
Zcash Protocol Speci�cation
Version 2021.1.19 [Sprout]

Daira Hopwood†

Sean Bowe† — Taylor Hornby† — Nathan Wilcox†

March 17, 2021

Abstract. Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash, with
security �xes and improvements to performance and functionality. It bridges the existing transparent
payment scheme used by Bitcoin with a shielded payment scheme secured by zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKs). It attempted to address the problem of mining
centralization by use of the Equihash memory-hard proof-of-work algorithm.
This speci�cation de�nes the Zcash consensus protocol as it was at launch, and explains its differences
from Zerocash and Bitcoin. It is a historical document and no longer speci�es the current Zcash
consensus protocol.

Keywords: anonymity, applications, cryptographic protocols, electronic commerce and payment,
�nancial privacy, proof of work, zero knowledge.

Contents 1

1 Introduction 5
1.1 Caution . 5
1.2 High-level Overview . 5

2 Notation 7

3 Concepts 9
3.1 Payment Addresses and Keys . 9
3.2 Notes . 9

3.2.1 Note Plaintexts and Memo Fields . 10
3.3 The Block Chain . 10
3.4 Transactions and Treestates . 11
3.5 JoinSplit Transfers and Descriptions . 11
3.6 Note Commitment Trees . 12
3.7 Nulli�er Sets . 12
3.8 Block Subsidy and Founders’ Reward . 13
3.9 Coinbase Transactions . 13
3.10 Mainnet and Testnet . 13

† Electric Coin Company

1

4 Abstract Protocol 14
4.1 Abstract Cryptographic Schemes . 14

4.1.1 Hash Functions . 14
4.1.2 Pseudo Random Functions . 14
4.1.3 Symmetric Encryption . 14
4.1.4 Key Agreement . 15
4.1.5 Key Derivation . 15
4.1.6 Signature . 16
4.1.7 Commitment . 17
4.1.8 Represented Group . 17
4.1.9 Represented Pairing . 18
4.1.10 Zero-Knowledge Proving System . 18

4.2 Key Components . 19
4.3 JoinSplit Descriptions . 19
4.4 Sending Notes . 21
4.5 Dummy Notes . 21
4.6 Merkle Path Validity . 22
4.7 SIGHASH Transaction Hashing . 22
4.8 Non-malleability . 23
4.9 Balance . 23
4.10 Note Commitments and Nulli�ers . 24
4.11 Zk-SNARK Statements . 25

4.11.1 JoinSplit Statement . 25
4.12 In-band secret distribution . 26

4.12.1 Encryption . 26
4.12.2 Decryption . 26

4.13 Block Chain Scanning . 27

5 Concrete Protocol 28
5.1 Caution . 28
5.2 Integers, Bit Sequences, and Endianness . 28
5.3 Constants . 28
5.4 Concrete Cryptographic Schemes . 29

5.4.1 Hash Functions . 29
5.4.1.1 SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions 29
5.4.1.2 BLAKE2b Hash Function . 30
5.4.1.3 Merkle Tree Hash Function . 30
5.4.1.4 hSig Hash Function . 30
5.4.1.5 Equihash Generator . 31

5.4.2 Pseudo Random Functions . 31
5.4.3 Symmetric Encryption . 32
5.4.4 Key Agreement And Derivation . 32

5.4.4.1 Sprout Key Agreement . 32
5.4.4.2 Sprout Key Derivation . 32

5.4.5 Ed25519 . 33

2

5.4.6 Commitment schemes . 34
5.4.6.1 Sprout Note Commitments . 34

5.4.7 Represented Groups and Pairings . 35
5.4.7.1 BN-254 . 35

5.4.8 Zero-Knowledge Proving Systems . 36
5.4.8.1 BCTV14 . 36

5.5 Encodings of Note Plaintexts and Memo Fields . 37
5.6 Encodings of Addresses and Keys . 38

5.6.1 Transparent Encodings . 38
5.6.1.1 Transparent Addresses . 38
5.6.1.2 Transparent Private Keys . 39

5.6.2 Sprout Encodings . 39
5.6.2.1 Sprout Payment Addresses . 39
5.6.2.2 Sprout Incoming Viewing Keys . 39
5.6.2.3 Sprout Spending Keys . 40

5.7 BCTV14 zk-SNARK Parameters . 40

6 Network Upgrades 40

7 Consensus Changes from Bitcoin 41
7.1 Transaction Encoding and Consensus . 41
7.2 JoinSplit Description Encoding and Consensus . 43
7.3 Block Header Encoding and Consensus . 44
7.4 Proof of Work . 46

7.4.1 Equihash . 46
7.4.2 Dif�culty �lter . 47
7.4.3 Dif�culty adjustment . 47
7.4.4 nBits conversion . 48
7.4.5 De�nition of Work . 48

7.5 Calculation of Block Subsidy and Founders’ Reward . 49
7.6 Payment of Founders’ Reward . 49
7.7 Changes to the Script System . 51
7.8 Bitcoin Improvement Proposals . 51

8 Differences from the Zerocash paper 51
8.1 Transaction Structure . 51
8.2 Memo Fields . 51
8.3 Uni�cation of Mints and Pours . 52
8.4 Faerie Gold attack and �x . 52
8.5 Internal hash collision attack and �x . 53
8.6 Changes to PRF inputs and truncation . 53
8.7 In-band secret distribution . 54
8.8 Omission in Zerocash security proof . 55
8.9 Miscellaneous . 56

9 Acknowledgements 56

3

10 Change History 57

11 References 70

Index 76

4

1 Introduction #introduction

Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash [BCGGMTV2014], with
security �xes and improvements to performance and functionality. It bridges the existing transparent payment
scheme used by Bitcoin [Nakamoto2008] with a shielded payment scheme secured by zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKs).

Changes from the original Zerocash are explained in § 8 ‘Differences from the Zerocash paper’ on p. 51, and high-
lighted in magenta throughout the document.

Technical terms for concepts that play an important rôle in Zcash are written in slanted text . Italics are used for
emphasis and for references between sections of the document.

The key words MUST, MUST NOT, SHOULD, and SHOULD NOT in this document are to be interpreted as described
in [RFC-2119] when they appear in ALL CAPS. These words may also appear in this document in lower case as plain
English words, absent their normative meanings.

This speci�cation is structured as follows:

• Notation — de�nitions of notation used throughout the document;

• Concepts — the principal abstractions needed to understand the protocol;

• Abstract Protocol — a high-level description of the protocol in terms of ideal cryptographic components;

• Concrete Protocol — how the functions and encodings of the abstract protocol are instantiated;

• Consensus Changes from Bitcoin — how Zcash differs from Bitcoin at the consensus layer, including the
Proof of Work;

• Differences from the Zerocash protocol — a summary of changes from the protocol in [BCGGMTV2014].

1.1 Caution #caution

Zcash security depends on consensus. Should a program interacting with the Zcash network diverge from con-
sensus, its security will be weakened or destroyed. The cause of the divergence doesn’t matter: it could be a bug
in your program, it could be an error in this documentation which you implemented as described, or it could be
that you do everything right but other software on the network behaves unexpectedly. The speci�c cause will not
matter to the users of your software whose wealth is lost.

Having said that, a speci�cation of intended behaviour is essential for security analysis, understanding of the
protocol, and maintenance of Zcash and related software. If you �nd any mistake in this speci�cation, please �le
an issue at https://github.com/zcash/zips/issues or contact <security@z.cash>.

1.2 High-level Overview #overview

The following overview is intended to give a concise summary of the ideas behind the protocol, for an audience
already familiar with block chain-based cryptocurrencies such as Bitcoin. It is imprecise in some aspects and is
not part of the normative protocol speci�cation.

5

https://zips.z.cash/protocol/sprout.pdf#introduction
https://zips.z.cash/protocol/sprout.pdf#caution
https://github.com/zcash/zips/issues
https://zips.z.cash/protocol/sprout.pdf#overview

Value in Zcash is either transparent or shielded . Transfers of transparent value work essentially as in Bitcoin and
have the same privacy properties. Shielded value is carried by notes 1, which specify an amount and a paying key .
The paying key is part of a shielded payment address , which is a destination to which notes can be sent. As in
Bitcoin, this is associated with a private key that can be used to spend notes sent to the address; in Zcash this is
called a spending key .

To each note there is cryptographically associated a note commitment . Once the transaction creating a note has
been mined, the note is associated with a �xed note position in a tree of note commitments , and with a nulli�er 1

unique to that note . Computing the nulli�er requires the associated private spending key . It is infeasible to correlate
the note commitment or note position with the corresponding nulli�er without knowledge of at least this spending
key . An unspent valid note , at a given point on the block chain, is one for which the note commitment has been
publically revealed on the block chain prior to that point, but the nulli�er has not.

A transaction can contain transparent inputs, outputs, and scripts, which all work as in Bitcoin [Bitcoin-Protocol].
It also can include a sequence of zero or more JoinSplit descriptions . Each of these describes a JoinSplit transfer 2

which takes in a transparent value and up to two input notes , and produces a transparent value and up to two
output notes .

The nulli�ers of the input notes are revealed (preventing them from being spent again) and the commitments
of the output notes are revealed (allowing them to be spent in future). Each JoinSplit description also includes
a computationally sound zk-SNARK proof, which proves that all of the following hold except with insigni�cant
probability:

• The input and output values balance (individually for each JoinSplit transfer).

• For each input note of nonzero value, some revealed note commitment exists for that note .

• The prover knew the private spending keys of the input notes .

• The nulli�ers and note commitments are computed correctly.

• The private spending keys of the input notes are cryptographically linked to a signature over the whole
transaction, in such a way that the transaction cannot be modi�ed by a party who did not know these private
keys .

• Each output note is generated in such a way that it is infeasible to cause its nulli�er to collide with the nulli�er
of any other note .

Outside the zk-SNARK , it is also checked that the nulli�ers for the input notes had not already been revealed (i.e.
they had not already been spent).

A shielded payment address includes two public keys : a paying key matching that of notes sent to the address,
and a transmission key for a “key-private” asymmetric encryption scheme. Key-private means that ciphertexts do
not reveal information about which key they were encrypted to, except to a holder of the corresponding private
key , which in this context is called the receiving key . This facility is used to communicate encrypted output notes
on the block chain to their intended recipient, who can use the receiving key to scan the block chain for notes
addressed to them and then decrypt those notes .

The basis of the privacy properties of Zcash is that when a note is spent, the spender only proves that some
commitment for it had been revealed, without revealing which one. This implies that a spent note cannot be linked
to the transaction in which it was created. That is, from an adversary’s point of view the set of possibilities for a
given note input to a transaction —its note traceability set— includes all previous notes that the adversary does
not control or know to have been spent.3 This contrasts with other proposals for private payment systems, such
as CoinJoin [Bitcoin-CoinJoin] or CryptoNote [vanSaberh2014], that are based on mixing of a limited number of
transactions and that therefore have smaller note traceability sets .

1 In Zerocash [BCGGMTV2014], notes were called “coins”, and nulli�ers were called “serial numbers”.
2 JoinSplit transfers in Zcash generalize “Mint ” and “Pour ” transactions in Zerocash; see § 8.1 ‘Transaction Structure’ on p. 51 for differences.
3 We make this claim only for fully shielded transactions . It does not exclude the possibility that an adversary may use data present in

the cleartext of a transaction such as the number of inputs and outputs, or metadata-based heuristics such as timing, to make proba-
bilistic inferences about transaction linkage. For consequences of this in the case of partially shielded transactions , see [Peterson2017],
[Quesnelle2017], and [KYMM2018].

6

The nulli�ers are necessary to prevent double-spending: each note on the block chain only has one valid nulli�er ,
and so attempting to spend a note twice would reveal the nulli�er twice, which would cause the second transaction
to be rejected.

2 Notation #notation

B means the type of bit values, i.e. {0, 1}. BYY means the type of byte values, i.e. {0 .. 255}.

N means the type of nonnegative integers. N+ means the type of positive integers. Z means the type of integers.
Q means the type of rationals.

𝑥 ◦
◦ 𝑇 is used to specify that 𝑥 has type 𝑇 . A cartesian product type is denoted by 𝑆 × 𝑇 , and a function type by

𝑆 → 𝑇 . An argument to a function can determine other argument or result types.

The type of a randomized algorithm is denoted by 𝑆 →R 𝑇 . The domain of a randomized algorithm may be (),
indicating that it requires no arguments. Given 𝑓 ◦

◦ 𝑆 →R 𝑇 and 𝑠 ◦
◦ 𝑆, sampling a variable 𝑥 ◦

◦ 𝑇 from the output of 𝑓
applied to 𝑠 is denoted by 𝑥 ←R 𝑓(𝑠).

Initial arguments to a function or randomized algorithm may be written as subscripts, e.g. if 𝑥 ◦
◦ 𝑋 , 𝑦 ◦

◦ 𝑌 , and
𝑓 ◦

◦ 𝑋 × 𝑌 → 𝑍 , then an invocation of 𝑓(𝑥, 𝑦) can also be written 𝑓𝑥(𝑦).

{𝑥 ◦
◦ 𝑇 | 𝑝𝑥}means the subset of 𝑥 from 𝑇 for which 𝑝𝑥 (a boolean expression depending on 𝑥) holds.

𝑇 ⊆ 𝑈 indicates that 𝑇 is an inclusive subset or subtype of 𝑈 .

𝑆 ∪ 𝑇 means the set union of 𝑆 and 𝑇 .

𝑆 ∩ 𝑇 means the set intersection of 𝑆 and 𝑇 , i.e. {𝑥 ◦
◦ 𝑆 | 𝑥 ∈ 𝑇}.

𝑇 [ℓ], where 𝑇 is a type and ℓ is an integer, means the type of sequences of length ℓ with elements in 𝑇 . For example,
B[ℓ] means the set of sequences of ℓ bits, and BYY[𝑘] means the set of sequences of 𝑘 bytes.

BYY[N] means the type of byte sequences of arbitrary length.

length(𝑆) means the length of (number of elements in) 𝑆.

0x followed by a string of monospace hexadecimal digits means the corresponding integer converted from hexadec-
imal.

“...” means the given string represented as a sequence of bytes in US-ASCII. For example, “abc” represents the
byte sequence [0x61, 0x62, 0x63].

[0]ℓ means the sequence of ℓ zero bits.

𝑎..𝑏, used as a subscript, means the sequence of values with indices 𝑎 through 𝑏 inclusive. For example, anew
pk,1..Nnew

means the sequence [anew
pk,1, anew

pk,2, ... anew
pk,Nnew]. (For consistency with the notation in [BCGGMTV2014] and in [BK2016],

this speci�cation uses 1-based indexing and inclusive ranges, notwithstanding the compelling arguments to the
contrary made in [EWD-831].)

{𝑎 .. 𝑏}means the set or type of integers from 𝑎 through 𝑏 inclusive.

[[𝑓(𝑥) for 𝑥 from 𝑎 up to 𝑏]] means the sequence formed by evaluating 𝑓 on each integer from 𝑎 to 𝑏 inclusive, in
ascending order. Similarly, [[𝑓(𝑥) for 𝑥 from 𝑎 down to 𝑏]] means the sequence formed by evaluating 𝑓 on each
integer from 𝑎 to 𝑏 inclusive, in descending order.

𝑎 || 𝑏 means the concatenation of sequences 𝑎 then 𝑏.

concatB(𝑆) means the sequence of bits obtained by concatenating the elements of 𝑆 viewed as bit sequences. If the
elements of 𝑆 are byte sequences, they are converted to bit sequences with the most significant bit of each byte
�rst.

sorted(𝑆) means the sequence formed by sorting the elements of 𝑆.

F𝑛 means the �nite �eld with 𝑛 elements, and F*
𝑛 means its group under multiplication (which excludes 0).

7

https://zips.z.cash/protocol/sprout.pdf#notation

Where there is a need to make the distinction, we denote the unique representative of 𝑎 ◦
◦ F𝑛 in the range {0 .. 𝑛− 1}

(or the unique representative of 𝑎 ◦
◦ F*

𝑛 in the range {1 .. 𝑛− 1}) as 𝑎 mod 𝑛. Conversely, we denote the element of F𝑛

corresponding to an integer 𝑘 ◦
◦ Z as 𝑘 (mod 𝑛). We also use the latter notation in the context of an equality 𝑘 = 𝑘′

(mod 𝑛) as shorthand for 𝑘 mod 𝑛 = 𝑘′ mod 𝑛, and similarly 𝑘 ̸= 𝑘′ (mod 𝑛) as shorthand for 𝑘 mod 𝑛 ̸= 𝑘′ mod 𝑛.
(When referring to constants such as 0 and 1 it is usually not necessary to make the distinction between �eld
elements and their representatives, since the meaning is normally clear from context.)

F𝑛[𝑧] means the ring of polynomials over 𝑧 with coef�cients in F𝑛.

𝑎 + 𝑏 means the sum of 𝑎 and 𝑏. This may refer to addition of integers, rationals, �nite �eld elements, or group
elements (see § 4.1.8 ‘Represented Group’ on p. 17) according to context.

−𝑎 means the value of the appropriate integer, rational, �nite �eld, or group type such that (−𝑎) + 𝑎 = 0 (or when 𝑎
is an element of a group G, (−𝑎) + 𝑎 = 𝒪G), and 𝑎− 𝑏 means 𝑎 + (−𝑏).

𝑎 · 𝑏 means the product of multiplying 𝑎 and 𝑏. This may refer to multiplication of integers, rationals, or �nite �eld
elements according to context (this notation is not used for group elements).

𝑎/𝑏, also written 𝑎

𝑏
, means the value of the appropriate integer, rational, or �nite �eld type such that (𝑎/𝑏) · 𝑏 = 𝑎.

𝑎 mod 𝑞, for 𝑎 ◦
◦ N and 𝑞 ◦

◦ N+, means the remainder on dividing 𝑎 by 𝑞. (This usage does not con�ict with the notation
above for the unique representative of a �eld element.)

𝑎 ⊕ 𝑏 means the bitwise-exclusive-or of 𝑎 and 𝑏, and 𝑎 î 𝑏 means the bitwise-and of 𝑎 and 𝑏. These are de�ned
on integers (which include bits and bytes), or elementwise on equal-length sequences of integers, according to
context.

N∑︁
𝑖=1

𝑎𝑖 means the sum of 𝑎1..N .
N∏︁

𝑖=1
𝑎𝑖 means the product of 𝑎1..N .

N⨁︁
𝑖=1

𝑎𝑖 means the bitwise exclusive-or of 𝑎1..N .

When 𝑁 = 0 these yield the appropriate neutral element, i.e.
∑︀0

𝑖=1
𝑎𝑖 = 0,

∏︀0

𝑖=1
𝑎𝑖 = 1, and

⨁︀0

𝑖=1
𝑎𝑖 = 0 or the

all-zero bit sequence of length given by the type of 𝑎.

𝑎𝑏, for 𝑎 an integer or �nite �eld element and 𝑏 ◦
◦ Z, means the result of raising 𝑎 to the exponent 𝑏, i.e.

𝑎𝑏 :=

⎧⎪⎨⎪⎩
∏︀𝑏

𝑖=1
𝑎, if 𝑏 ≥ 0∏︀−𝑏

𝑖=1
1
𝑎
, otherwise.

The [𝑘] 𝑃 notation for scalar multiplication in a group is de�ned in § 4.1.8 ‘Represented Group’ on p. 17.

The convention of af�xing ⋆ to a variable name is used for variables that denote bit-sequence representations of
group elements.

The binary relations <, ≤, =, ≥, and > have their conventional meanings on integers and rationals, and are de�ned
lexicographically on sequences of integers.

floor(𝑥) means the largest integer ≤ 𝑥. ceiling (𝑥) means the smallest integer ≥ 𝑥.

bitlength(𝑥), for 𝑥 ◦
◦ N, means the smallest integer ℓ such that 2ℓ > 𝑥.

The symbol ⊥ is used to indicate unavailable information, or a failed decryption or validity check.

The following integer constants will be instantiated in § 5.3 ‘Constants’ on p. 28:

MerkleDepthSprout, ℓSprout
Merkle, Nold, Nnew, ℓvalue, ℓhSig, ℓSprout

PRF , ℓrcm, ℓSeed, ℓask
, ℓSprout
ϕ , MAX_MONEY, SlowStartInterval,

HalvingInterval, MaxBlockSubsidy, NumFounderAddresses, PoWLimit, PoWAveragingWindow, PoWMedianBlockSpan,
PoWDampingFactor, and PoWTargetSpacing.

The rational constants FoundersFraction, PoWMaxAdjustDown, and PoWMaxAdjustUp, and the bit sequence constant

UncommittedSprout ◦
◦ B[ℓSprout

Merkle], will also be de�ned in that section.

8

3 Concepts #concepts

3.1 Payment Addresses and Keys #addressesandkeys

Users who wish to receive shielded payments in the Zcash protocol must have a shielded payment address , which
is generated from a spending key .

The following diagram depicts the relations between key components. Arrows point from a component to any
other component(s) that can be derived from it. Double lines indicate that the same component is used in multiple
abstractions.

The receiving key skenc, incoming viewing key ivk = (apk, skenc), and shielded payment address addrpk = (apk, pkenc)
are derived from the spending key ask, as described in § 4.2 ‘Key Components’ on p. 19.

The composition of shielded payment addresses , incoming viewing keys , and spending keys is a cryptographic
protocol detail that should not normally be exposed to users. However, user-visible operations should be provided
to obtain a shielded payment address or incoming viewing key from a spending key .

Users can accept payment from multiple parties with a single shielded payment address and the fact that these
payments are destined to the same payee is not revealed on the block chain, even to the paying parties. However if
two parties collude to compare a shielded payment address they can trivially determine they are the same. In the
case that a payee wishes to prevent this they should create a distinct shielded payment address for each payer.

Note: It is conventional in cryptography to call the key used to encrypt a message in an asymmetric encryption
scheme a “public key ”. However, the public key used as the transmission key component of an address (pkenc) need
not be publically distributed; it has the same distribution as the shielded payment address itself. As mentioned
above, limiting the distribution of the shielded payment address is important for some use cases. This also helps
to reduce reliance of the overall protocol on the security of the cryptosystem used for note encryption (see
§ 4.12 ‘In-band secret distribution’ on p. 26), since an adversary would have to know pkenc in order to exploit a
hypothetical weakness in that cryptosystem.

3.2 Notes #notes

A note (denoted n) is a tuple (apk, v, ρ, rcm). It represents that a value v is spendable by the recipient who holds the
spending key ask corresponding to apk, as described in the previous section.

Let MAX_MONEY and ℓSprout
PRF be as de�ned in § 5.3 ‘Constants’ on p. 28.

Let NoteCommitSprout be as de�ned in § 5.4.6.1 ‘Sprout Note Commitments’ on p. 34.

9

https://zips.z.cash/protocol/sprout.pdf#concepts
https://zips.z.cash/protocol/sprout.pdf#addressesandkeys
https://zips.z.cash/protocol/sprout.pdf#notes

A Sprout note is a tuple (apk, v, ρ, rcm), where:

• apk
◦
◦ B[ℓSprout

PRF] is the paying key of the recipient’s shielded payment address ;

• v ◦
◦ {0 .. MAX_MONEY} is an integer representing the value of the note in zatoshi (1 ZEC = 108 zatoshi);

• ρ ◦
◦ B[ℓSprout

PRF] is used as input to PRFnfSprout
ask

to derive the nulli�er of the note ;

• rcm ◦
◦ NoteCommitSprout.Trapdoor is a random commitment trapdoor as de�ned in § 4.1.7 ‘Commitment’ on

p. 17.

Let NoteSprout be the type of a Sprout note , i.e.

NoteSprout := B[ℓSprout
PRF] × {0 .. MAX_MONEY} × B[ℓSprout

PRF] × NoteCommitSprout.Trapdoor.

Creation of new notes is described in § 4.4 ‘Sending Notes’ on p. 21. When notes are sent, only a commitment (see
§ 4.1.7 ‘Commitment’ on p. 17) to the above values is disclosed publically, and added to a data structure called the
note commitment tree . This allows the value and recipient to be kept private, while the commitment is used by the
zk-SNARK proof when the note is spent, to check that it exists on the block chain.

A Sprout note commitment on a note n = (apk, v, ρ, rcm) is computed as

NoteCommitmentSprout(n) = NoteCommitSprout
rcm (apk, v, ρ),

where NoteCommitSprout is instantiated in § 5.4.6.1 ‘Sprout Note Commitments’ on p. 34.

The nulli�er of a note is denoted nf .

A nulli�er for a Sprout note is derived from the ρ value and the recipient’s spending key ask.

The nulli�er computation uses a Pseudo Random Function (see § 4.1.2 ‘Pseudo Random Functions’ on p. 14), as
described in § 4.10 ‘Note Commitments and Nullifiers’ on p. 24.

A note is spent by proving knowledge of (ρ, ask) in zero knowledge while publically disclosing the note ’s nulli�er
nf , allowing nf to be used to prevent double-spending.

3.2.1 Note Plaintexts and Memo Fields #noteptconcept

Transmitted notes are stored on the block chain in encrypted form, together with a representation of the note
commitment cm.

The note plaintexts in each JoinSplit description are encrypted to the respective transmission keys pknew
enc,1..Nnew .

Each Sprout note plaintext (denoted np) consists of

(leadByte ◦
◦ BYY, v ◦

◦ {0 .. 2ℓvalue−1}, ρ ◦
◦ B[ℓSprout

PRF], rcm ◦
◦ NoteCommitSprout.Trapdoor, memo ◦

◦ BYY[512]).

memo represents a 512-byte memo �eld associated with this note . The usage of the memo �eld is by agreement
between the sender and recipient of the note .

Encodings are given in § 5.5 ‘Encodings of Note Plaintexts and Memo Fields’ on p. 37. The result of encryption
forms part of a transmitted note(s) ciphertext . For further details, see § 4.12 ‘In-band secret distribution’ on p. 26.

3.3 The Block Chain #blockchain

At a given point in time, each full validator is aware of a set of candidate blocks . These form a tree rooted at the
genesis block , where each node in the tree refers to its parent via the hashPrevBlock block header �eld (see § 7.3
‘Block Header Encoding and Consensus’ on p. 44).

10

https://zips.z.cash/protocol/sprout.pdf#noteptconcept
https://zips.z.cash/protocol/sprout.pdf#blockchain

A path from the root toward the leaves of the tree consisting of a sequence of one or more valid blocks consistent
with consensus rules, is called a valid block chain.

Each block in a block chain has a block height . The block height of the genesis block is 0, and the block height of
each subsequent block in the block chain increments by 1.

In order to choose the best valid block chain in its view of the overall block tree, a node sums the work, as de�ned
in § 7.4.5 ‘Definition of Work’ on p. 48, of all blocks in each valid block chain, and considers the valid block chain
with greatest total work to be best. To break ties between leaf blocks , a node will prefer the block that it received
�rst.

The consensus protocol is designed to ensure that for any given block height , the vast majority of nodes should
eventually agree on their best valid block chain up to that height.

3.4 Transactions and Treestates #transactions

Each block contains one or more transactions .

Transparent inputs to a transaction insert value into a transparent transaction value pool associated with the
transaction, and transparent outputs remove value from this pool. As in Bitcoin, the remaining value in the pool is
available to miners as a fee.

Consensus rule: The remaining value in the transparent transaction value pool MUST be nonnegative.

To each transaction there is associated an initial treestate . A treestate consists of:

• a note commitment tree (§ 3.6 ‘Note Commitment Trees’ on p. 12);

• a nulli�er set (§ 3.7 ‘Nullifier Sets’ on p. 12).

Validation state associated with transparent inputs and outputs, such as the UTXO (Unspent Transaction Output)
set, is not described in this document; it is used in essentially the same way as in Bitcoin.

An anchor is a Merkle tree root of a note commitment tree . It uniquely identi�es a note commitment tree state
given the assumed security properties of the Merkle tree’s hash function. Since the nulli�er set is always updated
together with the note commitment tree , this also identi�es a particular state of the associated nulli�er set .

In a given block chain, treestates are chained as follows:

• The input treestate of the �rst block is the empty treestate .

• The input treestate of the �rst transaction of a block is the �nal treestate of the immediately preceding block .

• The input treestate of each subsequent transaction in a block is the output treestate of the immediately
preceding transaction.

• The �nal treestate of a block is the output treestate of its last transaction.

JoinSplit descriptions also have interstitial input and output treestates , explained in the following section.

3.5 JoinSplit Transfers and Descriptions #joinsplit

A JoinSplit description is data included in a transaction that describes a JoinSplit transfer , i.e. a shielded value
transfer. This kind of value transfer is the primary Zcash-speci�c operation performed by transactions .

A JoinSplit transfer spends Nold notes nold
1..Nold and transparent input vold

pub, and creates Nnew notes nnew
1..Nnew and trans-

parent output vnew
pub . It is associated with a JoinSplit statement instance (§ 4.11.1 ‘JoinSplit Statement’ on p. 25), for

which it provides a zk-SNARK proof .

Each transaction has a sequence of JoinSplit descriptions.

11

https://zips.z.cash/protocol/sprout.pdf#transactions
https://zips.z.cash/protocol/sprout.pdf#joinsplit

The total vnew
pub value adds to, and the total vold

pub value subtracts from the transparent transaction value pool of the
containing transaction.

The anchor of each JoinSplit description in a transaction refers to a Sprout treestate .

For each of the Nold shielded inputs , a nulli�er is revealed. This allows detection of double-spends as described in
§ 3.7 ‘Nullifier Sets’ on p. 12.

For each JoinSplit description in a transaction, an interstitial output treestate is constructed which adds the note
commitments and nulli�ers speci�ed in that JoinSplit description to the input treestate referred to by its anchor .
This interstitial output treestate is available for use as the anchor of subsequent JoinSplit descriptions in the same
transaction. In general, therefore, the set of interstitial treestates associated with a transaction forms a tree in which
the parent of each node is determined by its anchor .

Interstitial treestates are necessary because when a transaction is constructed, it is not known where it will
eventually appear in a mined block . Therefore the anchors that it uses must be independent of its eventual position.

Consensus rules:

• The input and output values of each JoinSplit transfer MUST balance exactly.

• For the �rst JoinSplit description of a transaction, the anchor MUST be the output Sprout treestate of a
previous block .

• The anchor of each JoinSplit description in a transaction MUST refer to either some earlier block ’s �nal
Sprout treestate , or to the interstitial output treestate of any prior JoinSplit description in the same transaction.

3.6 Note Commitment Trees #merkletree

A note commitment tree is an incremental Merkle tree of �xed depth used to store note commitments that JoinSplit
transfers produce. Just as the unspent transaction output set (UTXO set) used in Bitcoin, it is used to express the
existence of value and the capability to spend it. However, unlike the UTXO set, it is not the job of this tree to
protect against double-spending, as it is append-only.

A root of a note commitment tree is associated with each treestate (§ 3.4 ‘Transactions and Treestates’ on p. 11).

Each node in the incremental Merkle tree is associated with a hash value of size ℓSprout
Merkle bits. The layer numbered ℎ,

counting from layer 0 at the root , has 2ℎ nodes with indices 0 to 2ℎ − 1 inclusive. The hash value associated with
the node at index 𝑖 in layer ℎ is denoted Mh

𝑖 .

The index of a note’s commitment at the leafmost layer (MerkleDepthSprout) is called its note position.

3.7 Nulli�er Sets #nulli�erset

Each full validator maintains a nulli�er set logically associated with each treestate . As valid transactions containing
JoinSplit transfers are processed, the nulli�ers revealed in JoinSplit descriptions are inserted into the nulli�er
set associated with the new treestate . Nulli�ers are enforced to be unique within a valid block chain, in order to
prevent double-spends.

12

https://zips.z.cash/protocol/sprout.pdf#merkletree
https://zips.z.cash/protocol/sprout.pdf#nullifierset

Consensus rule: A nulli�er MUST NOT repeat either within a transaction, or across transactions in a valid block
chain.

3.8 Block Subsidy and Founders’ Reward #subsidyconcepts

Like Bitcoin, Zcash creates currency when blocks are mined. The value created on mining a block is called the
block subsidy .

The block subsidy is composed of a miner subsidy and a Founders’ Reward .

As in Bitcoin, the miner of a block also receives transaction fees .

The calculations of the block subsidy , miner subsidy , and Founders’ Reward depend on the block height , as de�ned
in § 3.3 ‘The Block Chain’ on p. 10.

The calculations are described in § 7.5 ‘Calculation of Block Subsidy and Founders’ Reward’ on p. 49.

3.9 Coinbase Transactions #coinbasetransactions

The �rst (and only the �rst) transaction in a block is a coinbase transaction, which collects and spends any miner
subsidy and transaction fees paid by transactions included in this block .

As described in § 7.6 ‘Payment of Founders’ Reward’ on p. 49, the coinbase transaction MUST also pay the Founders’
Reward .

3.10 Mainnet and Testnet #networks

The production Zcash network , which supports the ZEC token, is called Mainnet . Governance of its protocol is
by agreement between the Electric Coin Company and the Zcash Foundation [ECCZF2019]. Subject to errors and
omissions, each version of this document intends to describe some version (or planned version) of that agreed
protocol.

All block hashes given in this section are in RPC byte order (that is, byte-reversed relative to the normal order for a
SHA-256 hash).

Mainnet genesis block : 00040fe8ec8471911baa1db1266ea15dd06b4a8a5c453883c000b031973dce08

Mainnet Canopy activation block : 00000000002038016f976744c369dce7419fca30e7171dfac703af5e5f7ad1d4

There is also a public test network called Testnet . It supports a TAZ token which is intended to have no monetary
value. By convention, Testnet activates network upgrades (as described in § 6 ‘Network Upgrades’ on p. 40) before
Mainnet , in order to allow for errors or ambiguities in their speci�cation and implementation to be discovered.
The Testnet block chain is subject to being rolled back to a prior block at any time.

Testnet genesis block : 05a60a92d99d85997cce3b87616c089f6124d7342af37106edc76126334a2c38

Testnet Canopy activation block : 01a4d7c6aada30c87762c1bf33fff5df7266b1fd7616bfdb5227fa59bd79e7a2

We call the smallest units of currency (on either network) zatoshi .

On Mainnet , 1 ZEC = 108 zatoshi . On Testnet , 1 TAZ = 108 zatoshi .

Other networks using variants of the Zcash protocol may exist, but are not described by this speci�cation.

13

https://zips.z.cash/protocol/sprout.pdf#subsidyconcepts
https://zips.z.cash/protocol/sprout.pdf#coinbasetransactions
https://zips.z.cash/protocol/sprout.pdf#networks

4 Abstract Protocol #abstractprotocol

4.1 Abstract Cryptographic Schemes #abstractschemes

4.1.1 Hash Functions #abstracthashes

Let MerkleDepthSprout, ℓSprout
Merkle, ℓSeed, ℓSprout

PRF , ℓhSig, and Nold be as de�ned in § 5.3 ‘Constants’ on p. 28.

MerkleCRH
◦
◦ B[ℓSprout

Merkle] × B[ℓSprout
Merkle] → B[ℓSprout

Merkle] is a collision-resistant hash function used in § 4.6 ‘Merkle Path Validity’
on p. 22. It is instantiated in § 5.4.1.3 ‘Merkle Tree Hash Function’ on p. 30.

hSigCRH ◦
◦ B[ℓSeed] × B[ℓSprout

PRF][Nold] × JoinSplitSig.Public → B[ℓhSig] is a collision-resistant hash function used in § 4.3
‘JoinSplit Descriptions’ on p. 19. It is instantiated in § 5.4.1.4 ‘hSig Hash Function’ on p. 30.

EquihashGen ◦
◦ (𝑛 ◦

◦ N+) × N+ × BYY[N] × N+ → B[𝑛] is another hash function, used in § 7.4.1 ‘Equihash’ on p. 46 to
generate input to the Equihash solver. The �rst two arguments, representing the Equihash parameters 𝑛 and 𝑘, are
written subscripted. It is instantiated in § 5.4.1.5 ‘Equihash Generator’ on p. 31.

4.1.2 Pseudo Random Functions #abstractprfs

PRF𝑥 denotes a Pseudo Random Function keyed by 𝑥.

Let ℓask
, ℓhSig, ℓSprout

PRF , ℓSprout
ϕ , Nold, and Nnew be as de�ned in § 5.3 ‘Constants’ on p. 28.

Four independent PRF𝑥 are needed in our protocol:

PRFaddr ◦
◦ B[ℓask

] × BYY → B[ℓSprout
PRF]

PRFpk ◦
◦ B[ℓask

] × {1..Nold} × B[ℓhSig]→ B[ℓSprout
PRF]

PRFρ ◦
◦ B[ℓSprout

ϕ] × {1..Nnew} × B[ℓhSig]→ B[ℓSprout
PRF]

PRFnfSprout ◦
◦ B[ℓask

] × B[ℓSprout
PRF] → B[ℓSprout

PRF]

These are used in § 4.11.1 ‘JoinSplit Statement’ on p. 25; PRFaddr is also used to derive a shielded payment address
from a spending key in § 4.2 ‘Key Components’ on p. 19.

They are instantiated in § 5.4.2 ‘Pseudo Random Functions’ on p. 31.

Security requirements:

• Security de�nitions for Pseudo Random Functions are given in [BDJR2000, section 4].

• In addition to being Pseudo Random Functions , it is required that PRFaddr
𝑥 , PRFρ𝑥 , and PRFnfSprout

𝑥 be collision-
resistant across all 𝑥 — i.e. �nding (𝑥, 𝑦) ̸= (𝑥′, 𝑦′) such that PRFaddr

𝑥 (𝑦) = PRFaddr
𝑥

′ (𝑦′) should not be feasible,

and similarly for PRFρ and PRFnfSprout.

Non-normative note: PRFnfSprout was called PRFsn in Zerocash [BCGGMTV2014], and just PRFnf in previous ver-
sions of this speci�cation.

4.1.3 Symmetric Encryption #abstractsym

Let Sym be an authenticated one-time symmetric encryption scheme with keyspace Sym.K, encrypting plaintexts
in Sym.P to produce ciphertexts in Sym.C.

Sym.Encrypt ◦
◦ Sym.K× Sym.P→ Sym.C is the encryption algorithm.

Sym.Decrypt ◦
◦ Sym.K × Sym.C → Sym.P ∪ {⊥} is the decryption algorithm, such that for any K ∈ Sym.K and

P ∈ Sym.P, Sym.DecryptK(Sym.EncryptK(P)) = P. ⊥ is used to represent the decryption of an invalid ciphertext.

14

https://zips.z.cash/protocol/sprout.pdf#abstractprotocol
https://zips.z.cash/protocol/sprout.pdf#abstractschemes
https://zips.z.cash/protocol/sprout.pdf#abstracthashes
https://zips.z.cash/protocol/sprout.pdf#abstractprfs
https://zips.z.cash/protocol/sprout.pdf#abstractsym

Security requirement: Sym must be one-time (INT-CTXT ∧ IND-CPA)-secure [BN2007]. “One-time” here means
that an honest protocol participant will almost surely encrypt only one message with a given key; however, the
adversary may make many adaptive chosen ciphertext queries for a given key.

4.1.4 Key Agreement #abstractkeyagreement

A key agreement scheme is a cryptographic protocol in which two parties agree a shared secret, each using their
private key and the other party’s public key .

A key agreement scheme KA de�nes a type of public keys KA.Public, a type of private keys KA.Private, and a type of
shared secrets KA.SharedSecret.

Let KA.FormatPrivate ◦
◦ B[ℓSprout

PRF] → KA.Private be a function to convert a bit string of length ℓSprout
PRF to a KA private key .

Let KA.DerivePublic ◦
◦ KA.Private×KA.Public→ KA.Public be a function that derives the KA public key corresponding

to a given KA private key and base point.

Let KA.Agree ◦
◦ KA.Private× KA.Public→ KA.SharedSecret be the agreement function.

Let KA.Base ◦
◦ KA.Public be a public base point.

Note: The range of KA.DerivePublic may be a strict subset of KA.Public.

Security requirements:

• KA.FormatPrivate must preserve suf�cient entropy from its input to be used as a secure KA private key .

• The key agreement and the KDF de�ned in the next section must together satisfy a suitable adaptive security
assumption along the lines of [Bernstein2006, section 3] or [ABR1999, De�nition 3].

More precise formalization of these requirements is beyond the scope of this speci�cation.

4.1.5 Key Derivation #abstractkdf

A Key Derivation Function is de�ned for a particular key agreement scheme and authenticated one-time symmetric
encryption scheme ; it takes the shared secret produced by the key agreement and additional arguments, and
derives a key suitable for the encryption scheme.

Let KDFSprout ◦
◦ {1..Nnew} × B[ℓhSig] × KASprout.SharedSecret × KASprout.Public × KASprout.Public → Sym.K be a Key

Derivation Function suitable for use with KASprout, deriving keys for Sym.Encrypt.

Security requirement: In addition to adaptive security of the key agreement and KDF, the following security
property is required:

Let g𝑆𝑝𝑟𝑜𝑢𝑡 := KASprout.Base.

Let sk1
enc and sk2

enc each be chosen uniformly and independently at random from KASprout.Private.

Let pk𝑗
enc := KASprout.DerivePublic(sk𝑗

enc, g𝑆𝑝𝑟𝑜𝑢𝑡).

An adversary can adaptively query a function 𝑄 ◦
◦ {1 .. 2} × B[ℓhSig] → KASprout.Public× Sym.K1..Nnew where 𝑄𝑗(hSig) is

de�ned as follows:

1. Choose esk uniformly at random from KASprout.Private.

2. Let epk = KASprout.DerivePublic(esk, g𝑆𝑝𝑟𝑜𝑢𝑡).

3. For 𝑖 ∈ {1..Nnew}, let K𝑖 = KDF(𝑖, hSig, KASprout.Agree(esk, pk𝑗
enc), epk, pk𝑗

enc)).
4. Return (epk, K1..Nnew).

15

https://zips.z.cash/protocol/sprout.pdf#abstractkeyagreement
https://zips.z.cash/protocol/sprout.pdf#abstractkdf

Then the adversary must make another query to 𝑄𝑗 with random unknown 𝑗 ∈ {1 .. 2}, and guess 𝑗 with probability
greater than chance.

Note: The given de�nition only requires ciphertexts to be indistinguishable between transmission keys that
are outputs of KASprout.DerivePublic (which includes all keys generated as in § 4.2 ‘Key Components’ on p. 19). If a
transmission key not in that range is used, it may be distinguishable. This is not considered to be a signi�cant
security weakness.

4.1.6 Signature #abstractsig

A signature scheme Sig de�nes:

• a type of signing keys Sig.Private;

• a type of validating keys Sig.Public;

• a type of messages Sig.Message;

• a type of signatures Sig.Signature;

• a randomized signing key generation algorithm Sig.GenPrivate ◦
◦ () →R Sig.Private;

• an injective validating key derivation algorithm Sig.DerivePublic ◦
◦ Sig.Private→ Sig.Public;

• a randomized signing algorithm Sig.Sign ◦
◦ Sig.Private× Sig.Message →R Sig.Signature;

• a validating algorithm Sig.Validate ◦
◦ Sig.Public× Sig.Message× Sig.Signature→ B;

such that for any signing key sk ←R Sig.GenPrivate() and corresponding validating key vk = Sig.DerivePublic(sk), and
any 𝑚 ◦

◦ Sig.Message and 𝑠 ◦
◦ Sig.Signature ←R Sig.Signsk(𝑚), Sig.Validatevk(𝑚, 𝑠) = 1.

Zcash uses two signature schemes :

• one used for signatures that can be validated by script operations such as OP_CHECKSIG and OP_CHECKMULTISIG
as in Bitcoin;

• one called JoinSplitSig which is used to sign transactions that contain at least one JoinSplit description
(instantiated in § 5.4.5 ‘Ed25519’ on p. 33).

The signature scheme used in script operations is instantiated by ECDSA on the secp256k1 curve. JoinSplitSig is
instantiated by Ed25519.

Security requirement: JoinSplitSig must be Strongly Unforgeable under (non-adaptive) Chosen Message Attack
(SU-CMA), as de�ned for example in [BDEHR2011, De�nition 6]. 4 This allows an adversary to obtain signatures
on chosen messages, and then requires it to be infeasible for the adversary to forge a previously unseen valid
(message, signature) pair without access to the signing key .

Non-normative notes:

• A fresh signature key pair is generated for each transaction containing a JoinSplit description. Since each key
pair is only used for one signature (see § 4.8 ‘Non-malleability’ on p. 23), a one-time signature scheme would
suf�ce for JoinSplitSig. This is also the reason why only security against non-adaptive chosen message attack
is needed. In fact the instantiation of JoinSplitSig uses a scheme designed for security under adaptive attack
even when multiple signatures are signed under the same key.

• SU-CMA security requires it to be infeasible for the adversary, not knowing the private key , to forge a distinct
signature on a previously seen message. That is, JoinSplit signatures are intended to be nonmalleable in the
sense of [BIP-62].

• The terminology used in this speci�cation is that we “validate” signatures, and “verify” zk-SNARK proofs .

4 The scheme de�ned in that paper was attacked in [LM2017], but this has no impact on the applicability of the de�nition.

16

https://zips.z.cash/protocol/sprout.pdf#abstractsig

4.1.7 Commitment #abstractcommit

A commitment scheme is a function that, given a commitment trapdoor generated at random and an input, can be
used to commit to the input in such a way that:

• no information is revealed about it without the trapdoor (“hiding ”),

• given the trapdoor and input, the commitment can be veri�ed to “open” to that input and no other (“binding ”).

A commitment scheme COMM de�nes a type of inputs COMM.Input, a type of commitments COMM.Output, a type
of commitment trapdoors COMM.Trapdoor, and a trapdoor generator COMM.GenTrapdoor ◦

◦ () →R COMM.Trapdoor.

Let COMM ◦
◦ COMM.Trapdoor × COMM.Input → COMM.Output be a function satisfying the following security

requirements.

Security requirements:

• Computational hiding: For all 𝑥, 𝑥′ ◦
◦ COMM.Input, the distributions {COMM𝑟(𝑥) | 𝑟 ←R COMM.GenTrapdoor() }

and {COMM𝑟(𝑥′) | 𝑟 ←R COMM.GenTrapdoor() } are computationally indistinguishable.

• Computational binding: It is infeasible to �nd 𝑥, 𝑥′ ◦
◦ COMM.Input and 𝑟, 𝑟′ ◦

◦ COMM.Trapdoor such that 𝑥 ̸= 𝑥′

and COMM𝑟(𝑥) = COMM𝑟
′(𝑥′).

Note: If it were only feasible to �nd 𝑥 ◦
◦ COMM.Input and 𝑟, 𝑟′ ◦

◦ COMM.Trapdoor such that 𝑟 ̸= 𝑟′ and COMM𝑟(𝑥) =
COMM𝑟

′(𝑥), this would not contradict the computational binding security requirement.

Let ℓrcm, ℓSprout
Merkle, ℓSprout

PRF , and ℓvalue be as de�ned in § 5.3 ‘Constants’ on p. 28.

De�ne NoteCommitSprout.Trapdoor := B[ℓrcm] and NoteCommitSprout.Output := B[ℓSprout
Merkle].

Sprout uses a note commitment scheme

NoteCommitSprout ◦
◦ NoteCommitSprout.Trapdoor × B[ℓSprout

PRF] × {0 .. 2ℓvalue−1} × B[ℓSprout
PRF]→ NoteCommitSprout.Output,

instantiated in § 5.4.6.1 ‘Sprout Note Commitments’ on p. 34.

4.1.8 Represented Group #abstractgroup

A represented group G consists of:

• a subgroup order parameter 𝑟G
◦
◦ N+, which must be prime;

• a cofactor parameter ℎG
◦
◦ N+;

• a group G of order ℎG · 𝑟G, written additively with operation + ◦
◦ G ×G → G, and additive identity 𝒪G ;

• a bit-length parameter ℓG
◦
◦ N;

• a representation function reprG ◦
◦ G → B[ℓG] and an abstraction function abstG ◦

◦ B[ℓG] → G ∪ {⊥}, such that
abstG is the left inverse of reprG , i.e. for all 𝑃 ∈ G, abstG

(︀
reprG(𝑃)

)︀
= 𝑃 .

Note: Ideally, we would also have that for all 𝑆 not in the image of reprG , abstG(𝑆) = ⊥. This may not be true in all
cases, i.e. there can be non-canonical encodings 𝑃⋆ such that reprG

(︀
abstG(𝑃⋆)

)︀
̸= 𝑃⋆.

De�ne G(𝑟) as the order-𝑟G subgroup of G, which is called a represented subgroup . Note that this includes 𝒪G . For

the set of points of order 𝑟G (which excludes 𝒪G), we write G(𝑟)*.

De�ne G⋆
(𝑟) := {reprG(𝑃) ◦

◦ B[ℓG] | 𝑃 ∈ G(𝑟)}. (This intentionally excludes non-canonical encodings if there are any.)

For 𝐺 ◦
◦ G we write −𝐺 for the negation of 𝐺, such that (−𝐺) + 𝐺 = 𝒪G . We write 𝐺−𝐻 for 𝐺 + (−𝐻).

We also extend the
∑︁

notation to addition on group elements.

17

https://zips.z.cash/protocol/sprout.pdf#abstractcommit
https://zips.z.cash/protocol/sprout.pdf#abstractgroup

For 𝐺 ◦
◦ G and 𝑘 ◦

◦ Z we write [𝑘] 𝐺 for scalar multiplication on the group, i.e.

[𝑘] 𝐺 :=

⎧⎨⎩
∑︀𝑘

𝑖=1
𝐺, if 𝑘 ≥ 0∑︀−𝑘

𝑖=1
(−𝐺), otherwise.

For 𝐺 ◦
◦ G and 𝑎 ◦

◦ F𝑟G
, we may also write [𝑎] 𝐺 meaning [𝑎 mod 𝑟G] 𝐺 as de�ned above. (This variant is not de�ned

for �elds other than F𝑟G
.)

4.1.9 Represented Pairing #abstractpairing

A represented pairing PAIRAIR consists of:

• a group order parameter 𝑟PAIRAIR
◦
◦ N+ which must be prime;

• two represented subgroups PAIRAIR
(𝑟)
1,2, both of order 𝑟PAIRAIR;

• a group PAIRAIR
(𝑟)
𝑇 of order 𝑟PAIRAIR, written multiplicatively with operation · ◦

◦ PAIRAIR
(𝑟)
𝑇 × PAIRAIR

(𝑟)
𝑇 → PAIRAIR

(𝑟)
𝑇 and group

identity 1PAIRAIR;

• three generators 𝒫PAIRAIR1,2,𝑇
of PAIRAIR

(𝑟)
1,2,𝑇 respectively;

• a pairing function 𝑒PAIRAIR
◦
◦ PAIRAIR

(𝑟)
1 × PAIRAIR

(𝑟)
2 → PAIRAIR

(𝑟)
𝑇 satisfying:

– (Bilinearity) for all 𝑎, 𝑏 ◦
◦ F*

𝑟 , 𝑃 ◦
◦ PAIRAIR

(𝑟)
1 , and 𝑄 ◦

◦ PAIRAIR
(𝑟)
2 , 𝑒PAIRAIR([𝑎] 𝑃, [𝑏] 𝑄)= 𝑒PAIRAIR(𝑃, 𝑄)𝑎·𝑏; and

– (Nondegeneracy) there does not exist 𝑃 ◦
◦ PAIRAIR

(𝑟)*
1 such that for all 𝑄 ◦

◦ PAIRAIR
(𝑟)
2 , 𝑒PAIRAIR(𝑃, 𝑄)= 1PAIRAIR.

4.1.10 Zero-Knowledge Proving System #abstractzk

A zero-knowledge proving system is a cryptographic protocol that allows proving a particular statement , dependent
on primary and auxiliary inputs , in zero knowledge — that is, without revealing information about the auxiliary
inputs other than that implied by the statement . The type of zero-knowledge proving system needed by Zcash is a
preprocessing zk-SNARK [BCCGLRT2014].

A preprocessing zk-SNARK instance ZK de�nes:

• a type of zero-knowledge proving keys , ZK.ProvingKey;

• a type of zero-knowledge verifying keys , ZK.VerifyingKey;

• a type of primary inputs ZK.PrimaryInput;
• a type of auxiliary inputs ZK.AuxiliaryInput;
• a type of zk-SNARK proofs ZK.Proof;
• a type ZK.SatisfyingInputs ⊆ ZK.PrimaryInput× ZK.AuxiliaryInput of inputs satisfying the statement ;

• a randomized key pair generation algorithm ZK.Gen ◦
◦ () →R ZK.ProvingKey × ZK.VerifyingKey;

• a proving algorithm ZK.Prove ◦
◦ ZK.ProvingKey × ZK.SatisfyingInputs→ ZK.Proof;

• a verifying algorithm ZK.Verify ◦
◦ ZK.VerifyingKey × ZK.PrimaryInput× ZK.Proof → B;

The security requirements below are supposed to hold with overwhelming probability for (pk, vk) ←R ZK.Gen().

18

https://zips.z.cash/protocol/sprout.pdf#abstractpairing
https://zips.z.cash/protocol/sprout.pdf#abstractzk

Security requirements:

• Completeness: An honestly generated proof will convince a veri�er: for any (𝑥, 𝑤) ∈ ZK.SatisfyingInputs, if
ZK.Provepk(𝑥, 𝑤) outputs 𝜋, then ZK.Verifyvk(𝑥, 𝜋) = 1.

• Knowledge Soundness: For any adversary 𝒜 able to �nd an 𝑥 ◦
◦ ZK.PrimaryInput and proof 𝜋 ◦

◦ ZK.Proof
such that ZK.Verifyvk(𝑥, 𝜋) = 1, there is an ef�cient extractor ℰ𝒜 such that if ℰ𝒜(vk, pk) returns 𝑤, then the
probability that (𝑥, 𝑤) ̸∈ ZK.SatisfyingInputs is insigni�cant.

• Statistical Zero Knowledge: An honestly generated proof is statistical zero knowledge. That is, there is a
feasible stateful simulator 𝒮 such that, for all stateful distinguishers 𝒟, the following two probabilities are not
signi�cantly different:

Pr

⎡⎢⎢⎣ (𝑥, 𝑤) ∈ ZK.SatisfyingInputs
𝒟(𝜋) = 1

⃒⃒⃒⃒
⃒⃒⃒⃒ (pk, vk) ←R ZK.Gen()

(𝑥, 𝑤) ←R 𝒟(pk, vk)
𝜋←R ZK.Provepk(𝑥, 𝑤)

⎤⎥⎥⎦ and Pr

⎡⎢⎢⎣ (𝑥, 𝑤) ∈ ZK.SatisfyingInputs
𝒟(𝜋) = 1

⃒⃒⃒⃒
⃒⃒⃒⃒ (pk, vk) ←R 𝒮()

(𝑥, 𝑤) ←R 𝒟(pk, vk)
𝜋←R 𝒮(𝑥)

⎤⎥⎥⎦
These de�nitions are derived from those in [BCTV2014b, Appendix C], adapted to state concrete security for a �xed
circuit, rather than asymptotic security for arbitrary circuits. (ZK.Prove corresponds to 𝑃 , ZK.Verify corresponds
to 𝑉 , and ZK.SatisfyingInputs corresponds toℛ𝐶 in the notation of that appendix.)

The Knowledge Soundness de�nition is a way to formalize the property that it is infeasible to �nd a new proof
𝜋 where ZK.Verifyvk(𝑥, 𝜋) = 1 without knowing an auxiliary input 𝑤 such that (𝑥, 𝑤) ∈ ZK.SatisfyingInputs. Note
that Knowledge Soundness implies Soundness — i.e. the property that it is infeasible to �nd a new proof 𝜋 where
ZK.Verifyvk(𝑥, 𝜋) = 1 without there existing an auxiliary input 𝑤 such that (𝑥, 𝑤) ∈ ZK.SatisfyingInputs.

Non-normative notes:

• The above properties do not include nonmalleability [DSDCOPS2001], and the design of the protocol using
the zero-knowledge proving system must take this into account.

• The terminology used in this speci�cation is that we “validate” signatures, and “verify” zk-SNARK proofs .

The proving system is instantiated in § 5.4.8.1 ‘BCTV14’ on p. 36. ZKJoinSplit refers to this proving system with the
BN-254 pairing, specialized to the JoinSplit statement given in § 4.11.1 ‘JoinSplit Statement’ on p. 25. In this case we
omit the key subscripts on ZKJoinSplit.Prove and ZKJoinSplit.Verify, taking them to be the particular proving key
and verifying key de�ned by the JoinSplit parameters in § 5.7 ‘BCTV14 zk-SNARK Parameters’ on p. 40.

4.2 Key Components #sproutkeycomponents

Let ℓask
be as de�ned in § 5.3 ‘Constants’ on p. 28.

Let PRFaddr be a Pseudo Random Function, instantiated in § 5.4.2 ‘Pseudo Random Functions’ on p. 31.

Let KASprout be a key agreement scheme , instantiated in § 5.4.4.1 ‘Sprout Key Agreement’ on p. 32.

A new Sprout spending key ask is generated by choosing a bit sequence uniformly at random from B[ℓask
].

apk, skenc and pkenc are derived from ask as follows:

apk := PRFaddr
ask

(0)
skenc := KASprout.FormatPrivate(PRFaddr

ask
(1))

pkenc := KASprout.DerivePublic(skenc, KASprout.Base).

4.3 JoinSplit Descriptions #joinsplitdesc

A JoinSplit transfer , as speci�ed in § 3.5 ‘JoinSplit Transfers and Descriptions’ on p. 11, is encoded in transactions
as a JoinSplit description.

19

https://zips.z.cash/protocol/sprout.pdf#sproutkeycomponents
https://zips.z.cash/protocol/sprout.pdf#joinsplitdesc

Each transaction includes a sequence of zero or more JoinSplit descriptions . When this sequence is non-empty,
the transaction also includes encodings of a JoinSplitSig public validating key and signature.

Let ℓSprout
Merkle, ℓSprout

PRF , ℓSeed, Nold, Nnew, and MAX_MONEY be as de�ned in § 5.3 ‘Constants’ on p. 28.

Let hSigCRH be as de�ned in § 4.1.1 ‘Hash Functions’ on p. 14.

Let NoteCommitSprout be as de�ned in § 4.1.7 ‘Commitment’ on p. 17.

Let KASprout be as de�ned in § 4.1.4 ‘Key Agreement’ on p. 15.

Let Sym be as de�ned in § 4.1.3 ‘Symmetric Encryption’ on p. 14.

Let ZKJoinSplit be as de�ned in § 4.1.10 ‘Zero-Knowledge Proving System’ on p. 18.

A JoinSplit description comprises (vold
pub, vnew

pub , rtSprout, nfold
1..Nold , cmnew

1..Nnew , epk, randomSeed, h1..Nold , 𝜋ZKJoinSplit, Cenc
1..Nnew)

where

• vold
pub

◦
◦ {0 .. MAX_MONEY} is the value that the JoinSplit transfer removes from the transparent transaction

value pool ;

• vnew
pub

◦
◦ {0 .. MAX_MONEY} is the value that the JoinSplit transfer inserts into the transparent transaction value

pool ;

• rtSprout ◦
◦ B[ℓSprout

Merkle] is an anchor , as de�ned in § 3.3 ‘The Block Chain’ on p. 10, for the output treestate of either
a previous block , or a previous JoinSplit transfer in this transaction.

• nfold
1..Nold ◦

◦ B[ℓSprout
PRF][Nold] is the sequence of nulli�ers for the input notes ;

• cmnew
1..Nnew ◦

◦ NoteCommitSprout.Output[Nnew] is the sequence of note commitments for the output notes ;

• epk ◦
◦ KASprout.Public is a key agreement public key , used to derive the key for encryption of the transmitted

notes ciphertext (§ 4.12 ‘In-band secret distribution’ on p. 26);

• randomSeed ◦
◦ B[ℓSeed] is a seed that must be chosen independently at random for each JoinSplit description;

• h1..Nold ◦
◦ B[ℓSprout

PRF][Nold] is a sequence of tags that bind hSig to each ask of the input notes ;

• 𝜋ZKJoinSplit
◦
◦ ZKJoinSplit.Proof is a zk proof with primary input (rtSprout, nfold

1..Nold , cmnew
1..Nnew , vold

pub, vnew
pub , hSig, h1..Nold)

for the JoinSplit statement de�ned in § 4.11.1 ‘JoinSplit Statement’ on p. 25;

• Cenc
1..Nnew ◦

◦ Sym.C[Nnew] is a sequence of ciphertext components for the encrypted output notes .

The ephemeralKey and encCiphertexts �elds together form the transmitted notes ciphertext .

The value hSig is also computed from randomSeed, nfold
1..Nold , and the joinSplitPubKey of the containing transaction:

hSig := hSigCRH(randomSeed, nfold
1..Nold , joinSplitPubKey).

Consensus rules:

• Elements of a JoinSplit description MUST have the types given above (for example: 0 ≤ vold
pub ≤ MAX_MONEY

and 0 ≤ vnew
pub ≤ MAX_MONEY).

• The proof 𝜋ZKJoinSplit MUST be valid given a primary input formed from the relevant other �elds and hSig — i.e.

ZKJoinSplit.Verify
(︀
(rtSprout, nfold

1..Nold , cmnew
1..Nnew , vold

pub,vnew
pub , hSig, h1..Nold), 𝜋ZKJoinSplit

)︀
= 1.

• Either vold
pub or vnew

pub MUST be zero.

20

4.4 Sending Notes #send

In order to send Sprout shielded value, the sender constructs a transaction containing one or more JoinSplit
descriptions .

Let JoinSplitSig be as speci�ed in § 4.1.6 ‘Signature’ on p. 16.

Let NoteCommitSprout be as speci�ed in § 4.1.7 ‘Commitment’ on p. 17.

Let ℓSeed and ℓSprout
ϕ be as speci�ed in § 5.3 ‘Constants’ on p. 28.

Sending a transaction containing JoinSplit descriptions involves �rst generating a new JoinSplitSig key pair:

joinSplitPrivKey ←R JoinSplitSig.GenPrivate()
joinSplitPubKey := JoinSplitSig.DerivePublic(joinSplitPrivKey).

For each JoinSplit description, the sender chooses randomSeed uniformly at random on B[ℓSeed], and selects the input
notes . At this point there is suf�cient information to compute hSig, as described in the previous section. The sender
also chooses ϕ uniformly at random on B[ℓSprout

ϕ]. Then it creates each output note with index 𝑖 ◦
◦ {1..Nnew}:

• Choose uniformly random rcm𝑖 ←R NoteCommitSprout.GenTrapdoor().
• Compute ρ𝑖 = PRFρϕ(𝑖, hSig).

• Compute cm𝑖 = NoteCommitSprout
rcm𝑖

(apk,𝑖, v𝑖, ρ𝑖).

• Let np𝑖 = (0x00, v𝑖, ρ𝑖, rcm𝑖, memo𝑖).

np1..Nnew are then encrypted to the recipient transmission keys pkenc,1..Nnew , giving the transmitted notes ciphertext
(epk, Cenc

1..Nnew), as described in § 4.12 ‘In-band secret distribution’ on p. 26.

In order to minimize information leakage, the sender SHOULD randomize the order of the input notes and of the
output notes . Other considerations relating to information leakage from the structure of transactions are beyond
the scope of this speci�cation.

After generating all of the JoinSplit descriptions , the sender obtains dataToBeSigned ◦
◦ BYY[N] as described in § 4.8

‘Non-malleability’ on p. 23, and signs it with the private JoinSplit signing key :

joinSplitSig ←R JoinSplitSig.SignjoinSplitPrivKey(dataToBeSigned)

Then the encoded transaction including joinSplitSig is submitted to the peer-to-peer network.

The facility to send to Sprout addresses is OPTIONAL for a particular node or wallet implementation.

4.5 Dummy Notes #sproutdummynotes

The �elds in a JoinSplit description allow for Nold input notes , and Nnew output notes . In practice, we may wish to
encode a JoinSplit transfer with fewer input or output notes . This is achieved using dummy notes .

Let ℓask
and ℓSprout

PRF be as de�ned in § 5.3 ‘Constants’ on p. 28.

Let PRFnfSprout be as de�ned in § 4.1.2 ‘Pseudo Random Functions’ on p. 14.

Let NoteCommitSprout be as de�ned in § 4.1.7 ‘Commitment’ on p. 17.

21

https://zips.z.cash/protocol/sprout.pdf#send
https://zips.z.cash/protocol/sprout.pdf#sproutdummynotes

A dummy Sprout input note , with index 𝑖 in the JoinSplit description, is constructed as follows:

• Generate a new uniformly random spending key aold
sk,𝑖 ←R B[ℓask

] and derive its paying key aold
pk,𝑖.

• Set vold
𝑖 = 0.

• Choose uniformly random ρ
old
𝑖 ←R B[ℓSprout

PRF] and rcmold
𝑖 ←R NoteCommitSprout.GenTrapdoor().

• Compute nfold
𝑖 = PRFnfSprout

aold
sk,𝑖

(ρold
𝑖).

• Let path𝑖 be a dummy Merkle path for the auxiliary input to the JoinSplit statement (this will not be checked).

• When generating the JoinSplit proof , set enforceMerklePath𝑖 to 0.

A dummy Sprout output note is constructed as normal but with zero value, and sent to a random shielded payment
address .

4.6 Merkle Path Validity #merklepath

The depth of the note commitment tree is MerkleDepth (de�ned in § 5.3 ‘Constants’ on p. 28).

Each node in the incremental Merkle tree is associated with a hash value , which is a bit sequence.

The layer numbered ℎ, counting from layer 0 at the root , has 2ℎ nodes with indices 0 to 2ℎ − 1 inclusive.

Let Mh
𝑖 be the hash value associated with the node at index 𝑖 in layer ℎ.

The nodes at layer MerkleDepth are called leaf nodes . When a note commitment is added to the tree, it occupies
the leaf node hash value MMerkleDepth

𝑖 for the next available 𝑖.

As-yet unused leaf nodes are associated with a distinguished hash value UncommittedSprout. It is assumed to be
infeasible to �nd a preimage note n such that NoteCommitmentSprout(n) = UncommittedSprout.

The nodes at layers 0 to MerkleDepth− 1 inclusive are called internal nodes , and are associated with MerkleCRH
outputs. Internal nodes are computed from their children in the next layer as follows: for 0 ≤ ℎ < MerkleDepth and
0 ≤ 𝑖 < 2ℎ,

Mh
𝑖 := MerkleCRH(Mh+1

2𝑖 , Mh+1
2𝑖+1).

A Merkle path from leaf node MMerkleDepth
𝑖 in the incremental Merkle tree is the sequence

[[Mh
sibling(ℎ,𝑖) for ℎ from MerkleDepth down to 1]],

where

sibling(ℎ, 𝑖) := floor
(︂

𝑖

2MerkleDepth−ℎ

)︂
⊕ 1

Given such a Merkle path, it is possible to verify that leaf node MMerkleDepth
𝑖 is in a tree with a given root rt = M0

0.

4.7 SIGHASH Transaction Hashing #sighash

Bitcoin and Zcash use signatures and/or non-interactive proofs associated with transaction inputs to authorize
spending. Because these signatures or proofs could otherwise be replayed in a different transaction, it is necessary
to “bind” them to the transaction for which they are intended. This is done by hashing information about the
transaction and (where applicable) the speci�c input, to give a SIGHASH transaction hash which is then used for
the Spend authorization. The means of authorization differs between transparent inputs and inputs to Sprout
JoinSplit transfers , but for a given transaction version the same SIGHASH transaction hash algorithm is used.

22

https://zips.z.cash/protocol/sprout.pdf#merklepath
https://zips.z.cash/protocol/sprout.pdf#sighash

In the case of Zcash, the BCTV14 proving system used is malleable, meaning that there is the potential for an
adversary who does not know all of the auxiliary inputs to a proof, to malleate it in order to create a new proof
involving related auxiliary inputs [DSDCOPS2001]. This can be understood as similar to a malleability attack on an
encryption scheme, in which an adversary can malleate a ciphertext in order to create an encryption of a related
plaintext, without knowing the original plaintext. Zcash has been designed to mitigate malleability attacks, as
described in § 4.8 ‘Non-malleability’ on p. 23.

To provide additional �exibility when combining spend authorizations from different sources, Bitcoin de�nes sev-
eral SIGHASH types that cover various parts of a transaction [Bitcoin-SigHash]. One of these types is SIGHASH_ALL,
which is used for Zcash-speci�c signatures, i.e. JoinSplit signatures . In this case the SIGHASH transaction hash
is not associated with a transparent input , and so the input to hashing excludes all of the scriptSig �elds in the
non-Zcash-speci�c parts of the transaction.

In Zcash, all SIGHASH types are extended to cover the Zcash-speci�c �elds nJoinSplit, vJoinSplit, and if present
joinSplitPubKey. These �elds are described in § 7.1 ‘Transaction Encoding and Consensus’ on p. 41. The hash
does not cover the �eld joinSplitSig.

The SIGHASH algorithm used prior to Overwinter activation, i.e. for version 1 and 2 transactions , will be de�ned in
[ZIP-76] (to be written).

4.8 Non-malleability #sproutnonmalleability

Let dataToBeSigned be the hash of the transaction, not associated with an input, using the SIGHASH_ALL SIGHASH
type .

In order to ensure that a JoinSplit description is cryptographically bound to the transparent inputs and outputs
corresponding to vnew

pub and vold
pub, and to the other JoinSplit descriptions in the same transaction, an ephemeral

JoinSplitSig key pair is generated for each transaction, and the dataToBeSigned is signed with the private signing key
of this key pair. The corresponding public validating key is included in the transaction encoding as joinSplitPubKey.

JoinSplitSig is instantiated in § 5.4.5 ‘Ed25519’ on p. 33.

If nJoinSplit is zero, the joinSplitPubKey and joinSplitSig �elds are omitted. Otherwise, a transaction has a
correct JoinSplit signature if and only if JoinSplitSig.ValidatejoinSplitPubKey(dataToBeSigned, joinSplitSig) = 1.

Let hSig be computed as speci�ed in § 4.3 ‘JoinSplit Descriptions’ on p. 19.

Let PRFpk be as de�ned in § 4.1.2 ‘Pseudo Random Functions’ on p. 14.

For each 𝑖 ∈ {1..Nold}, the creator of a JoinSplit description calculates h𝑖 = PRFpk
aold

sk,𝑖

(𝑖, hSig).

The correctness of h1..Nold is enforced by the JoinSplit statement given in § 4.11.1 ‘JoinSplit Statement’ on p. 25. This

ensures that a holder of all of the aold
sk,1..Nold for every JoinSplit description in the transaction has authorized the use

of the private signing key corresponding to joinSplitPubKey to sign this transaction.

4.9 Balance #joinsplitbalance

In Bitcoin, all inputs to and outputs from a transaction are transparent. The total value of transparent outputs must
not exceed the total value of transparent inputs . The net value of transparent inputs minus transparent outputs is
transferred to the miner of the block containing the transaction; it is added to the miner subsidy in the coinbase
transaction of the block .

Zcash Sprout extends this by adding JoinSplit transfers . Each JoinSplit transfer can be seen, from the perspective
of the transparent transaction value pool , as an input and an output simultaneously.

vold
pub takes value from the transparent transaction value pool and vnew

pub adds value to the transparent transaction

value pool . As a result, vold
pub is treated like an output value, whereas vnew

pub is treated like an input value.

As de�ned in [ZIP-209], the Sprout chain value pool balance for a given block chain is the sum of all vold
pub �eld

values for transactions in the block chain, minus the sum of all vnew
pub �elds values for transactions in the block chain.

23

https://zips.z.cash/protocol/sprout.pdf#sproutnonmalleability
https://zips.z.cash/protocol/sprout.pdf#joinsplitbalance

Consensus rule: If the Sprout chain value pool balance would become negative in the block chain created as a
result of accepting a block , then all nodes MUST reject the block as invalid.

Unlike original Zerocash [BCGGMTV2014], Zcash does not have a distinction between Mint and Pour operations.
The addition of vold

pub to a JoinSplit description subsumes the functionality of both Mint and Pour.

Also, a difference in the number of real input notes does not by itself cause two JoinSplit descriptions to be
distinguishable.

As stated in § 4.3 ‘JoinSplit Descriptions’ on p. 19, either vold
pub or vnew

pub MUST be zero. No generality is lost because,

if a transaction in which both vold
pub and vnew

pub were nonzero were allowed, it could be replaced by an equivalent

one in which min(vold
pub, vnew

pub) is subtracted from both of these values. This restriction helps to avoid unnecessary
distinctions between transactions according to client implementation.

4.10 Note Commitments and Nulli�ers #commitmentsandnulli�ers

A transaction that contains one or more JoinSplit descriptions , when entered into the block chain, appends to the
note commitment tree with all constituent note commitments .

All of the constituent nulli�ers are also entered into the nulli�er set of the associated treestate . A transaction is not
valid if it would have added a nulli�er to the nulli�er set that already exists in the set (see § 3.7 ‘Nullifier Sets’ on
p. 12).

Each note has a ρ component.

Let PRFnfSprout be as instantiated in § 5.4.2 ‘Pseudo Random Functions’ on p. 31.

For a Sprout note , the nulli�er is derived as PRFnfSprout
ask

(ρ), where ask is the spending key associated with the note .

Security requirement: The requirements on nulli�er derivation are as follows:

• The derived nulli�er must be determined completely by the �elds of the note , in a way that can be checked
in the corresponding statement that controls spends (i.e. the JoinSplit statement).

• Under the assumption that ρ values are unique, it must not be possible to generate two notes with distinct note
commitments but the same nulli�er . (See § 8.4 ‘Faerie Gold attack and fix’ on p. 52 for further discussion.)

• Given a set of nulli�ers of a priori unknown notes , they must not be linkable to those notes with probability
greater than expected by chance, even to an adversary with the corresponding incoming viewing keys (but
not full viewing keys), and even if the adversary may have created the notes .

24

https://zips.z.cash/protocol/sprout.pdf#commitmentsandnullifiers

4.11 Zk-SNARK Statements #snarkstatements

4.11.1 JoinSplit Statement #joinsplitstatement

Let ℓSprout
Merkle, ℓSprout

PRF , MerkleDepthSprout, ℓvalue, ℓask
, ℓSprout
ϕ , ℓhSig, Nold, Nnew be as de�ned in § 5.3 ‘Constants’ on p. 28.

Let PRFaddr, PRFnfSprout, PRFpk, and PRFρ be as de�ned in § 4.1.2 ‘Pseudo Random Functions’ on p. 14.

Let NoteCommitSprout be as de�ned in § 4.1.7 ‘Commitment’ on p. 17, and let NoteSprout and NoteCommitmentSprout be
as de�ned in § 3.2 ‘Notes’ on p. 9.

A valid instance of a JoinSplit statement , 𝜋ZKJoinSplit, assures that given a primary input :(︀
rtSprout ◦

◦ B[ℓSprout
Merkle],

nfold
1..Nold ◦

◦ B[ℓSprout
PRF][Nold],

cmnew
1..Nnew ◦

◦ NoteCommitSprout.Output[Nnew],

vold
pub

◦
◦ {0 .. 2ℓvalue−1},

vnew
pub

◦
◦ {0 .. 2ℓvalue−1},

hSig
◦
◦ B[ℓhSig],

h1..Nold ◦
◦ B[ℓSprout

PRF][Nold])︀,

the prover knows an auxiliary input :(︀
path1..Nold ◦

◦ B[ℓSprout
Merkle][MerkleDepthSprout][Nold],

pos1..Nold ◦
◦ {0 .. 2MerkleDepthSprout

−1}[Nold],

nold
1..Nold ◦

◦ NoteSprout[Nold],

aold
sk,1..Nold ◦

◦ B[ℓask
][Nold],

nnew
1..Nnew ◦

◦ NoteSprout[Nnew],

ϕ ◦
◦ B[ℓSprout

ϕ],

enforceMerklePath1..Nold ◦
◦ B[Nold])︀,

where:

for each 𝑖 ∈ {1..Nold}: nold
𝑖 = (aold

pk,𝑖, vold
𝑖 , ρold

𝑖 , rcmold
𝑖);

for each 𝑖 ∈ {1..Nnew}: nnew
𝑖 = (anew

pk,𝑖, vnew
𝑖 , ρnew

𝑖 , rcmnew
𝑖)

such that the following conditions hold:

Merkle path validity for each 𝑖 ∈ {1..Nold} | enforceMerklePath𝑖 = 1: (path𝑖, pos𝑖) is a valid Merkle path (see § 4.6
‘Merkle Path Validity’ on p. 22) of depth MerkleDepthSprout from NoteCommitmentSprout(nold

𝑖) to the anchor rtSprout.

Note: Merkle path validity covers conditions 1. (a) and 1. (d) of the NP statement in [BCGGMTV2014, section 4.2].

Merkle path enforcement for each 𝑖 ∈ {1..Nold}, if vold
𝑖 ̸= 0 then enforceMerklePath𝑖 = 1.

Balance vold
pub +

∑︀Nold

𝑖=1
vold

𝑖 = vnew
pub +

∑︀Nnew

𝑖=1
vnew

𝑖 ∈ {0 .. 2ℓvalue−1}.

Nulli�er integrity for each 𝑖 ∈ {1..Nold}: nfold
𝑖 = PRFnfSprout

aold
sk,𝑖

(ρold
𝑖).

Spend authority for each 𝑖 ∈ {1..Nold}: aold
pk,𝑖 = PRFaddr

aold
sk,𝑖

(0).

Non-malleability for each 𝑖 ∈ {1..Nold}: h𝑖 = PRFpk
aold

sk,𝑖

(𝑖, hSig).

Uniqueness of ρnew
𝑖 for each 𝑖 ∈ {1..Nnew}: ρnew

𝑖 = PRFρϕ(𝑖, hSig).

Note commitment integrity for each 𝑖 ∈ {1..Nnew}: cmnew
𝑖 = NoteCommitmentSprout(nnew

𝑖).

For details of the form and encoding of proofs, see § 5.4.8.1 ‘BCTV14’ on p. 36.

25

https://zips.z.cash/protocol/sprout.pdf#snarkstatements
https://zips.z.cash/protocol/sprout.pdf#joinsplitstatement

4.12 In-band secret distribution #sproutinband

The secrets that need to be transmitted to a recipient of funds in order for them to later spend, are v, ρ, and rcm. A
memo �eld (§ 3.2.1 ‘Note Plaintexts and Memo Fields’ on p. 10) is also transmitted.

To transmit these secrets securely to a recipient without requiring an out-of-band communication channel, the
transmission key pkenc is used to encrypt them. The recipient’s possession of the associated incoming viewing key
ivk is used to reconstruct the original note and memo �eld .

A single ephemeral public key is shared between encryptions of the Nnew shielded outputs in a JoinSplit description.
All of the resulting ciphertexts are combined to form a transmitted notes ciphertext .

For both encryption and decryption,

• let Sym be the scheme instantiated in § 5.4.3 ‘Symmetric Encryption’ on p. 32;

• let KDFSprout be the Key Derivation Function instantiated in § 5.4.4.2 ‘Sprout Key Derivation’ on p. 32;

• let KASprout be the key agreement scheme instantiated in § 5.4.4.1 ‘Sprout Key Agreement’ on p. 32;

• let hSig be the value computed for this JoinSplit description in § 4.3 ‘JoinSplit Descriptions’ on p. 19.

4.12.1 Encryption #sproutencrypt

Let KASprout be the key agreement scheme instantiated in § 5.4.4.1 ‘Sprout Key Agreement’ on p. 32.

Let pkenc,1..Nnew be the transmission keys for the intended recipient addresses of each new note .

Let np1..Nnew be Sprout note plaintexts de�ned in § 5.5 ‘Encodings of Note Plaintexts and Memo Fields’ on p. 37.

Then to encrypt:

• Generate a new KASprout (public, private) key pair (epk, esk).
• For 𝑖 ∈ {1..Nnew},

– Let Penc
𝑖 be the raw encoding of np𝑖.

– Let sharedSecret𝑖 = KASprout.Agree(esk, pkenc,𝑖).
– Let Kenc

𝑖 = KDFSprout(𝑖, hSig, sharedSecret𝑖, epk, pkenc,𝑖).
– Let Cenc

𝑖 = Sym.EncryptKenc
𝑖

(Penc
𝑖).

The resulting transmitted notes ciphertext is (epk, Cenc
1..Nnew).

Note: It is technically possible to replace Cenc
𝑖 for a given note with a random (and undecryptable) dummy

ciphertext, relying instead on out-of-band transmission of the note to the recipient. In this case the ephemeral key
MUST still be generated as a random public key (rather than a random bit sequence) to ensure indistinguishability
from other JoinSplit descriptions . This mode of operation raises further security considerations, for example of
how to validate a Sprout note received out-of-band, which are not addressed in this document.

4.12.2 Decryption #sproutdecrypt

Let ivk = (apk, skenc) be the recipient’s incoming viewing key , and let pkenc be the corresponding transmission key
derived from skenc as speci�ed in § 4.2 ‘Key Components’ on p. 19.

Let cm1..Nnew be the note commitments of each output coin.

Then for each 𝑖 ∈ {1..Nnew}, the recipient will attempt to decrypt that ciphertext component (epk, Cenc
𝑖) as follows:

let sharedSecret𝑖 = KASprout.Agree(skenc, epk)
let Kenc

𝑖 = KDFSprout(𝑖, hSig, sharedSecret𝑖, epk, pkenc)
return DecryptNoteSprout(Kenc

𝑖 , Cenc
𝑖 , cm𝑖, apk).

26

https://zips.z.cash/protocol/sprout.pdf#sproutinband
https://zips.z.cash/protocol/sprout.pdf#sproutencrypt
https://zips.z.cash/protocol/sprout.pdf#sproutdecrypt

DecryptNoteSprout(Kenc
𝑖 , Cenc

𝑖 , cm𝑖, apk) is de�ned as follows:

let Penc
𝑖 = Sym.DecryptKenc

𝑖
(Cenc

𝑖)
if Penc

𝑖 = ⊥, return ⊥
extract np𝑖 = (leadByte𝑖

◦
◦ BYY, v𝑖

◦
◦ {0 .. 2ℓvalue−1}, ρ𝑖

◦
◦ B[ℓSprout

PRF], rcm𝑖
◦
◦ NoteCommitSprout.Trapdoor, memo𝑖

◦
◦ BYY[512])

from Penc
𝑖

if leadByte𝑖 ̸= 0x00 or NoteCommitmentSprout((apk, v𝑖, ρ𝑖, rcm𝑖)) ̸= cm𝑖, return ⊥, else return np𝑖.

To test whether a note is unspent in a particular block chain also requires the spending key ask; the coin is unspent
if and only if nf = PRFnfSprout

ask
(ρ) is not in the nulli�er set for that block chain.

Notes:

• The decryption algorithm corresponds to step 3 (b) i. and ii. (�rst bullet point) of the Receive algorithm shown
in [BCGGMTV2014, Figure 2].

• A note can change from being unspent to spent as a node’s view of the best valid block chain is extended by
new transactions . Also, block chain reorganizations can cause a node to switch to a different best valid block
chain that does not contain the transaction in which a note was output.

See § 8.7 ‘In-band secret distribution’ on p. 54 for further discussion of the security and engineering rationale
behind this encryption scheme.

4.13 Block Chain Scanning #sproutscan

Let ℓSprout
PRF be as de�ned in § 5.3 ‘Constants’ on p. 28.

Let NoteSprout be as de�ned in § 3.2 ‘Notes’ on p. 9.

Let KASprout be as de�ned in § 5.4.4.1 ‘Sprout Key Agreement’ on p. 32.

The following algorithm can be used, given the block chain and a Sprout spending key ask, to obtain each note sent
to the corresponding shielded payment address , its memo �eld �eld, and its �nal status (spent or unspent).

Let ivk = (apk
◦
◦ B[ℓSprout

PRF], skenc
◦
◦ KASprout.Private) be the incoming viewing key corresponding to ask, and let pkenc be

the associated transmission key , as speci�ed in § 4.2 ‘Key Components’ on p. 19.

let mutable ReceivedSet ◦
◦ P

(︀
NoteSprout× BYY[512])︀← {}

let mutable SpentSet ◦
◦ P

(︀
NoteSprout)︀← {}

let mutable NullifierMap ◦
◦ B[ℓSprout

PRF] → NoteSprout← the empty mapping

for each transaction tx:

for each JoinSplit description in tx:

let (epk, Cenc
1..Nnew) be the transmitted notes ciphertext of the JoinSplit description

for 𝑖 in 1..Nnew:

Attempt to decrypt the transmitted notes ciphertext component (epk, Cenc
𝑖) using ivk with the

algorithm in § 4.12.2 ‘Decryption’ on p. 26. If this succeeds giving np:

Extract n and memo ◦
◦ BYY[512] from np (taking the apk �eld of the note to be apk from ivk).

Add (n, memo) to ReceivedSet.
Calculate the nulli�er nf of n using ask as described in § 3.2 ‘Notes’ on p. 9.

Add the mapping nf → n to NullifierMap.

27

https://zips.z.cash/protocol/sprout.pdf#sproutscan

let nf1..Nold be the nulli�ers of the JoinSplit description

for 𝑖 in 1..Nold:

if nf𝑖 is present in NullifierMap, add NullifierMap(nf𝑖) to SpentSet

return (ReceivedSet, SpentSet).

5 Concrete Protocol #concreteprotocol

5.1 Caution #cautionlinkage

TODO: Explain the kind of things that can go wrong with linkage between abstract and concrete protocol. E.g. § 8.5
‘Internal hash collision attack and fix’ on p. 53

5.2 Integers, Bit Sequences, and Endianness #endian

All integers in Zcash-speci�c encodings are unsigned, have a �xed bit length, and are encoded in little-endian byte
order unless otherwise specified.

De�ne I2BEBSP ◦
◦ (ℓ ◦

◦ N) × {0 .. 2ℓ−1} → B[ℓ] such that I2BEBSPℓ(𝑥) is the sequence of ℓ bits representing 𝑥 in
big-endian order.

In bit layout diagrams, each box of the diagram represents a sequence of bits. Diagrams are read from left-to-right,
with lines read from top-to-bottom; the breaking of boxes across lines has no signi�cance. The bit length ℓ is
given explicitly in each box, except when it is obvious (e.g. for a single bit, or for the notation [0]ℓ representing the
sequence of ℓ zero bits).

The entire diagram represents the sequence of bytes formed by �rst concatenating these bit sequences, and then
treating each subsequence of 8 bits as a byte with the bits ordered from most significant to least significant. Thus
the most significant bit in each byte is toward the left of a diagram. Where bit �elds are used, the text will clarify
their position in each case.

5.3 Constants #constants

De�ne:

MerkleDepthSprout ◦
◦ N := 29

ℓSprout
Merkle

◦
◦ N := 256

Nold ◦
◦ N := 2

Nnew ◦
◦ N := 2

ℓvalue
◦
◦ N := 64

ℓhSig
◦
◦ N := 256

ℓSprout
PRF

◦
◦ N := 256

ℓrcm
◦
◦ N := 256

ℓSeed
◦
◦ N := 256

ℓask
◦
◦ N := 252

ℓSprout
ϕ

◦
◦ N := 252

28

https://zips.z.cash/protocol/sprout.pdf#concreteprotocol
https://zips.z.cash/protocol/sprout.pdf#cautionlinkage
https://zips.z.cash/protocol/sprout.pdf#endian
https://zips.z.cash/protocol/sprout.pdf#constants

UncommittedSprout ◦
◦ B[ℓSprout

Merkle] := [0]ℓ
Sprout
Merkle

MAX_MONEY ◦
◦ N := 2.1·1015 (zatoshi)

SlowStartInterval ◦
◦ N := 20000

HalvingInterval ◦
◦ N := 840000

MaxBlockSubsidy ◦
◦ N := 1.25·109 (zatoshi)

NumFounderAddresses ◦
◦ N := 48

FoundersFraction ◦
◦ Q := 1

5

PoWLimit ◦
◦ N :=

{︃
2243 − 1, for Mainnet

2251 − 1, for Testnet

PoWAveragingWindow ◦
◦ N := 17

PoWMedianBlockSpan ◦
◦ N := 11

PoWMaxAdjustDown ◦
◦ Q := 32

100

PoWMaxAdjustUp ◦
◦ Q := 16

100

PoWDampingFactor ◦
◦ N := 4

PoWTargetSpacing ◦
◦ N := 150 (seconds).

5.4 Concrete Cryptographic Schemes #concreteschemes

5.4.1 Hash Functions #concretehashes

5.4.1.1 SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions #concretesha

SHA-256 and SHA-512 are de�ned by [NIST2015].

Zcash uses the full SHA-256 hash function to instantiate NoteCommitmentSprout.

SHA-256 ◦
◦ BYY[N] → BYY[32]

[NIST2015] strictly speaking only speci�es the application of SHA-256 to messages that are bit sequences, producing
outputs (“message digests”) that are also bit sequences. In practice, SHA-256 is universally implemented with a
byte-sequence interface for messages and outputs, such that the most significant bit of each byte corresponds to
the �rst bit of the associated bit sequence. (In the NIST speci�cation “�rst” is con�ated with “leftmost”.)

SHA-256d, de�ned as a double application of SHA-256, is used to hash block headers :

SHA-256d ◦
◦ BYY[N] → BYY[32]

Zcash also uses the SHA-256 compression function, SHA256Compress. This operates on a single 512-bit block and
excludes the padding step speci�ed in [NIST2015, section 5.1].

That is, the input to SHA256Compress is what [NIST2015, section 5.2] refers to as “the message and its padding”. The
Initial Hash Value is the same as for full SHA-256.

29

https://zips.z.cash/protocol/sprout.pdf#concreteschemes
https://zips.z.cash/protocol/sprout.pdf#concretehashes
https://zips.z.cash/protocol/sprout.pdf#concretesha

SHA256Compress is used to instantiate several Pseudo Random Functions and MerkleCRHSprout.

SHA256Compress ◦
◦ B[512] → B[256]

The ordering of bits within words in the interface to SHA256Compress is consistent with [NIST2015, section 3.1], i.e.
big-endian.

Ed25519 uses SHA-512:

SHA-512 ◦
◦ BYY[N] → BYY[64]

The comment above concerning bit vs byte-sequence interfaces also applies to SHA-512.

5.4.1.2 BLAKE2b Hash Function #concreteblake2

BLAKE2 is de�ned by [ANWW2013].

BLAKE2b-ℓ(𝑝, 𝑥) refers to unkeyed BLAKE2b-ℓ in sequential mode, with an output digest length of ℓ/8 bytes, 16-byte
personalization string 𝑝, and input 𝑥.

BLAKE2b is used to instantiate hSigCRH, EquihashGen, and KDFSprout.

BLAKE2b-ℓ ◦
◦ BYY[16] × BYY[N] → BYY[ℓ/8]

Note: BLAKE2b-ℓ is not the same as BLAKE2b-512 truncated to ℓ bits, because the digest length is encoded in the
parameter block.

5.4.1.3 Merkle Tree Hash Function #merklecrh

MerkleCRHSprout is used to hash incremental Merkle tree hash values .

MerkleCRHSprout ◦
◦ B[ℓSprout

Merkle] × B[ℓSprout
Merkle] → B[ℓSprout

Merkle] is de�ned as follows:

MerkleCRHSprout(left, right) := SHA256Compress
(︁

256-bit left 256-bit right
)︁

.

SHA256Compress is de�ned in § 5.4.1.1 ‘SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions’ on
p. 29.

Security requirement: SHA256Compress must be collision-resistant , and it must be infeasible to �nd a preimage
𝑥 such that SHA256Compress(𝑥) = [0]256.

Note: SHA256Compress is not the same as the SHA-256 function, which hashes arbitrary-length byte sequences.

5.4.1.4 hSig Hash Function #hsigcrh

hSigCRH is used to compute the value hSig in § 4.3 ‘JoinSplit Descriptions’ on p. 19.

hSigCRH(randomSeed, nfold
1..Nold , joinSplitPubKey) := BLAKE2b-256(“ZcashComputehSig”, hSigInput)

where

hSigInput := 256-bit randomSeed 256-bit nfold
1 ... 256-bit nfold

Nold 256-bit joinSplitPubKey .

BLAKE2b-256(𝑝, 𝑥) is de�ned in § 5.4.1.2 ‘BLAKE2b Hash Function’ on p. 30.

Security requirement: BLAKE2b-256(“ZcashComputehSig”, 𝑥) must be collision-resistant on 𝑥.

30

https://zips.z.cash/protocol/sprout.pdf#concreteblake2
https://zips.z.cash/protocol/sprout.pdf#merklecrh
https://zips.z.cash/protocol/sprout.pdf#hsigcrh

5.4.1.5 Equihash Generator #equihashgen

EquihashGen𝑛,𝑘 is a specialized hash function that maps an input and an index to an output of length 𝑛 bits. It is
used in § 7.4.1 ‘Equihash’ on p. 46.

Let powtag := 64-bit “ZcashPoW” 32-bit 𝑛 32-bit 𝑘 .

Let powcount(𝑔) := 32-bit 𝑔 .

Let EquihashGen𝑛,𝑘(𝑆, 𝑖) := 𝑇ℎ+1 .. ℎ+𝑛, where

𝑚 = floor
(︀ 512

𝑛

)︀
;

ℎ = (𝑖− 1 mod 𝑚) · 𝑛;

𝑇 = BLAKE2b-(𝑛 ·𝑚)
(︀
powtag, 𝑆 || powcount(floor

(︀
𝑖−1
𝑚

)︀
)
)︀
.

Indices of bits in 𝑇 are 1-based.

BLAKE2b-ℓ(𝑝, 𝑥) is de�ned in § 5.4.1.2 ‘BLAKE2b Hash Function’ on p. 30.

Security requirement: BLAKE2b-ℓ(powtag, 𝑥) must generate output that is suf�ciently unpredictable to avoid
short-cuts to the Equihash solution process. It would suf�ce to model it as a random oracle .

Note: When EquihashGen is evaluated for sequential indices, as in the Equihash solving process (§ 7.4.1 ‘Equihash’
on p. 46), the number of calls to BLAKE2b can be reduced by a factor of floor

(︀ 512
𝑛

)︀
in the best case (which is a factor

of 2 for 𝑛 = 200).

5.4.2 Pseudo Random Functions #concreteprfs

Let SHA256Compress be as given in § 5.4.1.1 ‘SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions’
on p. 29.

The Pseudo Random Functions PRFaddr, PRFnfSprout, PRFpk, and PRFρ from § 4.1.2 ‘Pseudo Random Functions’ on
p. 14, are all instantiated using SHA256Compress:

PRFaddr
𝑥 (𝑡) := SHA256Compress

(︁
1 1 0 0 252-bit 𝑥 8-bit 𝑡 [0]248

)︁
PRFnfSprout

ask
(ρ) := SHA256Compress

(︁
1 1 1 0 252-bit ask 256-bit ρ

)︁
PRFpk

ask
(𝑖, hSig) := SHA256Compress

(︁
0 𝑖-1 0 0 252-bit ask 256-bit hSig

)︁
PRFρϕ(𝑖, hSig) := SHA256Compress

(︁
0 𝑖-1 1 0 252-bit ϕ 256-bit hSig

)︁
Security requirements:

• SHA256Compress must be collision-resistant .

• SHA256Compress must be a PRF when keyed by the bits corresponding to 𝑥, ask or ϕ in the above diagrams,
with input in the remaining bits.

Note: The �rst four bits –i.e. the most signi�cant four bits of the �rst byte– are used to separate distinct uses of
SHA256Compress, ensuring that the functions are independent. As well as the inputs shown here, bits 1011 in this
position are used to distinguish uses of the full SHA-256 hash function; see § 5.4.6.1 ‘Sprout Note Commitments’ on
p. 34.

(The speci�c bit patterns chosen here were motivated by the possibility of future extensions that might have
increased Nold and/or Nnew to 3, or added an additional bit to ask to encode a new key type, or that would have
required an additional PRF .)

31

https://zips.z.cash/protocol/sprout.pdf#equihashgen
https://zips.z.cash/protocol/sprout.pdf#concreteprfs

5.4.3 Symmetric Encryption #concretesym

Let Sym.K := B[256], Sym.P := BYY[N], and Sym.C := BYY[N].

Let the authenticated one-time symmetric encryption scheme Sym.EncryptK(P) be authenticated encryption using
AEAD_CHACHA20_POLY1305 [RFC-7539] encryption of plaintext P ∈ Sym.P, with empty “associated data", all-zero
nonce [0]96, and 256-bit key K ∈ Sym.K.

Similarly, let Sym.DecryptK(C) be AEAD_CHACHA20_POLY1305 decryption of ciphertext C ∈ Sym.C, with empty
“associated data", all-zero nonce [0]96, and 256-bit key K ∈ Sym.K. The result is either the plaintext byte sequence,
or ⊥ indicating failure to decrypt.

Note: The “IETF" de�nition of AEAD_CHACHA20_POLY1305 from [RFC-7539] is used; this has a 32-bit block count
and a 96-bit nonce, rather than a 64-bit block count and 64-bit nonce as in the original de�nition of ChaCha20.

5.4.4 Key Agreement And Derivation #concretekaandkdf

5.4.4.1 Sprout Key Agreement #concretesproutkeyagreement

KASprout is a key agreement scheme as speci�ed in § 4.1.4 ‘Key Agreement’ on p. 15.

It is instantiated as Curve25519 key agreement, described in [Bernstein2006], as follows.

Let KASprout.Public and KASprout.SharedSecret be the type of Curve25519 public keys (i.e. BYY[32]), and let KASprout.Private
be the type of Curve25519 secret keys.

Let Curve25519(𝑛, 𝑞) be the result of point multiplication of the Curve25519 public key represented by the byte se-
quence 𝑞 by the Curve25519 secret key represented by the byte sequence 𝑛, as de�ned in [Bernstein2006, section 2].

Let KASprout.Base := 9 be the public byte sequence representing the Curve25519 base point.

Let clampCurve25519(𝑥) take a 32-byte sequence 𝑥 as input and return a byte sequence representing a Curve25519
private key , with bits “clamped” as described in [Bernstein2006, section 3]: “clear bits 0, 1, 2 of the �rst byte, clear
bit 7 of the last byte, and set bit 6 of the last byte.” Here the bits of a byte are numbered such that bit 𝑏 has numeric
weight 2𝑏.

De�ne KASprout.FormatPrivate(𝑥) := clampCurve25519(𝑥).

De�ne KASprout.DerivePublic(𝑛, 𝑞) := Curve25519(𝑛, 𝑞).

De�ne KASprout.Agree(𝑛, 𝑞) := Curve25519(𝑛, 𝑞).

5.4.4.2 Sprout Key Derivation #concretesproutkdf

KDFSprout is a Key Derivation Function as speci�ed in § 4.1.5 ‘Key Derivation’ on p. 15.

It is instantiated using BLAKE2b-256 as follows:

KDFSprout(𝑖, hSig, sharedSecret𝑖, epk, pknew
enc,𝑖) := BLAKE2b-256(kdftag, kdfinput)

where:

kdftag := 64-bit “ZcashKDF” 8-bit 𝑖−1 [0]56

kdfinput := 256-bit hSig 256-bit sharedSecret𝑖 256-bit epk 256-bit pknew
enc,𝑖 .

BLAKE2b-256(𝑝, 𝑥) is de�ned in § 5.4.1.2 ‘BLAKE2b Hash Function’ on p. 30.

32

https://zips.z.cash/protocol/sprout.pdf#concretesym
https://zips.z.cash/protocol/sprout.pdf#concretekaandkdf
https://zips.z.cash/protocol/sprout.pdf#concretesproutkeyagreement
https://zips.z.cash/protocol/sprout.pdf#concretesproutkdf

5.4.5 Ed25519 #concreteed25519

Ed25519 is a signature scheme as speci�ed in § 4.1.6 ‘Signature’ on p. 16. It is used to instantiate JoinSplitSig as
described in § 4.8 ‘Non-malleability’ on p. 23.

Let ExcludedPointEncodings ◦
◦ P

(︀
BYY[32])︀ = {

[0x00, 0x00],
[0x01, 0x00],
[0x26, 0xe8, 0x95, 0x8f, 0xc2, 0xb2, 0x27, 0xb0, 0x45, 0xc3, 0xf4, 0x89, 0xf2, 0xef, 0x98, 0xf0, 0xd5, 0xdf, 0xac, 0x05, 0xd3, 0xc6, 0x33, 0x39, 0xb1, 0x38, 0x02, 0x88, 0x6d, 0x53, 0xfc, 0x05],
[0xc7, 0x17, 0x6a, 0x70, 0x3d, 0x4d, 0xd8, 0x4f, 0xba, 0x3c, 0x0b, 0x76, 0x0d, 0x10, 0x67, 0x0f, 0x2a, 0x20, 0x53, 0xfa, 0x2c, 0x39, 0xcc, 0xc6, 0x4e, 0xc7, 0xfd, 0x77, 0x92, 0xac, 0x03, 0x7a],
[0x13, 0xe8, 0x95, 0x8f, 0xc2, 0xb2, 0x27, 0xb0, 0x45, 0xc3, 0xf4, 0x89, 0xf2, 0xef, 0x98, 0xf0, 0xd5, 0xdf, 0xac, 0x05, 0xd3, 0xc6, 0x33, 0x39, 0xb1, 0x38, 0x02, 0x88, 0x6d, 0x53, 0xfc, 0x85],
[0xb4, 0x17, 0x6a, 0x70, 0x3d, 0x4d, 0xd8, 0x4f, 0xba, 0x3c, 0x0b, 0x76, 0x0d, 0x10, 0x67, 0x0f, 0x2a, 0x20, 0x53, 0xfa, 0x2c, 0x39, 0xcc, 0xc6, 0x4e, 0xc7, 0xfd, 0x77, 0x92, 0xac, 0x03, 0xfa],
[0xec, 0xff, 0x7f],
[0xed, 0xff, 0x7f],
[0xee, 0xff, 0x7f],
[0xd9, 0xff],
[0xda, 0xff]

}.

Let 𝑝 = 2255 − 19.

Let 𝑎 = −1.

Let 𝑑 = −121665/121666 (mod 𝑝).

Let ℓ = 2252 + 27742317777372353535851937790883648493 (the order of the Ed25519 curve’s prime-order subgroup).

Let 𝐵 be the base point given in [BDLSY2012].

De�ne I2LEOSP, LEOS2BSP, and LEBS2IP as in § 5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 28.

De�ne reprBytesEd25519
◦
◦ Ed25519 → BYY[32] such that reprBytesEd25519(𝑥, 𝑦) = I2LEOSP256

(︀
𝑦 + 2255 · 𝑥̃

)︀
, where 𝑥̃ =

𝑥 mod 2.

De�ne abstBytesEd25519
◦
◦ BYY[32] → Ed25519 ∪ {⊥} such that abstBytesEd25519(𝑃)is computed as follows:

let 𝑦⋆ ◦
◦ B[255] be the �rst 255 bits of LEOS2BSP256(𝑃) and let 𝑥̃ ◦

◦ B be the last bit.

let 𝑦 ◦
◦ F𝑝 = LEBS2IP255(𝑦⋆) (mod 𝑝).

let 𝑥 = ?
√︂

1− 𝑦2

𝑎− 𝑑·𝑦2 . (The denominator 𝑎− 𝑑·𝑦2 cannot be zero, since 𝑎

𝑑
is not square in F𝑝.)

if 𝑥 = ⊥, return ⊥.

if 𝑥 mod 2 = 𝑥̃ then return (𝑥, 𝑦) else return (𝑝− 𝑥, 𝑦).

Note: This de�nition of point decoding differs from that of [RFC-8032, section 5.1.3, as corrected by the errata].
In the latter there is an additional step “If x = 0, and x_0 = 1, decoding fails.”, which rejects the encodings {

[0x01, 0x00, 0x80],
[0xee, 0xff],
[0xec, 0xff]

}.
In this speci�cation, the �rst two of these are accepted as encodings of (0, 1), and the third is accepted as an
encoding of (0,−1).

Ed25519 is de�ned as in [BDLSY2012], using SHA-512 as the internal hash function, with the additional requirements
below. A valid Ed25519 validating key is de�ned as a sequence of 32 bytes encoding a point on the Ed25519 curve.
All conversions between Ed25519 points, byte sequences, and integers used in this section are as speci�ed in
[BDLSY2012].

33

https://zips.z.cash/protocol/sprout.pdf#concreteed25519

The requirements on a signature (𝑅, 𝑆) with validating key 𝐴 on a message 𝑀 are:

• 𝑆 MUST represent an integer less than ℓ.

• 𝑅 and 𝐴 MUST be encodings of points 𝑅 and 𝐴 respectively on the Ed25519 curve;

• 𝑅 MUST NOT be in ExcludedPointEncodings;
• The validation equation MUST be equivalent to [𝑆] 𝐵 = 𝑅 + [𝑐] 𝐴.

where 𝑐 is computed as the integer corresponding to SHA-512(𝑅 ||𝐴 ||𝑀) as speci�ed in [BDLSY2012].

If these requirements are not met or the validation equation does not hold, then the signature is considered invalid.

The encoding of an Ed25519 signature is:

256-bit 𝑅 256-bit 𝑆

where 𝑅 and 𝑆 are as de�ned in [BDLSY2012].

Notes:

• It is not required that the integer encoding of the 𝑦-coordinate of the points represented by 𝑅 or 𝐴 are less
than 2255 − 19.

• It is not required that 𝐴 ̸∈ ExcludedPointEncodings.

Non-normative note: The exclusion of ExcludedPointEncodings from 𝑅 is due to a quirk of version 1.0.15 of the
libsodium library [libsodium] which was initially used to implement Ed25519 signature validation in zcashd. (The
ED25519_COMPAT compile-time option was not set.) The intent was to exclude points of order less than ℓ; however,
not all such points were covered. It is possible, with due attention to detail, to reproduce this quirk without using
libsodium v1.0.15.

5.4.6 Commitment schemes #concretecommit

5.4.6.1 Sprout Note Commitments #concretesproutnotecommit

The commitment scheme NoteCommitSprout speci�ed in § 4.1.7 ‘Commitment’ on p. 17 is instantiated using SHA-256
as follows:

NoteCommitSprout
rcm (apk, v, ρ) := SHA-256

(︁
1 0 1 1 0 0 0 0 256-bit apk 64-bit v 256-bit ρ 256-bit rcm

)︁
NoteCommitSprout.GenTrapdoor() generates the uniform distribution on NoteCommitSprout.Trapdoor.

Note: The leading byte of the SHA-256 input is 0xB0.

Security requirements:

• SHA256Compress must be collision-resistant .

• SHA256Compress must be a PRF when keyed by the bits corresponding to the position of rcm in the second
block of SHA-256 input, with input to the PRF in the remaining bits of the block and the chaining variable.

34

https://zips.z.cash/protocol/sprout.pdf#concretecommit
https://zips.z.cash/protocol/sprout.pdf#concretesproutnotecommit

5.4.7 Represented Groups and Pairings #concretepairing

5.4.7.1 BN-254 #bnpairing

The represented pairing BN-254 is de�ned in this section.

Let 𝑞G := 21888242871839275222246405745257275088696311157297823662689037894645226208583.

Let 𝑟G := 21888242871839275222246405745257275088548364400416034343698204186575808495617.

Let 𝑏G := 3.

(𝑞G and 𝑟G are prime.)

Let G(𝑟)
1 be the group (of order 𝑟G) of rational points on a Barreto–Naehrig ([BN2005]) curve 𝐸G1

over F𝑞G
with

equation 𝑦2 = 𝑥3 + 𝑏G. This curve has embedding degree 12 with respect to 𝑟G.

Let G(𝑟)
2 be the subgroup of order 𝑟G in the sextic twist 𝐸G2

of 𝐸G1
over F

𝑞G
2 with equation 𝑦2 = 𝑥3 + 𝑏G

𝜉 , where
𝜉 ◦

◦ F𝑞G
2 .

We represent elements of F
𝑞G

2 as polynomials 𝑎1 · 𝑡 + 𝑎0
◦
◦ F𝑞G

[𝑡], modulo the irreducible polynomial 𝑡2 + 1; in this
representation, 𝜉 is given by 𝑡 + 9.

Let G(𝑟)
𝑇 be the subgroup of 𝑟G

th roots of unity in F*
𝑞G

12 , with multiplicative identity 1G.

Let 𝑒G be the optimal ate pairing (see [Vercauter2009] and [AKLGL2010, section 2]) of type G(𝑟)
1 ×G(𝑟)

2 → G(𝑟)
𝑇 .

For 𝑖 ◦
◦ {1 .. 2}, let 𝒪G𝑖

be the point at in�nity (which is the additive identity) in G(𝑟)
𝑖 , and let G(𝑟)*

𝑖 := G(𝑟)
𝑖 ∖ {𝒪G𝑖

}.

Let 𝒫G1
◦
◦ G(𝑟)*

1 := (1, 2).

Let 𝒫G2
◦
◦ G(𝑟)*

2 := (11559732032986387107991004021392285783925812861821192530917403151452391805634 · 𝑡 +
10857046999023057135944570762232829481370756359578518086990519993285655852781,

4082367875863433681332203403145435568316851327593401208105741076214120093531 · 𝑡 +
8495653923123431417604973247489272438418190587263600148770280649306958101930).

𝒫G1
and 𝒫G2

are generators of G(𝑟)
1 and G(𝑟)

2 respectively.

De�ne I2BEBSP ◦
◦ (ℓ ◦

◦ N)× {0 .. 2ℓ−1} → B[ℓ] as in § 5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 28.

For a point 𝑃 ◦
◦ G(𝑟)*

1 = (𝑥𝑃 , 𝑦𝑃):

• The �eld elements 𝑥𝑃 and 𝑦𝑃
◦
◦ F𝑞 are represented as integers 𝑥 and 𝑦 ◦

◦ {0 .. 𝑞−1}.
• Let 𝑦 = 𝑦 mod 2.

• 𝑃 is encoded as 0 0 0 0 0 0 1 1-bit 𝑦 256-bit I2BEBSP256(𝑥) .

For a point 𝑃 ◦
◦ G(𝑟)*

2 = (𝑥𝑃 , 𝑦𝑃):

• De�ne FE2IP ◦
◦ F𝑞G

[𝑡]/(𝑡2 + 1)→ {0 .. 𝑞G
2−1} such that FE2IP(𝑎𝑤,1 · 𝑡 + 𝑎𝑤,0) = 𝑎𝑤,1 · 𝑞 + 𝑎𝑤,0.

• Let 𝑥 = FE2IP(𝑥𝑃), 𝑦 = FE2IP(𝑦𝑃), and 𝑦′ = FE2IP(−𝑦𝑃).

• Let 𝑦 =
{︃

1, if 𝑦 > 𝑦′

0, otherwise.

• 𝑃 is encoded as 0 0 0 0 1 0 1 1-bit 𝑦 512-bit I2BEBSP512(𝑥) .

35

https://zips.z.cash/protocol/sprout.pdf#concretepairing
https://zips.z.cash/protocol/sprout.pdf#bnpairing

Non-normative notes:

• Only the 𝑟G-order subgroups G(𝑟)
2,𝑇 are used in the protocol, not their containing groups G2,𝑇 . Points in G(𝑟)*

2
are always checked to be of order 𝑟G when decoding from external representation. (The group of rational

points G1 on 𝐸G1
/F𝑞G

is of order 𝑟G so no subgroup checks are needed in that case, and elements of G(𝑟)
𝑇 are

never represented externally.) The (𝑟) superscripts on G(𝑟)
1,2,𝑇 are used for consistency with notation elsewhere

in this speci�cation.

• The points at in�nity 𝒪G1,2
never occur in proofs and have no de�ned encodings in this protocol.

• A rational point 𝑃 ̸= 𝒪G2
on the curve 𝐸G2

can be veri�ed to be of order 𝑟G, and therefore in G(𝑟)*
2 , by checking

that 𝑟G · 𝑃 = 𝒪G2
.

• The use of big-endian order by I2BEBSP is different from the encoding of most other integers in this pro-

tocol. The encodings for G(𝑟)*
1,2 are consistent with the de�nition of EC2OSP for compressed curve points

in [IEEE2004, section 5.5.6.2]. The LSB compressed form (i.e. EC2OSP-XL) is used for points in G(𝑟)*
1 , and the

SORT compressed form (i.e. EC2OSP-XS) for points in G(𝑟)*
2 .

• Testing 𝑦 > 𝑦′ for the compression of G(𝑟)*
2 points is equivalent to testing whether (𝑎𝑦,1, 𝑎𝑦,0) > (𝑎−𝑦,1, 𝑎−𝑦,0)

in lexicographic order.

• Algorithms for decompressing points from the above encodings are given in [IEEE2000, Appendix A.12.8] for

G(𝑟)*
1 , and [IEEE2004, Appendix A.12.11] for G(𝑟)*

2 .

When computing square roots in F𝑞G
or F

𝑞G
2 in order to decompress a point encoding, the implementation MUST

NOT assume that the square root exists, or that the encoding represents a point on the curve.

5.4.8 Zero-Knowledge Proving Systems #concretezk

5.4.8.1 BCTV14 #bctv

Zcash uses zk-SNARKs generated by a fork of libsnark [Zcash-libsnark] with the BCTV14 proving system described
in [BCTV2014a], which is a modi�cation of the systems in [PHGR2013] and [BCGTV2013].

A BCTV14 proof comprises (𝜋𝐴
◦
◦ G(𝑟)*

1 , 𝜋′
𝐴

◦
◦ G(𝑟)*

1 , 𝜋𝐵
◦
◦ G(𝑟)*

2 , 𝜋′
𝐵

◦
◦ G(𝑟)*

1 , 𝜋𝐶
◦
◦ G(𝑟)*

1 , 𝜋′
𝐶

◦
◦ G(𝑟)*

1 , 𝜋𝐾
◦
◦ G(𝑟)*

1 , 𝜋𝐻
◦
◦ G(𝑟)*

1).
It is computed as described in [BCTV2014a, Appendix B], using the pairing parameters speci�ed in § 5.4.7.1 ‘BN-254’
on p. 35.

Note: Many details of the proving system are beyond the scope of this protocol document. For example, the
quadratic constraint program verifying the JoinSplit statement , or its translation to a Quadratic Arithmetic Program
[BCTV2014a, section 2.3], are not speci�ed in this document. In 2015, Bryan Parno found a bug in this translation,
which is corrected by the libsnark implementation5 [WCBTV2015] [Parno2015] [BCTV2014a, Remark 2.5]. In practice
it will be necessary to use the speci�c proving and verifying keys that were generated for the Zcash production block
chain, given in § 5.7 ‘BCTV14 zk-SNARK Parameters’ on p. 40, together with a proving system implementation
that is interoperable with the Zcash fork of libsnark , to ensure compatibility.

Vulnerability disclosure: BCTV14 is subject to a security vulnerability, separate from [Parno2015], that could allow
violation of Knowledge Soundness (and Soundness) [CVE-2019-7167] [SWB2019] [Gabizon2019]. The consequence
for Zcash is that balance violation could have occurred before activation of the Sapling network upgrade , although
there is no evidence of this having happened. Use of the vulnerability to produce false proofs is believed to have
been fully mitigated by activation of Sapling. The use of BCTV14 in Zcash is now limited to verifying proofs that
were made prior to the Sapling network upgrade .

5 Confusingly, the bug found by Bryan Parno was �xed in libsnark in 2015, but that �x was incompletely described in the May 2015 update
[BCTV2014a-old, Theorem 2.4]. It is described completely in [BCTV2014a, Theorem 2.4] and in [Gabizon2019].

36

https://zips.z.cash/protocol/sprout.pdf#concretezk
https://zips.z.cash/protocol/sprout.pdf#bctv

Due to this issue, new forks of Zcash MUST NOT use BCTV14, and any other users of the Zcash protocol SHOULD
discontinue use of BCTV14 as soon as possible.

The vulnerability does not affect the Zero Knowledge property of the scheme (as described in any version of
[BCTV2014a] or as implemented in any version of libsnark that has been used in Zcash), even under subversion of
the parameter generation [BGG2017, Theorem 4.10].

Encoding of BCTV14 Proofs #bctvencoding

A BCTV14 proof is encoded by concatenating the encodings of its elements; for the BN-254 pairing this is:

264-bit 𝜋𝐴 264-bit 𝜋′
𝐴 520-bit 𝜋𝐵 264-bit 𝜋′

𝐵 264-bit 𝜋𝐶 264-bit 𝜋′
𝐶 264-bit 𝜋𝐾 264-bit 𝜋𝐻

The resulting proof size is 296 bytes.

In addition to the steps to verify a proof given in [BCTV2014a, Appendix B], the veri�er MUST check, for the encoding
of each element, that:

• the lead byte is of the required form;

• the remaining bytes encode a big-endian representation of an integer in {0 .. 𝑞S−1} or (in the case of 𝜋𝐵)
{0 .. 𝑞S

2−1};

• the encoding represents a point in G(𝑟)*
1 or (in the case of 𝜋𝐵) G(𝑟)*

2 , including checking that it is of order 𝑟G in
the latter case.

5.5 Encodings of Note Plaintexts and Memo Fields #notept

As explained in § 3.2.1 ‘Note Plaintexts and Memo Fields’ on p. 10, transmitted notes are stored on the block chain
in encrypted form.

The note plaintexts in a JoinSplit description are encrypted to the respective transmission keys pknew
enc,1..Nnew . Each

note plaintext (denoted np) consists of:

(leadByte ◦
◦ BYY, v ◦

◦ {0 .. 2ℓvalue−1}, ρ ◦
◦ B[ℓSprout

PRF], rcm ◦
◦ NoteCommitSprout.Output, memo ◦

◦ BYY[512])

memo is a 512-byte memo �eld associated with this note .

The usage of the memo �eld is by agreement between the sender and recipient of the note . The memo �eld
SHOULD be encoded as one of:

• a UTF-8 human-readable string [Unicode], padded by appending zero bytes; or

• the byte 0xF6 followed by 511 0x00 bytes, indicating “no memo”; or

• any other sequence of 512 bytes starting with a byte value 0xF5 or greater (which is therefore not a valid UTF-8
string), as speci�ed in [ZIP-302].

When the �rst byte value is less than 0xF5, wallet software is expected to strip any trailing zero bytes and then
display the resulting UTF-8 string to the recipient user, where applicable. Incorrect UTF-8-encoded byte sequences
SHOULD be displayed as replacement characters (U+FFFD).

In other cases, the contents of the memo �eld SHOULD NOT be displayed unless otherwise speci�ed by [ZIP-302].

Other �elds are as de�ned in § 3.2 ‘Notes’ on p. 9.

37

https://zips.z.cash/protocol/sprout.pdf#bctvencoding
https://zips.z.cash/protocol/sprout.pdf#notept

The encoding of a Sprout note plaintext consists of:

8-bit leadByte 64-bit v 256-bit ρ 256-bit rcm memo (512 bytes)

• A byte, 0x00, indicating this version of the encoding of a Sprout note plaintext .

• 8 bytes specifying v.

• 32 bytes specifying ρ.

• 32 bytes specifying rcm.

• 512 bytes specifying memo.

5.6 Encodings of Addresses and Keys #addressandkeyencoding

This section describes how Zcash encodes shielded payment addresses , incoming viewing keys , and spending
keys .

Addresses and keys can be encoded as a byte sequence; this is called the raw encoding . For Sprout shielded
payment addresses , this byte sequence can then be further encoded using Base58Check . The Base58Check layer is
the same as for upstream Bitcoin addresses [Bitcoin-Base58].

5.6.1 Transparent Encodings #transparentencodings

5.6.1.1 Transparent Addresses #transparentaddrencoding

Transparent addresses are either P2SH (Pay to Script Hash) addresses [BIP-13] or P2PKH (Pay to Public Key Hash)
addresses [Bitcoin-P2PKH].

The raw encoding of a P2SH address consists of:

8-bit 0x1C 8-bit 0xBD 160-bit script hash

• Two bytes [0x1C, 0xBD], indicating this version of the raw encoding of a P2SH address on Mainnet . (Addresses
on Testnet use [0x1C, 0xBA] instead.)

• 20 bytes specifying a script hash [Bitcoin-P2SH].

The raw encoding of a P2PKH address consists of:

8-bit 0x1C 8-bit 0xB8 160-bit validating key hash

• Two bytes [0x1C, 0xB8], indicating this version of the raw encoding of a P2PKH address on Mainnet . (Addresses
on Testnet use [0x1D, 0x25] instead.)

• 20 bytes specifying a validating key hash, which is a RIPEMD-160 hash [RIPEMD160] of a SHA-256 hash
[NIST2015] of a compressed ECDSA key encoding.

Notes:

• In Bitcoin a single byte is used for the version �eld identifying the address type. In Zcash two bytes are used.
For addresses on Mainnet , this and the encoded length cause the �rst two characters of the Base58Check
encoding to be �xed as “t3” for P2SH addresses, and as “t1” for P2PKH addresses. (This does not imply that a
transparent Zcash address can be parsed identically to a Bitcoin address just by removing the “t”.)

• Zcash does not yet support Hierarchical Deterministic Wallet addresses [BIP-32].

38

https://zips.z.cash/protocol/sprout.pdf#addressandkeyencoding
https://zips.z.cash/protocol/sprout.pdf#transparentencodings
https://zips.z.cash/protocol/sprout.pdf#transparentaddrencoding

5.6.1.2 Transparent Private Keys #transparentkeyencoding

These are encoded in the same way as in Bitcoin [Bitcoin-Base58], for both Mainnet and Testnet .

5.6.2 Sprout Encodings #sproutencodings

5.6.2.1 Sprout Payment Addresses #sproutpaymentaddrencoding

Let KASprout be as de�ned in § 5.4.4.1 ‘Sprout Key Agreement’ on p. 32.

A Sprout shielded payment address consists of apk
◦
◦ B[ℓSprout

PRF] and pkenc
◦
◦ KASprout.Public.

apk is a SHA256Compress output. pkenc is a KASprout.Public key, for use with the encryption scheme de�ned in § 4.12
‘In-band secret distribution’ on p. 26. These components are derived from a spending key as described in § 4.2
‘Key Components’ on p. 19.

The raw encoding of a Sprout shielded payment address consists of:

8-bit 0x16 8-bit 0x9A 256-bit apk 256-bit pkenc

• Two bytes [0x16, 0x9A], indicating this version of the raw encoding of a Sprout shielded payment address on
Mainnet . (Addresses on Testnet use [0x16, 0xB6] instead.)

• 32 bytes specifying apk.

• 32 bytes specifying pkenc, using the normal encoding of a Curve25519 public key [Bernstein2006].

Note: For addresses on Mainnet , the lead bytes and encoded length cause the �rst two characters of the
Base58Check encoding to be �xed as “zc”. For Testnet , the �rst two characters are �xed as “zt”.

5.6.2.2 Sprout Incoming Viewing Keys #sproutinviewingkeyencoding

Let KASprout be as de�ned in § 5.4.4.1 ‘Sprout Key Agreement’ on p. 32.

An incoming viewing key consists of apk
◦
◦ B[ℓSprout

PRF] and skenc
◦
◦ KASprout.Private.

apk is a SHA256Compress output. skenc is a KASprout.Private key, for use with the encryption scheme de�ned in § 4.12
‘In-band secret distribution’ on p. 26. These components are derived from a spending key as described in § 4.2
‘Key Components’ on p. 19.

The raw encoding of an incoming viewing key consists of, in order:

8-bit 0xA8 8-bit 0xAB 8-bit 0xD3 256-bit apk 256-bit skenc

• Three bytes [0xA8, 0xAB, 0xD3], indicating this version of the raw encoding of a Zcash incoming viewing key
on Mainnet . (Addresses on Testnet use [0xA8, 0xAC, 0x0C] instead.)

• 32 bytes specifying apk.

• 32 bytes specifying skenc, using the normal encoding of a Curve25519 private key [Bernstein2006].

skenc MUST be “clamped” using KASprout.FormatPrivate as speci�ed in § 4.2 ‘Key Components’ on p. 19. That is, a
decoded incoming viewing key MUST be considered invalid if skenc ̸= KASprout.FormatPrivate(skenc).

KASprout.FormatPrivate is de�ned in § 5.4.4.1 ‘Sprout Key Agreement’ on p. 32.

Note: For addresses on Mainnet , the lead bytes and encoded length cause the �rst four characters of the
Base58Check encoding to be �xed as “ZiVK”. For Testnet , the �rst four characters are �xed as “ZiVt”.

39

https://zips.z.cash/protocol/sprout.pdf#transparentkeyencoding
https://zips.z.cash/protocol/sprout.pdf#sproutencodings
https://zips.z.cash/protocol/sprout.pdf#sproutpaymentaddrencoding
https://zips.z.cash/protocol/sprout.pdf#sproutinviewingkeyencoding

5.6.2.3 Sprout Spending Keys #sproutspendingkeyencoding

A Sprout spending key consists of ask, which is a sequence of 252 bits (see § 4.2 ‘Key Components’ on p. 19).

The raw encoding of a Sprout spending key consists of:

8-bit 0xAB 8-bit 0x36 [0]4 252-bit ask

• Two bytes [0xAB, 0x36], indicating this version of the raw encoding of a Zcash spending key on Mainnet .
(Addresses on Testnet use [0xAC, 0x08] instead.)

• 32 bytes: 4 zero padding bits and 252 bits specifying ask.

The zero padding occupies the most signi�cant 4 bits of the third byte.

Notes:

• If an implementation represents ask internally as a sequence of 32 bytes with the 4 bits of zero padding intact,
it will be in the correct form for use as an input to PRFaddr, PRFnfSprout, and PRFpk without need for bit-shifting.
Future key representations may make use of these padding bits.

• For addresses on Mainnet , the lead bytes and encoded length cause the �rst two characters of the Base58Check
encoding to be �xed as “SK”. For Testnet , the �rst two characters are �xed as “ST”.

5.7 BCTV14 zk-SNARK Parameters #bctvparameters

The SHA-256 hashes of the proving key and verifying key for the Sprout JoinSplit circuit , encoded in libsnark
format, are:

8bc20a7f013b2b58970cddd2e7ea028975c88ae7ceb9259a5344a16bc2c0eef7 sprout-proving.key
4bd498dae0aacfd8e98dc306338d017d9c08dd0918ead18172bd0aec2fc5df82 sprout-verifying.key

These parameters were obtained by a multi-party computation described in [BGG-mpc] and [BGG2017]. Due to
the security vulnerability described in § 5.4.8.1 ‘BCTV14’ on p. 36, it is not recommended to use these parameters in
new protocols, and it is recommended to stop using them in protocols other than Zcash where they are currently
used.

6 Network Upgrades #networkupgrades

Zcash launched with a protocol revision that we call Sprout. A �rst network upgrade , called Overwinter, activated
on Mainnet on 26 June, 2018 at block height 347500 [Swihart2018] [ZIP-201]. A second upgrade, called Sapling,
activated on Mainnet on 28 October, 2018 at block height 419200 [Hamdon2018] [ZIP-205]. A third upgrade, called
Blossom, activated on Mainnet on 11 December, 2019 at block height 653600 [Zcash-Blossom] [ZIP-206]. A fourth
upgrade, called Heartwood, activated on Mainnet on 16 July, 2020 at block height 903000 [Zcash-Heartwd] [ZIP-250].
A �fth upgrade, called Canopy, activated on Mainnet on 18 November, 2020 at block height 1046400 (coinciding
with the �rst block subsidy halving) [Zcash-Canopy] [ZIP-251].

This draft speci�cation describes a set of changes codenamed NU5, which are proposed to activate in a future
network upgrade .

This section summarizes the strategy for upgrading from Sprout to subsequent versions of the protocol (Overwinter,
Sapling, Blossom, Heartwood, and Canopy), and for future upgrades.

The network upgrade mechanism is described in [ZIP-200].

40

https://zips.z.cash/protocol/sprout.pdf#sproutspendingkeyencoding
https://zips.z.cash/protocol/sprout.pdf#bctvparameters
https://zips.z.cash/protocol/sprout.pdf#networkupgrades

Each network upgrade is introduced as a “bilateral consensus rule change”. In this kind of upgrade,

• there is an activation block height at which the consensus rule change takes effect;

• blocks and transactions that are valid according to the post-upgrade rules are not valid before the upgrade
block height ;

• blocks and transactions that are valid according to the pre-upgrade rules are no longer valid at or after the
activation block height .

Full support for each network upgrade is indicated by a minimum version of the peer-to-peer protocol. At the
planned activation block height , nodes that support a given upgrade will disconnect from (and will not reconnect
to) nodes with a protocol version lower than this minimum.

This ensures that upgrade-supporting nodes transition cleanly from the old protocol to the new protocol. Nodes
that do not support the upgrade will �nd themselves on a network that uses the old protocol and is fully partitioned
from the upgrade-supporting network. This allows us to specify arbitrary protocol changes that take effect at a
given block height .

Note, however, that a block chain reorganization across the upgrade activation block height is possible. In the case
of such a reorganization, blocks at a height before the activation block height will still be created and validated
according to the pre-upgrade rules, and upgrade-supporting nodes MUST allow for this.

7 Consensus Changes from Bitcoin #consensusfrombitcoin

7.1 Transaction Encoding and Consensus #txnencodingandconsensus

The Zcash transaction format up to and including transaction version 4 is as follows (this should be read in the
context of consensus rules later in the section):

Version* Bytes Name Data Type Description

1 .. 4 4 header uint32 Contains:
· fOverwintered �ag (bit 31)
· version (bits 30 .. 0) – transaction version.

1 .. 4 Varies tx_in_count compactSize Number of transparent inputs.

1 .. 4 Varies tx_in tx_in Transparent inputs, encoded as in Bitcoin.

1 .. 4 Varies tx_out_count compactSize Number of transparent outputs.

1 .. 4 Varies tx_out tx_out Transparent outputs, encoded as in Bitcoin.

1 .. 4 4 lock_time uint32 Unix-epoch UTC time or block height , encoded as
in Bitcoin.

2 .. 4 Varies nJoinSplit compactSize The number of JoinSplit descriptions in vJoinSplit.

2 .. 3 1802·
nJoinSplit

vJoinSplit JSDescriptionBCTV14
[nJoinSplit]

A sequence of JoinSplit descriptions using BCTV14
proofs, encoded per § 7.2
‘JoinSplit Description Encoding and Consensus’
on p. 43.

2 .. 4 † 32 joinSplitPubKey byte[32] An encoding of a JoinSplitSig public validating key .

2 .. 4 † 64 joinSplitSig byte[64] A signature on a pre�x of the transaction encoding,
validated using joinSplitPubKey as speci�ed in
§ 4.8 ‘Non-malleability’ on p. 23.

* Version constraints apply to the effectiveVersion, which is equal to min(2, version) when fOverwintered = 0 and
to version otherwise.

† The joinSplitPubKey and joinSplitSig �elds are present if and only if effectiveVersion ≥ 2 and nJoinSplit > 0.

41

https://zips.z.cash/protocol/sprout.pdf#consensusfrombitcoin
https://zips.z.cash/protocol/sprout.pdf#txnencodingandconsensus

Consensus rules:

• The transaction version number MUST be greater than or equal to 1.

• The fOverwintered �ag MUST NOT be set in the protocol version described by this document.

• The encoded size of the transaction MUST be less than or equal to 100000 bytes.

• If effectiveVersion = 1 or nJoinSplit = 0, then both tx_in_count and tx_out_count MUST be nonzero.

• A transaction with one or more transparent inputs from coinbase transactions MUST have no transparent
outputs (i.e. tx_out_count MUST be 0). Inputs from coinbase transactions include Founders’ Reward outputs.

• If effectiveVersion ≥ 2 and nJoinSplit > 0, then:

– joinSplitPubKey MUST be a valid encoding (see § 5.4.5 ‘Ed25519’ on p. 33) of an Ed25519 validating key .

– joinSplitSig MUST represent a valid signature under joinSplitPubKey of dataToBeSigned, as de�ned
in § 4.8 ‘Non-malleability’ on p. 23.

• The total value in zatoshi of transparent outputs from a coinbase transaction MUST NOT be greater than the
value in zatoshi of miner subsidy plus the transaction fees paid by transactions in this block .

• A coinbase transaction MUST NOT have any JoinSplit descriptions .

• A coinbase transaction for a block at block height greater than 0 MUST have a script that, as its �rst item,
encodes the block height as follows. Let heightBytes be the signed little-endian representation of the number,
using the minimum number of bytes such that the most signi�cant byte is < 0x80. Then the encoding is the
length of heightBytes encoded as one byte, followed by heightBytes itself. This matches the encoding used by
Bitcoin in the implementation of [BIP-34] (but the description here is to be considered normative).

• A transaction MUST NOT spend a transparent output of a coinbase transaction from a block less than 100
blocks prior to the spend. Note that transparent outputs of coinbase transactions include Founders’ Reward
outputs .

• A transaction MUST NOT spend an output of the genesis block coinbase transaction. (There is one such
zero-valued output, on each of Testnet and Mainnet .)

• TODO: Other rules inherited from Bitcoin.

Consensus rules associated with each JoinSplit description (§ 7.2 ‘JoinSplit Description Encoding and Consensus’
on p. 43) MUST also be followed.

Notes:

• Previous versions of this speci�cation de�ned what is now the header �eld as a signed int32 �eld which was
required to be positive. The consensus rule that the fOverwintered �ag MUST NOT be set before Overwinter
has activated, has the same effect. (Overwinter is an upgrade of the Zcash protocol, not speci�ed in this
document.)

• The semantics of transactions with transaction version number not equal to 1, 2, is not currently de�ned.

• The exclusion of transactions with transaction version number greater than 2 is not a consensus rule. Such
transactions may exist in the block chain and MUST be treated identically to version 2 transactions .

• The transaction version number 0x7FFFFFFF, and the version group ID 0xFFFFFFFF, are reserved for use in
experimental extensions to transaction format or semantics on private testnets. They MUST NOT be used on
the Zcash Mainnet or Testnet .

• Note that a future upgrade might use any transaction version number . It is likely that an upgrade that changes
the transaction version number will also change the transaction format, and software that parses transactions
SHOULD take this into account.

• A transaction version number of 2 does not have the same meaning as in Bitcoin, where it is associated with
support for OP_CHECKSEQUENCEVERIFY as speci�ed in [BIP-68]. Zcash was forked from Bitcoin v0.11.2 and does
not currently support BIP 68.

42

The changes relative to Bitcoin version 1 transactions as described in [Bitcoin-Format] are:

• Transaction version 0 is not supported.

• A version 1 transaction is equivalent to a version 2 transaction with nJoinSplit = 0.

• The nJoinSplit, vJoinSplit, joinSplitPubKey, and joinSplitSig �elds have been added.

• In Zcash it is permitted for a transaction to have no transparent inputs provided that nJoinSplit > 0.

• A consensus rule limiting transaction size has been added. In Bitcoin there is a corresponding standard rule
but no consensus rule.

Software that creates transactions SHOULD use version 1 for transactions with no JoinSplit descriptions .

7.2 JoinSplit Description Encoding and Consensus #joinsplitencodingandconsensus

An abstract JoinSplit description, as described in § 3.5 ‘JoinSplit Transfers and Descriptions’ on p. 11, is encoded
in a transaction as an instance of a JoinSplitDescription type as follows:

Bytes Name Data Type Description

8 vpub_old uint64 A value vold
pub that the JoinSplit transfer removes from

the transparent transaction value pool .

8 vpub_new uint64 A value vnew
pub that the JoinSplit transfer inserts into the

transparent transaction value pool .

32 anchor byte[32] A root rtSprout of the Sprout note commitment tree at
some block height in the past, or the root produced by
a previous JoinSplit transfer in this transaction.

64 nullifiers byte[32][Nold] A sequence of nulli�ers of the input notes nfold
1..Nold .

64 commitments byte[32][Nnew] A sequence of note commitments for the output notes
cmnew

1..Nnew .

32 ephemeralKey byte[32] A Curve25519 public key epk.

32 randomSeed byte[32] A 256-bit seed that must be chosen independently at
random for each JoinSplit description.

64 vmacs byte[32][Nold] A sequence of message authentication tags h1..Nold

binding hSig to each ask of the JoinSplit description,
computed as described in § 4.8 ‘Non-malleability’ on
p. 23.

296 zkproof byte[296] An encoding of the zk-SNARK proof 𝜋ZKJoinSplit (see
§ 5.4.8.1 ‘BCTV14’ on p. 36).

1202 encCiphertexts byte[601][Nnew] A sequence of ciphertext components for the
encrypted output notes , Cenc

1..Nnew .

The ephemeralKey and encCiphertexts �elds together form the transmitted notes ciphertext , which is computed
as described in § 4.12 ‘In-band secret distribution’ on p. 26.

Consensus rules applying to a JoinSplit description are given in § 4.3 ‘JoinSplit Descriptions’ on p. 19.

43

https://zips.z.cash/protocol/sprout.pdf#joinsplitencodingandconsensus

7.3 Block Header Encoding and Consensus #blockheader

The Zcash block header format is as follows (this should be read in the context of consensus rules later in the
section):

Bytes Name Data Type Description

4 nVersion int32 The block version number indicates which set of
block validation rules to follow. The current and only
de�ned block version number for Zcash is 4.

32 hashPrevBlock byte[32] A SHA-256d hash in internal byte order of the
previous block ’s header . This ensures no previous
block can be changed without also changing this
block ’s header .

32 hashMerkleRoot byte[32] A SHA-256d hash in internal byte order. The merkle
root is derived from the hashes of all transactions
included in this block , ensuring that none of those
transactions can be modi�ed without modifying the
header .

32 hashReserved byte[32] A reserved �eld which should be ignored. The root

LEBS2OSP256

(︁
rtSapling

)︁
of the Sapling note

commitment tree corresponding to the �nal Sapling
treestate of this block .

4 nTime uint32 The block timestamp is a Unix epoch time (UTC)
when the miner started hashing the header
(according to the miner).

4 nBits uint32 An encoded version of the target threshold this
block ’s header hash must be less than or equal to, in
the same nBits format used by Bitcoin.
[Bitcoin-nBits]

32 nNonce byte[32] An arbitrary �eld that miners can change to modify
the header hash in order to produce a hash less than
or equal to the target threshold .

3 solutionSize compactSize The size of an Equihash solution in bytes (always
1344).

1344 solution byte[1344] The Equihash solution.

A block consists of a block header and a sequence of transactions . How transactions are encoded in a block is part
of the Zcash peer-to-peer protocol but not part of the consensus protocol.

Let ThresholdBits be as de�ned in § 7.4.3 ‘Difficulty adjustment’ on p. 47, and let PoWMedianBlockSpan be the con-
stant de�ned in § 5.3 ‘Constants’ on p. 28.

De�ne the median-time-past of a block to be the median (as de�ned in § 7.4.3 ‘Difficulty adjustment’ on p. 47)
of the nTime �elds of the preceding PoWMedianBlockSpan blocks (or all preceding blocks if there are fewer than
PoWMedianBlockSpan). The median-time-past of a genesis block is not de�ned.

44

https://zips.z.cash/protocol/sprout.pdf#blockheader

Consensus rules:

• The block version number MUST be greater than or equal to 4.

• For a block at block height height, nBits MUST be equal to ThresholdBits(height).
• The block MUST pass the dif�culty �lter de�ned in § 7.4.2 ‘Difficulty filter’ on p. 47.

• solution MUST represent a valid Equihash solution as de�ned in § 7.4.1 ‘Equihash’ on p. 46.

• For each block other than the genesis block , nTime MUST be strictly greater than the median-time-past of
that block .

• For each block at block height 2 or greater on Mainnet , or block height 653606 or greater on Testnet , nTime
MUST be less than or equal to the median-time-past of that block plus 90 · 60 seconds.

• The size of a block MUST be less than or equal to 2000000 bytes.

• TODO: Other rules inherited from Bitcoin.

In addition, a full validator MUST NOT accept blocks with nTime more than two hours in the future according to its
clock. This is not strictly a consensus rule because it is nondeterministic, and clock time varies between nodes.
Also note that a block that is rejected by this rule at a given point in time may later be accepted.

Notes:

• The semantics of blocks with block version number not equal to 4 is not currently de�ned. Miners MUST
NOT create such blocks .

• The exclusion of blocks with block version number greater than 4 is not a consensus rule; such blocks may
exist in the block chain and MUST be treated identically to version 4 blocks by full validators . Note that a
future upgrade might use block version number either greater than or less than 4. It is likely that such an
upgrade will change the block header and/or transaction format, and software that parses blocks SHOULD
take this into account.

• The nVersion �eld is a signed integer. (It was speci�ed as unsigned in a previous version of this speci�cation.)
A future upgrade might use negative values for this �eld, or otherwise change its interpretation.

• There is no relation between the values of the version �eld of a transaction, and the nVersion �eld of a block
header .

• Like other serialized �elds of type compactSize, the solutionSize �eld MUST be encoded with the minimum
number of bytes (3 in this case), and other encodings MUST be rejected. This is necessary to avoid a potential
attack in which a miner could test several distinct encodings of each Equihash solution against the dif�culty
�lter, rather than only the single intended encoding.

• As in Bitcoin, the nTime �eld MUST represent a time strictly greater than the median of the timestamps of
the past PoWMedianBlockSpan blocks . The Bitcoin Developer Reference [Bitcoin-Block] was previously in
error on this point, but has now been corrected.

• The rule limiting nTime to be no later than 90 · 60 seconds after the median-time-past is a retrospective
consensus change, applied as a soft fork in zcashd v2.1.1-1. It had not been violated by any block from the
given block heights in the consensus block chains of either Mainnet or Testnet .

The changes relative to Bitcoin version 4 blocks as described in [Bitcoin-Block] are:

• Block versions less than 4 are not supported.

• The hashReserved, solutionSize, and solution �elds have been added.

• The type of the nNonce �eld has changed from uint32 to byte[32].

• The maximum block size has been doubled to 2000000 bytes.

45

7.4 Proof of Work #pow

Zcash uses Equihash [BK2016] as its Proof of Work. The original motivations for changing the Proof of Work from
SHA-256d used by Bitcoin were described in [WG2016].

A block satis�es the Proof of Work if and only if:

• The solution �eld encodes a valid Equihash solution according to § 7.4.1 ‘Equihash’ on p. 46.

• The block header satis�es the dif�culty check according to § 7.4.2 ‘Difficulty filter’ on p. 47.

7.4.1 Equihash #equihash

An instance of the Equihash algorithm is parameterized by positive integers 𝑛 and 𝑘, such that 𝑛 is a multiple of
𝑘 + 1. We assume 𝑘 ≥ 3.

The Equihash parameters for Mainnet and Testnet are 𝑛 = 200, 𝑘 = 9.

Equihash is based on a variation of the Generalized Birthday Problem [AR2017]: given a sequence 𝑋1 .. N of 𝑛-bit

strings, �nd 2𝑘 distinct 𝑋𝑖𝑗
such that

⨁︀2𝑘

𝑗=1
𝑋𝑖𝑗

= 0.

In Equihash, N = 2
𝑛

𝑘+1 +1, and the sequence 𝑋1 .. N is derived from the block header and a nonce.

Let powheader := 32-bit nVersion 256-bit hashPrevBlock 256-bit hashMerkleRoot

256-bit hashReserved 32-bit nTime 32-bit nBits 256-bit nNonce

For 𝑖 ∈ {1 .. 𝑁}, let 𝑋𝑖 = EquihashGen𝑛,𝑘(powheader, 𝑖).

EquihashGen is instantiated in § 5.4.1.5 ‘Equihash Generator’ on p. 31.

De�ne I2BEBSP ◦
◦ (ℓ ◦

◦ N)× {0 .. 2ℓ−1} → B[ℓ] as in § 5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 28.

A valid Equihash solution is then a sequence 𝑖 ◦
◦ {1 .. 𝑁}2𝑘

that satis�es the following conditions:

Generalized Birthday condition
2𝑘⨁︁

𝑗=1
𝑋𝑖𝑗

= 0.

Algorithm Binding conditions

• For all 𝑟 ∈ {1 .. 𝑘−1}, for all 𝑤 ∈ {0 .. 2𝑘−𝑟−1} :
2𝑟⨁︁

𝑗=1
𝑋𝑖

𝑤·2𝑟+𝑗
has 𝑛·𝑟

𝑘+1 leading zeros; and

• For all 𝑟 ∈ {1 .. 𝑘}, for all 𝑤 ∈ {0 .. 2𝑘−𝑟−1} : 𝑖
𝑤·2𝑟+1..𝑤·2𝑟+2𝑟−1 < 𝑖

𝑤·2𝑟+2𝑟−1+1..𝑤·2𝑟+2𝑟 lexicographically.

Notes:

• This does not include a dif�culty condition, because here we are de�ning validity of an Equihash solution
independent of dif�culty.

• Previous versions of this speci�cation incorrectly speci�ed the range of 𝑟 to be {1 .. 𝑘−1} for both parts of the
algorithm binding condition. The implementation in zcashd was as intended.

An Equihash solution with 𝑛 = 200 and 𝑘 = 9 is encoded in the solution �eld of a block header as follows:

I2BEBSP21(𝑖1 − 1) I2BEBSP21(𝑖2 − 1) · · · I2BEBSP21(𝑖512 − 1)

46

https://zips.z.cash/protocol/sprout.pdf#pow
https://zips.z.cash/protocol/sprout.pdf#equihash

Recall from § 5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 28 that bits in the above diagram are ordered
from most to least signi�cant in each byte. For example, if the �rst 3 elements of 𝑖 are [69, 42, 221], then the
corresponding bit array is:

I2BEBSP21(68) I2BEBSP21(41) I2BEBSP21(221 − 1)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1

8-bit 0 8-bit 2 8-bit 32 8-bit 0 8-bit 10 8-bit 127 8-bit 255 · · ·

and so the �rst 7 bytes of solution would be [0, 2, 32, 0, 10, 127, 255].

Note: I2BEBSP is big-endian, while integer �eld encodings in powheader and in the instantiation of EquihashGen
are little-endian. The rationale for this is that little-endian serialization of block headers is consistent with Bitcoin,
but little-endian ordering of bits in the solution encoding would require bit-reversal (as opposed to only shifting).

7.4.2 Dif�culty �lter #dif�culty

Let ToTarget be as de�ned in § 7.4.4 ‘nBits conversion’ on p. 48.

Dif�culty is de�ned in terms of a target threshold , which is adjusted for each block according to the algorithm
de�ned in § 7.4.3 ‘Difficulty adjustment’ on p. 47.

The dif�culty �lter is unchanged from Bitcoin, and is calculated using SHA-256d on the whole block header
(including solutionSize and solution). The result is interpreted as a 256-bit integer represented in little-endian
byte order, which MUST be less than or equal to the target threshold given by ToTarget(nBits).

7.4.3 Dif�culty adjustment #diffadjustment

The desired time between blocks is called the block target spacing . Zcash uses a dif�culty adjustment algorithm
based on DigiShield v3/v4 [DigiByte-PoW], with simpli�cations and altered parameters, to adjust dif�culty to target
the desired block target spacing . Unlike Bitcoin, the dif�culty adjustment occurs after every block .

PoWLimit, HalvingInterval, PoWAveragingWindow, PoWMaxAdjustDown, PoWMaxAdjustUp, PoWDampingFactor, and
PoWTargetSpacing are speci�ed in section § 5.3 ‘Constants’ on p. 28.

Let ToCompact and ToTarget be as de�ned in § 7.4.4 ‘nBits conversion’ on p. 48.

Let nTime(height) be the value of the nTime �eld in the header of the block at block height height.

Let nBits(height) be the value of the nBits �eld in the header of the block at block height height.

Block header �elds are speci�ed in § 7.3 ‘Block Header Encoding and Consensus’ on p. 44.

De�ne:

mean(𝑆) :=
∑︀length(𝑆)

𝑖=1
𝑆𝑖

length(𝑆)

median(𝑆) := sorted(𝑆)ceiling((length(𝑆)+1)/2)

bound upper
lower (𝑥) := max(lower, min(upper, 𝑥)))

trunc(𝑥) :=
{︃

floor(𝑥) , if 𝑥 ≥ 0
−floor(−𝑥) , otherwise

AveragingWindowTimespan := PoWAveragingWindow · PoWTargetSpacing
MinActualTimespan := floor(AveragingWindowTimespan · (1− PoWMaxAdjustUp))
MaxActualTimespan := floor(AveragingWindowTimespan · (1 + PoWMaxAdjustDown))
MedianTime(height ◦

◦ N) := median([[nTime(𝑖) for 𝑖 from max(0, height− PoWMedianBlockSpan) up to height− 1]])

47

https://zips.z.cash/protocol/sprout.pdf#difficulty
https://zips.z.cash/protocol/sprout.pdf#diffadjustment

ActualTimespan(height ◦
◦ N) := MedianTime(height)−MedianTime(height− PoWAveragingWindow)

ActualTimespanDamped(height ◦
◦ N) :=

AveragingWindowTimespan + trunc
(︁

ActualTimespan(height)− AveragingWindowTimespan
PoWDampingFactor

)︁
ActualTimespanBounded(height ◦

◦ N) := bound MaxActualTimespan
MinActualTimespan (ActualTimespanDamped(height))

MeanTarget(height ◦
◦ N) :=

⎧⎪⎨⎪⎩
PoWLimit, if height ≤ PoWAveragingWindow
mean([[ToTarget(nBits(𝑖)) for 𝑖 from height−PoWAveragingWindow up to height−1]]),

otherwise.

The target threshold for a given block height height is then calculated as:

Threshold(height ◦
◦ N) :=

⎧⎪⎪⎨⎪⎪⎩
PoWLimit, if height = 0
min(PoWLimit, floor

(︁
MeanTarget(height)

AveragingWindowTimespan

)︁
· ActualTimespanBounded(height)),

otherwise

ThresholdBits(height ◦
◦ N) := ToCompact(Threshold(height)).

Notes:

• The convention used for the height parameters to the functions MedianTime, MeanTarget, ActualTimespan,
ActualTimespanDamped, ActualTimespanBounded, Threshold, and ThresholdBits is that these functions use only
information from blocks preceding the given block height .

• When the median function is applied to a sequence of even length (which only happens in the de�nition of
MedianTime during the �rst PoWAveragingWindow − 1 blocks of the block chain), the element that begins the
second half of the sequence is taken. This corresponds to the zcashd implementation, but was not speci�ed
correctly in versions of this speci�cation prior to 2019.0-beta-40.

On Testnet from block height 299188 onward, the dif�culty adjustment algorithm is changed to allow minimum-
dif�culty blocks , as described in [ZIP-205]. This change does not apply to Mainnet .

7.4.4 nBits conversion #nbits

Deterministic conversions between a target threshold and a “compact" nBits value are not fully de�ned in the
Bitcoin documentation [Bitcoin-nBits], and so we de�ne them here:

size(𝑥) := ceiling
(︁

bitlength(𝑥)
8

)︁
mantissa(𝑥) := floor

(︁
𝑥 · 2563−size(𝑥)

)︁
ToCompact(𝑥) :=

{︃
mantissa(𝑥) + 224 ·size(𝑥), if mantissa(𝑥) < 223

floor
(︁

mantissa(𝑥)
256

)︁
+ 224 ·(size(𝑥) + 1), otherwise

ToTarget(𝑥) :=
{︃

0, if 𝑥î 223 = 223

(𝑥î (223 − 1)) · 256floor(𝑥/224)−3, otherwise.

7.4.5 De�nition of Work #workdef

As explained in § 3.3 ‘The Block Chain’ on p. 10, a node chooses the “best” block chain visible to it by �nding the
chain of valid blocks with the greatest total work.

Let ToTarget be as de�ned in § 7.4.4 ‘nBits conversion’ on p. 48.

The work of a block with value nBits for the nBits �eld in its block header is de�ned as floor
(︂

2256

ToTarget(nBits) + 1

)︂
.

48

https://zips.z.cash/protocol/sprout.pdf#nbits
https://zips.z.cash/protocol/sprout.pdf#workdef

7.5 Calculation of Block Subsidy and Founders’ Reward #subsidies

§ 3.8 ‘Block Subsidy and Founders’ Reward’ on p. 13 de�nes the block subsidy , miner subsidy , and Founders’
Reward . Their amounts in zatoshi are calculated from the block height using the formulae below.

Let SlowStartInterval, HalvingInterval, MaxBlockSubsidy, and FoundersFraction be as de�ned in § 5.3 ‘Constants’ on
p. 28.

SlowStartShift ◦
◦ N := SlowStartInterval

2

SlowStartRate ◦
◦ N := MaxBlockSubsidy

SlowStartInterval

Halving(height ◦
◦ N) :=

{︃
0, if height < SlowStartShift
floor

(︁
height− SlowStartShift

HalvingInterval

)︁
, otherwise

BlockSubsidy(height ◦
◦ N) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
SlowStartRate · height, if height < SlowStartShift

SlowStartRate · (height + 1), if SlowStartShift ≤ height
and height < SlowStartInterval

floor
(︁

MaxBlockSubsidy
2Halving(height)

)︁
, otherwise

FoundersReward(height ◦
◦ N) :=

{︃
BlockSubsidy(height) · FoundersFraction, if Halving(height) < 1
0, otherwise

MinerSubsidy(height) := BlockSubsidy(height)− FoundersReward(height).

7.6 Payment of Founders’ Reward #foundersreward

The Founders’ Reward is paid by a transparent output in the coinbase transaction, to one of NumFounderAddresses
transparent addresses, depending on the block height .

For Mainnet , FounderAddressList1..NumFounderAddresses is:

[“t3Vz22vK5z2LcKEdg16Yv4FFneEL1zg9ojd”, “t3cL9AucCajm3HXDhb5jBnJK2vapVoXsop3”,
“t3fqvkzrrNaMcamkQMwAyHRjfDdM2xQvDTR”, “t3TgZ9ZT2CTSK44AnUPi6qeNaHa2eC7pUyF”,
“t3SpkcPQPfuRYHsP5vz3Pv86PgKo5m9KVmx”, “t3Xt4oQMRPagwbpQqkgAViQgtST4VoSWR6S”,
“t3ayBkZ4w6kKXynwoHZFUSSgXRKtogTXNgb”, “t3adJBQuaa21u7NxbR8YMzp3km3TbSZ4MGB”,
“t3K4aLYagSSBySdrfAGGeUd5H9z5Qvz88t2”, “t3RYnsc5nhEvKiva3ZPhfRSk7eyh1CrA6Rk”,
“t3Ut4KUq2ZSMTPNE67pBU5LqYCi2q36KpXQ”, “t3ZnCNAvgu6CSyHm1vWtrx3aiN98dSAGpnD”,
“t3fB9cB3eSYim64BS9xfwAHQUKLgQQroBDG”, “t3cwZfKNNj2vXMAHBQeewm6pXhKFdhk18kD”,
“t3YcoujXfspWy7rbNUsGKxFEWZqNstGpeG4”, “t3bLvCLigc6rbNrUTS5NwkgyVrZcZumTRa4”,
“t3VvHWa7r3oy67YtU4LZKGCWa2J6eGHvShi”, “t3eF9X6X2dSo7MCvTjfZEzwWrVzquxRLNeY”,
“t3esCNwwmcyc8i9qQfyTbYhTqmYXZ9AwK3X”, “t3M4jN7hYE2e27yLsuQPPjuVek81WV3VbBj”,
“t3gGWxdC67CYNoBbPjNvrrWLAWxPqZLxrVY”, “t3LTWeoxeWPbmdkUD3NWBquk4WkazhFBmvU”,
“t3P5KKX97gXYFSaSjJPiruQEX84yF5z3Tjq”, “t3f3T3nCWsEpzmD35VK62JgQfFig74dV8C9”,
“t3Rqonuzz7afkF7156ZA4vi4iimRSEn41hj”, “t3fJZ5jYsyxDtvNrWBeoMbvJaQCj4JJgbgX”,
“t3Pnbg7XjP7FGPBUuz75H65aczphHgkpoJW”, “t3WeKQDxCijL5X7rwFem1MTL9ZwVJkUFhpF”,
“t3Y9FNi26J7UtAUC4moaETLbMo8KS1Be6ME”, “t3aNRLLsL2y8xcjPheZZwFy3Pcv7CsTwBec”,
“t3gQDEavk5VzAAHK8TrQu2BWDLxEiF1unBm”, “t3Rbykhx1TUFrgXrmBYrAJe2STxRKFL7G9r”,
“t3aaW4aTdP7a8d1VTE1Bod2yhbeggHgMajR”, “t3YEiAa6uEjXwFL2v5ztU1fn3yKgzMQqNyo”,
“t3g1yUUwt2PbmDvMDevTCPWUcbDatL2iQGP”, “t3dPWnep6YqGPuY1CecgbeZrY9iUwH8Yd4z”,
“t3QRZXHDPh2hwU46iQs2776kRuuWfwFp4dV”, “t3enhACRxi1ZD7e8ePomVGKn7wp7N9fFJ3r”,
“t3PkLgT71TnF112nSwBToXsD77yNbx2gJJY”, “t3LQtHUDoe7ZhhvddRv4vnaoNAhCr2f4oFN”,
“t3fNcdBUbycvbCtsD2n9q3LuxG7jVPvFB8L”, “t3dKojUU2EMjs28nHV84TvkVEUDu1M1FaEx”,
“t3aKH6NiWN1ofGd8c19rZiqgYpkJ3n679ME”, “t3MEXDF9Wsi63KwpPuQdD6by32Mw2bNTbEa”,
“t3WDhPfik343yNmPTqtkZAoQZeqA83K7Y3f”, “t3PSn5TbMMAEw7Eu36DYctFezRzpX1hzf3M”,
“t3R3Y5vnBLrEn8L6wFjPjBLnxSUQsKnmFpv”, “t3Pcm737EsVkGTbhsu2NekKtJeG92mvYyoN”]

49

https://zips.z.cash/protocol/sprout.pdf#subsidies
https://zips.z.cash/protocol/sprout.pdf#foundersreward

For Testnet , FounderAddressList1..NumFounderAddresses is:

[“t2UNzUUx8mWBCRYPRezvA363EYXyEpHokyi”, “t2N9PH9Wk9xjqYg9iin1Ua3aekJqfAtE543”,
“t2NGQjYMQhFndDHguvUw4wZdNdsssA6K7x2”, “t2ENg7hHVqqs9JwU5cgjvSbxnT2a9USNfhy”,
“t2BkYdVCHzvTJJUTx4yZB8qeegD8QsPx8bo”, “t2J8q1xH1EuigJ52MfExyyjYtN3VgvshKDf”,
“t2Crq9mydTm37kZokC68HzT6yez3t2FBnFj”, “t2EaMPUiQ1kthqcP5UEkF42CAFKJqXCkXC9”,
“t2F9dtQc63JDDyrhnfpzvVYTJcr57MkqA12”, “t2LPirmnfYSZc481GgZBa6xUGcoovfytBnC”,
“t26xfxoSw2UV9Pe5o3C8V4YybQD4SESfxtp”, “t2D3k4fNdErd66YxtvXEdft9xuLoKD7CcVo”,
“t2DWYBkxKNivdmsMiivNJzutaQGqmoRjRnL”, “t2C3kFF9iQRxfc4B9zgbWo4dQLLqzqjpuGQ”,
“t2MnT5tzu9HSKcppRyUNwoTp8MUueuSGNaB”, “t2AREsWdoW1F8EQYsScsjkgqobmgrkKeUkK”,
“t2Vf4wKcJ3ZFtLj4jezUUKkwYR92BLHn5UT”, “t2K3fdViH6R5tRuXLphKyoYXyZhyWGghDNY”,
“t2VEn3KiKyHSGyzd3nDw6ESWtaCQHwuv9WC”, “t2F8XouqdNMq6zzEvxQXHV1TjwZRHwRg8gC”,
“t2BS7Mrbaef3fA4xrmkvDisFVXVrRBnZ6Qj”, “t2FuSwoLCdBVPwdZuYoHrEzxAb9qy4qjbnL”,
“t2SX3U8NtrT6gz5Db1AtQCSGjrpptr8JC6h”, “t2V51gZNSoJ5kRL74bf9YTtbZuv8Fcqx2FH”,
“t2FyTsLjjdm4jeVwir4xzj7FAkUidbr1b4R”, “t2EYbGLekmpqHyn8UBF6kqpahrYm7D6N1Le”,
“t2NQTrStZHtJECNFT3dUBLYA9AErxPCmkka”, “t2GSWZZJzoesYxfPTWXkFn5UaxjiYxGBU2a”,
“t2RpffkzyLRevGM3w9aWdqMX6bd8uuAK3vn”, “t2JzjoQqnuXtTGSN7k7yk5keURBGvYofh1d”,
“t2AEefc72ieTnsXKmgK2bZNckiwvZe3oPNL”, “t2NNs3ZGZFsNj2wvmVd8BSwSfvETgiLrD8J”,
“t2ECCQPVcxUCSSQopdNquguEPE14HsVfcUn”, “t2JabDUkG8TaqVKYfqDJ3rqkVdHKp6hwXvG”,
“t2FGzW5Zdc8Cy98ZKmRygsVGi6oKcmYir9n”, “t2DUD8a21FtEFn42oVLp5NGbogY13uyjy9t”,
“t2UjVSd3zheHPgAkuX8WQW2CiC9xHQ8EvWp”, “t2TBUAhELyHUn8i6SXYsXz5Lmy7kDzA1uT5”,
“t2Tz3uCyhP6eizUWDc3bGH7XUC9GQsEyQNc”, “t2NysJSZtLwMLWEJ6MH3BsxRh6h27mNcsSy”,
“t2KXJVVyyrjVxxSeazbY9ksGyft4qsXUNm9”, “t2J9YYtH31cveiLZzjaE4AcuwVho6qjTNzp”,
“t2QgvW4sP9zaGpPMH1GRzy7cpydmuRfB4AZ”, “t2NDTJP9MosKpyFPHJmfjc5pGCvAU58XGa4”,
“t29pHDBWq7qN4EjwSEHg8wEqYe9pkmVrtRP”, “t2Ez9KM8VJLuArcxuEkNRAkhNvidKkzXcjJ”,
“t2D5y7J5fpXajLbGrMBQkFg2mFN8fo3n8cX”, “t2UV2wr1PTaUiybpkV3FdSdGxUJeZdZztyt”]

Note: For Testnet only, the addresses from index 4 onward have been changed from what was implemented at
launch. This re�ects an upgrade on Testnet , starting from block height 53127. [Zcash-Issue2113]

Each address representation in FounderAddressList denotes a transparent P2SH multisig address.

Let SlowStartShift and Halving be de�ned as in the previous section.

De�ne:

FounderAddressChangeInterval := ceiling
(︁

SlowStartShift + HalvingInterval
NumFounderAddresses

)︁
FounderAddressIndex(height ◦

◦ N) := 1 + floor
(︁

height
FounderAddressChangeInterval

)︁
FoundersRewardLastBlockHeight := SlowStartShift + HalvingInterval− 1 .

Let FounderRedeemScriptHash(height ◦
◦ N) be the standard redeem script hash, as speci�ed in [Bitcoin-Multisig], for

the P2SH multisig address with Base58Check form given by FounderAddressList FounderAddressIndex(height).

Consensus rule: A coinbase transaction at height ∈ {1 .. FoundersRewardLastBlockHeight}MUST include at least
one output that pays exactly FoundersReward(height) zatoshi with a standard P2SH script of the form OP_HASH160
FounderRedeemScriptHash(height) OP_EQUAL as its scriptPubKey.

Notes:

• No Founders’ Reward is required to be paid for height > FoundersRewardLastBlockHeight (i.e. after the �rst
halving), or for height = 0 (i.e. the genesis block).

• The Founders’ Reward addresses are not treated specially in any other way, and there can be other outputs
to them, in coinbase transactions or otherwise. In particular, it is valid for a coinbase transaction with
height ∈ {1 .. FoundersRewardLastBlockHeight} to have other outputs, possibly to the same address, that do not
meet the criterion in the above consensus rule, as long as at least one output meets it.

• The assertion FounderAddressIndex(FoundersRewardLastBlockHeight) ≤ NumFounderAddresses holds, ensuring
that the Founders’ Reward address index remains in range for the whole period in which the Founders’
Reward is paid.

50

7.7 Changes to the Script System #scripts

The OP_CODESEPARATOR opcode has been disabled. This opcode also no longer affects the calculation of SIGHASH
transaction hashes .

7.8 Bitcoin Improvement Proposals #bips

In general, Bitcoin Improvement Proposals (BIPs) do not apply to Zcash unless otherwise speci�ed in this section.

All of the BIPs referenced below should be interpreted by replacing “BTC”, or “bitcoin” used as a currency unit, with
“ZEC”; and “satoshi” with “zatoshi”.

The following BIPs apply, otherwise unchanged, to Zcash: [BIP-11], [BIP-14], [BIP-31], [BIP-35], [BIP-37], [BIP-61].

The following BIPs apply starting from the Zcash genesis block , i.e. any activation rules or exceptions for particular
blocks in the Bitcoin block chain are to be ignored: [BIP-16], [BIP-30], [BIP-65], [BIP-66].

The effect of [BIP-34] has been incorporated into the consensus rules (§ 7.1 ‘Transaction Encoding and Consensus’
on p. 41). This excludes the Mainnet and Testnet genesis blocks , for which the “height in coinbase” was inadvertently
omitted.

[BIP-13] applies with the changes to address version bytes described in § 5.6.1.1 ‘Transparent Addresses’ on p. 38.

[BIP-111] applies from peer-to-peer network protocol version 170004 onward; that is:

• references to protocol version 70002 are to be replaced by 170003;

• references to protocol version 70011 are to be replaced by 170004;

• the reference to protocol version 70000 is to be ignored (Zcash nodes have supported Bloom-�ltered connec-
tions since launch).

8 Differences from the Zerocash paper #differences

8.1 Transaction Structure #trstructure

Zerocash introduces two new operations, which are described in the paper as new transaction types, in addition to
the original transaction type of the cryptocurrency on which it is based (e.g. Bitcoin).

In Zcash, there is only the original Bitcoin transaction type, which is extended to contain a sequence of zero or
more Zcash-speci�c operations.

This allows for the possibility of chaining transfers of shielded value in a single Zcash transaction, e.g. to spend a
shielded note that has just been created. (In Zcash, we refer to value stored in UTXOs as transparent , and value
stored in output notes of JoinSplit transfers as shielded .) This was not possible in the Zerocash design without
using multiple transactions. It also allows transparent and shielded transfers to happen atomically — possibly
under the control of nontrivial script conditions, at some cost in distinguishability.

Computation of SIGHASH transaction hashes , as described in § 4.7 ‘SIGHASH Transaction Hashing’ on p. 22,
was changed to clean up handling of an error case for SIGHASH_SINGLE, to remove the special treatment of
OP_CODESEPARATOR, and to include Zcash-speci�c �elds in the hash [ZIP-76].

8.2 Memo Fields #memodiffs

Zcash adds a memo �eld sent from the creator of a JoinSplit description to the recipient of each output note . This
feature is described in more detail in § 5.5 ‘Encodings of Note Plaintexts and Memo Fields’ on p. 37.

51

https://zips.z.cash/protocol/sprout.pdf#scripts
https://zips.z.cash/protocol/sprout.pdf#bips
https://zips.z.cash/protocol/sprout.pdf#differences
https://zips.z.cash/protocol/sprout.pdf#trstructure
https://zips.z.cash/protocol/sprout.pdf#memodiffs

8.3 Uni�cation of Mints and Pours #mintsandpours

In the original Zerocash protocol, there were two kinds of transaction relating to shielded notes :

• a “Mint” transaction takes value from transparent UTXOs as input and produces a new shielded note as
output.

• a “Pour” transaction takes up to Nold shielded notes as input, and produces up to Nnew shielded notes and a
transparent UTXO as output.

Only “Pour” transactions included a zk-SNARK proof.

In Zcash, the sequence of operations added to a transaction (see § 8.1 ‘Transaction Structure’ on p. 51) consists
only of JoinSplit transfers . A JoinSplit transfer is a Pour operation generalized to take a transparent UTXO as input,
allowing JoinSplit transfers to subsume the functionality of Mints. An advantage of this is that a Zcash transaction
that takes input from an UTXO can produce up to Nnew output notes , improving the indistinguishability properties
of the protocol. A related change conceals the input arity of the JoinSplit transfer : an unused (zero-value) input is
indistinguishable from an input that takes value from a note .

This uni�cation also simpli�es the �x to the Faerie Gold attack described below, since no special case is needed for
Mints.

8.4 Faerie Gold attack and �x #faeriegold

When a shielded note is created in Zerocash, the creator is supposed to choose a new ρ value at random. The
nulli�er of the note is derived from its spending key (ask) and ρ. The note commitment is derived from the recipient
address component apk, the value v, and the commitment trapdoor rcm, as well as ρ. However nothing prevents
creating multiple notes with different v and rcm (hence different note commitments) but the same ρ.

An adversary can use this to mislead a note recipient, by sending two notes both of which are veri�ed as valid by
Receive (as de�ned in [BCGGMTV2014, Figure 2]), but only one of which can be spent.

We call this a “Faerie Gold” attack — referring to various Celtic legends in which faeries pay mortals in what appears
to be gold, but which soon after reveals itself to be leaves, gorse blossoms, gingerbread cakes, or other less valuable
things [LG2004].

This attack does not violate the security de�nitions given in [BCGGMTV2014]. The issue could be framed as a
problem either with the de�nition of Completeness, or the de�nition of Balance:

• The Completeness property asserts that a validly received note can be spent provided that its nulli�er does
not appear on the ledger. This does not take into account the possibility that distinct notes , which are validly
received, could have the same nulli�er . That is, the security de�nition depends on a protocol detail –nulli�ers–
that is not part of the intended abstract security property, and that could be implemented incorrectly.

• The Balance property only asserts that an adversary cannot obtain more funds than they have minted or
received via payments. It does not prevent an adversary from causing others’ funds to decrease. In a Faerie
Gold attack, an adversary can cause spending of a note to reduce (to zero) the effective value of another note
for which the adversary does not know the spending key , which violates an intuitive conception of global
balance.

These problems with the security de�nitions need to be repaired, but doing so is outside the scope of this speci�-
cation. Here we only describe how Zcash addresses the immediate attack.

It would be possible to address the attack by requiring that a recipient remember all of the ρ values for all notes they
have ever received, and reject duplicates (as proposed in [GGM2016]). However, this requirement would interfere
with the intended Zcash feature that a holder of a spending key can recover access to (and be sure that they are
able to spend) all of their funds, even if they have forgotten everything but the spending key .

Instead, Zcash enforces that an adversary must choose distinct values for each ρ, by making use of the fact that all
of the nulli�ers in JoinSplit descriptions that appear in a valid block chain must be distinct. This is true regardless

52

https://zips.z.cash/protocol/sprout.pdf#mintsandpours
https://zips.z.cash/protocol/sprout.pdf#faeriegold

of whether the nulli�ers corresponded to real or dummy notes (see § 4.5 ‘Dummy Notes’ on p. 21). The nulli�ers
are used as input to hSigCRH to derive a public value hSig which uniquely identi�es the transaction, as described in
§ 4.3 ‘JoinSplit Descriptions’ on p. 19. (hSig was already used in Zerocash in a way that requires it to be unique in
order to maintain indistinguishability of JoinSplit descriptions ; adding the nulli�ers to the input of the hash used to
calculate it has the effect of making this uniqueness property robust even if the transaction creator is an adversary.)

The ρ value for each output note is then derived from a random private seed ϕ and hSig using PRFρϕ. The cor-
rect construction of ρ for each output note is enforced by § 4.11.1 ‘JoinSplit Statement’ on p. 25 in the JoinSplit
statement .

Now even if the creator of a JoinSplit description does not chooseϕ randomly, uniqueness of nulli�ers and collision
resistance of both hSigCRH and PRFρ will ensure that the derived ρ values are unique, at least for any two JoinSplit
descriptions that get into a valid block chain. This is suf�cient to prevent the Faerie Gold attack.

A variation on the attack attempts to cause the nulli�er of a sent note to be repeated, without repeating ρ. However,
since the nulli�er is computed as PRFnfSprout

ask
(ρ); this is only possible if the adversary �nds a collision across both

inputs on PRFnfSprout, which is assumed to be infeasible — see § 4.1.2 ‘Pseudo Random Functions’ on p. 14.

Crucially, “nulli�er integrity” is enforced whether or not the enforceMerklePath𝑖 �ag is set for an input note (§ 4.11.1
‘JoinSplit Statement’ on p. 25). If this were not the case then an adversary could perform the attack by creating a
zero-valued note with a repeated nulli�er , since the nulli�er would not depend on the value.

Nulli�er integrity also prevents a “roadblock attack” in which the adversary sees a victim’s transaction, and is able
to publish another transaction that is mined �rst and blocks the victim’s transaction. This attack would be possible
if the public value(s) used to enforce uniqueness of ρ could be chosen arbitrarily by the transaction creator: the
victim’s transaction, rather than the adversary’s, would be considered to be repeating these values. In the chosen
solution that uses nulli�ers for these public values, they are enforced to be dependent on spending keys controlled
by the original transaction creator (whether or not each input note is a dummy), and so a roadblock attack cannot
be performed by another party who does not know these keys.

8.5 Internal hash collision attack and �x #internalh

The Zerocash security proof requires that the composition of COMMrcm and COMMs is a computationally binding
commitment to its inputs apk, v, and ρ. However, the instantiation of COMMrcm and COMMs in section 5.1 of the
paper did not meet the de�nition of a binding commitment at a 128-bit security level. Speci�cally, the internal hash
of apk and ρ is truncated to 128 bits (motivated by providing statistical hiding security). This allows an attacker, with
a work factor on the order of 264, to �nd distinct pairs (apk, ρ) and (apk

′, ρ′) with colliding outputs of the truncated
hash, and therefore the same note commitment . This would have allowed such an attacker to break the Balance
property by double-spending notes , potentially creating arbitrary amounts of currency for themself [HW2016].

Zcash uses a simpler construction with a single SHA-256 evaluation for the commitment. The motivation for
the nested construction in Zerocash was to allow Mint transactions to be publically veri�ed without requiring a
zk-SNARK proof ([BCGGMTV2014, section 1.3, under step 3]). Since Zcash combines “Mint” and “Pour” transactions
into generalized JoinSplit transfers , and each transfer always uses a zk-SNARK proof , it does not require the
nesting. A side bene�t is that this reduces the cost of computing the note commitments : it reduces the number of
SHA256Compress evaluations needed to compute each note commitment from three to two, saving a total of four
SHA256Compress evaluations in the JoinSplit statement .

Note: Zcash note commitments are not statistically hiding, so Zcash does not support the “everlasting anonymity”
property described in [BCGGMTV2014, section 8.1], even when used as described in that section. While it is possible
to de�ne a statistically hiding, computationally binding commitment scheme for this use at a 128-bit security level,
the overhead of doing so within the JoinSplit statement was not considered to justify the bene�ts.

8.6 Changes to PRF inputs and truncation #truncation

The format of inputs to the PRFs instantiated in § 5.4.2 ‘Pseudo Random Functions’ on p. 31 has changed relative to
Zerocash. There is also a requirement for another PRF , PRFρ, which must be domain-separated from the others.

53

https://zips.z.cash/protocol/sprout.pdf#internalh
https://zips.z.cash/protocol/sprout.pdf#truncation

In the Zerocash protocol, ρold
𝑖 is truncated from 256 to 254 bits in the input to PRFsn (which corresponds to PRFnfSprout

in Zcash). Also, hSig is truncated from 256 to 253 bits in the input to PRFpk. These truncations are not taken into
account in the security proofs.

Both truncations affect the validity of the proof sketch for Lemma D.2 in the proof of Ledger Indistinguishability in
[BCGGMTV2014, Appendix D].

In more detail:

• In the argument relating H and a2, it is stated that in a2, “for each 𝑖 ∈ {1, 2}, sn𝑖 := PRFsn
ask

(ρ) for a random
(and not previously used) ρ”. It is also argued that “the calls to PRFsn

ask
are each by de�nition unique”. The latter

assertion depends on the fact that ρ is “not previously used”. However, the argument is incorrect because the
truncated input to PRFsn

ask
, i.e. [ρ]254, may repeat even if ρ does not.

• In the same argument, it is stated that “with overwhelming probability, hSig is unique”. In fact what is required

to be unique is the truncated input to PRFpk, i.e. [hSig]253 = [CRH(pksig)]253. In practice this value will be unique
under a plausible assumption on CRH provided that pksig is chosen randomly, but no formal argument for
this is presented.

Note that ρ is truncated in the input to PRFsn but not in the input to COMMrcm, which further complicates the
analysis.

As further evidence that it is essential for the proofs to explicitly take any such truncations into account, consider a
slightly modi�ed protocol in which ρ is truncated in the input to COMMrcm but not in the input to PRFsn. In that
case, it would be possible to violate balance by creating two notes for which ρ differs only in the truncated bits.
These notes would have the same note commitment but different nulli�ers , so it would be possible to spend the
same value twice.

For resistance to Faerie Gold attacks as described in § 8.4 ‘Faerie Gold attack and fix’ on p. 52, Zcash depends
on collision resistance of hSigCRH and PRFρ (instantiated using BLAKE2b-256 and SHA256Compress respectively).
Collision resistance of a truncated hash does not follow from collision resistance of the original hash, even if the
truncation is only by one bit. This motivated avoiding truncation along any path from the inputs to the computation
of hSig to the uses of ρ.

Since the PRFs are instantiated using SHA256Compress which has an input block size of 512 bits (of which 256 bits
are used for the PRF input and 4 bits are used for domain separation), it was necessary to reduce the size of the PRF
key to 252 bits. The key is set to ask in the case of PRFaddr, PRFnfSprout, and PRFpk, and to ϕ (which does not exist in
Zerocash) for PRFρ, and so those values have been reduced to 252 bits. This is preferable to requiring reasoning
about truncation, and 252 bits is quite suf�cient for security of these cryptovalues.

8.7 In-band secret distribution #inbandrationale

Zerocash speci�ed ECIES (referencing Certicom’s SEC 1 standard) as the encryption scheme used for the in-
band secret distribution. This has been changed to a key agreement scheme based on Curve25519, and the
authenticated encryption algorithm AEAD_CHACHA20_POLY1305. This scheme is still loosely based on ECIES, and
on the crypto_box_seal scheme de�ned in libsodium [libsodium-Seal].

The motivations for this change were as follows:

• The Zerocash paper did not specify the curve to be used. We believe that Curve25519 has signi�cant side-
channel resistance, performance, implementation complexity, and robustness advantages over most other
available curve choices, as explained in [Bernstein2006].

• ECIES permits many options, which were not speci�ed. There are at least –counting conservatively– 576
possible combinations of options and algorithms over the four standards (ANSI X9.63, IEEE Std 1363a-2004,
ISO/IEC 18033-2, and SEC 1) that de�ne ECIES variants [MAEÁ2010].

• Although the Zerocash paper states that ECIES satis�es key privacy (as de�ned in [BBDP2001]), it is not
clear that this holds for all curve parameters and key distributions. For example, if a group of non-prime
order is used, the distribution of ciphertexts could be distinguishable depending on the order of the points

54

https://zips.z.cash/protocol/sprout.pdf#inbandrationale

representing the ephemeral and recipient public keys . Public key validity is also a concern. Curve25519 key
agreement is de�ned in a way that avoids these concerns due to the curve structure and the “clamping” of
private keys .

• Unlike the DHAES/DHIES proposal on which it is based [ABR1999], ECIES does not require a representation
of the sender’s ephemeral public key to be included in the input to the KDF, which may impair the security
properties of the scheme. (The Std 1363a-2004 version of ECIES [IEEE2004] has a “DHAES mode” that allows
this, but the representation of the key input is underspeci�ed, leading to incompatible implementations.) The
scheme we use has both the ephemeral and recipient public key encodings –which are unambiguous for
Curve25519– and also hSig and a nonce as described below, as input to the KDF. Note that being able to break
the Elliptic Curve Dif�e–Hellman Problem on Curve25519 (without breaking AEAD_CHACHA20_POLY1305 as
an authenticated encryption scheme or BLAKE2b-256 as a KDF) would not help to decrypt the transmitted
note(s) ciphertext unless pkenc is known or guessed.

• The KDF also takes a public seed hSig as input. This can be modeled as using a different “randomness extractor”
for each JoinSplit transfer , which limits degradation of security with the number of JoinSplit transfers . This
facilitates security analysis as explained in [DGKM2011] — see section 7 of that paper for a security proof that
can be applied to this construction under the assumption that single-block BLAKE2b-256 is a “weak PRF ”.
Note that hSig is authenticated, by the zk-SNARK proof , as having been chosen with knowledge of aold

sk,1..Nold , so

an adversary cannot modify it in a ciphertext from someone else’s transaction for use in a chosen-ciphertext
attack without detection.

• The scheme used by Sprout includes an optimization that reuses the same ephemeral key (with different
nonces) for the two ciphertexts encrypted in each JoinSplit description.

The security proofs of [ABR1999] can be adapted straightforwardly to the resulting scheme. Although DHAES as
de�ned in that paper does not pass the recipient public key or a public seed to the hash function 𝐻 , this does not
impair the proof because we can consider 𝐻 to be the specialization of our KDF to a given recipient key and seed.
(Passing the recipient public key to the KDF could in principle compromise key privacy , but not con�dentiality
of encryption.) It is necessary to adapt the “HDH independence” assumptions and the proof slightly to take into
account that the ephemeral key is reused for two encryptions.

Note that the 256-bit key for AEAD_CHACHA20_POLY1305 maintains a high concrete security level even under
attacks using parallel hardware [Bernstein2005] in the multi-user setting [Zaverucha2012]. This is especially neces-
sary because the privacy of Zcash transactions may need to be maintained far into the future, and upgrading the
encryption algorithm would not prevent a future adversary from attempting to decrypt ciphertexts encrypted before
the upgrade. Other cryptovalues that could be attacked to break the privacy of transactions are also suf�ciently
long to resist parallel brute force in the multi-user setting: ask is 252 bits, and skenc is no shorter than ask.

8.8 Omission in Zerocash security proof #crprf

The abstract Zerocash protocol requires PRFaddr only to be a PRF ; it is not speci�ed to be collision-resistant . This
reveals a �aw in the proof of the Balance property.

Suppose that an adversary �nds a collision on PRFaddr such that a1
sk and a2

sk are distinct spending keys for the same
apk. Because the note commitment is to apk, but the nulli�er is computed from ask (and ρ), the adversary is able to
double-spend the note, once with each ask. This is not detected because each Spend reveals a different nulli�er .
The JoinSplit statements are still valid because they can only check that the ask in the witness is some preimage of
the apk used in the note commitment .

The error is in the proof of Balance in [BCGGMTV2014, Appendix D.3]. For the “𝒜 violates Condition I” case, the
proof says:

“(i) If cmold
1 = cmold

2 , then the fact that snold
1 ̸= snold

2 implies that the witness 𝑎 contains two distinct openings of
cmold

1 (the �rst opening contains (aold
sk,1, ρold

1), while the second opening contains (aold
sk,2, ρold

2)). This violates the
binding property of the commitment scheme COMM."

55

https://zips.z.cash/protocol/sprout.pdf#crprf

In fact the openings do not contain aold
sk,𝑖; they contain aold

pk,𝑖. (In Sprout cmold
𝑖 opens directly to (aold

pk,𝑖, vold
𝑖 , ρold

𝑖), and in

Zerocash it opens to (vold
𝑖 , COMMs(aold

pk,𝑖, ρ
old
𝑖).)

A similar error occurs in the argument for the “𝒜 violates Condition II” case.

The �aw is not exploitable for the actual instantiations of PRFaddr in Zerocash and Sprout, which are collision-
resistant assuming that SHA256Compress is.

The proof can be straightforwardly repaired. The intuition is that we can rely on collision resistance of PRFaddr (on
both its arguments) to argue that distinctness of aold

sk,1 and aold
sk,2, together with constraint 1(b) of the JoinSplit statement

(see § 4.11.1 ‘JoinSplit Statement’ on p. 25), implies distinctness of aold
pk,1 and aold

pk,2, therefore distinct openings of the
note commitment when Condition I or II is violated.

8.9 Miscellaneous #miscdiffs

• The paper de�nes a note as ((apk, pkenc), v, ρ, rcm, s, cm), whereas this speci�cation de�nes it as (apk, v, ρ, rcm).
The instantiation of COMMs in section 5.1 of the paper did not actually use s, and neither does the new
instantiation of NoteCommitSprout in Sprout. pkenc is also not needed as part of a note : it is not an input to
NoteCommitSprout nor is it constrained by the Zerocash POUR statement or the Zcash JoinSplit statement . cm
can be computed from the other �elds.

• The length of proof encodings given in the paper is 288 bytes. This differs from the 296 bytes speci�ed in
§ 5.4.8.1 ‘BCTV14’ on p. 36, because both the 𝑥-coordinate and compressed 𝑦-coordinate of each point need to
be represented. Although it is possible to encode a proof in 288 bytes by making use of the fact that elements
of F𝑞 can be represented in 254 bits, we prefer to use the standard formats for points de�ned in [IEEE2004].
The fork of libsnark used by Zcash uses this standard encoding rather than the less ef�cient (uncompressed)
one used by upstream libsnark .

• The range of monetary values differs. In Zcash this range is {0 .. MAX_MONEY}, while in Zerocash it is
{0 .. 2ℓvalue−1}. (The JoinSplit statement still only directly enforces that the sum of amounts in a given JoinSplit
transfer is in the latter range; this enforcement is technically redundant given that the Balance property holds.)

9 Acknowledgements #acknowledgements

The inventors of Zerocash are Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza.

The designers of the Zcash protocol are the Zerocash inventors and also Daira Hopwood, Sean Bowe, Jack Grigg,
Simon Liu, Taylor Hornby, Nathan Wilcox, Zooko Wilcox, Jay Graber, Ariel Gabizon, George Tankersley, Ying Tong
Lai, Kris Nuttycombe, Jack Gavigan, and Steven Smith. The Equihash proof-of-work algorithm was designed by
Alex Biryukov and Dmitry Khovratovich.

The authors would like to thank everyone with whom they have discussed the Zerocash and Zcash protocol designs;
in addition to the preceding, this includes Mike Perry, isis agora lovecruft, Leif Ryge, Andrew Miller, Ben Blaxill,
Samantha Hulsey, Alex Balducci, Jake Tarren, Solar Designer, Ling Ren, John Tromp, Paige Peterson, jl777, Alison
Stevenson, Maureen Walsh, Filippo Valsorda, Zaki Manian, Tracy Hu, Brian Warner, Mary Maller, Michael Dixon,
Andrew Poelstra, Eirik Ogilvie-Wigley, Benjamin Winston, Kobi Gurkan, Weikeng Chen, Henry de Valence, Deirdre
Connolly, Chelsea Komlo, Zancas Wilcox, Jane Lusby, Teor, Izaak Meckler, Zac Williamson, Vitalik Buterin, Jakub
Zalewski, Oana Ciobotaru, and no doubt others. We would also like to thank the designers and developers of
Bitcoin.

Zcash has bene�ted from security audits performed by NCC Group, Coinspect, Least Authority, Mary Maller,
Kudelski Security, QEDIT, and Trail of Bits.

56

https://zips.z.cash/protocol/sprout.pdf#miscdiffs
https://zips.z.cash/protocol/sprout.pdf#acknowledgements

The Faerie Gold attack was found by Zooko Wilcox; subsequent analysis of variations on the attack was performed
by Daira Hopwood and Sean Bowe. The internal hash collision attack was found by Taylor Hornby. The error in the
Zerocash proof of Balance relating to collision resistance of PRFaddr was found by Daira Hopwood. The errors in
the proof of Ledger Indistinguishability mentioned in § 8.6 ‘Changes to PRF inputs and truncation’ on p. 53 were
also found by Daira Hopwood.

The 2015 Soundness vulnerability in BCTV14 [Parno2015] was found by Bryan Parno. An additional condition
needed to resist this attack was documented by Ariel Gabizon [Gabizon2019, section 3]. The 2019 Soundness
vulnerability in BCTV14 [Gabizon2019] was found by Ariel Gabizon.

The design of Sapling is primarily due to Matthew Green, Ian Miers, Daira Hopwood, Sean Bowe, Jack Grigg, and
Jack Gavigan. A potential attack linking diversi�ed payment addresses , avoided in the adopted design, was found
by Brian Warner.

The design of Orchard is primarily due to Daira Hopwood, Sean Bowe, Jack Grigg, Kris Nuttycombe, Ying Tong Lai,
and Steven Smith.

We thank Ariel Gabizon for teaching us the techniques of [BFIJSV2010] , by applying them to BCTV14.

The arithmetization used by Halo 2 is based on that used by PLONK [GWC2019], which was designed by Ariel
Gabizon, Zachary Williamson, and Oana Ciobotaru.

Numerous people have contributed to the science of zero-knowledge proving systems, but we would particularly
like to acknowledge the work of Sha� Goldwasser, Silvio Micali, Oded Goldreich, Charles Rackoff, Rosario Gennaro,
Bryan Parno, Jon Howell, Craig Gentry, Mariana Raykova, Jens Groth, Rafail Ostrovsky, and Amit Sahai.

We thank the organizers of the ZKProof standardization effort and workshops; and also Anna Rose and Fredrik
Harrysson for their work on the Zero Knowledge Podcast, ZK Summits, and ZK Study Club. These efforts have
enriched the zero knowledge community immeasurably.

Many of the ideas used in Zcash —including the use of zero-knowledge proofs to resolve the tension between
privacy and auditability, Merkle trees over note commitments, and the use of “serial numbers” or nulli�ers to
detect or prevent double-spends— were �rst applied to privacy-preserving digital currencies by Tomas Sander and
Amnon Ta–Shma. To a large extent Zcash is a re�nement of their “Auditable, Anonymous Electronic Cash” proposal
in [ST1999].

We thank Alexandra Elbakyan for her tireless work in dismantling barriers to scienti�c research.

10 Change History #changehistory

2021.1.19 2021-03-17 #2021.1.19

• No changes before NU5.

2021.1.18 2021-03-17 #2021.1.18

• No changes before Sapling.

2021.1.17 2021-03-15 #2021.1.17

• The de�nition of an abstraction function in § 4.1.8 ‘Represented Group’ on p. 17 incorrectly required canonicity,
i.e. that abstG does not accept inputs outside the range of reprG .

• Rename char to byte in �eld type declarations.

57

https://zips.z.cash/protocol/sprout.pdf#changehistory
https://zips.z.cash/protocol/sprout.pdf#2021.1.19
https://zips.z.cash/protocol/sprout.pdf#2021.1.18
https://zips.z.cash/protocol/sprout.pdf#2021.1.17

2021.1.16 2021-01-11 #2021.1.16

• Add macros and Makefile support for building the NU5 draft speci�cation.

• Clarify the encoding of block heights for the “height in coinbase” rule. The description of this rule has also
moved from § 7.3 on p. 44 to § 7.1 ‘Transaction Encoding and Consensus’ on p. 41.

• Include the activation dates of Heartwood and Canopy in § 6 ‘Network Upgrades’ on p. 40.

• Section links in the Heartwood and Canopy versions of the speci�cation now go to the correct document
URL.

• Attempt to improve search and cut-and-paste behaviour for ligatures in some PDF readers.

2020.1.15 2020-11-06 #2020.1.15

• Add a missing consensus rule that has always been implemented in zcashd: there must be at least one
transparent output , Output description, or JoinSplit description in a transaction.

• Add a consensus rule that the (zero-valued) coinbase transaction output of the genesis block cannot be spent.

• De�ne Sprout chain value pool balance and include consensus rules from [ZIP-209].

• Reserve transaction version number 0x7FFFFFFF and version group ID 0xFFFFFFFF for experimental use.

• Remove a statement that the language consisting of key and address encoding possibilities is pre�x-free. (The
human-readable forms are pre�x-free but the raw encodings are not; for example, the raw encoding of a
Sapling spending key can be a pre�x of several of the other encodings.)

• Use “let mutable” to introduce mutable variables in algorithms.

• Acknowledge Jack Gavigan as a co-designer of Sapling and of the Zcash protocol.

• Acknowledge Izaak Meckler, Zac Williamson, Vitalik Buterin, and Jakub Zalewski.

• Acknowledge Alexandra Elbakyan.

2020.1.14 2020-08-19 #2020.1.14

• The consensus rule that a coinbase transaction must not spend more than is available from the block subsidy
and transaction fees , was not explicitly stated. (This rule was correctly implemented in zcashd.)

2020.1.13 2020-08-11 #2020.1.13

• Make Halving(height) return 0 (rather than −1) for height < SlowStartShift. This has no effect on consensus
since the Halving function is not used in that case, but it makes the de�nition match the intuitive meaning of
the function.

• Rename sections under § 7 ‘Consensus Changes from Bitcoin’ on p. 41 to clarify that these sections do not
only concern encoding, but also consensus rules.

• Make the Canopy speci�cation the default.

2020.1.12 2020-08-03 #2020.1.12

• Include SHA-512 in § 5.4.1.1 ‘SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions’ on p. 29.

• Add a reference to [BCCGLRT2014] in § 4.1.10 ‘Zero-Knowledge Proving System’ on p. 18.

2020.1.11 2020-07-13 #2020.1.11

• Change instances of “the production network” to “Mainnet ”, and “the test network” to Testnet . This follows
the terminology used in ZIPs.

• Update stale references to Bitcoin documentation.

58

https://zips.z.cash/protocol/sprout.pdf#2021.1.16
https://zips.z.cash/protocol/sprout.pdf#2020.1.15
https://zips.z.cash/protocol/sprout.pdf#2020.1.14
https://zips.z.cash/protocol/sprout.pdf#2020.1.13
https://zips.z.cash/protocol/sprout.pdf#2020.1.12
https://zips.z.cash/protocol/sprout.pdf#2020.1.11

2020.1.10 2020-07-05 #2020.1.10

• Corrections to a note in § 5.4.5 ‘Ed25519’ on p. 33.

2020.1.9 2020-07-05 #2020.1.9

• Add § 3.10 ‘Mainnet and Testnet’ on p. 13.

• Acknowledge Jane Lusby and Teor.

• Precisely specify the encoding and decoding of Ed25519 points.

2020.1.8 2020-07-04 #2020.1.8

• Add Ying Tong Lai and Kris Nuttycombe as Zcash protocol designers.

2020.1.7 2020-06-26 #2020.1.7

• Delete some ‘new’ superscripts that only added notational clutter.

• Add an explicit lead byte �eld to Sprout note plaintexts , and clearly specify the error handling when it is
invalid.

2020.1.6 2020-06-17 #2020.1.6

• Correct an error in the speci�cation of Ed25519 validating keys : they should not have been speci�ed to be
checked against ExcludedPointEncodings, since libsodium v1.0.15 does not do so.

• Consistently use “validating” for signatures and “verifying” for proofs.

2020.1.5 2020-06-02 #2020.1.5

• Mark more index entries as de�nitions.

2020.1.4 2020-05-27 #2020.1.4

• Reference [BIP-32] and [ZIP-32] when describing keys and their encodings.

• Network Upgrade 4 has been given the name Canopy.

• Improve LaTeX portability of this speci�cation.

2020.1.3 2020-04-22 #2020.1.3

• Correct a wording error transposing transparent inputs and transparent outputs in § 4.9 ‘Balance’ on p. 23.

2020.1.2 2020-03-20 #2020.1.2

• The implementation of Sprout Ed25519 signature validation in zcashd differed from what was speci�ed in
§ 5.4.5 ‘Ed25519’ on p. 33. The speci�cation has been changed to match the implementation.

• Remove “pvc” Makefile targets.

• Make the Heartwood speci�cation the default.

• Add macros and Makefile support for building the Canopy speci�cation.

2020.1.1 2020-02-13 #2020.1.1

• Resolve con�icts in the speci�cation of memo �elds by deferring to [ZIP-302].

59

https://zips.z.cash/protocol/sprout.pdf#2020.1.10
https://zips.z.cash/protocol/sprout.pdf#2020.1.9
https://zips.z.cash/protocol/sprout.pdf#2020.1.8
https://zips.z.cash/protocol/sprout.pdf#2020.1.7
https://zips.z.cash/protocol/sprout.pdf#2020.1.6
https://zips.z.cash/protocol/sprout.pdf#2020.1.5
https://zips.z.cash/protocol/sprout.pdf#2020.1.4
https://zips.z.cash/protocol/sprout.pdf#2020.1.3
https://zips.z.cash/protocol/sprout.pdf#2020.1.2
https://zips.z.cash/protocol/sprout.pdf#2020.1.1

2020.1.0 2020-02-06 #2020.1.0

• Specify a retrospective soft fork implemented in zcashd v2.1.1-1 that limits the nTime �eld of a block relative to
its median-time-past .

• Correct the de�nition of median-time-past for the �rst PoWMedianBlockSpan blocks in a block chain.

• Add acknowledgements to Henry de Valence, Deirdre Connolly, Chelsea Komlo, and Zancas Wilcox.

• Add an acknowledgement to Trail of Bits for their security audit.

• Change indices in the incremental Merkle tree diagram to be zero-based.

2019.0.9 2019-12-27 #2019.0.9

• No changes to Sprout.

• Makefile updates for Heartwood.

2019.0.8 2019-09-24 #2019.0.8

• No changes to Sprout.

2019.0.7 2019-09-24 #2019.0.7

• Update references to ZIPs and to the Electric Coin Company blog.

• Makefile improvements to suppress unneeded output.

2019.0.6 2019-08-23 #2019.0.6

• No changes to Sprout.

2019.0.5 2019-08-23 #2019.0.5

• Remove “optimized” Makefile targets (which actually produced a larger PDF, with TeXLive 2019).

• Remove “html” Makefile targets.

• Make the Blossom spec the default.

2019.0.4 2019-07-23 #2019.0.4

• Clicking on a section heading now shows section labels.

• Changes needed to support TeXLive 2019.

2019.0.3 2019-07-08 #2019.0.3

• Experimental support for building using LuaTEX and XeTEX.

• Add an Index.

2019.0.2 2019-06-18 #2019.0.2

• Ensure that this document builds correctly and without missing characters on recent versions of TEXLive.

• Update the Makefile to use Ghostscript for PDF optimization.

• Ensure that hyperlinks are preserved, and available as “Destination names” in URL fragments and links from
other PDF documents.

60

https://zips.z.cash/protocol/sprout.pdf#2020.1.0
https://zips.z.cash/protocol/sprout.pdf#2019.0.9
https://zips.z.cash/protocol/sprout.pdf#2019.0.8
https://zips.z.cash/protocol/sprout.pdf#2019.0.7
https://zips.z.cash/protocol/sprout.pdf#2019.0.6
https://zips.z.cash/protocol/sprout.pdf#2019.0.5
https://zips.z.cash/protocol/sprout.pdf#2019.0.4
https://zips.z.cash/protocol/sprout.pdf#2019.0.3
https://zips.z.cash/protocol/sprout.pdf#2019.0.2

2019.0.1 2019-05-20 #2019.0.1

• No changes to Sprout.

2019.0.0 2019-05-01 #2019.0.0

• Fix a speci�cation error in the Founders’ Reward calculation during the slow start period.

• Correct an inconsistency in dif�culty adjustment between the spec and zcashd implementation for the �rst
PoWAveragingWindow − 1 blocks of the block chain. This inconsistency was pointed out by NCC Group in
their Blossom speci�cation audit.

2019.0-beta-39 2019-04-18 #2019.0-beta-39

• Change author af�liations from “Zerocoin Electric Coin Company” to “Electric Coin Company”.

• Add acknowledgement to Mary Maller for the observation that diversi�ed payment address unlinkability can
be proven in the same way as key privacy for ElGamal.

2019.0-beta-38 2019-04-18 #2019.0-beta-38

• Update README.rst to include Makefile targets for Blossom.

• Makefile updates:

– Fix a typo for the pvcblossom target.

– Update the pinned git hashes for sam2p and pdfsizeopt.

2019.0-beta-37 2019-02-22 #2019.0-beta-37

• The rule that miners SHOULD NOT mine blocks that chain to other blocks with a block version number
greater than 4, has been removed. This is because such blocks (mined nonconformantly) exist in the current
Mainnet consensus block chain.

• Clarify that Equihash is based on a variation of the Generalized Birthday Problem, and cite [AR2017].

• Update reference [BGG2017] (previously [BGG2016]).

• Add macros and Makefile support for building the Blossom speci�cation.

2019.0-beta-36 2019-02-09 #2019.0-beta-36

• Correct isis agora lovecruft’s name.

2019.0-beta-35 2019-02-08 #2019.0-beta-35

• Cite [Gabizon2019] and acknowledge Ariel Gabizon.

• Correct [SBB2019] to [SWB2019].

• The [Gabizon2019] vulnerability affected Soundness of BCTV14 as well as Knowledge Soundness.

• Clarify the history of the [Parno2015] vulnerability and acknowledge Bryan Parno.

• Specify the dif�culty adjustment change that occurred on Testnet at block height 299188.

• Add Eirik Ogilvie-Wigley and Benjamin Winston to acknowledgements.

61

https://zips.z.cash/protocol/sprout.pdf#2019.0.1
https://zips.z.cash/protocol/sprout.pdf#2019.0.0
https://zips.z.cash/protocol/sprout.pdf#2019.0-beta-39
https://zips.z.cash/protocol/sprout.pdf#2019.0-beta-38
https://zips.z.cash/protocol/sprout.pdf#2019.0-beta-37
https://zips.z.cash/protocol/sprout.pdf#2019.0-beta-36
https://zips.z.cash/protocol/sprout.pdf#2019.0-beta-35

2019.0-beta-34 2019-02-05 #2019.0-beta-34

• Disclose a security vulnerability in BCTV14 that affected Sprout before activation of the Sapling network
upgrade (see § 5.4.8.1 ‘BCTV14’ on p. 36).

• Rename PHGR13 to BCTV2014.

• Rename reference [BCTV2015] to [BCTV2014a], and [BCTV2014] to [BCTV2014b].

2018.0-beta-33 2018-11-14 #2018.0-beta-33

• No changes to Sprout.

2018.0-beta-32 2018-10-24 #2018.0-beta-32

• No changes to Sprout.

2018.0-beta-31 2018-09-30 #2018.0-beta-31

• No changes to Sprout.

• Add the QED-it report to the acknowledgements.

2018.0-beta-30 2018-09-02 #2018.0-beta-30

• No changes to Sprout.

• Add dates to Change History entries. (These are the dates of the git tags in local, i.e. UK, time.)

2018.0-beta-29 2018-08-15 #2018.0-beta-29

• No changes to Sprout.

2018.0-beta-28 2018-08-14 #2018.0-beta-28

• No changes to Sprout.

2018.0-beta-27 2018-08-12 #2018.0-beta-27

• Notational changes:

– Use a superscript (𝑟) to mark the subgroup order, instead of a subscript.

– Use G(𝑟)* for the set of 𝑟G-order points in G.

– Mark the subgroup order in pairing groups, e.g. use G(𝑟)
1 instead of G1.

• Add Charles Rackoff, Rafail Ostrovsky, and Amit Sahai to the acknowledgements section for their work on
zero-knowledge proofs.

2018.0-beta-26 2018-08-05 #2018.0-beta-26

• No changes to Sprout.

2018.0-beta-25 2018-08-05 #2018.0-beta-25

• No changes to Sprout.

• Makefile changes: name the PDF �le for the Sprout version of the speci�cation as sprout.pdf, and make
protocol.pdf link to the Sapling version.

62

https://zips.z.cash/protocol/sprout.pdf#2019.0-beta-34
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-33
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-32
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-31
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-30
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-29
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-28
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-27
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-26
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-25

2018.0-beta-24 2018-07-31 #2018.0-beta-24

• No changes to Sprout.

2018.0-beta-23 2018-07-27 #2018.0-beta-23

• No changes to Sprout.

2018.0-beta-22 2018-07-18 #2018.0-beta-22

• Update the abstract to clarify that this version of the speci�cation is a historical document.

2018.0-beta-21 2018-06-22 #2018.0-beta-21

• Remove the consensus rule “If nJoinSplit > 0, the transaction MUST NOT use SIGHASH types other than
SIGHASH_ALL.”, which was never implemented.

• Add section on signature hashing.

• Brie�y describe the changes to computation of SIGHASH transaction hashes .

• Clarify that interstitial treestates form a tree for each transaction containing JoinSplit descriptions .

• Correct the description of P2PKH addresses in § 5.6.1.1 ‘Transparent Addresses’ on p. 38 — they use a hash of
a compressed, not an uncompressed ECDSA key representation.

• Clarify the wording of the caveat3 about the claimed security of shielded transactions .

• Correct the de�nition of set difference (𝑆 ∖ 𝑇).

• Add a note concerning malleability of zk-SNARK proofs .

• Clarify attribution of the Zcash protocol design.

• Acknowledge Alex Biryukov and Dmitry Khovratovich as the designers of Equihash.

• Acknowledge Sha� Goldwasser, Silvio Micali, Oded Goldreich, Rosario Gennaro, Bryan Parno, Jon Howell,
Craig Gentry, Mariana Raykova, and Jens Groth for their work on zero-knowledge proving systems.

• Acknowledge Tomas Sander and Amnon Ta–Shma for [ST1999].

• Acknowledge Kudelski Security’s audit.

2018.0-beta-20 2018-05-22 #2018.0-beta-20

• Add Michael Dixon and Andrew Poelstra to acknowledgements.

• Minor improvements to cross-references.

2018.0-beta-19 2018-04-23 #2018.0-beta-19

• No changes to Sprout.

2018.0-beta-18 2018-04-23 #2018.0-beta-18

• No changes to Sprout.

2018.0-beta-17 2018-04-21 #2018.0-beta-17

• No changes to Sprout.

63

https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-24
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-23
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-22
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-21
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-20
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-19
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-18
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-17

2018.0-beta-16 2018-04-21 #2018.0-beta-16

• Explicitly note that outputs from coinbase transactions include Founders’ Reward outputs.

• The point represented by 𝑅 in an Ed25519 signature is checked to not be of small order; this is not the same
as checking that it is of prime order ℓ.

• Specify support for [BIP-111] (the NODE_BLOOM service bit) in peer-to-peer network protocol version 170004.

• Give references [Vercauter2009] and [AKLGL2010] for the optimal ate pairing.

• Give references for BN [BN2005] curves.

• De�ne KASprout.DerivePublic for Curve25519.

• Caveat the claim about note traceability set in § 1.2 ‘High-level Overview’ on p. 5 and link to [Peterson2017]
and [Quesnelle2017].

• Do not require a generator as part of the speci�cation of a represented group; instead, de�ne it in the
represented pairing or scheme using the group.

• Refactor the abstract de�nition of a signature scheme to allow derivation of validating keys independent of
key pair generation.

• Add acknowledgements for Brian Warner, Mary Maller, and the Least Authority audit.

• Makefile improvements.

2018.0-beta-15 2018-03-19 #2018.0-beta-15

• Clarify the bit ordering of SHA-256.

• Drop _t from the names of representation types.

• Remove functions from the Sprout speci�cation that it does not use.

• Change the Makefile to avoid multiple reloads in PDF readers while rebuilding the PDF.

• Spacing and pagination improvements.

2018.0-beta-14 2018-03-11 #2018.0-beta-14

• Only cosmetic changes to Sprout.

2018.0-beta-13 2018-03-11 #2018.0-beta-13

• Only cosmetic changes to Sprout.

2018.0-beta-12 2018-03-06 #2018.0-beta-12

• No changes to Sprout.

2018.0-beta-11 2018-02-26 #2018.0-beta-11

• No changes to Sprout.

2018.0-beta-10 2018-02-26 #2018.0-beta-10

• Split the descriptions of SHA-256 and SHA256Compress into their own sections. Specify SHA256Compress more
precisely.

• Add Tracy Hu to acknowledgements.

• Move bit/byte/integer conversion primitives into § 5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 28.

64

https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-16
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-15
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-14
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-13
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-12
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-11
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-10

2018.0-beta-9 2018-02-10 #2018.0-beta-9

• Specify the coinbase maturity rule, and the rule that coinbase transactions cannot contain JoinSplit descrip-
tions .

2018.0-beta-8 2018-02-08 #2018.0-beta-8

• No changes to Sprout.

2018.0-beta-7 2018-02-07 #2018.0-beta-7

• Specify the 100000-byte limit on transaction size. (The implementation in zcashd was as intended.)

• Specify that 0xF6 followed by 511 zero bytes encodes an empty memo �eld .

• Reference security de�nitions for Pseudo Random Functions .

• Rename clamp to bound and ActualTimespanClamped to ActualTimespanBounded in the dif�culty adjustment
algorithm, to avoid a name collision with Curve25519 scalar “clamping”.

• Change uses of the term full node to full validator . A full node by de�nition participates in the peer-to-peer
network, whereas a full validator just needs a copy of the block chain from somewhere. The latter is what
was meant.

2018.0-beta-6 2018-01-31 #2018.0-beta-6

• No changes to Sprout.

2018.0-beta-5 2018-01-30 #2018.0-beta-5

• Specify more precisely the requirements on Ed25519 validating keys and signatures.

2018.0-beta-4 2018-01-25 #2018.0-beta-4

• No changes to Sprout.

2018.0-beta-3 2018-01-22 #2018.0-beta-3

• Explain how the chosen �x to Faerie Gold avoids a potential “roadblock” attack.

2017.0-beta-2.9 2017-12-17 #2017.0-beta-2.9

• Refer to skenc as a receiving key rather than as a viewing key.

• Updates for incoming viewing key support.

2017.0-beta-2.8 2017-12-02 #2017.0-beta-2.8

• Correct the non-normative note describing how to check the order of 𝜋𝐵 .

2017.0-beta-2.7 2017-07-10 #2017.0-beta-2.7

• Fix an off-by-one error in the speci�cation of the Equihash algorithm binding condition. (The implementation
in zcashd was as intended.)

• Correct the types and consensus rules for transaction version numbers and block version numbers . (Again,
the implementation in zcashd was as intended.)

• Clarify the computation of h𝑖 in a JoinSplit statement .

65

https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-9
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-8
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-7
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-6
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-5
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-4
https://zips.z.cash/protocol/sprout.pdf#2018.0-beta-3
https://zips.z.cash/protocol/sprout.pdf#2017.0-beta-2.9
https://zips.z.cash/protocol/sprout.pdf#2017.0-beta-2.8
https://zips.z.cash/protocol/sprout.pdf#2017.0-beta-2.7

2017.0-beta-2.6 2017-05-09 #2017.0-beta-2.6

• Be more precise when talking about curve points and pairing groups.

2017.0-beta-2.5 2017-03-07 #2017.0-beta-2.5

• Clarify the consensus rule preventing double-spends.

• Clarify what a note commitment opens to in § 8.8 ‘Omission in Zerocash security proof’ on p. 55.

• Correct the order of arguments to COMM in § 5.4.6.1 ‘Sprout Note Commitments’ on p. 34.

• Correct a statement about indistinguishability of JoinSplit descriptions .

• Change the Founders’ Reward addresses, for Testnet only, to re�ect the hard-fork upgrade described in
[Zcash-Issue2113].

2017.0-beta-2.4 2017-02-25 #2017.0-beta-2.4

• Explain a variation on the Faerie Gold attack and why it is prevented.

• Generalize the description of the InternalH attack to include �nding collisions on (apk, ρ) rather than just on ρ.

• Rename enforce𝑖 to enforceMerklePath𝑖.

2017.0-beta-2.3 2017-02-12 #2017.0-beta-2.3

• Specify the security requirements on the SHA256Compress function in order for the scheme in § 5.4.6.1
‘Sprout Note Commitments’ on p. 34 to be a secure commitment.

• Specify G2 more precisely.

• Explain the use of interstitial treestates in chained JoinSplit transfers .

2017.0-beta-2.2 2017-02-11 #2017.0-beta-2.2

• Give de�nitions of computational binding and computational hiding for commitment schemes.

• Give a de�nition of statistical zero knowledge.

• Reference the white paper on MPC parameter generation [BGG2017].

2017.0-beta-2.1 2017-02-06 #2017.0-beta-2.1

• ℓMerkle is a bit length, not a byte length.

• Specify the maximum block size.

2017.0-beta-2 2017-02-04 #2017.0-beta-2

• Add abstract and keywords.

• Fix a typo in the de�nition of nulli�er integrity.

• Make the description of block chains more consistent with upstream Bitcoin documentation (referring to
“best“ chains rather than using the concept of a block chain view).

• De�ne how nodes select a best valid block chain.

2016.0-beta-1.13 2017-01-20 #2016.0-beta-1.13

• Specify the dif�culty adjustment algorithm.

• Clarify some de�nitions of �elds in a block header .

• De�ne PRFaddr in § 4.2 ‘Key Components’ on p. 19.

66

https://zips.z.cash/protocol/sprout.pdf#2017.0-beta-2.6
https://zips.z.cash/protocol/sprout.pdf#2017.0-beta-2.5
https://zips.z.cash/protocol/sprout.pdf#2017.0-beta-2.4
https://zips.z.cash/protocol/sprout.pdf#2017.0-beta-2.3
https://zips.z.cash/protocol/sprout.pdf#2017.0-beta-2.2
https://zips.z.cash/protocol/sprout.pdf#2017.0-beta-2.1
https://zips.z.cash/protocol/sprout.pdf#2017.0-beta-2
https://zips.z.cash/protocol/sprout.pdf#2016.0-beta-1.13

2016.0-beta-1.12 2017-01-09 #2016.0-beta-1.12

• Update the hashes of proving and verifying keys for the �nal Sprout parameters.

• Add cross references from shielded payment address and spending key encoding sections to where the key
components are speci�ed.

• Add acknowledgements for Filippo Valsorda and Zaki Manian.

2016.0-beta-1.11 2016-12-19 #2016.0-beta-1.11

• Specify a check on the order of 𝜋𝐵 in a zk-SNARK proof .

• Note that due to an oversight, the Zcash genesis block does not follow [BIP-34].

2016.0-beta-1.10 2016-10-30 #2016.0-beta-1.10

• Update reference to the Equihash paper [BK2016]. (The newer version has no algorithmic changes, but the
section discussing potential ASIC implementations is substantially expanded.)

• Clarify the discussion of proof size in “Differences from the Zerocash paper”.

2016.0-beta-1.9 2016-10-28 #2016.0-beta-1.9

• Add Founders’ Reward addresses for Mainnet .

• Change “protected ” terminology to “shielded ”.

2016.0-beta-1.8 2016-10-04 #2016.0-beta-1.8

• Revise the lead bytes for transparent P2SH and P2PKH addresses, and reencode the Testnet Founders’ Reward
addresses.

• Add a section on which BIPs apply to Zcash.

• Specify that OP_CODESEPARATOR has been disabled, and no longer affects SIGHASH transaction hashes .

• Change the representation type of vpub_old and vpub_new to uint64. (This is not a consensus change be-
cause the type of vold

pub and vnew
pub was already speci�ed to be {0 .. MAX_MONEY}; it just better re�ects the

implementation.)

• Correct the representation type of the block nVersion �eld to uint32.

2016.0-beta-1.7 2016-10-02 #2016.0-beta-1.7

• Clarify the consensus rule for payment of the Founders’ Reward , in response to an issue raised by the NCC
audit.

2016.0-beta-1.6 2016-09-26 #2016.0-beta-1.6

• Fix an error in the de�nition of the sortedness condition for Equihash: it is the sequences of indices that are
sorted, not the sequences of hashes.

• Correct the number of bytes in the encoding of solutionSize.

• Update the section on encoding of transparent addresses. (The precise pre�xes are not decided yet.)

• Clarify why BLAKE2b-ℓ is different from truncated BLAKE2b-512.

• Clarify a note about SU-CMA security for signatures.

• Add a note about PRFnfSprout corresponding to PRFsn in Zerocash.

• Add a paragraph about key length in § 8.7 ‘In-band secret distribution’ on p. 54.

• Add acknowledgements for John Tromp, Paige Peterson, Maureen Walsh, Jay Graber, and Jack Gavigan.

67

https://zips.z.cash/protocol/sprout.pdf#2016.0-beta-1.12
https://zips.z.cash/protocol/sprout.pdf#2016.0-beta-1.11
https://zips.z.cash/protocol/sprout.pdf#2016.0-beta-1.10
https://zips.z.cash/protocol/sprout.pdf#2016.0-beta-1.9
https://zips.z.cash/protocol/sprout.pdf#2016.0-beta-1.8
https://zips.z.cash/protocol/sprout.pdf#2016.0-beta-1.7
https://zips.z.cash/protocol/sprout.pdf#2016.0-beta-1.6

2016.0-beta-1.5 2016-09-22 #2016.0-beta-1.5

• Update the Founders’ Reward address list.

• Add some clari�cations based on Eli Ben-Sasson’s review.

2016.0-beta-1.4 2016-09-19 #2016.0-beta-1.4

• Specify the block subsidy , miner subsidy , and the Founders’ Reward .

• Specify coinbase transaction outputs to Founders’ Reward addresses.

• Improve notation (for example “·” for multiplication and “𝑇 [ℓ]” for sequence types) to avoid ambiguity.

2016.0-beta-1.3 2016-09-16 #2016.0-beta-1.3

• Correct the omission of solutionSize from the block header format.

• Document that compactSize encodings must be canonical.

• Add a note about conformance language in the introduction.

• Add acknowledgements for Solar Designer, Ling Ren and Alison Stevenson, and for the NCC Group and
Coinspect security audits.

2016.0-beta-1.2 2016-09-11 #2016.0-beta-1.2

• Remove GeneralCRH in favour of specifying hSigCRH and EquihashGen directly in terms of BLAKE2b-ℓ.

• Correct the security requirement for EquihashGen.

2016.0-beta-1.1 2016-09-05 #2016.0-beta-1.1

• Add a speci�cation of abstract signatures.

• Clarify what is signed in the “Sending Notes” section.

• Specify ZK parameter generation as a randomized algorithm, rather than as a distribution of parameters.

2016.0-beta-1 2016-09-04 #2016.0-beta-1

• Major reorganization to separate the abstract cryptographic protocol from the algorithm instantiations.

• Add type declarations.

• Add a “High-level Overview” section.

• Add a section specifying the zero-knowledge proving system and the encoding of proofs. Change the encoding
of points in proofs to follow IEEE Std 1363[a].

• Add a section on consensus changes from Bitcoin, and the speci�cation of Equihash.

• Complete the “Differences from the Zerocash paper” section.

• Correct the Merkle tree depth to 29.

• Change the length of memo �elds to 512 bytes.

• Switch the JoinSplit signature scheme to Ed25519, with consequent changes to the computation of hSig.

• Fix the lead bytes in shielded payment address and spending key encodings to match the implemented
protocol.

• Add a consensus rule about the ranges of vold
pub and vnew

pub .

• Clarify cryptographic security requirements and added de�nitions relating to the in-band secret distribution.

68

https://zips.z.cash/protocol/sprout.pdf#2016.0-beta-1.5
https://zips.z.cash/protocol/sprout.pdf#2016.0-beta-1.4
https://zips.z.cash/protocol/sprout.pdf#2016.0-beta-1.3
https://zips.z.cash/protocol/sprout.pdf#2016.0-beta-1.2
https://zips.z.cash/protocol/sprout.pdf#2016.0-beta-1.1
https://zips.z.cash/protocol/sprout.pdf#2016.0-beta-1

• Add various citations: the “Fixing Vulnerabilities in the Zcash Protocol” and “Why Equihash?” blog posts,
several crypto papers for security de�nitions, the Bitcoin whitepaper, the CryptoNote whitepaper, and several
references to Bitcoin documentation.

• Reference the extended version of the Zerocash paper rather than the Oakland proceedings version.

• Add JoinSplit transfers to the Concepts section.

• Add a section on Coinbase Transactions.

• Add acknowledgements for Jack Grigg, Simon Liu, Ariel Gabizon, jl777, Ben Blaxill, Alex Balducci, and Jake
Tarren.

• Fix a Makefile compatibility problem with the escaping behaviour of echo.

• Switch to biber for the bibliography generation, and add backreferences.

• Make the date format in references more consistent.

• Add visited dates to all URLs in references.

• Terminology changes.

2016.0-alpha-3.1 2016-05-20 #2016.0-alpha-3.1

• Change main font to Quattrocento.

2016.0-alpha-3 2016-05-09 #2016.0-alpha-3

• Change version numbering convention (no other changes).

2.0-alpha-3 2016-05-06 #2.0-alpha-3

• Allow anchoring to any previous output treestate in the same transaction, rather than just the immediately
preceding output treestate .

• Add change history.

2.0-alpha-2 2016-04-21 #2.0-alpha-2

• Change from truncated BLAKE2b-512 to BLAKE2b-256.

• Clarify endianness, and that uses of BLAKE2b are unkeyed.

• Minor correction to what SIGHASH types cover.

• Add “as intended for the Zcash release of summer 2016" to title page.

• Require PRFaddr to be collision-resistant (see § 8.8 ‘Omission in Zerocash security proof’ on p. 55).

• Add speci�cation of path computation for the incremental Merkle tree .

• Add a note in § 4.11.1 ‘JoinSplit Statement’ on p. 25 about how this condition corresponds to conditions in
the Zerocash paper.

• Changes to terminology around keys.

2.0-alpha-1 2016-03-30 #2.0-alpha-1

• First version intended for public review.

69

https://zips.z.cash/protocol/sprout.pdf#2016.0-alpha-3.1
https://zips.z.cash/protocol/sprout.pdf#2016.0-alpha-3
https://zips.z.cash/protocol/sprout.pdf#2.0-alpha-3
https://zips.z.cash/protocol/sprout.pdf#2.0-alpha-2
https://zips.z.cash/protocol/sprout.pdf#2.0-alpha-1

11 References #references

[ABR1999] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. DHAES: An Encryption Scheme Based on the
Dif�e-Hellman Problem. Cryptology ePrint Archive: Report 1999/007. Received March 17, 1999.
September 1998. URL: https://eprint.iacr.org/1999/007 (visited on 2016-08-21) (↑ p15, 55).

[AKLGL2010] Diego Aranha, Koray Karabina, Patrick Longa, Catherine Gebotys, and Julio López. Faster Explicit
Formulas for Computing Pairings over Ordinary Curves. Cryptology ePrint Archive: Report
2010/526. Last revised September 12, 2011. URL: https://eprint.iacr.org/2010/526 (visited
on 2018-04-03) (↑ p35, 64).

[ANWW2013] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian Winnerlein.
BLAKE2: simpler, smaller, fast as MD5. January 29, 2013. URL: https://blake2.net/#sp (visited
on 2016-08-14) (↑ p30).

[AR2017] Leo Alcock and Ling Ren. “A Note on the Security of Equihash”. In: CCSW ’17. Proceedings of the
2017 Cloud Computing Security Workshop (Dallas, TX, USA, November 3, 2017); post-workshop
of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM. URL:
http://sci-hub.tw/10.1145/3140649.3140652 (visited on 2019-01-09) (↑ p46, 61).

[BBDP2001] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-Privacy in Public-
Key Encryption. September 2001. URL: https://cseweb.ucsd.edu/~mihir/papers/anonenc.
html (visited on 2016-08-14). Full version. (↑ p54).

[BCCGLRT2014] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Sha� Goldwasser, Huijia Lin, Aviad Rubinstein, and
Eran Tromer. The Hunting of the SNARK. Cryptology ePrint Archive: Report 2014/580. Received
July 24, 2014. URL: https://eprint.iacr.org/2014/580 (visited on 2020-08-01) (↑ p18, 58).

[BCGGMTV2014] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized Anonymous Payments from Bitcoin (extended ver-
sion). URL: http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf
(visited on 2016-08-06). A condensed version appeared in Proceedings of the IEEE Symposium
on Security and Privacy (Oakland) 2014, pages 459–474; IEEE, 2014. (↑ p5, 6, 7, 14, 24, 25, 27, 52, 53,
54, 55).

[BCGTV2013] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs
for C: Verifying Program Executions Succinctly and in Zero Knowledge. Cryptology ePrint
Archive: Report 2013/507. Last revised October 7, 2013. URL: https://eprint.iacr.org/2013/
507 (visited on 2016-08-31). An earlier version appeared in Proceedings of the 33rd Annual
International Cryptology Conference, CRYPTO 2013, pages 90–108; IACR, 2013. (↑ p36).

[BCTV2014a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct Non-Interac-
tive Zero Knowledge for a von Neumann Architecture. Cryptology ePrint Archive: Report
2013/879. Last revised February 5, 2019. URL: https://eprint.iacr.org/2013/879 (visited on
2019-02-08) (↑ p36, 37, 62).

[BCTV2014a-old] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct Non-Interactive
Zero Knowledge for a von Neumann Architecture (May 19, 2015 version). Cryptology ePrint
Archive: Report 2013/879. Version: 20150519:172604. URL: https://eprint.iacr.org/2013/
879/20150519:172604 (visited on 2019-02-08) (↑ p36).

[BCTV2014b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. “Scalable Zero Knowledge
via Cycles of Elliptic Curves (extended version)”. In: Advances in Cryptology - CRYPTO 2014.
Vol. 8617. Lecture Notes in Computer Science. Springer, 2014, pages 276–294. URL: https://www.
cs.tau.ac.il/~tromer/papers/scalablezk-20140803.pdf (visited on 2016-09-01) (↑ p19, 62).

[BDEHR2011] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and Markus Rückert. On the
Security of the Winternitz One-Time Signature Scheme (full version). Cryptology ePrint Archive:
Report 2011/191. Received April 13, 2011. URL: https://eprint.iacr.org/2011/191 (visited on
2016-09-05) (↑ p16).

70

https://zips.z.cash/protocol/sprout.pdf#references
https://eprint.iacr.org/1999/007
https://eprint.iacr.org/2010/526
https://blake2.net/#sp
http://sci-hub.tw/10.1145/3140649.3140652
https://cseweb.ucsd.edu/~mihir/papers/anonenc.html
https://cseweb.ucsd.edu/~mihir/papers/anonenc.html
https://eprint.iacr.org/2014/580
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf
https://eprint.iacr.org/2013/507
https://eprint.iacr.org/2013/507
https://eprint.iacr.org/2013/879
https://eprint.iacr.org/2013/879/20150519:172604
https://eprint.iacr.org/2013/879/20150519:172604
https://www.cs.tau.ac.il/~tromer/papers/scalablezk-20140803.pdf
https://www.cs.tau.ac.il/~tromer/papers/scalablezk-20140803.pdf
https://eprint.iacr.org/2011/191

[BDJR2000] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A Concrete Security Treatment
of Symmetric Encryption: Analysis of the DES Modes of Operation. September 2000. URL:
https : / / cseweb . ucsd . edu / ~mihir / papers / sym - enc . html (visited on 2018-02-07). An
extended abstract appeared in Proceedings of the 38th Annual Symposium on Foundations
of Computer Science (Miami Beach, Florida, USA, October 20–22, 1997), pages 394–403; IEEE
Computer Society Press, 1997; ISBN 0-8186-8197-7. (↑ p14).

[BDLSY2012] Daniel Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. “High-speed high-
security signatures”. In: Journal of Cryptographic Engineering 2 (September 26, 2011), pages 77–
89. URL: http://cr.yp.to/papers.html#ed25519 (visited on 2016-08-14). Document ID:
a1a62a2f76d23f65d622484ddd09caf8. (↑ p33, 34).

[Bernstein2005] Daniel Bernstein. “Understanding brute force”. In: ECRYPT STVL Workshop on Symmetric Key
Encryption, eSTREAM report 2005/036. April 25, 2005. URL: https://cr.yp.to/papers.html#
bruteforce (visited on 2016-09-24). Document ID: 73e92f5b71793b498288efe81fe55dee. (↑ p55).

[Bernstein2006] Daniel Bernstein. “Curve25519: new Dif�e-Hellman speed records”. In: Public Key Cryptography
– PKC 2006. Proceedings of the 9th International Conference on Theory and Practice in Public-
Key Cryptography (New York, NY, USA, April 24–26, 2006). Springer-Verlag, February 9, 2006.
URL: http://cr.yp.to/papers.html#curve25519 (visited on 2016-08-14). Document ID:
4230efdfa673480fc079449d90f322c0. (↑ p15, 32, 39, 54).

[BFIJSV2010] Olivier Blazy, Georg Fuchsbauer, Malika Izabachène, Amandine Jambert, Hervé Sibert, and
Damien Vergnaud. Batch Groth–Sahai. Cryptology ePrint Archive: Report 2010/040. Last revised
February 3, 2010. URL: https://eprint.iacr.org/2010/040 (visited on 2020-10-17) (↑ p57).

[BGG-mpc] Sean Bowe, Ariel Gabizon, and Matthew Green. GitHub repository ‘ zcash/mpc’ : zk-SNARK
parameter multi-party computation protocol. URL: https://github.com/zcash/mpc (visited
on 2017-01-06) (↑ p40).

[BGG2017] Sean Bowe, Ariel Gabizon, and Matthew Green. A multi-party protocol for constructing the
public parameters of the Pinocchio zk-SNARK. Cryptology ePrint Archive: Report 2017/602. Last
revised June 25, 2017. URL: https://eprint.iacr.org/2017/602 (visited on 2019-02-10) (↑ p37,
40, 61, 66).

[BIP-11] Gavin Andresen. M-of-N Standard Transactions. Bitcoin Improvement Proposal 11. Created Oc-
tober 18, 2011. URL: https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki
(visited on 2020-07-13) (↑ p51).

[BIP-13] Gavin Andresen. Address Format for pay-to-script-hash. Bitcoin Improvement Proposal 13.
Created October 18, 2011. URL: https : / / github . com / bitcoin / bips / blob / master / bip -
0013.mediawiki (visited on 2020-07-13) (↑ p38, 51).

[BIP-14] Amir Taaki and Patrick Strateman. Protocol Version and User Agent. Bitcoin Improvement
Proposal 14. Created November 10, 2011. URL: https://github.com/bitcoin/bips/blob/
master/bip-0014.mediawiki (visited on 2020-07-13) (↑ p51).

[BIP-16] Gavin Andresen. Pay to Script Hash. Bitcoin Improvement Proposal 16. Created January 3, 2012.
URL: https://github.com/bitcoin/bips/blob/master/bip- 0016.mediawiki (visited on
2020-07-13) (↑ p51).

[BIP-30] Pieter Wuille. Duplicate transactions. Bitcoin Improvement Proposal 30. Created February 22,
2012. URL: https://github.com/bitcoin/bips/blob/master/bip-0030.mediawiki (visited
on 2020-07-13) (↑ p51).

[BIP-31] Mike Hearn. Pong message. Bitcoin Improvement Proposal 31. Created April 11, 2012. URL: https:
//github.com/bitcoin/bips/blob/master/bip-0031.mediawiki (visited on 2020-07-13)
(↑ p51).

[BIP-32] Pieter Wuille. Hierarchical Deterministic Wallets. Bitcoin Improvement Proposal 32. Created
February 11, 2012. Last updated January 15, 2014. URL: https://github.com/bitcoin/bips/
blob/master/bip-0032.mediawiki (visited on 2020-07-13) (↑ p38, 59).

71

https://cseweb.ucsd.edu/~mihir/papers/sym-enc.html
http://cr.yp.to/papers.html#ed25519
https://cr.yp.to/papers.html#bruteforce
https://cr.yp.to/papers.html#bruteforce
http://cr.yp.to/papers.html#curve25519
https://eprint.iacr.org/2010/040
https://github.com/zcash/mpc
https://eprint.iacr.org/2017/602
https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0013.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0013.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0014.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0014.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0030.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0031.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0031.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

[BIP-34] Gavin Andresen. Block v2, Height in Coinbase. Bitcoin Improvement Proposal 34. Created July 6,
2012. URL: https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki (visited
on 2020-07-13) (↑ p42, 51, 67).

[BIP-35] Jeff Garzik. mempool message. Bitcoin Improvement Proposal 35. Created August 16, 2012.
URL: https://github.com/bitcoin/bips/blob/master/bip- 0035.mediawiki (visited on
2020-07-13) (↑ p51).

[BIP-37] Mike Hearn and Matt Corallo. Connection Bloom �ltering. Bitcoin Improvement Proposal 37.
Created October 24, 2012. URL: https://github.com/bitcoin/bips/blob/master/bip-
0037.mediawiki (visited on 2020-07-13) (↑ p51).

[BIP-61] Gavin Andresen. Reject P2P message. Bitcoin Improvement Proposal 61. Created June 18, 2014.
URL: https://github.com/bitcoin/bips/blob/master/bip- 0061.mediawiki (visited on
2020-07-13) (↑ p51).

[BIP-62] Pieter Wuille. Dealing with malleability. Bitcoin Improvement Proposal 62. Withdrawn Novem-
ber 17, 2015. URL: https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
(visited on 2020-07-13) (↑ p16).

[BIP-65] Peter Todd. OP_CHECKLOCKTIMEVERIFY. Bitcoin Improvement Proposal 65. Created October 10,
2014. URL: https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki (visited
on 2020-07-13) (↑ p51).

[BIP-66] Pieter Wuille. Strict DER signatures. Bitcoin Improvement Proposal 66. Created January 10, 2015.
URL: https://github.com/bitcoin/bips/blob/master/bip- 0066.mediawiki (visited on
2020-07-13) (↑ p51).

[BIP-68] Mark Friedenbach, BtcDrak, Nicolas Dorier, and kinoshitajona. Relative lock-time using consen-
sus-enforced sequence numbers. Bitcoin Improvement Proposal 68. Last revised November 21,
2015. URL: https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki (visited
on 2020-07-13) (↑ p42).

[BIP-111] Matt Corallo and Peter Todd. NODE_BLOOM service bit. Bitcoin Improvement Proposal 111. Created
August 20, 2015. URL: https://github.com/bitcoin/bips/blob/master/bip-0111.mediawiki
(visited on 2020-07-13) (↑ p51, 64).

[Bitcoin-Base58] Base58Check encoding — Bitcoin Wiki. URL: https://en.bitcoin.it/wiki/Base58Check_
encoding (visited on 2020-07-13) (↑ p38, 39).

[Bitcoin-Block] Block Headers — Bitcoin Developer Reference. URL: https : / / developer . bitcoin . org /
reference/block_chain.html#block-headers (visited on 2020-07-13) (↑ p45).

[Bitcoin-CoinJoin] CoinJoin — Bitcoin Wiki. URL: https://en.bitcoin.it/wiki/CoinJoin (visited on 2020-07-13)
(↑ p6).

[Bitcoin-Format] Raw Transaction Format — Bitcoin Developer Reference. URL: https://developer.bitcoin.
org/reference/transactions.html#raw-transaction-format (visited on 2020-07-13) (↑ p43).

[Bitcoin-Multisig] Transactions: Multisig — Bitcoin Developer Guide. URL: https://developer.bitcoin.org/
devguide/transactions.html#multisig (visited on 2020-07-13) (↑ p50).

[Bitcoin-nBits] Target nBits — Bitcoin Developer Reference. URL: https://developer.bitcoin.org/reference/
block_chain.html#target-nbits (visited on 2020-07-13) (↑ p44, 48).

[Bitcoin-P2PKH] Transactions: P2PKH Script Validation — Bitcoin Developer Guide. URL: https://developer.
bitcoin.org/devguide/transactions.html#p2pkh-script-validation (visited on 2020-07-
13) (↑ p38).

[Bitcoin-P2SH] Transactions: P2SH Scripts — Bitcoin Developer Guide. URL: https://developer.bitcoin.org/
devguide/transactions.html#pay-to-script-hash-p2sh (visited on 2020-07-13) (↑ p38).

[Bitcoin-Protocol] Protocol documentation — Bitcoin Wiki. URL: https://en.bitcoin.it/wiki/Protocol_
documentation (visited on 2020-07-13) (↑ p6).

72

https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0035.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0061.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0111.mediawiki
https://en.bitcoin.it/wiki/Base58Check_encoding
https://en.bitcoin.it/wiki/Base58Check_encoding
https://developer.bitcoin.org/reference/block_chain.html#block-headers
https://developer.bitcoin.org/reference/block_chain.html#block-headers
https://en.bitcoin.it/wiki/CoinJoin
https://developer.bitcoin.org/reference/transactions.html#raw-transaction-format
https://developer.bitcoin.org/reference/transactions.html#raw-transaction-format
https://developer.bitcoin.org/devguide/transactions.html#multisig
https://developer.bitcoin.org/devguide/transactions.html#multisig
https://developer.bitcoin.org/reference/block_chain.html#target-nbits
https://developer.bitcoin.org/reference/block_chain.html#target-nbits
https://developer.bitcoin.org/devguide/transactions.html#p2pkh-script-validation
https://developer.bitcoin.org/devguide/transactions.html#p2pkh-script-validation
https://developer.bitcoin.org/devguide/transactions.html#pay-to-script-hash-p2sh
https://developer.bitcoin.org/devguide/transactions.html#pay-to-script-hash-p2sh
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation

[Bitcoin-SigHash] Signature Hash Types — Bitcoin Developer Guide. URL: https://developer.bitcoin.org/
devguide/transactions.html#signature-hash-types (visited on 2020-07-13) (↑ p23).

[BK2016] Alex Biryukov and Dmitry Khovratovich. Equihash: Asymmetric Proof-of-Work Based on the
Generalized Birthday Problem (full version). Cryptology ePrint Archive: Report 2015/946. Last
revised October 27, 2016. URL: https://eprint.iacr.org/2015/946 (visited on 2016-10-30)
(↑ p7, 46, 67).

[BN2005] Paulo Barreto and Michael Naehrig. Pairing-Friendly Elliptic Curves of Prime Order. Cryptology
ePrint Archive: Report 2005/133. Last revised February 28, 2006. URL: https://eprint.iacr.
org/2005/133 (visited on 2018-04-20) (↑ p35, 64).

[BN2007] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Relations among notions
and analysis of the generic composition paradigm. Cryptology ePrint Archive: Report 2000/025.
Last revised July 14, 2007. URL: https://eprint.iacr.org/2000/025 (visited on 2016-09-02)
(↑ p15).

[CVE-2019-7167] Common Vulnerabilities and Exposures. CVE-2019-7167. URL: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2019-7167 (visited on 2019-02-05) (↑ p36).

[DGKM2011] Dana Dachman-Soled, Rosario Gennaro, Hugo Krawczyk, and Tal Malkin. Computational Ex-
tractors and Pseudorandomness. Cryptology ePrint Archive: Report 2011/708. December 28,
2011. URL: https://eprint.iacr.org/2011/708 (visited on 2016-09-02) (↑ p55).

[DigiByte-PoW] DigiByte Core Developers. DigiSpeed 4.0.0 source code, functions GetNextWorkRequiredV3/4
in src/main.cpp as of commit 178e134. URL: https://github.com/digibyte/digibyte/blob/
178e1348a67d9624db328062397fde0de03fe388/src/main.cpp#L1587 (visited on 2017-01-20)
(↑ p47).

[DSDCOPS2001] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Guiseppe Persiano, and Amit Sa-
hai. “Robust Non-Interactive Zero Knowledge”. In: Advances in Cryptology - CRYPTO 2001.
Proceedings of the 21st Annual International Cryptology Conference (Santa Barbara, Califor-
nia, USA, August 19–23, 2001). Ed. by Joe Kilian. Vol. 2139. Lecture Notes in Computer Science.
Springer, 2001, pages 566–598. ISBN: 978-3-540-42456-7. DOI: 10.1007/3-540-44647-8_33.
URL: https://www.iacr.org/archive/crypto2001/21390566.pdf (visited on 2018-05-28)
(↑ p19, 23).

[ECCZF2019] Electric Coin Company and Zcash Foundation. Zcash Trademark Donation and License Agree-
ment. November 6, 2019. URL: https://www.zfnd.org/about/contracts/2019_ECC_ZFND_TM_
agreement.pdf (visited on 2020-07-05) (↑ p13).

[EWD-831] Edsger W. Dijkstra. Why numbering should start at zero. Manuscript. August 11, 1982. URL:
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html (visited on
2016-08-09) (↑ p7).

[Gabizon2019] Ariel Gabizon. On the security of the BCTV Pinocchio zk-SNARK variant. Draft. February 5,
2019. URL: https://github.com/arielgabizon/bctv/blob/master/bctv.pdf (visited on
2019-02-07) (↑ p36, 57, 61).

[GGM2016] Christina Garman, Matthew Green, and Ian Miers. Accountable Privacy for Decentralized
Anonymous Payments. Cryptology ePrint Archive: Report 2016/061. Last revised January 24,
2016. URL: https://eprint.iacr.org/2016/061 (visited on 2016-09-02) (↑ p52).

[GWC2019] Ariel Gabizon, Zachary Williamson, and Oana Ciobotaru. PLONK: Permutations over Lagrange-
bases for Oecumenical Noninteractive arguments of Knowledge. Cryptology ePrint Archive:
Report 2019/953. Last revised September 3, 2020. URL: https://eprint.iacr.org/2019/953
(visited on 2021-01-28) (↑ p57).

[Hamdon2018] Elise Hamdon. Sapling Activation Complete. Electric Coin Company blog. June 28, 2018. URL:
https://electriccoin.co/blog/sapling- activation-complete/ (visited on 2021-01-10)
(↑ p40).

73

https://developer.bitcoin.org/devguide/transactions.html#signature-hash-types
https://developer.bitcoin.org/devguide/transactions.html#signature-hash-types
https://eprint.iacr.org/2015/946
https://eprint.iacr.org/2005/133
https://eprint.iacr.org/2005/133
https://eprint.iacr.org/2000/025
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-7167
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-7167
https://eprint.iacr.org/2011/708
https://github.com/digibyte/digibyte/blob/178e1348a67d9624db328062397fde0de03fe388/src/main.cpp#L1587
https://github.com/digibyte/digibyte/blob/178e1348a67d9624db328062397fde0de03fe388/src/main.cpp#L1587
https://doi.org/10.1007/3-540-44647-8_33
https://www.iacr.org/archive/crypto2001/21390566.pdf
https://www.zfnd.org/about/contracts/2019_ECC_ZFND_TM_agreement.pdf
https://www.zfnd.org/about/contracts/2019_ECC_ZFND_TM_agreement.pdf
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html
https://github.com/arielgabizon/bctv/blob/master/bctv.pdf
https://eprint.iacr.org/2016/061
https://eprint.iacr.org/2019/953
https://electriccoin.co/blog/sapling-activation-complete/

[HW2016] Taylor Hornby and Zooko Wilcox. Fixing Vulnerabilities in the Zcash Protocol. Electric Coin
Company blog. April 26, 2016. URL: https://electriccoin.co/blog/fixing-zcash-vulns/
(visited on 2019-08-27). Updated December 26, 2017. (↑ p53).

[IEEE2000] IEEE Computer Society. IEEE Std 1363-2000: Standard Speci�cations for Public-Key Cryptog-
raphy. IEEE, August 29, 2000. DOI: 10.1109/IEEESTD.2000.92292. URL: http://ieeexplore.
ieee.org/servlet/opac?punumber=7168 (visited on 2016-08-03) (↑ p36).

[IEEE2004] IEEE Computer Society. IEEE Std 1363a-2004: Standard Speci�cations for Public-Key Cryptogra-
phy – Amendment 1: Additional Techniques. IEEE, September 2, 2004. DOI: 10.1109/IEEESTD.
2004.94612. URL: http://ieeexplore.ieee.org/servlet/opac?punumber=9276 (visited on
2016-08-03) (↑ p36, 55, 56).

[KYMM2018] George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn. An Empirical Analysis of
Anonymity in Zcash. Preprint, to be presented at the 27th Usenix Security Syposium (Baltimore,
Maryland, USA, August 15–17, 2018). May 8, 2018. URL: https://smeiklej.com/files/usenix18.
pdf (visited on 2018-06-05) (↑ p6).

[LG2004] Eddie Lenihan and Carolyn Eve Green. Meeting the Other Crowd: The Fairy Stories of Hidden
Ireland. TarcherPerigee, February 2004, pages 109–110. ISBN: 1-58542-206-1 (↑ p52).

[libsodium] libsodium documentation. URL: https://libsodium.org/ (visited on 2020-03-02) (↑ p34).

[libsodium-Seal] Sealed boxes — libsodium. URL: https : / / download . libsodium . org / doc / public - key _
cryptography/sealed_boxes.html (visited on 2016-02-01) (↑ p54).

[LM2017] Philip Lafrance and Alfred Menezes. On the security of the WOTS-PRF signature scheme. Cryp-
tology ePrint Archive: Report 2017/938. Last revised February 5, 2018. URL: https://eprint.
iacr.org/2017/938 (visited on 2018-04-16) (↑ p16).

[MAEÁ2010] V. Gayoso Martínez, F. Hernández Alvarez, L. Hernández Encinas, and C. Sánchez Ávila. “A
Comparison of the Standardized Versions of ECIES”. In: Proceedings of Sixth International
Conference on Information Assurance and Security (Atlanta, Georgia, USA, August 23–25,
2010). IEEE, 2010, pages 1–4. ISBN: 978-1-4244-7407-3. DOI: 10.1109/ISIAS.2010.5604194.
URL: https://digital.csic.es/bitstream/10261/32674/1/Gayoso_A%20Comparison%20of%
20the%20Standardized%20Versions%20of%20ECIES.pdf (visited on 2016-08-14) (↑ p54).

[Nakamoto2008] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. October 31, 2008. URL:
https://bitcoin.org/en/bitcoin-paper (visited on 2016-08-14) (↑ p5).

[NIST2015] NIST. FIPS 180-4: Secure Hash Standard (SHS). August 2015. DOI: 10.6028/NIST.FIPS.180-4.
URL: https://csrc.nist.gov/publications/detail/fips/180/4/final (visited on 2021-03-
08) (↑ p29, 30, 38).

[Parno2015] Bryan Parno. A Note on the Unsoundness of vnTinyRAM’s SNARK. Cryptology ePrint Archive:
Report 2015/437. Received May 6, 2015. URL: https://eprint.iacr.org/2015/437 (visited on
2019-02-08) (↑ p36, 57, 61).

[Peterson2017] Paige Peterson. Transaction Linkability. Electric Coin Company blog. January 25, 2017. URL:
https://electriccoin.co/blog/transaction-linkability/ (visited on 2019-08-27) (↑ p6,
64).

[PHGR2013] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly Practical Veri�-
able Computation. Cryptology ePrint Archive: Report 2013/279. Last revised May 13, 2013. URL:
https://eprint.iacr.org/2013/279 (visited on 2016-08-31) (↑ p36).

[Quesnelle2017] Jeffrey Quesnelle. On the linkability of Zcash transactions. arXiv:1712.01210 [cs.CR]. December 4,
2017. URL: https://arxiv.org/abs/1712.01210 (visited on 2018-04-15) (↑ p6, 64).

[RFC-2119] Scott Bradner. Request for Comments 7693: Key words for use in RFCs to Indicate Requirement
Levels. Internet Engineering Task Force (IETF). March 1997. URL: https://www.rfc-editor.org/
rfc/rfc2119.html (visited on 2016-09-14) (↑ p5).

74

https://electriccoin.co/blog/fixing-zcash-vulns/
https://doi.org/10.1109/IEEESTD.2000.92292
http://ieeexplore.ieee.org/servlet/opac?punumber=7168
http://ieeexplore.ieee.org/servlet/opac?punumber=7168
https://doi.org/10.1109/IEEESTD.2004.94612
https://doi.org/10.1109/IEEESTD.2004.94612
http://ieeexplore.ieee.org/servlet/opac?punumber=9276
https://smeiklej.com/files/usenix18.pdf
https://smeiklej.com/files/usenix18.pdf
https://libsodium.org/
https://download.libsodium.org/doc/public-key_cryptography/sealed_boxes.html
https://download.libsodium.org/doc/public-key_cryptography/sealed_boxes.html
https://eprint.iacr.org/2017/938
https://eprint.iacr.org/2017/938
https://doi.org/10.1109/ISIAS.2010.5604194
https://digital.csic.es/bitstream/10261/32674/1/Gayoso_A%20Comparison%20of%20the%20Standardized%20Versions%20of%20ECIES.pdf
https://digital.csic.es/bitstream/10261/32674/1/Gayoso_A%20Comparison%20of%20the%20Standardized%20Versions%20of%20ECIES.pdf
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.6028/NIST.FIPS.180-4
https://csrc.nist.gov/publications/detail/fips/180/4/final
https://eprint.iacr.org/2015/437
https://electriccoin.co/blog/transaction-linkability/
https://eprint.iacr.org/2013/279
https://arxiv.org/abs/1712.01210
https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/rfc/rfc2119.html

[RFC-7539] Yoav Nir and Adam Langley. Request for Comments 7539: ChaCha20 and Poly1305 for IETF
Protocols. Internet Research Task Force (IRTF). May 2015. URL: https://www.rfc-editor.org/
rfc/rfc7539.html (visited on 2016-09-02). As modi�ed by veri�ed errata at https://www.rfc-
editor.org/errata_search.php?rfc=7539 (visited on 2016-09-02). (↑ p32).

[RFC-8032] Simon Josefsson and Ilari Liusvaara. Request for Comments 8032: Edwards-Curve Digital Sig-
nature Algorithm (EdDSA). Internet Engineering Task Force (IETF). January 2017. URL: https:
//www.rfc-editor.org/rfc/rfc8032.html (visited on 2020-07-06). As modi�ed by errata
at https://www.rfc-editor.org/errata_search.php?rfc=8032 (visited on 2020-07-06).
(↑ p33).

[RIPEMD160] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160, a strengthened version
of RIPEMD. URL: http://homes.esat.kuleuven.be/~bosselae/ripemd160.html (visited on
2016-09-24) (↑ p38).

[ST1999] Tomas Sander and Amnon Ta–Shma. “Auditable, Anonymous Electronic Cash”. In: Advances in
Cryptology - CRYPTO ’99. Proceedings of the 19th Annual International Cryptology Conference
(Santa Barbara, California, USA, August 15–19, 1999). Ed. by Michael Wiener. Vol. 1666. Lecture
Notes in Computer Science. Springer, 1999, pages 555–572. ISBN: 978-3-540-66347-8. DOI:
10.1007/3-540-48405-1_35. URL: https://link.springer.com/content/pdf/10.1007/3-
540-48405-1_35.pdf (visited on 2018-06-05) (↑ p57, 63).

[SWB2019] Josh Swihart, Benjamin Winston, and Sean Bowe. Zcash Counterfeiting Vulnerability Successfully
Remediated. February 5, 2019. URL: https://electriccoin.co/blog/zcash-counterfeiting-
vulnerability-successfully-remediated/ (visited on 2019-08-27) (↑ p36, 61).

[Swihart2018] Josh Swihart. Overwinter Activated Successfully. Electric Coin Company blog. June 26, 2018.
URL: https://electriccoin.co/blog/overwinter- activated- successfully/ (visited on
2021-01-10) (↑ p40).

[Unicode] The Unicode Consortium. The Unicode Standard. The Unicode Consortium, 2016. URL: http:
//www.unicode.org/versions/latest/ (visited on 2016-08-31) (↑ p37).

[vanSaberh2014] Nicolas van Saberhagen. CryptoNote v 2.0. Date disputed. URL: https://cryptonote.org/
whitepaper.pdf (visited on 2016-08-17) (↑ p6).

[Vercauter2009] Frederik Vercauteren. Optimal pairings. Cryptology ePrint Archive: Report 2008/096. Last revised
March 7, 2008. URL: https://eprint.iacr.org/2008/096 (visited on 2018-04-06). A version
of this paper appeared in IEEE Transactions of Information Theory, Vol. 56, pages 455–461; IEEE,
2009. (↑ p35, 64).

[WCBTV2015] Zooko Wilcox, Alessandro Chiesa, Eli Ben-Sasson, Eran Tromer, and Madars Virza. A Bug in
libsnark. Least Authority blog. May 16, 2015. URL: https://leastauthority.com/blog/a_bug_
in_libsnark/ (visited on 2019-08-27) (↑ p36).

[WG2016] Zooko Wilcox and Jack Grigg. Why Equihash? Electric Coin Company blog. April 15, 2016. URL:
https://electriccoin.co/blog/why-equihash/ (visited on 2019-08-27). Updated August 21,
2019. (↑ p46).

[Zaverucha2012] Gregory M. Zaverucha. Hybrid Encryption in the Multi-User Setting. Cryptology ePrint Archive:
Report 2012/159. Received March 20, 2012. URL: https://eprint.iacr.org/2012/159 (visited
on 2016-09-24) (↑ p55).

[Zcash-Blossom] Electric Coin Company. Blossom. December 11, 2019. URL: https://z.cash/upgrade/blossom/
(visited on 2021-01-10) (↑ p40).

[Zcash-Canopy] Electric Coin Company. Canopy. November 18, 2020. URL: https://z.cash/upgrade/canopy/
(visited on 2021-01-10) (↑ p40).

[Zcash-Heartwd] Electric Coin Company. Heartwood. July 16, 2020. URL: https://z.cash/upgrade/heartwood/
(visited on 2021-01-10) (↑ p40).

[Zcash-Issue2113] Simon Liu. GitHub repository ‘ zcash/zcash’ : Issue 2113. URL: https://github.com/zcash/
zcash/issues/2113 (visited on 2017-02-20) (↑ p50, 66).

75

https://www.rfc-editor.org/rfc/rfc7539.html
https://www.rfc-editor.org/rfc/rfc7539.html
https://www.rfc-editor.org/errata_search.php?rfc=7539
https://www.rfc-editor.org/errata_search.php?rfc=7539
https://www.rfc-editor.org/rfc/rfc8032.html
https://www.rfc-editor.org/rfc/rfc8032.html
https://www.rfc-editor.org/errata_search.php?rfc=8032
http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
https://doi.org/10.1007/3-540-48405-1_35
https://link.springer.com/content/pdf/10.1007/3-540-48405-1_35.pdf
https://link.springer.com/content/pdf/10.1007/3-540-48405-1_35.pdf
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/overwinter-activated-successfully/
http://www.unicode.org/versions/latest/
http://www.unicode.org/versions/latest/
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://eprint.iacr.org/2008/096
https://leastauthority.com/blog/a_bug_in_libsnark/
https://leastauthority.com/blog/a_bug_in_libsnark/
https://electriccoin.co/blog/why-equihash/
https://eprint.iacr.org/2012/159
https://z.cash/upgrade/blossom/
https://z.cash/upgrade/canopy/
https://z.cash/upgrade/heartwood/
https://github.com/zcash/zcash/issues/2113
https://github.com/zcash/zcash/issues/2113

[Zcash-libsnark] libsnark: C++ library for zkSNARK proofs (Zcash fork). URL: https://github.com/zcash/zcash/
tree/master/src/snark (visited on 2018-02-04) (↑ p36).

[ZIP-32] Jack Grigg and Daira Hopwood. Shielded Hierarchical Deterministic Wallets. Zcash Improvement
Proposal 32. URL: https://zips.z.cash/zip-0032 (visited on 2019-08-28) (↑ p59).

[ZIP-76] Jack Grigg and Daira Hopwood. Transaction Signature Validation before Overwinter. Zcash
Improvement Proposal 76 (in progress). (↑ p23, 51).

[ZIP-200] Jack Grigg. Network Upgrade Mechanism. Zcash Improvement Proposal 200. Created January 8,
2018. URL: https://zips.z.cash/zip-0200 (visited on 2019-08-28) (↑ p40).

[ZIP-201] Simon Liu. Network Peer Management for Overwinter. Zcash Improvement Proposal 201. Cre-
ated January 15, 2018. URL: https://zips.z.cash/zip-0201 (visited on 2019-08-28) (↑ p40).

[ZIP-205] Daira Hopwood. Deployment of the Sapling Network Upgrade. Zcash Improvement Proposal
205. Created October 8, 2018. URL: https://zips.z.cash/zip-0205 (visited on 2019-08-28)
(↑ p40, 48).

[ZIP-206] Daira Hopwood. Deployment of the Blossom Network Upgrade. Zcash Improvement Proposal
206. Created July 29, 2019. URL: https://zips.z.cash/zip- 0206 (visited on 2019-08-28)
(↑ p40).

[ZIP-209] Sean Bowe. Prohibit Negative Shielded Value Pool Balances. Zcash Improvement Proposal 209.
Created February 25, 2019. URL: https://zips.z.cash/zip-0209 (visited on 2020-11-05) (↑ p23,
58).

[ZIP-250] Daira Hopwood. Deployment of the Heartwood Network Upgrade. Zcash Improvement Proposal
250. Created February 28, 2020. URL: https://zips.z.cash/zip-0250 (visited on 2020-03-20)
(↑ p40).

[ZIP-251] Daira Hopwood. Deployment of the Canopy Network Upgrade. Zcash Improvement Proposal
251. Created February 28, 2020. URL: https://zips.z.cash/zip-0251 (visited on 2020-03-24)
(↑ p40).

[ZIP-302] Jay Graber and Jack Grigg. Standardized Memo Field Format. Zcash Improvement Proposal 302.
Reserved. URL: https://github.com/zcash/zips/pull/105 (visited on 2020-02-13) (↑ p37,
59).

Index #index

activation block, 13

activation block height, 41

ALL CAPS, 5

anchor, 11, 12, 20, 25

authenticated one-time symmetric encryption, 14, 15,
32

auxiliary input, 18, 19, 22, 23, 25

Base58Check, 38–40, 50

BCTV14, 23, 36, 37, 41, 57, 61, 62

best valid block chain, 11, 27, 66

bilateral consensus rule change, 41

binding (commitment scheme), 17

Bitcoin, 1, 5, 6, 11–13, 16, 22, 23, 38, 39, 41–47, 51, 56, 58,
66, 68, 69

block, 10–13, 20, 23, 24, 41, 42, 44, 45–48, 51, 60, 61, 66,
67

block chain, 5–7, 9, 10, 11, 13, 23, 24, 27, 36, 37, 42, 45,
48, 51, 60, 61, 65, 66

block chain reorganization, 27, 41

block hash, 13

block header, 10, 29, 44, 45–48, 66, 68

block height, 11, 13, 40–43, 45, 47–50, 58, 61

block subsidy, 13, 40, 49, 58, 68

block target spacing, 47

block timestamp, 44

block version number, 44, 45, 61, 65

Blossom, 40, 60, 61

BN-254, 19, 35, 37

76

https://github.com/zcash/zcash/tree/master/src/snark
https://github.com/zcash/zcash/tree/master/src/snark
https://zips.z.cash/zip-0032
https://zips.z.cash/zip-0200
https://zips.z.cash/zip-0201
https://zips.z.cash/zip-0205
https://zips.z.cash/zip-0206
https://zips.z.cash/zip-0209
https://zips.z.cash/zip-0250
https://zips.z.cash/zip-0251
https://github.com/zcash/zips/pull/105
https://zips.z.cash/protocol/sprout.pdf#index

Canopy, 13, 40, 58, 59

chain value pool balance (Sprout), 23, 24, 58

coinbase transaction, 13, 23, 42, 49, 50, 58, 64, 65, 68

coins (in Zerocash), 6

collision resistance, 14, 30, 31, 34, 53–57, 69

commitment scheme, 17

commitment trapdoor, 10, 17, 52

consensus rule change, 41

CryptoNote, 6, 69

Decentralized Anonymous Payment scheme, 1, 5

diversi�ed payment address, 57, 61

dummy note, 21, 22, 53

ECDSA, 16, 38, 63

Ed25519, 16, 30, 33, 34, 42, 59, 64, 65, 68

ephemeral public key, 26, 55

Equihash, 1, 14, 31, 44, 45, 46, 56, 61, 63, 65, 67, 68

Founders’ Reward, 13, 42, 49, 50, 61, 64, 66–68

full node, 65

full validator, 10, 12, 45, 65

full viewing key, 24

genesis block, 10, 11, 13, 42, 44, 45, 50, 51, 58, 67

Halo 2, 57

halving, 40, 50

hash function, 11, 14, 29, 31, 33, 55

hash value (of a Merkle tree node), 12, 22, 30

Heartwood, 40, 58–60

hiding (commitment scheme), 17

incoming viewing key, 9, 24, 26, 27, 38, 39, 65

incremental Merkle tree, 12, 22, 30, 60, 69

index (of a Merkle tree node), 12, 22

internal node (of a Merkle tree), 22

JoinSplit circuit, 40

JoinSplit description, 6, 10, 11, 12, 16, 19, 20–24, 26–28,
37, 41–43, 51–53, 55, 58, 63, 65, 66

JoinSplit parameters, 19

JoinSplit proof, 22

JoinSplit signature, 16, 23, 68

JoinSplit signing key, 21

JoinSplit statement, 11, 19, 20, 22–24, 25, 36, 53, 55, 56,
65

JoinSplit transfer, 6, 11, 12, 19–23, 43, 51–53, 55, 56, 66,
69

key agreement scheme, 15, 19, 26, 32

Key Derivation Function, 15, 26, 32

key privacy, 6, 54, 55, 61

layer (of a Merkle tree), 12, 22

leaf node (of a Merkle tree), 22

libsnark (Zcash fork), 36, 37, 40, 56

Mainnet, 13, 29, 38–40, 42, 45, 46, 48, 49, 51, 58, 61, 67

median-time-past, 44, 45, 60

memo �eld, 10, 26, 27, 37, 51, 59, 65, 68

Merkle path, 22, 25

miner subsidy, 13, 23, 42, 49, 68

Mint, 6

MUST, 5, 11–13, 20, 24, 26, 34, 37, 39, 41, 42, 45, 47, 50

MUST NOT, 5, 13, 34, 36, 37, 42, 45, 63

network, 13

network upgrade, 13, 36, 40, 41, 62

node (of a Merkle tree), 12, 22

non-canonical (compressed encoding of a point), 17

nonmalleability (of proofs), 19

nonmalleability (of signatures), 16

note, 6, 7, 9, 10–11, 17, 20–22, 24, 26, 27, 37, 43, 51–54, 56

note commitment, 6, 10, 12, 20, 22, 24, 26, 43, 52–56, 66

note commitment tree, 10, 11, 12, 22, 24, 43, 44

note plaintext, 10, 26, 37, 38, 59

note position, 6, 12

note traceability set, 6, 64

NU5, 40, 57, 58

nulli�er, 6, 7, 10, 12, 13, 20, 24, 28, 43, 52–55, 57, 66

nulli�er set, 11, 12, 24, 27

one-time (authenticated symmetric encryption), 15

one-time (signature scheme), 16

open (a commitment), 17

OPTIONAL, 21

Orchard, 57

Output description, 58

Overwinter, 23, 40, 42

paying key, 6, 10, 22

PLONK, 57

Pour, 6

primary input, 18, 20, 25

private key, 6, 15, 16, 32, 39, 55

proving key (for a zk-SNARK), 18, 19, 40

77

proving system (preprocessing zk-SNARK), 1, 5, 6, 18,
19, 36, 52, 68

Pseudo Random Function, 10, 14, 19, 30, 31, 34, 53–55,
65

public key, 6, 9, 15, 20, 26, 32, 39, 43, 55

Quadratic Arithmetic Program, 36

quadratic constraint program, 36

random oracle, 31

raw encoding, 26, 38, 39–40, 58

receiving key, 6, 9, 65

represented group, 17, 64

represented pairing, 18, 35, 64

represented subgroup, 17, 18

root (of a Merkle tree), 12, 22, 43, 44

RPC byte order, 13

Sapling, 36, 40, 44, 57, 58, 62

secp256k1, 16

serial numbers (in Zerocash), 6

SHA-256, 29, 30–31, 34, 40, 53, 64

SHA-256d, 29, 44, 46, 47

SHA-512, 30, 33, 58

SHA256Compress, 29, 30, 31, 34, 39, 53, 54, 56, 64, 66

shielded, 6, 11, 21, 51, 52

shielded input, 12

shielded output, 26

shielded payment address, 6, 9, 10, 14, 22, 27, 38, 39,
67, 68

SHOULD, 5, 21, 37, 42, 43, 45

SHOULD NOT, 5, 37, 61

SIGHASH algorithm, 23

SIGHASH transaction hash, 22, 23, 51, 63, 67

SIGHASH type, 23, 63, 69

signature scheme, 16, 33, 64

signing key, 16, 23

slanted text, 5

spending key, 6, 9, 10, 14, 19, 22, 24, 27, 38, 39, 40, 52,
53, 55, 58, 67, 68

Sprout, 10, 12, 17, 19, 21–24, 26, 27, 38, 39, 40, 43, 55, 56,
59–65

statement, 18, 25, 56

target threshold, 44, 47, 48

TAZ, 13

Testnet, 13, 29, 38–40, 42, 45, 46, 48, 50, 51, 58, 61, 66, 67

transaction, 6, 7, 11, 12–13, 16, 19–22, 23, 24, 27, 41,
42–45, 51–53, 58, 63, 65, 69

transaction fee, 13, 42, 58

transaction value pool (transparent), 11, 12, 20, 23, 43

transaction version number, 22, 41, 42, 43, 58, 65

transmission key, 6, 9, 10, 16, 21, 26, 27, 37

transmitted notes ciphertext (Sprout), 20, 21, 26, 27, 43

transparent, 6, 11, 23, 38, 41–43, 49–52, 67

transparent address, 38

transparent input, 11, 22, 23, 59

transparent output, 11, 23, 42, 58, 59

treestate, 11, 12, 20, 24, 44, 63, 66, 69

unspent transaction output set, 12

valid block chain, 11, 12–13, 52, 53

valid Equihash solution, 45, 46

validating key (for a signature scheme), 16, 20, 23, 33,
34, 38, 41, 42, 59, 64, 65

verifying key (for a zk-SNARK), 18, 19, 40

version group ID, 42, 58

weak PRF, 55

zatoshi, 10, 13, 29, 42, 49, 50

Zcash, 1, 5, 6, 9, 11, 13, 16, 18, 22–24, 28, 29, 36–44, 46, 47,
51–59, 63, 67, 69

zcashd, 34, 45, 46, 48, 58–61, 65

ZEC, 10, 13

Zerocash, 1, 5, 6, 14, 24, 51–57, 67–69

zk-SNARK proof, 10, 11, 16, 18, 19, 20, 43, 53, 55, 63, 67

78

	Contents
	1 Introduction
	1.1 Caution
	1.2 High-level Overview

	2 Notation
	3 Concepts
	3.1 Payment Addresses and Keys
	3.2 Notes
	3.2.1 Note Plaintexts and Memo Fields

	3.3 The Block Chain
	3.4 Transactions and Treestates
	3.5 JoinSplit Transfers and Descriptions
	3.6 Note Commitment Trees
	3.7 Nullifier Sets
	3.8 Block Subsidy and Founders' Reward
	3.9 Coinbase Transactions
	3.10 Mainnet and Testnet

	4 Abstract Protocol
	4.1 Abstract Cryptographic Schemes
	4.1.1 Hash Functions
	4.1.2 Pseudo Random Functions
	4.1.3 Symmetric Encryption
	4.1.4 Key Agreement
	4.1.5 Key Derivation
	4.1.6 Signature
	4.1.7 Commitment
	4.1.8 Represented Group
	4.1.9 Represented Pairing
	4.1.10 Zero-Knowledge Proving System

	4.2 Key Components
	4.3 JoinSplit Descriptions
	4.4 Sending Notes
	4.5 Dummy Notes
	4.6 Merkle Path Validity
	4.7 SIGHASH Transaction Hashing
	4.8 Non-malleability
	4.9 Balance
	4.10 Note Commitments and Nullifiers
	4.11 Zk-SNARK Statements
	4.11.1 JoinSplit Statement

	4.12 In-band secret distribution
	4.12.1 Encryption
	4.12.2 Decryption

	4.13 Block Chain Scanning

	5 Concrete Protocol
	5.1 Caution
	5.2 Integers, Bit Sequences, and Endianness
	5.3 Constants
	5.4 Concrete Cryptographic Schemes
	5.4.1 Hash Functions
	5.4.1.1 SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions
	5.4.1.2 BLAKE2b Hash Function
	5.4.1.3 Merkle Tree Hash Function
	5.4.1.4 hSig Hash Function
	5.4.1.5 Equihash Generator

	5.4.2 Pseudo Random Functions
	5.4.3 Symmetric Encryption
	5.4.4 Key Agreement And Derivation
	5.4.4.1 Sprout Key Agreement
	5.4.4.2 Sprout Key Derivation

	5.4.5 Ed25519
	5.4.6 Commitment schemes
	5.4.6.1 Sprout Note Commitments

	5.4.7 Represented Groups and Pairings
	5.4.7.1 BN-254

	5.4.8 Zero-Knowledge Proving Systems
	5.4.8.1 BCTV14

	5.5 Encodings of Note Plaintexts and Memo Fields
	5.6 Encodings of Addresses and Keys
	5.6.1 Transparent Encodings
	5.6.1.1 Transparent Addresses
	5.6.1.2 Transparent Private Keys

	5.6.2 Sprout Encodings
	5.6.2.1 Sprout Payment Addresses
	5.6.2.2 Sprout Incoming Viewing Keys
	5.6.2.3 Sprout Spending Keys

	5.7 BCTV14 zk-SNARK Parameters

	6 Network Upgrades
	7 Consensus Changes from Bitcoin
	7.1 Transaction Encoding and Consensus
	7.2 JoinSplit Description Encoding and Consensus
	7.3 Block Header Encoding and Consensus
	7.4 Proof of Work
	7.4.1 Equihash
	7.4.2 Difficulty filter
	7.4.3 Difficulty adjustment
	7.4.4 nBits conversion
	7.4.5 Definition of Work

	7.5 Calculation of Block Subsidy and Founders' Reward
	7.6 Payment of Founders' Reward
	7.7 Changes to the Script System
	7.8 Bitcoin Improvement Proposals

	8 Differences from the Zerocash paper
	8.1 Transaction Structure
	8.2 Memo Fields
	8.3 Unification of Mints and Pours
	8.4 Faerie Gold attack and fix
	8.5 Internal hash collision attack and fix
	8.6 Changes to PRF inputs and truncation
	8.7 In-band secret distribution
	8.8 Omission in Zerocash security proof
	8.9 Miscellaneous

	9 Acknowledgements
	10 Change History
	11 References
	Index

