per unpacking operation), and so we do not use it for the Sapling circuit.

. In the case n = 255, for a < 2°°° — rq there are two possible representations of a : F,, as a sequence of 255
bits, corresponding to I2LEBSP,55(a) and I2LEBSP,55(a + rg). This is a potential hazard, but it may or may not
be necessary to force use of the canonical representation I2LEBSPy55(a), depending on the context in which
the [un]packing operation is used. We therefore do not consider this to be part of the [un]packing operation
itself.

A.3.2.2 Range check

n—1 .
Let n : N* be a constant, and let a = Z,_O a; - 2" : N. Suppose we want to constrain a < ¢ for some constant

n—1

c= Zizoci%’ ¢ N.
Without loss of generality we can assume that ¢,,_; = 1, because if it were not then we would decrease n accordingly.

Note that since ¢ and ¢ are provided in binary representation, their bit length n is not limited by the field element
size. We do not assume that the bits a( _,,_; are already boolean-constrained.

_;(ci =0Va; =1)form € {0..n — 1}. Notice that for any m < n — 1 such that ¢,, = 0, we have
I1,, = I,, 1, and so it is only necessary to allocate separate variables for the II,, such that m < n — 1and ¢,,, = 1.
Furthermore if ¢,,_5 ¢ hast¢ > 0 trailing 1 bits, then we do not need to allocate variables for IT, ,_; because those
variables will not be used below.

Define II,, = H:H

More explicitly:
Letll,,_; =a,_1.
For i from n — 2 down to t,
- if¢; =0, thenlet IT; =11, , 4;
- if ¢; = 1, then constrain (I;;1) X (a;) = (IL,).

Then we constrain the a; as follows:

For i fromn — 1 down to 0,
- if ¢; = 0, constrain (1 —IL; 1 —a;) X (a;) = (0);

- if ¢; = 1, boolean-constrain a; as in § A.3.1.1 ‘Boolean constraints’ on p.136.

Note that the constraints corresponding to zero bits of c are in place of boolean constraints on bits of a;.

This costs n + k constraints, where k is the number of non-trailing 1 bitsin¢,,_o_¢.

138


https://zips.z.cash/protocol/sapling.pdf#cctrange

Theorem A.3.1. Correctness of a constraint system for range checks.

n—1 . n—1 .
Assumecy ,_, :B™ andec, |, = 1. Define A,, := > a;-2"andC,, =Y, ¢;-2'. Foranym € {0..n— 1},
A,, < C,, ifand only if the restriction of the above constraint system toi € {m..n — 1} is satisfied. Furthermore
the system at least boolean-constrains agy . ,_;.

Proof. Fori € {0..n — 1} such that ¢; = 1, the corresponding a; are unconditionally boolean-constrained. This
implies that the system constrains II; € B forall¢ € {0..n — 1}. Fori € {0..n — 1} such that ¢; = 0, the constraint
(1 =T, —a;) X (a;) = (0) constrains a; to be 0if IT;,; = 1, otherwise it constrains a; € B. So all of ag_,,_; are
at least boolean-constrained.

To prove the rest of the theorem we proceed by induction on decreasing m, i.e. taking successively longer prefixes
of the big-endian binary representations of « and c.

Base case m = n — 1: since ¢,,_; = 1, the constraint system has just one boolean constraint on a,,_;, which fulfils
the theorem since A,,_; < C,,_; is always satisfied.

Inductive case m < n — 1:

- If A, .1 > C,,11, then by the inductive hypothesis the constraint system must fail, which fulfils the theorem
regardless of the value of a,,,.

- If A, 11 < C,,.1 then by the inductive hypothesis the constraint system restricted toi € {m+1..n —1}

o n—1 n—1
succeeds. We have II,,, | = H,_ +1(ci =0Va;=1)= H,_ +1(ai >¢).

-IfA,;1 =Cni1 thenag; =c¢;forallie {m+1..n—1}andsoIl,,; = 1. Also 4,, < C,, if and only if
A < Cppy-
When ¢,, = 1, only a boolean constraint is added for a,,, which fulfils the theorem.
When ¢,, =0, a,, is constrained to be 0 which fulfils the theorem.

- IfA,,,1 <C,,, 1 thenit cannot be the case thata; > ¢; foralli € {m+1..n —1},so1l,,,; =0.
This implies that the constraint on a,, is always equivalent to a boolean constraint, which fulfils the
theorem because A4,,, < C,, must be true regardless of the value of a,,.

This covers all cases. O
Correctness of the full constraint system follows by taking m = 0 in the above theorem.

The algorithm in § A.3.3.2 ‘ctEdwards [deJcompression and validation’ on p.140 uses range checks with ¢ = rg —1
to validate ctEdwards compressed encodings. In that case n = 255 and k = 132, so the cost of each such range
check is 387 constraints.

Non-normative note: It is possible to optimize the computation of II; _,,_, further. Notice that II,,, is only used
when m is the index of the last bit of a run of 1 bits in ¢. So for each such run of 1 bits ¢,,, _,,,+ y_2 of length N — 1,

N-1
it is sufficient to compute an N-ary AND of a,,,  ,nynv_oandIl,, .y 1t R = H,_O X;. This can be computed in 3
constraints for any N; boolean-constrain the output R, and then add constraints

N-1 N-1
(N - Zi:o XZ-) X (inv) = (1—R) to enforce that Zi:o X, # N when R = 0;
N-1 N-1
(N - ZZ_:O Xi) x (R) = (0) to enforce that Ei:o X, =NwhenR=1.
N-1
where inv is witnessed as (N — Zi:o Xl-) ~1if R = 0 or is unconstrained otherwise. (Since N < rg, the sums cannot

overflow.)

In fact the last constraint is not needed in this context because it is sufficient to compute an upper bound on each
I1,, (i.e. it does not benefit a malicious prover to witness R = 1 when the result of the AND should be 0). So the
cost of computing II variables for an arbitrarily long run of 1 bits can be reduced to 2 constraints. For example, for
¢ = rg — 1 the overall cost would be reduced to 255 4+ 68 = 323 constraints.

These optimizations are not used in Sapling.

139


https://zips.z.cash/protocol/sapling.pdf#thmrangeconstraints

A.3.3 Elliptic curve operations

A.3.3.1 Checking that Affine-ctEdwards coordinates are on the curve

To check that (u, v) is a point on the ctEdwards curve, the Sapling circuit uses 4 constraints:
(W) X (u) = ()
) x () = (W)
(uu) X (vv) = (uuvv)
(aﬂ-uu—i—vv) X (1) = (1 + dJ-uuvv)

Non-normative note: The last two constraints can be combined into (dy-uu) X (w) = (ay-uu+vv—1). The
Sapling circuit does not use this optimization.

A.3.3.2 ctEdwards [de]lcompression and validation

Define DecompressValidate : CompressedCtEdwardsJubjub — AffineCtEdwardsJubjub as follows:

DecompressValidate(i, v) :
// Prover supplies the u-coordinate.
Letu: F,. .

/1 §A.3.3.1 ‘Checking that Affine-ctEdwards coordinates are on the curve’ on p.140.

Check that (u, v) is a point on the ctEdwards curve.
/1 §A.3.2.1 {Unjpacking modulo rg’ on p.137.
254 i . .
Unpack u to Z,L_:Oui - 2", equating @ with uy.
// §A.3.2.2 ‘Range check’ on p.138.
254 i
Check that Zizoui 22" <rg—1.
Return (u, v).
This costs 4 constraints for the curve equation check, 1 constraint for the unpacking, and 387 constraints for the

range check (as computed in § A.3.2.2 ‘Range check’ on p.138) for a total of 392 constraints. The cost of the range
check includes boolean-constraining uq 954

The same quadratic constraint program is used for compression and decompression.

Non-normative note: The point-on-curve check could be omitted if (u, v) were already known to be on the curve.
However, the Sapling circuit never omits it; this provides a consistency check on the elliptic curve arithmetic.

A.3.3.3 ctEdwards <> Montgomery conversion

Define CtEdwardsToMont : AffineCtEdwardsJubjub — AffineMontJubjub as follows:

CtEdwardsToMont(u, v) = (i Y a9 - (llfv N “) [1—v+#£0 and u # 0]

Define MontToCtEdwards : AffineMontJubjub — AffineCtEdwardsJubjub as follows:

MontToCtEdwards(z,y) = (*«—40964 . 57 ;;1) [t+1#0 and y # 0]

140


https://zips.z.cash/protocol/sapling.pdf#cctelliptic
https://zips.z.cash/protocol/sapling.pdf#cctedvalidate
https://zips.z.cash/protocol/sapling.pdf#ccteddecompressvalidate
https://zips.z.cash/protocol/sapling.pdf#cctconversion

Either of these conversions can be implemented by the same quadratic constraint program:

(v) x (u) = (V=096 - )
(x—i—l) X (v) = (m—l)
The above conversions should only be used if the input is guaranteed to be a point on the relevant curve. If that is
the case, the theorems below enumerate all exceptional inputs that may violate the side-conditions.
Theorem A.3.2. Exceptional points (ctEdwards — Montgomery).
Let (u,v) be an affine point on a ctEdwards curve E qwards(a,q)- Then the only points withu =0 or1 —v = 0 are

(0,1) = Oy, and (0, —1) of order2.

Proof. The curve equation is a-u” + v* = 1 + d-u*-v* with a # d (see [BBJLP2008, Definition 2.1]). By substituting
u = 0 we obtain v = £1, and by substituting v = 1 and using a # d we obtain u = 0. O

Theorem A.3.3. Exceptional points (Montgomery — ctEdwards).

Let (x,y) be an affine point on a Montgomery curve Eyony(a,p) over F, with parameters A and B such that A*> — 4 is
a nonsquare in F,, that is birationally equivalent to a ctEdwards curve. Then x + 1 # 0, and the only point (z,y)
withy = 0is (0,0) of order 2.

Proof. That the only point with y = 01is (0, 0) is proven by Theorem A.2.1 on p.136.

If £ +1 = 0, then subtituting 2 = —1 into the Montgomery curve equation gives B-y*> = z° + A-2° 42 = A—2. Soin
that case y*> = (A—2)/B. The right-hand-side is equal to the parameter d of a particular ctEdwards curve birationally
equivalent to the Montgomery curve (see [BL2017, section 4.3.5]). For all ctEdwards curves, d is nonsquare, so this
equation has no solutions for y, hence  + 1 # 0. O

(When the theorem is applied with Eyiona,5) = M defined in § A.2 ‘Elliptic curve background’ on p.135, the
ctEdwards curve referred to in the proof is an isomorphic rescaling of the Jubjub curve.)

A.3.3.4 Affine-Montgomery arithmetic

The incomplete affine-Montgomery addition formulae given in [BL2017, section 4.3.2] are:
T3 = BM[)\2 — AM — T — Ty

Y3 = (901 - 953)'/\ U
3»xf+2»AM~x1+l

ifr, ==z
) 1 2
where A\ = 3 f'BM'yl
Y2 " U1 otherwise.
To — Ty

The following theorem helps to determine when these incomplete addition formulae can be safely used:

Theorem A.3.4. Distinct-x theorem.

Let Q be a point of odd-prime order s on a Montgomery curve Ml = Eyiony(a,,.B,,) OverF,. . Letk, , be integers
in{—51 .. 5524\ {0}. Let P, = [k;] Q = (w;,y;) fori € {1..2}, with ky # +k,. Then the non-unified addition
constraints

(2 —21) X (N) = (v2— 1)
(Bud) X (A) = (Ays + 1 + 3+ 3)
(951 *953) X (A) = (l/3+y1)

implement the affine-Montgomery addition P, + P, = (z3,y3) for all such P, .

141


https://zips.z.cash/protocol/sapling.pdf#thmconversiontomontnoexcept
https://zips.z.cash/protocol/sapling.pdf#thmconversiontoedwardsnoexcept
https://zips.z.cash/protocol/sapling.pdf#cctmontarithmetic
https://zips.z.cash/protocol/sapling.pdf#thmdistinctx

Proof. The given constraints are equivalent to the Montgomery addition formulae under the side condition that
x1 # x9. (Note that neither P; can be the zero point since k; 5 # 0 (mod s).) Assume for a contradiction that
x1 = x9. Forany P; = [k;] Q, there can be only one other point — P, with the same z-coordinate. (This follows
from the fact that the curve equation determines +y as a function of .) But —P;, = [-1] [k;] Q = [-k;] Q. Since

k:{—25 .55} — [k] Q : Mis injective and k; 5 arein {—25% .. 551}, then k, = +k; (contradiction). O

The conditions of this theorem are called the distinct-x criterion.

In particular, if k; 5 are integers in {1.. #51 } then it is sufficient to require k, # k;, since that implies ky # £k;.

Affine-Montgomery doubling can be implemented as:
(2) x (2) = (a2)
(z—25) X (V) = (13+)

This doubling formula is valid when y # 0, which is the case when (z, y) is not the point (0, 0) (the only point of
order 2), as proven in Theorem A.2.1 on p.136.

A.3.3.5 Affine-ctEdwards arithmetic

Formulae for affine-ctEdwards addition are given in [BBJLP2008, section 6]. With a change of variable names to
match our convention, the formulae for (uy,v;) + (ug, vy) = (us,vs) are:

Uy Vg + VU

Uq =
3 1+dJ‘u1'U2‘V1'V2

Vi-Vg — Ap-Up-Ug

V3 =
1 —dy-uq-ug-vy-vy

We use an optimized implementation found by Daira Hopwood making use of an observation by Bernstein and
Lange in [BL2017, last paragraph of section 4.5.2]:

(u1—|—v1) X (VQ_CLJ'UQ) = (T)

(u1) X (v2) = (4)

(1) X (u2) = (B)

(dy-4) x (B) = (C)

(14C) x (u3) = (A+B)
(1-C) x (v3) = (T—A+ay-B)

The correctness of this implementation can be seen by expanding T’ — A + ay- B:

T—A+aypB=(u+v1) (va—ayup) —u-ve+agviu

=Vy-Vy —ap-Up-Up + Uy Vg — A3 V] Uy — Uy Vo + Ap-Vy Uy

V1-Vo — Qap-Up-Ug

142


https://zips.z.cash/protocol/sapling.pdf#cctedarithmetic

The above addition formulae are “unified’, that is, they can also be used for doubling. Affine-ctEdwards doubling
[2] (u,v) = (ug, v3) can also be implemented slightly more efficiently as:

(u+v) X (vfajyu) = (T)
u) X (v) = (A)
)

c
-C

-
S

>
@
@

(
(dy-
(1+C) x
(1

X (v3) = (T+ ay —1)-A)

This implementation is obtained by specializing the addition formulae to (u,v) = (uy,v;) = (us,v,) and observing
thatu-v=A=B.

A.3.3.6 Affine-ctEdwards nonsmall-order check

In order to avoid small-subgroup attacks, we check that certain points used in the circuit are not of small order. In
practice the Sapling circuit uses this in combination with a check that the coordinates are on the curve (§ A.3.3.1
‘Checking that Affine-ctEdwards coordinates are on the curve’ on p.140), so we combine the two operations.

The Jubjub curve has a large prime-order subgroup with a cofactor of 8. To check for a point P of order 8 or less,
the Sapling circuit doubles three times (as in § A.3.3.5 ‘Affine-ctEdwards arithmetic’ on p.142) and checks that the
resulting u-coordinate is not 0 (as in § A.3.1.4 ‘Nonzero constraints’ on p.137).

On a ctEdwards curve, only the zero point Oy, and the unique point of order 2 at (0, —1) have zero u-coordinate.
The point of order 2 cannot occur as the result of three doublings. So this u-coordinate check rejects only Oj.

The total cost, including the curve check, is4 4+ 3 - 5+ 1 = 20 constraints.
Note: This does not ensure that the point is in the prime-order subgroup.

Non-normative notes:

- It would have been sufficient to do two doublings rather than three, because the check that the u-coordinate
is nonzero would reject both Oj and the point of order 2.

- It is possible to reduce the cost to 8 constraints by eliminating the redundant constraint in the curve point
check (as mentioned in § A.3.3.1 ‘Checking that Affine-ctEdwards coordinates are on the curve’ on p.140);
merging the first doubling with the curve point check; and then optimizing the second doubling based on the
fact that we only need to check whether the resulting u-coordinate is zero. The Sapling circuit does not use
these optimizations.

A.3.3.7 Fixed-base Affine-ctEdwards scalar multiplication

If the base point B is fixed for a given scalar multiplication [k] B, we can fully precompute window tables for each
window position.

It is most efficient to use 3-bit fixed windows. Since the length of 7} is 252 bits, we need 84 windows.

83

Express k in base 8, i.e. k = »_k;-8".

=0
83 )
Then [k] B= ) _w(p, i, where wp ; 1, = [k;*8'] B.

=0

We precompute all of wp ; 4 fori € {0..83},5 € {0..7}.

143


https://zips.z.cash/protocol/sapling.pdf#cctednonsmallorder
https://zips.z.cash/protocol/sapling.pdf#cctfixedscalarmult

To look up a given window entry w(g ; s = (us, V), Wwhere s = 4-s5 + 2-51 + 50, we use:

(s1) X (s2) = (s8)
(30) X (— Ug*Sg + Uy~ Sg + Ug 51 — Ug + U Sg — U~ S1 + Uy~ Sy — Uy Sy — Ug*Sg
+Up-Sy — ULtSg — U8y +U1—U3‘5&+U3'51—U5'5&+U5'52+U7‘5&)
(Us—uo'3&+uo'32+uo'51—U0+U2'3&—U2'51 +U4'3&—U4'52—U6'3&)

(50) X (7 V0'5&+ V0’52 + Vo'Sl — Vo —+ V2'$& — V2'$1 —+ V4‘S& — V4'52 — VG'S&
+V1-8g — V1°8g — V181 + V) — V3-8 + V351 — V55 + V552 + V7'5&)
(Vs — Vg S + Vg Sg + Vg S] — Vg + VarSy — VarSy + VySg — V4rSg — VG'S&)

For a full-length (252-bit) scalar this costs 3 constraints for each of 84 window lookups, plus 6 constraints for each
of 83 ctEdwards additions (as in § A.3.3.5 ‘Affine-ctEdwards arithmetic’ on p.142), for a total of 750 constraints.

Fixed-base scalar multiplication is also used in two places with shorter scalars:

- §A.3.6 ‘Homomorphic Pedersen Commitment’ on p.148 uses 64 bits for the v input to ValueCommit>*"'"€ re-
quiring 22 windows at a cost of 3-22 — 1 4 6-21 = 191 constraints;

- §A.3.3.10 ‘Mixing Pedersen hash’ on p.147 uses 32 bits for the pos input to MixingPedersenHash, requiring 11
windows at a cost of 3-11 — 1 + 6-10 = 92 constraints.

None of these costs include the cost of boolean-constraining the scalar.

Non-normative notes:

- It would be more efficient to use arithmetic on the Montgomery curve, as in § A.3.3.9 Pedersen hash’ on
p.145. However since there are only three instances of fixed-base scalar multiplication in the Spend circuit
and two in the Output circuiti, the additional complexity was not considered justified for Sapling.

- For the multiplications with 64-bit and 32-bit scalars, the scalar is padded to a multiple of 3 bits with zeros.
This causes the computation of sy in the lookup for the most significant window to be optimized out, which is
where the “— 1" comes from in the above cost calculations. No further optimization is done for this lookup.

A.3.3.8 Variable-base Affine-ctEdwards scalar multiplication

When the base point B is not fixed, the method in the preceding section cannot be used. Instead we use a naive
double-and-add method.

250 .
Given k = Zizoki -2', we calculate R = [k] B using:

// Base; = [2'] B

let Base; = B

let Accy = k¢ ? Baseg : 0

let Accy = ko ? Baseg : 1

for i from 1 up to 250:
let Base; = [2] Base;_;
// select Base; or Oy depending on the bit &;
let Addend; =k, ? Base;' : 0
let Addend, = k; ? Base; : 1
let Acc; = Acc;_; + Addend,

let R = Accysyg.

7 A Pedersen commitment uses fixed-base scalar multiplication as a subcomponent.

144


https://zips.z.cash/protocol/sapling.pdf#cctvarscalarmult

This costs 5 constraints for each of 250 ctEdwards doublings, 6 constraints for each of 250 ctEdwards additions, and
2 constraints for each of 251 point selections, for a total of 3252 constraints.

Non-normative note: It would be more efficient to use 2-bit fixed windows, and/or to use arithmetic on the
Montgomery curve in a similar way to §A.3.3.9 Pedersen hash’ on p.145. However since there are only two
instances of variable-base scalar multiplication in the Spend circuit and one in the Output circuit, the additional
complexity was not considered justified for Sapling.

A.3.3.9 Pedersen hash

The specification of the Pedersen hashes used in Sapling is given in § 5.4.1.7 ‘Pedersen Hash Function’ onp.59. Itis
based on the scheme from [CvHP1991, section 5.2] -for which a tighter security reduction to the Discrete Logarithm
Problem was given in [BGG1995]- but tailored to allow several optimizations in the circuit implementation.

Pedersen hashes are the single most commonly used primitive in the Sapling circuits. MerkleDepth®*P""¢ pedersen
hash instances are used in the Spend circuit to check a Merkle path to the note commitment of the note being
spent. We also reuse the Pedersen hash implementation to construct the commitment scheme NoteCommit>*P"e,

This motivates considerable attention to optimizing this circuit implementation of this primitive, even at the cost of
complexity.

First, we use a windowed scalar multiplication algorithm with signed digits. Each 3-bit message chunk corresponds
to a window; the chunk is encoded as an integer from the set Digits = {—4 .. 4} \ {0}. This allows a more efficient
lookup of the window entry for each chunk than if the set {1 .. 8} had been used, because a point can be conditionally
negated using only a single constraint.

Next, we optimize the cost of point addition by allowing as many additions as possible to be performed on the
Montgomery curve. An incomplete Montgomery addition costs 3 constraints, in comparison with a ctEdwards
addition which costs 6 constraints.

However, we cannot do all additions on the Montgomery curve because the Montgomery addition is incomplete.
In order to be able to prove that exceptional cases do not occur, we need to ensure that the distinct-z criterion
from § A.3.3.4 ‘Affine-Montgomery arithmetic’ on p.141is met. This requires splitting the input into segments (each
using an independent generator), calculating an intermediate result for each segment, and then converting to the
ctEdwards curve and summing the intermediate results using ctEdwards addition.

Abstracting away the changes of curve, this calculation can be written as:

N
PedersenHashToPoint(D, M) = > [(M;)] Z(D, j)

j=1
where (-) and Z(D, j) are defined as in § 5.4.1.7 ‘Pedersen Hash Function’ on p.59.
We have to prove that:

- the Montgomery-to-ctEdwards conversions can be implemented without exceptional cases;

- the distinct-x criterion is met for all Montgomery additions within a segment.

The proof of Theorem 5.4.1 on p. 60 showed that all indices of addition inputs are in the range {— Tiz_l . sz_l F\ {0}

(r) *
Because the Z(D, j) (which are outputs of GroupHash” ) are all of prime order, and (M;) # 0 (mod ry), it is
guaranteed that all of the terms [(M;)] Z(D, j) to be converted to ctEdwards form are of prime order. From
Theorem A.3.3 on p. 141, we can infer that the conversions will not encounter exceptional cases.

We also need to show that the indices of addition inputs are all distinct disregarding sign.

145


https://zips.z.cash/protocol/sapling.pdf#cctpedersenhash

Theorem A.3.5. Concerning addition inputs in the Pedersen circuit.

For all disjoint nonempty subsets S and S of {1..¢}, allm € BP9 and all© € {~1,1}:

Zenc(mj) 2t 2 g. Zenc(mj/) gl

jes j'es’

Proof. Suppose for a contradiction that S, S’, m, © is a counterexample. Taking the multiplication by © on the right
hand side inside the summation, we have:

Zenc(mj) i e > e enc(my) - 9+ ('),
jes 'es
Define enc’ : {—1,1} x BE — {0..8}\ {4} as ency(m;) := 4 + 0 - enc(m;).
LetA=4- 2;124'(1'71) as in the proof of Theorem 5.4.1 on p. 60. By adding A to both sides, we get
Zenc'l(mj) %0l > 4. 9+U-b — Zenc'@(mj/) Lt 4 > 4. 9t ('~
j€S je{l..c)\S j'es’ je{l.. en\s’
where all of the enc’ (im;) and encg (m;/) are in {0..8} \ {4},

Each term on the left and on the right affects the single hex digit indexed by j and j' respectively. Since S and S’
are disjoint subsets of {1..c} and S is nonempty, SN ({1..c} \ S') is nonempty. Therefore the left hand side has at
least one hex digit not equal to 4 such that the corresponding right hand side digit is 4; contradiction. O

This implies that the terms in the Montgomery addition -as well as any intermediate results formed from adding a
distinct subset of terms- have distinct indices disregarding sign, hence distinct z-coordinates by Theorem A.3.4 on
p- 141. (We make no assumption about the order of additions.)

We now describe the subcircuit used to process each chunk, which contributes most of the constraint cost of the
hash. This subcircuit is used to perform a lookup of a Montgomery point in a 2-bit window table, conditionally
negate the result, and add it to an accumulator holding another Montgomery point.

Suppose that the bits of the chunk, [sg, s1, $5], are already boolean-constrained.
We aim to compute C = A+ [(1 —2-85) - (1 4+ 89+ 2 - 51)] P for some fixed base point P and accumulated sum A.

We first compute sg = sy & s1:
(s0) X (s1) = (s8)

Let (zy,,y;,) = [k] P for k € {1..4}. Define each coordinate of (xg,yr) = [1 + s9 + 2 - $1] P as a linear combination
Of S0, 81, and Sgc-

letxg =a1 + (xg — 1) - Sg+ (3 — 1) - 81 + (T4 + 21 — x5 — X3) - S5

letyr =91+ (Y2 —v1) so+ (Wa—y1) - s1+ Wat+ 91— Y2 —ys) - 5s
We implement the conditional negation as (2 yz) X (so) = (yr — ys). After substitution of yp, this becomes:

(2'(Z/1+(92—y1)'50+(y3—2/1)'31+(Z/4+Z/1—y2—y3)'5&)) X (32):
(14 (W2 —y1) - so+ (Y3 —y1) -1+ (Ya +y1 — Y2 — Y3) - 55 — Us)

146


https://zips.z.cash/protocol/sapling.pdf#thmpedersendistinctabsindices

Then we substitute x5 into the Montgomery addition constraints from § A.3.3.4 ‘Affine-Montgomery arithmetic’
on p. 141, as follows:

(5”1+(=’52*11)'30+(993*351)’31+(=’U4+$1 *$2*$3)'5&*1’A) X (A) = (.US*Z/A)
(Bu-A) X (N) = (Ay 424+ a1+ (32— 21) - 59+ (23 — 1) - 51+ (24 + 1 — 25 — 3) - 85 + 2¢)

—x

(za—2zc) X (A) = (Yo +ya)

(In the sapling-crypto implementation, linear combinations are first-class values, so these substitutions do not
need to be done “by hand”)

For the first addition in each segment, both sides are looked up and substituted into the Montgomery addition, so
the first lookup takes only 2 constraints.

When these hashes are used in the circuit, the first 6 bits of the input are fixed. For example, in the Merkle tree
hashes they represent the layer number. This would allow a precomputation for the first two windows, but that
optimization is not done in Sapling.

The cost of a Pedersen hash over ¢ bits (where ¢ includes the fixed bits) is as follows. The number of chunks is

¢ = ceiling (g) and the number of segments is n = ceiling (m :
The cost is then:

- 2-c constraints for the lookups;
- 3-(c — n) constraints for incomplete additions on the Montgomery curve;
- 2-n constraints for Montgomery-to-ctEdwards conversions;

- 6-(n — 1) constraints for ctEdwards additions;

for a total of 5-¢ + 5-n — 6 constraints. This does not include the cost of boolean-constraining inputs.

In particular,
. for the Merkle tree hashes ¢ = 516, so ¢ = 172, n = 3, and the cost is 869 constraints;

. when a Pedersen hash is used to implement part of a Pedersen commitment for NoteCommit>*"""8 (§5.4.7.2
‘Windowed Pedersen commitments’ on p.69), £ = 6+ £, +2-f; = 582, ¢ = 194, and n = 4, so the cost of the
hash alone is 984 constraints.

A.3.3.10 Mixing Pedersen hash

A mixing Pedersen hash is used to compute p from cm and pos in §4.14 ‘Note Commitments and Nullifiers’ on
p.42. It takes as input a Pedersen commitment P, and hashes it with another input z.

Let 7528 he as defined in §5.4.1.8 ‘Mixing Pedersen Hash Function’ on p.60.
We define MixingPedersenHash ¢ {0..7; — 1} x J — J by:

MixingPedersenHash(P, z) := P + [x] jSapling.

This costs 92 constraints for a scalar multiplication (§ A.3.3.7 Fixed-base Affine-ctEdwards scalar multiplication’
on p.143), and 6 constraints for a ctEdwards addition (§ A.3.3.5 ‘Affine-ctEdwards arithmetic’ on p.142), for a total
of 98 constraints.

147


https://zips.z.cash/protocol/sapling.pdf#cctmixinghash

A.3.4 Merkle path check

Checking each layer of a Merkle authentication path, as described in §4.8 ‘Merkle Path Validity’ on p. 36, requires
to:

- boolean-constrain the path bit specifying whether the previous node is a left or right child;

- conditionally swap the previous-layer and sibling hashes (as F, elements) depending on the path bit;
- unpack the left and right hash inputs to two sequences of 255 bits;

- compute the Merkle hash for this node.

The unpacking need not be canonical in the sense discussed in § A.3.2.1 TUn/packing modulo rg’ on p.137; that
is, it is not necessary to ensure that the left or right inputs to the hash represent integers in the range {0..rg — 1}.
Since the root of the Merkle tree is calculated outside the circuit using the canonical representations, and since the
Pedersen hashes are collision-resistant on arbitrary bit-sequence inputs, an attempt by an adversarial prover to
use a non-canonical input would result in the wrong root being calculated, and the overall path check would fail.

For each layer, the cost is 1 + 2-255 boolean constraints, 2 constraints for the conditional swap (implemented as
two selection constraints), and 869 constraints for the Merkle hash (§ A.3.3.9 ‘Pedersen hash’ on p.145), for a total of
1380 constraints.

Non-normative note: The conditional swap (ag,a;) — (cg, ¢;) could be implemented in only one constraint by
substituting ¢; = ay + a; — ¢( into the uses of ¢;. The Sapling circuit does not use this optimization.

A.3.5 Windowed Pedersen Commitment

We construct windowed Pedersen commitments by reusing the Pedersen hash implementation described in
§ A.3.3.9 Pedersen hash’ on p.145, and adding a randomized point:

() *
WindowedPedersenCommit,.(s) = PedersenHashToPoint(“Zcash_PH”, s) + [r] FindGroupHash’ ~ (“Zcash_PH”, “r”)

This can be implemented in:
- 5-¢+ 5-n — 6 constraints for the Pedersen hash applied to ¢ = 6 + length(s) bits, where ¢ = ceiling (g) and
— aili Y
n = ceiling (m)
- 750 constraints for the fixed-base scalar multiplication;
- 6 constraints for the final ctEdwards addition.
When WindowedPedersenCommit is used to instantiate NoteCommit>®™™"€, the cost of the Pedersen hash is 984 con-

straints as calculated in § A.3.3.9 ‘Pedersen hash’ on p.145, and so the total cost in that case is 1740 constraints. This
does not include the cost of boolean-constraining the input s or the randomness 7.

A.3.6 Homomorphic Pedersen Commitment

The windowed Pedersen commitments defined in the preceding section are highly efficient, but they do not
support the homomorphic property we need when instantiating ValueCommit.

148


https://zips.z.cash/protocol/sapling.pdf#cctmerklepath
https://zips.z.cash/protocol/sapling.pdf#cctwindowedcommit
https://zips.z.cash/protocol/sapling.pdf#ccthomomorphiccommit

In order to support this property, we also define homomorphic Pedersen commitments as follows:

= =
HomomorphicPedersenCommit>2P""¢( D, v) = [v] FindGroupHash” (D, “v”) + [rcv] FindGroupHash® (D, “r”)

rcv

In the case that we need for ValueCommit, v has 64 bitsi This value is given as a bit representation, which does not
need to be constrained equal to an integer.

ValueCommit can be implemented in:

- 750 constraints for the 252-bit fixed-base multiplication by rcv;
- 191 constraints for the 64-bit fixed-base multiplication by v;

. 6 constraints for the ctEdwards addition

for a total cost of 947 constraints. This does not include the cost to boolean-constrain the input v or randomness
rev.

A.3.7 BLAKE2s hashes

BLAKE?2s is defined in [ANWW2013]. Its main subcomponent is a “G function’, defined as follows:

G:{0..9} x {0..2%2-1}1 - {0.. 221}
G(a, be,d,x,y) = (a",b",c",d") where

= (a + b+ z) mod 2%

d =(dod)>>16
¢ = (c+d) mod 2*?
V =(bod)>>12
d" = (d +b +y) mod 2°?
d'=(d ®d")>38
¢ = (¢ +d") mod 2*
V=W ad)sT

The following table is used to determine which message words the z and y arguments to G are selected from:

oo=[0, 1, 2, 3, 4, 5, 6, 7, 8 9,10, 11, 12, 13, 14, 15]
oy =[14,10, 4, 8, 9,15 13, 6, 1,12, 0, 2,11, 7, 5, 3]
oo =[11, 8,12, 0, 5, 2,15 13,10, 14, 3, 6, 7, 1, 9, 4]
os=[ 7,9, 3, 1,13,12, 11,14, 2, 6, 5,10, 4, 0, 15, 8]
o,=19, 0, 5 7, 2 4,10, 15, 14, 1,11, 12, 6, 8, 3, 13]
os=[ 212, 6,10, 0,11, 8, 3, 4,13, 7, 5,15 14, 1, 9]
os=1[12, 5, 1,15 14,13, 4,10, 0, 7, 6, 3, 9, 2, 8, 11]
o, =[13,11, 7,14,12, 1, 3, 9, 5, 0,15 4, 8 6, 2, 10]
og=[ 6,15, 14, 9, 11, 3, 0, 8,12, 2,13, 7, 1, 4,10, 5]
ocg=1[10, 2, 8, 4, 7, 6, 1, 5,15, 11, 9, 14, 3,12, 13, 0]

8 It would be sufficient to use 51 bits, which accomodates the range {0.. MAX_MONEY}, but the Sapling circuit uses 64.

149


https://zips.z.cash/protocol/sapling.pdf#cctblake2s

The Initialization Vector is defined as:

IV : {0..2%2-1} .= [ 0x6A09E667, 0xBB67AES5, 0x3C6EF372, OxABAFF53A
0x510E527F, 0x9B05688C, 0x1F83D9AB, OX5BEOCD19 |

The full hash function applied to an 8-byte personalization string and a single 64-byte block, in sequential mode
with 32-byte output, can be expressed as follows.
Define BLAKE2s-256 : (p ¢ ]B%Y[g]) x (x s ]B%Y[M]) — BYP? as:

let PB : B2l = [32,0,1,1] || [0x00]*° || p

let [to,t1, fo, 1] 2 {0..2%2=1} = [0,0, 0, 0XFFFFFFFF, 0]

leth: {0..2°2— 1} = [ LEOS2IP4,(PBy; 4.;43) @ IV, forifrom 0 upto 7]

letm : {0..2%%— 1}[16 [ LEOS2IP35 (2. . 4.5 4 3) forifrom O upto15]

let mutable v : {0.. 23— 1} « R ||[IVy, IV}, Vo, Vs, to @ IV, £, @ Vs, fo @ Vg, f1 & IV ]

for r from 0 up to 9:

set (vg, V4, Vg, U12) < G(vg, vy, Vg, V1o, My o5 Mg, | )
set (vq, vs, Vg, V13)  G(vy, Vs, Vg, V13, Mo, s Mo, )
set (vg, Vg, V19, V14) < G (g, Vg, V10, V14, Mo, s Mo, )
set (vs, vy, V11, U15) < G(vs, V7, V171, V15, My o Mg, )
set (vo, vs, V10, V15) < G(vo, Vs, V10, V15, Mo, o0 Mg, )
set (v, vg, V11, V12) < G(v1, Vg, V11, V12, My 1o mar,u)
set (vy, U7, vg, V13)  G(vy, U7, Vg, Vi3, Mo, s mgr,lg)
set (vs, V4, Vg, V14) < G(v3, V4, Vg, V14, Mo, s mams)

return LEBS20SP,54(concaty ([ I2LEBSP35(h; @ v; @ v;,5) for i from 0 up to 71]))

In practice the message and output will be expressed as bit sequences. In the Sapling circuit, the personalization
string will be constant for each use.

Each 32-bit exclusive-or is implemented in 32 constraints, one for each bit position a & b = ¢ as in §A.3.1.5
‘Exclusive-or constraints’ on p.137.

Additions not involving a message word, i.e. (a 4 b) mod 2** = ¢, are implemented using 33 constraints and a 33-bit
=32

=31 .
equality check: constrain 33 boolean variables ¢; . 35, and then check Z (a; +b;) -2 Zi:o c; - 2"

Additions involving a message word, i.e. (a + b+ m) mod 2** = ¢, are implemented using 34 constraints and a 34-bit
=31 . =33 .
equality check: constrain 34 boolean variables ¢, 33, and then check Zi:O (a; +b; +m;)-2" = Z c; - 2"

=0

For each addition, only ¢, _3; are used subsequently.

The equality checks are batched; as many sets of 33 or 34 boolean variables as will fit in a I, field element are
equated together using one constraint. This allows 7 such checks per constraint.
Each G evaluation requires 262 constraints:

- 4-32 = 128 constraints for & operations;

- 2-33 = 66 constraints for 32-bit additions not involving message words (excluding equality checks);

- 2- 34 = 68 constraints for 32-bit additions involving message words (excluding equality checks).

150



The overall cost is 21006 constraints:

- 10-8-262 —4-2-32 = 20704 constraints for 80 G evaluations, excluding equality checks (the deduction of
4-2-32is because v is constant at the start of the first round, so in the first four calls to G, the parameters b
and d are constant, eliminating the constraints for the first two XORs in those four calls to G);

10-8-4
7

- ceiling ( ) = 46 constraints for equality checks;
- 832 = 256 constraints for final v; ® v, ;g operations (the h; words are constants so no additional constraints
are required to exclusive-or with them).

This cost includes boolean-constraining the hash output bits (done implicitly by the final & operations), but not the
message bits.

Non-normative notes:

- The equality checks could be eliminated entirely by substituting each check into a boolean constraint for ¢,
for instance, but this optimization is not done in Sapling.

- It should be clear that BLAKE2s is very expensive in the circuit compared to elliptic curve operations. This is
primarily because it is inefficient to use F, elements to represent single bits. However Pedersen hashes do
not have the necessary cryptographic propertles for the two cases where the Spend circuit uses BLAKE2s.
While it might be possible to use variants of functions with low circuit cost such as MiMC [AGRRT2017], it
was felt that they had not yet received sufficient cryptanalytic attention to confidently use them for Sapling.

151



A.4 The Sapling Spend circuit

The Sapling Spend statement is defined in §4.15.2 ‘Spend Statement (Sapling)’ on p.44.
The primary input is

(rtSapling . B[Ziﬂaeprlu‘f]

)
ov® : ValueCommit>®'"8 Output,
nfOId o BY[ZPRanSapIing/S]

° b)

rk ¢ SpendAuthSig>*"""& Public),

which is encoded as 8 I, elements (starting with the fixed element 1 required by Groth16):

[1,2(rk), V(rk), U(cv®™), V(cv™), LEBS2IP sopine (1t>*"8), LEBS2IP 4 (nf% 255, LEBS2IP, (nf¥ 54 955)]

Merkle

where nf3! = LEOS2BSP,, (nf*).
The auxiliary input is

Saplin Saplin
(path ZB[ZM:”“&E] [MerkleDepth>™"™|

pos : {0 . 2Merk|eDepthSa"“"g_ 1}
gq:d,

pkq ¢ J,

V0|d . {0 B 22\/3‘”&_1},

Sapling

rev®? s {0 20 —1},

old
cm™ ¢ ],
Sapling

Id ‘
rem®< ¢ {0.. 2%k — 1}
Sapling

s {0.. 25 —1},
ak : SpendAuthSig>*""™8 Public,

Saplin,
nsk ¢ {0.. 2% —1}).

)

)

Id

ValueCommit>*"8 Output and SpendAuthSig>*P"€.Public are of type J, so we have cv®?, cm®?, rk, gy, pkq, and ak that

represent Jubjub curve points. However,

(o]

- ev® will be constrained to an output of ValueCommit>*P'""&

. em® will be constrained to an output of NoteCommit>2P'"¢;

- rk will be constrained to [a] G>*""™8 + ak;
- pkq will be constrained to [ivk] g4

Id old
m

so cv®®, em®?, rk, and pky do not need to be explicitly checked to be on the curve.

In addition, nkx and p* used in Nullifier integrity are compressed representations of Jubjub curve points. TODO:
explain why these are implemented as § A.3.3.2 ‘ctEdwards [deJcompression and validation’ on p.140 even though
the statement spec doesn't explicitly say to do validation.

Therefore we have gy, ak, nk, and p that need to be constrained to valid Jubjub curve points as described in §A.3.3.2
‘ctEdwards [deJcompression and validation’ on p.140.

152


https://zips.z.cash/protocol/sapling.pdf#cctsaplingspend

In order to aid in comparing the implementation with the specification, we present the checks needed in the order
in which they are implemented in the sapling-crypto code:

Check Implements Cost Reference
ak is on the curve TODO: FIXME also | ak : SpendAuthSig>*™8 Public 4 §A.3.310np.140
decompressed below
ak is not small order Small order checks 16 §A.3.3.6 on p.143
Sapling Sapling
a2 Blbscaar oz {0.. 25 1} 252 §A.3.110np.136
o = [ax] g>Plne Spend authority 750 §A.3.3.7 on p.143
rk =o' + ak 6 §A.3.3.5 on p.142
inputize rk TODO: not ccteddecompress- | rk : SpendAuthSig®*"""& Public 3927 §A.3.3.20np.140
validate => wrong count
[eSapling] eSapIing
nskox 2 [Blfscir nsk : {0.. 2% —1} 252 | §A.3.110np.136
nk = [nskx] H>2P"E Nullifier integrity 750 §A.3.3.7 on p.143
ak* = repry(ak : J) Diversified address integrity 392 §A.3.3.20onp.140
nkx = repr;(nk) TODO: spec doesn't say | Nullifier integrity 392 §A.3.3.2 on p. 140
to validate nk since it's calculated
ivkx = [2LEBSPq5; (CRHi"k(a k,nk)) 1 | Diversified address integrity | 21006 | §A.3.7 onp.149
g4 is on the curve gq:Jd 4 §A.3.310onp.140
g4 is not small order Small order checks 16 §A.3.3.6 on p.143
pky = [ivk*] g4 Diversified address integrity 3252 §A.3.3.8 onp.144
v : plo4 v {0,251} 64 §A.3.110n p.136
[ZSapling] ZSapling
revs : Blfscr rev s {0.. 2% —1} 252 | §A.3.110np.136
v = VaIueCommitEc"v°'d) Value commitment integrity 947 §A.3.6 onp.148
inputize cv ?
[eSaplmg] /5oPTE
rcmx 5 Btscaler rcm ¢ {0.. 2%k —1} 252 §A311onp.136
cm = NoteCommit>2P"&(g, pky,v??) | Note commitment integrity 1740 | §A.3.50np.148
cm,, = Extract ) (cm) Merkle path validity 0
rt’ is the root of a Merkle tree with 32-1380 | §A.3.40onp.148
leaf cm,,, and authentication path
(path, posx)
posx = I2LEBSPMerkleDepthsapung(pos) 1 §A.3.210np.137
if v £ 0 then rt’ = rt>2Pline 1 §A.3.1.2 on p.137
inputize rt>*Pi" ?
o = MixingPedersenHash(cm®, pos) Nullifier integrity 98 § A.3.3.10 on p. 147
p*x = repr;(p) TODO: spec doesn't say to 392 §A.3.3.20onp.140
validate p since it's calculated
nfo'd = PRFMSPINE (o)) 21006 | §A.3.7 on p.149
pack nfd .. and nfSs; .55 into two | input encoding 2 §A.3.210onp.137

F,, inputs

153




1 This is implemented by taking the output of BLAKE2s-256 as a bit sequence and dropping the most significant
5 bits, not by converting to an integer and back to a bit sequence as literally specified.

Note: The implementation represents ax, nskx, ivkx, rcmx, rcvx, and v as bit sequences rather than integers. It
represents nf as a bit sequence rather than a byte sequence.

A.5 The Sapling Output circuit

The Sapling Output statement is defined in §4.15.3 ‘Output Statement (Sapling)’ on p.45.
The primary input is
(V™™ e ValueCommit>*"""€ Output,

Sapling
4
cm,, B[ Merkle]7

epk : J),
which is encoded as 6 I, elements (starting with the fixed element 1 required by Groth16):

[1,U(cv™™), V(cv™™), U(epk), V(epk), LEBS2IP sspins (cm,,) |

Merkle
The auxiliary input is
(gd : J7
pk*d . B[Z'U],
Vs {0 Qb 1},
Sapling
rev™ ¢ {0.. 25 —1},
Sapling

rem"™” {0 2% —1},
Sapling
esk : {0.. 25 —1})

ValueCommit>*""& Qutput is of type J, so we have cv™", epk, and g4 that represent Jubjub curve points. However,

ne

- " will be constrained to an output of ValueCommit>*""";

- epk will be constrained to [esk] g4

so cv"®" and epk do not need to be explicitly checked to be on the curve.

Therefore we have only g4 that needs to be constrained to a valid Jubjub curve point as described in §A.3.3.2
‘ctEdwards [deJcompression and validation’ on p.140.

Note: pkxq is not checked to be a valid compressed representation of a Jubjub curve point.

154


https://zips.z.cash/protocol/sapling.pdf#cctsaplingoutput

In order to aid in comparing the implementation with the specification, we present the checks needed in the order
in which they are implemented in the sapling-crypto code:

Check Implements Cost | Reference

v : pl64 vo9: {0,251} 64 | §A3.110np.136
revk ¢ Bl rev s {0.. 2% 1) 252 | §A.3.1.10np.136
cv = ValueCommit;2P"8(y°!) Value commitment integrity 947 | §A.3.6 onp.148
inputize cv ?

gxq = repry(gq < J) Note commitment integrity 392 | §A.3.3.20np.140
g4 is not small order Small order checks 16 | §A.3.3.6 onp.143
eskor : Blfcsr esk 2 {0.. 2% _1} 252 | §A.3.110n p.136
epk = [eskx] gg Ephemeral public key integrity | 3252 | §A.3.3.8 on p. 144
inputize epk ?

pkoky 2 B pkokg 2 Bl 256 | §A.3.110n p.136
remx < Bl rem ¢ 0. 25 1} 252 | §A.3.110n p.136
cm = NoteCommit>2P""&(g, pky,v*?) | Note commitment integrity 1740 | §A.3.50n p.148
pack inputs ?

Note: The implementation represents eskx, pkxy, rcmx, rcvk, and v as bit sequences rather than integers.

B Batching Optimizations

B.1 RedDSA batch validation

The reference validation algorithm for RedDSA signatures is defined in §5.4.6 ‘RedDSA and RedJubjub’ on p. 65.

Let the RedDSA parameters G (defining a subgroup G of order ¢, a cofactor hg, a group operation +, an additive
identity Og, a bit-length £, a representation function reprg, and an abstraction function abstg); Pg : G; £y ¢ N;

H: BY™ — By%/8): and the derived hash function H® : BY™ — I, be as defined in that section.

Implementations MAY alternatively use the optimized procedure described in this section to perform faster
validation of a batch of signatures, i.e. to determine whether all signatures in a batch are valid. Its input is a sequence
of N signature batch entries, each of which is a (validating key, message, signature) triple.

Let LEOS2BSP, LEOS2IP, and LEBS20SP be as defined in §5.2 Tntegers, Bit Sequences, and Endianness’ on p. 53.
Define RedDSA.BatchEntry := RedDSA.Public x RedDSA.Message x RedDSA.Signature.

155


https://zips.z.cash/protocol/sapling.pdf#batching
https://zips.z.cash/protocol/sapling.pdf#reddsabatchvalidate

Define RedDSA.BatchValidate : (entry, n_; : RedDSA.BatchEntry™) — B as:
Foreachje {0..N —1}:
Let (vk;, M;,0;) = entry;.
Let R; be the first ceiling ({ /8) bytes of o;, and let S; be the remaining ceiling (bitlength(rg)/8) bytes.
Let R, = abstg; (LEOS2BSP,, (R,)). and let S; = LEOS2IPg jengin(s, ) (S,).
Let vk; = LEBS20SP,_ (reprg (vk;)).
Let ¢; = H®(R; || vk, || M;).

Choose random z; : Fj_ & {1..2"%° — 1},

Return 1 if
- forallj € {0..N -1}, R; # L and S, <rG'and

- [hg] (— [Zj:}l(z] -S;) (mod rg }’P@ + Z [z 1R; + Z -¢; (mod rg)] ij) — O,

otherwise 0.

The z; values MUST be chosen independently of the signature batch entries.

The performance benefit of this approach arises partly from replacing the per-signature scalar multiplication of
the base Pg with one such multiplication per batch, and partly from using an efficient algorithm for multiscalar
multiplication such as Pippinger’s method [Bernstein2001] or the Bos-Coster method [deRo0ij1995], as explained
in [BDLSY2012, section 5].

Note: Spend authorization signatures (§ 5.4.6.1 ‘Spend Authorization Signature (Sapling)’ on p.68) and binding
signatures (§5.4.6.2 ‘Binding Signature (Sapling)’ on p.68) use different bases Pg. It is straightforward to adapt

the above procedure to handle multiple bases; there will be one — [Zj(zj -5

The benefit of this relative to using separate batches is that the multiscalar multiplication can be extended across a
larger batch.

;) (mod rG)} P term for each base P.

B.2 Grothl6 batch verification

The reference verification algorithm for Groth16 proofs is defined in § 5.4.9.2 ‘Groth16’ on p. 77. The batch verification
algorithm in this section applies techniques from [BFIJSV2010, section 4].

Let gg, rs, S%T Sgr);T Ps, , - 1s,and ég be as defined in §5.4.8.2 ‘BLS12-381" on p. 72.

Define MillerLoops : S{” x S{’ — S and FinalExpg : S — S to be the Miller loop and final exponentiation
respectively of the ég pairing computation, so that:

és(P, Q) = FinalExpg(MillerLoopg(P, Q))

where FinalExpg(R)= R’ for some fixed t.

Define Groth16g.Proof := S"* x S{* x s(*
A Grothl6g proof comprises a tuple (74, 75, 7¢) @ Groth16g.Proof.

Verification of a single Groth16g proof against an instance encoded as ag . 4 : I, [e+1) requires checking the equation

4
és(ma, mp) = és(mc, A) 'és<zi:0[ai] ‘Ili7F> Y

where A = [6] Ps,,T' = [7] Ps,. Y = [a-f] Ps,.,and ¥; = {3 ulw) o) +wy (r)i|7D§ fori € {0..¢} are elements of
the verification key, as described (with slightly different notation) in [Groth2016 section 3.2].

156


https://zips.z.cash/protocol/sapling.pdf#grothbatchverify

This can be written as:

R R R 14

és(ma, —mg) - €s(mc, A) - 65(22.:0[02‘] \I]ivr) Y =1s.
Raising to the power of random =z # 0 gives:

([ m—m)- ol 7o A)- 26X [ al] W, T) Y7 =1,

This justifies the following optimized procedure for performing faster verification of a batch of Groth16g proofs.
Implementations MAY use this procedure to determine whether all proofs in a batch are valid.

Define a type Groth16g.BatchEntry := Grothl6g.Proof x Groth1l6g.Primarylnput representing proof batch entries.
Define Grothl6g.BatchVerify : (entry, n_;: Groth16S.BatchEntry[N]) — Bas:
Foreachje {0..N —1}:
Let ((mj 4, ™., T,c)s Gj0..0) = entry,.

Choose random z; : F;_ <& {1.. 2128 _1}.

N-1

Let ACCUmAB = Hj:() MiIIerLoopS([zj] T As _ﬂ-j,B)-
N-1

Let Accumy = Z 0 (2] m.c
= )

N-1

Let Accump; = Z (2j-a;;) (mod rg) fori e {0..£}.

Jj=0
N-1

Let Accumy = Z]-:o z; (mod rg).
Return 1 if

¢
FinalExpg <AccumAB - MillerLoopg (AccumA, A) . MiIIerLoopS(Zizo[/-\ccumpyi] U, I‘)) yAceumy 1g,

otherwise 0.

The z; values MUST be chosen independently of the proof batch entries.

The performance benefit of this approach arises from computing two of the three Miller loops, and the final
exponentation, per batch instead of per proof. For the multiplications by z;, an efficient algorithm for multiscalar
multiplication such as Pippinger’s method [Bernstein2001] or the Bos-Coster method [deRo0ij1995] may be used.

Note: Spend proofs (of the statement in §4.15.2 ‘Spend Statement (Sapling)’ on p.44) and output proofs (of the
statement in §4.15.3 ‘Output Statement (Sapling)’ on p. 45) use different verification keys, with different parameters
AT, Y, and ¥, ,. It is straightforward to adapt the above procedure to handle multiple verification keys; the
accumulator variables Accum, Accumr ;, and Accumy- are duplicated, with one term in the verification equation
for each variable, while Accum 4 5 is shared.

Neglecting multiplications in ng) and F, , and other trivial operations, the cost of batched verification is therefore

- for each proof: the cost of decoding the proof representation to the form Groth16g.Proof, which requires
three point decompressions and three subgroup checks (two for SY)* and one for Sg)*);

- for each successfully decoded proof: a Miller loop; and a 128-bit scalar multiplication by z; in S(f);

- for each verification key: two Miller loops; an exponentiation in ng): a multiscalar multiplication in SY) with
N 128-bit scalars to compute Accumya; and a multiscalar multiplication in SgT) with £ 4+ 1 255-bit scalars to
¢
compute Z,:O [Accump ;] ¥;;

- one final exponentiation.

157



List of Theorems and Lemmata

Theorem 54.1 The encoding function (-) is injective

dSapHng

Theorem 5.4.2 Uncommitte

is not in the range of NoteCommit

Sapling

Lemma 543

Let P = (u,v) € J”). Then (u, —v) ¢ J©

)

Theorem 544 U is injective on J"

Theorem A.2.1

(0,0) is the only point with y = 0 on certain Montgomery curves

Theorem A.3.1

Correctness of a constraint system for range checks

Theorem A.3.2

Exceptional points (ctEdwards — Montgomery)

Theorem A.3.3

Exceptional points (Montgomery — ctEdwards)

Theorem A.3.4 Distinct-z theorem

Theorem A.3.5

Concerning addition inputs in the Pedersen circuit

Index

account, 35

Action transfer, 17

activation block, 18, 76

activation block height, 84

ALL CAPS, 7

anchor, 15, 16,17, 31, 32, 43, 44

authenticated one-time symmetric encryption, 20,
21,62

Bech32, 30, 78, 79, 115

bellman, 77, 83

best valid block chain, 15, 47, 49, 121
bilateral consensus rule change, 84

17z

binding signature scheme, 65, 68

158

block chain, 8, 9, 13, 14, 15, 16, 18, 38, 39, 42, 47, 49, 51,

block chain branch, 87
block chain reorganization, 47, 49, 84
block hash, 18

block target spacing, 93
block timestamp, 90
1,111, 12

block version number, 90,
Blossom, 84, 109-111

Bulletproofs, 41

Canopy, 18, 84, 106-108
chain value pool balance (Sapling), 39, 106
chain value pool balance (Sprout), 38, 106
chunk (of a Pedersen hash input), 59
loz 1619122
coins (in Zerocash), 8
collision resistance, 19, 20, 27, 53, 56, 57, 59-62, 68, 99,

110, 115, 121, 145


https://zips.z.cash/protocol/sapling.pdf#theorems
https://zips.z.cash/protocol/sapling.pdf#index

complete twisted Edwards affine coordinates, 69, 135,

136,142, 143

complete twisted Edwards compressed encoding, 74,
81, 82,139

complete twisted Edwards elliptic curve, 11, 35, 64, 73,

74-75,110, 135, 140, 141, 143, 145
consensus rule change, 84
coordinate extractor, 26, 106, 119
CryptoNote, 9, 123

ctEdwards, 11, 73

Decentralized Anonymous Payment scheme, 1, 7
Decisional Diffie-Hellman Problem, 27, 58, 100
default diversified payment address, 30, 76
Discrete Logarithm Problem, 27, 59, 145
distinct-x criterion, 119, 142, 145

diversified base, 19, 30, 35, 48, 57

ephemeral private key, 33, 35, 48, 89
ephemeral public key, 21, 46, 47, 101
expanded spending key, 12
extended spending key, 12, 109

family of group hashes into a subgroup, 26
full node, 119
full validator, 15, 18, 91, 119

group hash, 26, 75

Halo 2, 104
halving, 84, 96

hash value (of a Merkle tree node), 17, 36, 37, 56

159

Heartwood, 84, 106, 108, 109

Hierarchical Deterministic Wallet, 12
homomorphic Pedersen commitment, 70, 149
Human-Readable Part, 81, 82

index (of a Merkle tree node), 17, 36
internal node (of a Merkle tree), 37

JoinSplit circuit, 83

119,120
JoinSplit proof, 35
JoinSplit signature, 23, 37, 38, 123
JoinSplit signing key, 34

layer (of a Merkle tree), 17, 36, 37, 45
leaf node (of a Merkle tree), 36, 37
libsnark (Zcash fork), 76, 83,103
linear combination, 135, 137

monomorphism, 24, 109
Montgomery affine coordinates, 135, 136, 141, 142

147,158



MUST, 7, 15-18, 32, 33, 35, 38, 39, 45, 46, 48-50, 65, 67,

157

104, 114

network, 18, 76
network upgrade, 18, 76, 84, 111
node (of a Merkle tree), 17, 36, 37

non-canonical (compressed encoding of a point), 26,

non-canonical (encoding of a field element), 33, 37,
104, 148

nonmalleability (of proofs), 28
nonmalleability (of signatures), 23

note traceability set, 9, 116
NUS, 104-106

nullifier deriving key, 8, 14, 42, 49
nullifier private key, 12
nullifier set, 15, 18, 42, 47, 49

one-time (authenticated symmetric encryption), 20
one-time (signature scheme), 22

open (a commitment), 24

OPTIONAL, 7, 34

Orchard, 104

outgoing cipher key, 33, 48, 62, 89

outgoing ciphertext, 48, 62, 117

118-120

160

packing, 137
paying key, 13, 35
payment address, 79, 105

148
Pedersen value commitment, 16, 17, 98
PLONK, 104
positioned note, 14, 42, 49, 99

proof batch entry, 157
proving key (for a zk-SNARK), 28, 29, 83
proving system (preprocessing zk-SNARK), 1, 7, 8, 17,

102

Quadratic Arithmetic Program, 76, 77, 135

randomized Spend validating key, 117
randomizer, 23, 24, 41

Rank 1 Constraint System, 135
receiving key, 9, 12, 120
RECOMMENDED, 7, 30, 67, 79
represented pairing, 27, 70, 72, 116
represented subgroup, 26, 27

root (of a Merkle tree), 17, 36, 37, 88-91

RPC byte order, 18, 83

Sapling balancing value, 39, 40, 115
secp256kl, 22

segment (of a Pedersen hash input), 59
serial numbers (in Zerocash), 8



SHA-256d, 55, 90, 92, 93
SHA-512, 55, 65,107

shielded transfer, 8

SHOULD, 7, 34, 35, 40, 58, 76, 87, 91
SHOULD NOT, 7, 111

SIGHASH algorithm, 37, 38

SIGHASH transaction hash, 32, 37, 40, 41, 56, 85, 97,
114,122

signature scheme with key monomorphism, 24, 68,
109

signature scheme with re-randomizable keys, 23, 29,
41,68

slanted text, 7

spend authorization address key, 41

spend authorization private key, 41

spend authorization randomizer, 42, 112

102, 112, 117
spend authorization signature scheme, 41, 65, 68
Spend authorizing key, 12, 30, 61

synthetic blinding factor, 41

target threshold, 90, 93, 94
TAZ, 18
Testnet, 18, 55, 79-82, 86, 87, 91, 92, 94, 96, 97, 107, 111,

120,122

161

transaction binding validating key, 40, 86
transaction fee, 18, 86, 107
transaction value pool (Sapling), 39

transmitted note ciphertext, 49, 50
3,35, 48, 49,

transmitted note ciphertext (Sapling),
50,52, 89

Uniform Random String, 26, 27, 115
unpacking, 137
unspent transaction output set, 17

valid block chain, 15, 18, 99
valid Equihash solution, 91, 92

validating key (for a signature scheme), 22, 23-24, 31,
32, 38,41, 65,67, 68,74,79, 85, 86, 89,108,

115-117, 119, 155
value commitment, 8, 17, 23, 32, 33, 39-41, 48, 89

value commitment scheme, 40
verifying key (for a zk-SNARK), 28,

version group ID, 86, 87, 106

N

9,83

weak PRF, 102
windowed, 69
windowed Pedersen commitment, 148

zatoshi, 13, 18, 39, 54, 55, 86, 95, 96



	Title page
	Contents
	1 Introduction
	1.1 Caution
	1.2 High-level Overview

	2 Notation
	3 Concepts
	3.1 Payment Addresses and Keys
	3.2 Notes
	3.2.1 Note Plaintexts and Memo Fields

	3.3 The Block Chain
	3.4 Transactions and Treestates
	3.5 JoinSplit Transfers and Descriptions
	3.6 Spend Transfers, Output Transfers, and their Descriptions
	3.7 Note Commitment Trees
	3.8 Nullifier Sets
	3.9 Block Subsidy and Founders' Reward
	3.10 Coinbase Transactions
	3.11 Mainnet and Testnet

	4 Abstract Protocol
	4.1 Abstract Cryptographic Schemes
	4.1.1 Hash Functions
	4.1.2 Pseudo Random Functions
	4.1.3 Symmetric Encryption
	4.1.4 Key Agreement
	4.1.5 Key Derivation
	4.1.6 Signature
	4.1.6.1 Signature with Re-Randomizable Keys
	4.1.6.2 Signature with Signing Key to Validating Key Monomorphism

	4.1.7 Commitment
	4.1.8 Represented Group
	4.1.9 Coordinate Extractor
	4.1.10 Group Hash
	4.1.11 Represented Pairing
	4.1.12 Zero-Knowledge Proving System

	4.2 Key Components
	4.2.1 Sprout Key Components
	4.2.2 Sapling Key Components

	4.3 JoinSplit Descriptions
	4.4 Spend Descriptions
	4.5 Output Descriptions
	4.6 Sending Notes
	4.6.1 Sending Notes (Sprout)
	4.6.2 Sending Notes (Sapling)

	4.7 Dummy Notes
	4.7.1 Dummy Notes (Sprout)
	4.7.2 Dummy Notes (Sapling)

	4.8 Merkle Path Validity
	4.9 SIGHASH Transaction Hashing
	4.10 Non-malleability (Sprout)
	4.11 Balance (Sprout)
	4.12 Balance and Binding Signature (Sapling)
	4.13 Spend Authorization Signature (Sapling)
	4.14 Note Commitments and Nullifiers
	4.15 Zk-SNARK Statements
	4.15.1 JoinSplit Statement (Sprout)
	4.15.2 Spend Statement (Sapling)
	4.15.3 Output Statement (Sapling)

	4.16 In-band secret distribution (Sprout)
	4.16.1 Encryption (Sprout)
	4.16.2 Decryption (Sprout)

	4.17 In-band secret distribution (Sapling)
	4.17.1 Encryption (Sapling)
	4.17.2 Decryption using an Incoming Viewing Key (Sapling)
	4.17.3 Decryption using a Full Viewing Key (Sapling)

	4.18 Block Chain Scanning (Sprout)
	4.19 Block Chain Scanning (Sapling)

	5 Concrete Protocol
	5.1 Caution
	5.2 Integers, Bit Sequences, and Endianness
	5.3 Constants
	5.4 Concrete Cryptographic Schemes
	5.4.1 Hash Functions
	5.4.1.1 SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions
	5.4.1.2 BLAKE2 Hash Functions
	5.4.1.3 Merkle Tree Hash Function
	5.4.1.4 hSig Hash Function
	5.4.1.5 CRHivk Hash Function
	5.4.1.6 DiversifyHashSapling Hash Function
	5.4.1.7 Pedersen Hash Function
	5.4.1.8 Mixing Pedersen Hash Function
	5.4.1.9 Equihash Generator

	5.4.2 Pseudo Random Functions
	5.4.3 Symmetric Encryption
	5.4.4 Key Agreement And Derivation
	5.4.4.1 Sprout Key Agreement
	5.4.4.2 Sprout Key Derivation
	5.4.4.3 Sapling Key Agreement
	5.4.4.4 Sapling Key Derivation

	5.4.5 Ed25519
	5.4.6 RedDSA and RedJubjub
	5.4.6.1 Spend Authorization Signature (Sapling)
	5.4.6.2 Binding Signature (Sapling)

	5.4.7 Commitment schemes
	5.4.7.1 Sprout Note Commitments
	5.4.7.2 Windowed Pedersen commitments
	5.4.7.3 Homomorphic Pedersen commitments (Sapling)

	5.4.8 Represented Groups and Pairings
	5.4.8.1 BN-254
	5.4.8.2 BLS12-381
	5.4.8.3 Jubjub
	5.4.8.4 Coordinate Extractor for Jubjub
	5.4.8.5 Group Hash into Jubjub

	5.4.9 Zero-Knowledge Proving Systems
	5.4.9.1 BCTV14
	5.4.9.2 Groth16


	5.5 Encodings of Note Plaintexts and Memo Fields
	5.6 Encodings of Addresses and Keys
	5.6.1 Transparent Encodings
	5.6.1.1 Transparent Addresses
	5.6.1.2 Transparent Private Keys

	5.6.2 Sprout Encodings
	5.6.2.1 Sprout Payment Addresses
	5.6.2.2 Sprout Incoming Viewing Keys
	5.6.2.3 Sprout Spending Keys

	5.6.3 Sapling Encodings
	5.6.3.1 Sapling Payment Addresses
	5.6.3.2 Sapling Incoming Viewing Keys
	5.6.3.3 Sapling Full Viewing Keys
	5.6.3.4 Sapling Spending Keys


	5.7 BCTV14 zk-SNARK Parameters
	5.8 Groth16 zk-SNARK Parameters
	5.9 Randomness Beacon

	6 Network Upgrades
	7 Consensus Changes from Bitcoin
	7.1 Transaction Encoding and Consensus
	7.2 JoinSplit Description Encoding and Consensus
	7.3 Spend Description Encoding and Consensus
	7.4 Output Description Encoding and Consensus
	7.5 Block Header Encoding and Consensus
	7.6 Proof of Work
	7.6.1 Equihash
	7.6.2 Difficulty filter
	7.6.3 Difficulty adjustment
	7.6.4 nBits conversion
	7.6.5 Definition of Work

	7.7 Calculation of Block Subsidy and Founders' Reward
	7.8 Payment of Founders' Reward
	7.9 Changes to the Script System
	7.10 Bitcoin Improvement Proposals

	8 Differences from the Zerocash paper
	8.1 Transaction Structure
	8.2 Memo Fields
	8.3 Unification of Mints and Pours
	8.4 Faerie Gold attack and fix
	8.5 Internal hash collision attack and fix
	8.6 Changes to PRF inputs and truncation
	8.7 In-band secret distribution
	8.8 Omission in Zerocash security proof
	8.9 Miscellaneous

	9 Acknowledgements
	10 Change History
	11 References
	Appendices
	A Circuit Design
	A.1 Quadratic Constraint Programs
	A.2 Elliptic curve background
	A.3 Circuit Components
	A.3.1 Operations on individual bits
	A.3.1.1 Boolean constraints
	A.3.1.2 Conditional equality
	A.3.1.3 Selection constraints
	A.3.1.4 Nonzero constraints
	A.3.1.5 Exclusive-or constraints

	A.3.2 Operations on multiple bits
	A.3.2.1 [Un]packing modulo rS
	A.3.2.2 Range check

	A.3.3 Elliptic curve operations
	A.3.3.1 Checking that Affine-ctEdwards coordinates are on the curve
	A.3.3.2 ctEdwards [de]compression and validation
	A.3.3.3 ctEdwards ↔ Montgomery conversion
	A.3.3.4 Affine-Montgomery arithmetic
	A.3.3.5 Affine-ctEdwards arithmetic
	A.3.3.6 Affine-ctEdwards nonsmall-order check
	A.3.3.7 Fixed-base Affine-ctEdwards scalar multiplication
	A.3.3.8 Variable-base Affine-ctEdwards scalar multiplication
	A.3.3.9 Pedersen hash
	A.3.3.10 Mixing Pedersen hash

	A.3.4 Merkle path check
	A.3.5 Windowed Pedersen Commitment
	A.3.6 Homomorphic Pedersen Commitment
	A.3.7 BLAKE2s hashes

	A.4 The Sapling Spend circuit
	A.5 The Sapling Output circuit

	B Batching Optimizations
	B.1 RedDSA batch validation
	B.2 Groth16 batch verification

	List of Theorems and Lemmata
	Index

