# **Zcash Protocol Specification**

Version 2018.0-beta-29 [Overwinter+Sapling]

Daira Hopwood<sup>†</sup> Sean Bowe<sup>†</sup> — Taylor Hornby<sup>†</sup> — Nathan Wilcox<sup>†</sup>

August 15, 2018



**Abstract. Zcash** is an implementation of the *Decentralized Anonymous Payment* scheme **Zerocash**, with security fixes and improvements to performance and functionality. It bridges the existing transparent payment scheme used by **Bitcoin** with a *shielded* payment scheme secured by zero-knowledge succinct non-interactive arguments of knowledge (*zk-SNARKs*). It attempted to address the problem of mining centralization by use of the Equihash memory-hard proof-of-work algorithm.

This specification defines the **Zcash** consensus protocol at launch; after the upgrade codenamed **Overwinter**; and after the subsequent upgrade codenamed **Sapling**. It is a work in progress. Protocol differences from **Zerocash** and **Bitcoin** are also explained.

**Keywords:** anonymity, applications, cryptographic protocols, electronic commerce and payment, financial privacy, proof of work, zero knowledge.

| Contents       |     |                     |   |  |  |  |
|----------------|-----|---------------------|---|--|--|--|
| 1 Introduction |     |                     |   |  |  |  |
|                | 1.1 | Caution             | 7 |  |  |  |
|                |     | High-level Overview | 7 |  |  |  |

<sup>†</sup> Zerocoin Electric Coin Company

<sup>&</sup>lt;sup>1</sup> Jubjub bird image credit: Peter Newell 1902; Daira Hopwood 2018.

| Z                                    | NOL  | ation                         |                                                               | 3  |  |  |  |  |
|--------------------------------------|------|-------------------------------|---------------------------------------------------------------|----|--|--|--|--|
| 3                                    | Con  | ncepts 1                      |                                                               |    |  |  |  |  |
|                                      | 3.1  | Payme                         | ent Addresses and Keys                                        | 11 |  |  |  |  |
|                                      | 3.2  | -                             | Notes                                                         |    |  |  |  |  |
|                                      |      | 3.2.1                         | Note Plaintexts and Memo Fields                               | 13 |  |  |  |  |
|                                      | 3.3  | The Bl                        | ock Chain                                                     | 14 |  |  |  |  |
|                                      | 3.4  | Transa                        | actions and Treestates                                        | 14 |  |  |  |  |
|                                      | 3.5  | JoinSp                        | olit Transfers and Descriptions                               | 15 |  |  |  |  |
|                                      | 3.6  | •                             | Transfers, Output Transfers, and their Descriptions           | 15 |  |  |  |  |
|                                      | 3.7  | •                             | Commitment Trees                                              | 16 |  |  |  |  |
|                                      | 3.8  |                               | er Sets                                                       | 17 |  |  |  |  |
|                                      | 3.9  |                               | Subsidy and Founders' Reward                                  | 17 |  |  |  |  |
|                                      | 3.10 |                               | ase Transactions                                              | 17 |  |  |  |  |
|                                      |      |                               |                                                               |    |  |  |  |  |
| 4                                    | Abst | tract Pr                      | otocol                                                        | 17 |  |  |  |  |
|                                      | 4.1  | Abstra                        | act Cryptographic Schemes                                     | 17 |  |  |  |  |
|                                      |      | 4.1.1                         | Hash Functions                                                | 17 |  |  |  |  |
|                                      |      | 4.1.2                         | Pseudo Random Functions                                       | 18 |  |  |  |  |
|                                      |      | 4.1.3                         | Authenticated One-Time Symmetric Encryption                   | 19 |  |  |  |  |
|                                      |      | 4.1.4                         | Key Agreement                                                 | 19 |  |  |  |  |
|                                      |      | 4.1.5                         | Key Derivation                                                | 19 |  |  |  |  |
|                                      |      | 4.1.6                         | Signature                                                     | 20 |  |  |  |  |
|                                      |      |                               | 4.1.6.1 Signature with Re-Randomizable Keys                   | 21 |  |  |  |  |
|                                      |      |                               | 4.1.6.2 Signature with Private Key to Public Key Homomorphism | 22 |  |  |  |  |
|                                      |      | 4.1.7                         | Commitment                                                    | 23 |  |  |  |  |
|                                      |      | 4.1.8                         | Represented Group                                             | 24 |  |  |  |  |
|                                      |      | 4.1.9                         | Hash Extractor                                                | 24 |  |  |  |  |
| 4.1.10 Group Hash                    |      | Group Hash                    | 25                                                            |    |  |  |  |  |
| 4.1.11 Represented Pairing           |      | Represented Pairing           | 25                                                            |    |  |  |  |  |
| 4.1.12 Zero-Knowledge Proving System |      | Zero-Knowledge Proving System | 26                                                            |    |  |  |  |  |
|                                      | 4.2  | Key Co                        | omponents                                                     | 27 |  |  |  |  |
|                                      |      | 4.2.1                         | Sprout Key Components                                         | 27 |  |  |  |  |
|                                      |      | 4.2.2                         | Sapling Key Components                                        | 27 |  |  |  |  |
| 4.3 JoinSplit Descriptions           |      | lit Descriptions              | 29                                                            |    |  |  |  |  |
|                                      | 4.4  | Spend                         | Descriptions                                                  | 30 |  |  |  |  |
|                                      | 4.5  | Outpu                         | t Descriptions                                                | 31 |  |  |  |  |
| 4.6 Sending Notes                    |      | Sendir                        | ng Notes                                                      | 31 |  |  |  |  |
|                                      |      | 4.6.1                         | Sending Notes (Sprout)                                        | 31 |  |  |  |  |
|                                      |      | 4.6.2                         | Sending Notes (Sapling)                                       | 32 |  |  |  |  |
|                                      | 4.7  | Dumn                          | ny Notes                                                      | 33 |  |  |  |  |
|                                      |      | 4.7.1                         | Dummy Notes ( <b>Sprout</b> )                                 | 33 |  |  |  |  |
|                                      |      | 4.7.2                         | Dummy Notes (Sapling)                                         | 33 |  |  |  |  |
|                                      | 4.8  | Merkle                        | e path validity                                               | 34 |  |  |  |  |
|                                      |      |                               | ASH Transaction Hashing                                       | 35 |  |  |  |  |

|                          | 4.10             | O Non-malleability ( <b>Sprout</b> ) |             |                                                      |    |  |  |
|--------------------------|------------------|--------------------------------------|-------------|------------------------------------------------------|----|--|--|
|                          | 4.11             | t)                                   | 36          |                                                      |    |  |  |
| 4.12 Baland              |                  |                                      | e and Bir   | nding Signature ( <b>Sapling</b> )                   | 36 |  |  |
|                          | 4.13 Spend Autho |                                      |             | zation Signature                                     | 38 |  |  |
|                          | 4.14             | Note C                               | Commitm     | ents and Nullifiers                                  | 39 |  |  |
| 4.15 Zk-SNARK Statements |                  |                                      | ARK State   | ements                                               | 40 |  |  |
|                          |                  | 4.15.1                               | JoinSplit   | : Statement ( <b>Sprout</b> )                        | 40 |  |  |
|                          |                  | 4.15.2                               | Spend S     | tatement ( <b>Sapling</b> )                          | 41 |  |  |
|                          |                  |                                      | -           | Statement ( <b>Sapling</b> )                         | 42 |  |  |
|                          | 4.16             |                                      | -           | distribution (Sprout)                                | 43 |  |  |
|                          |                  |                                      |             | ion ( <b>Sprout</b> )                                | 43 |  |  |
|                          |                  |                                      |             | ion (Sprout)                                         | 44 |  |  |
|                          | 4.17             |                                      | , .         | distribution (Sapling)                               | 44 |  |  |
|                          | 2.27             | 4.17.1                               |             | ion (Sapling)                                        | 45 |  |  |
|                          |                  | 4.17.2                               |             | ion using an Incoming Viewing Key ( <b>Sapling</b> ) | 45 |  |  |
|                          |                  |                                      | , .         | ion using a Full Viewing Key ( <b>Sapling</b> )      | 46 |  |  |
|                          | <i>1</i> .18     |                                      | , ,         | anning (Sprout)                                      | 47 |  |  |
|                          |                  |                                      |             | anning (Sapling)                                     | 47 |  |  |
|                          | 4.19             | DIOCK                                | CHalli SC   | ariting (Saping)                                     | 41 |  |  |
| 5                        | Con              | crete Pi                             | rotocol     |                                                      | 48 |  |  |
|                          | 5.1              | Cautio                               | n           |                                                      | 48 |  |  |
|                          | 5.2              | Intege                               | rs, Bit Sec | quences, and Endianness                              | 48 |  |  |
|                          | 5.3              | Consta                               | ants        | -                                                    | 49 |  |  |
|                          | 5.4              | Concr                                | ete Crypt   | ographic Schemes                                     | 50 |  |  |
|                          |                  | 5.4.1                                | Hash Fu     | nctions                                              | 50 |  |  |
|                          |                  |                                      | 5.4.1.1     | SHA-256 and SHA256Compress Hash Functions            | 50 |  |  |
|                          |                  |                                      | 5.4.1.2     | BLAKE2 Hash Function                                 | 51 |  |  |
|                          |                  |                                      | 5.4.1.3     | Merkle Tree Hash Function                            | 51 |  |  |
|                          |                  |                                      | 5.4.1.4     | h <sub>Sig</sub> Hash Function                       | 52 |  |  |
|                          |                  |                                      | 5.4.1.5     | CRH <sup>ivk</sup> Hash Function                     | 52 |  |  |
|                          |                  |                                      | 5.4.1.6     | DiversifyHash Hash Function                          | 52 |  |  |
|                          |                  |                                      | 5.4.1.7     | Pedersen Hash Function                               | 53 |  |  |
|                          |                  |                                      | 5.4.1.8     | Mixing Pedersen Hash Function                        | 54 |  |  |
|                          |                  |                                      | 5.4.1.9     | Equihash Generator                                   | 55 |  |  |
|                          |                  | 5.4.2                                | Pseudo 1    | Random Functions                                     | 55 |  |  |
|                          |                  | 5.4.3                                | Authent     | icated One-Time Symmetric Encryption                 | 57 |  |  |
|                          |                  | 5.4.4                                | Key Agre    | eement and Derivation                                | 57 |  |  |
|                          |                  |                                      | 5.4.4.1     | Sprout Key Agreement                                 | 57 |  |  |
|                          |                  |                                      | 5.4.4.2     | Sprout Key Derivation                                | 57 |  |  |
|                          |                  |                                      | 5.4.4.3     | Sapling Key Agreement                                | 58 |  |  |
|                          |                  |                                      | 5.4.4.4     | Sapling Key Derivation                               | 58 |  |  |
|                          |                  | 5.4.5                                | JoinSplit   | Signature                                            | 58 |  |  |
| 5.4.6 RedDSA and         |                  |                                      | -           | and RedJubjub                                        | 59 |  |  |
|                          |                  |                                      | 5.4.6.1     | Spend Authorization Signature                        | 61 |  |  |
|                          |                  |                                      | 5.4.6.2     | Binding Signature                                    | 61 |  |  |
|                          |                  |                                      |             |                                                      |    |  |  |

|                                        |                        | 5.4.7   | Commitment schemes                           | 6  | 1 |  |
|----------------------------------------|------------------------|---------|----------------------------------------------|----|---|--|
|                                        |                        |         | 5.4.7.1 <b>Sprout</b> Note Commitments       | 6  | 1 |  |
|                                        |                        |         | 5.4.7.2 Windowed Pedersen commitments        | 62 | 2 |  |
|                                        |                        |         | 5.4.7.3 Homomorphic Pedersen commitments     | 62 | 2 |  |
|                                        |                        | 5.4.8   | Represented Groups and Pairings              | 63 | 3 |  |
|                                        |                        |         | 5.4.8.1 BN-254                               | 63 | 3 |  |
|                                        |                        |         | 5.4.8.2 BLS12-381                            |    |   |  |
|                                        |                        |         | 5.4.8.3 Jubjub                               | 60 | 6 |  |
|                                        |                        |         | 5.4.8.4 Hash Extractor for Jubjub            | 6' | 7 |  |
|                                        |                        |         | 5.4.8.5 Group Hash into Jubjub               | 68 | 8 |  |
|                                        |                        | 5.4.9   | Zero-Knowledge Proving Systems               | 68 | 8 |  |
|                                        |                        |         | 5.4.9.1 PHGR13                               | 68 | 8 |  |
|                                        |                        |         | 5.4.9.2 Groth16                              | 69 | 9 |  |
|                                        | 5.5                    | Encod   | lings of Note Plaintexts and Memo Fields     |    | 0 |  |
|                                        | 5.6                    | Encoc   | lings of Addresses and Keys                  |    | 1 |  |
|                                        |                        | 5.6.1   | Transparent Addresses                        |    | 1 |  |
|                                        |                        | 5.6.2   | Transparent Private Keys                     |    | 2 |  |
|                                        |                        | 5.6.3   | Sprout Shielded Payment Addresses            |    | 2 |  |
|                                        |                        | 5.6.4   | Sapling Shielded Payment Addresses           |    | 2 |  |
|                                        |                        | 5.6.5   | Sprout Incoming Viewing Keys                 |    | 3 |  |
|                                        |                        | 5.6.6   | Sapling Incoming Viewing Keys                |    | 3 |  |
|                                        |                        | 5.6.7   | Sapling Full Viewing Keys                    |    | 3 |  |
|                                        |                        | 5.6.8   | Sprout Spending Keys                         |    | 4 |  |
|                                        |                        | 5.6.9   | Sapling Spending Keys                        |    | 4 |  |
|                                        | 5.7                    | Sprou   | ut zk-SNARK Parameters                       |    | 5 |  |
| 5.8 <b>Sapling</b> zk-SNARK Parameters |                        |         |                                              |    | 5 |  |
|                                        | 5.9                    | Rando   | omness Beacon                                |    | 5 |  |
| 6                                      | Net                    | work U  | pgrades                                      | 70 | 6 |  |
| 7                                      | Con                    |         | Changes from Bitcoin                         | 7' | 7 |  |
| ′                                      | 7.1                    |         | ling of Transactions                         |    |   |  |
|                                        | 7.1                    |         | ling of JoinSplit Descriptions               |    |   |  |
|                                        | 7.2                    |         | ncoding of Spend Descriptions                |    |   |  |
|                                        | 7.3<br>7.4             |         | ling of Output Descriptions                  |    |   |  |
|                                        | 7. <del>4</del><br>7.5 |         |                                              |    |   |  |
|                                        | 7.5<br>7.6             |         | of Work                                      |    |   |  |
|                                        | 7.0                    | 7.6.1   | Equihash                                     |    |   |  |
|                                        |                        | 7.6.2   | Difficulty filter                            |    |   |  |
|                                        |                        | 7.6.3   | Difficulty adjustment                        |    |   |  |
|                                        |                        | 7.6.4   | nBits conversion                             |    |   |  |
|                                        |                        | 7.6.5   | Definition of Work                           |    |   |  |
|                                        | 7.7                    |         | lation of Block Subsidy and Founders' Reward |    |   |  |
|                                        | 7.7                    |         | ent of Founders' Reward                      |    |   |  |
|                                        | 7.9                    |         | ges to the Script System                     |    |   |  |
|                                        | 1.5                    | CITUILE | 500 to the octipe oyotelle                   | 0. | J |  |

|    | 7.10  | Bitcoir | n Improve          | ement Proposals                                                                                                                                                                                                                        | 89  |
|----|-------|---------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 8  | Diffe | erences | s from the         | e Zerocash paper                                                                                                                                                                                                                       | 89  |
|    | 8.1   | Transa  | action Str         | ucture                                                                                                                                                                                                                                 | 89  |
|    | 8.2   | Memo    | Fields .           |                                                                                                                                                                                                                                        | 89  |
|    | 8.3   | Unific  | ation of M         | Mints and Pours                                                                                                                                                                                                                        | 90  |
|    | 8.4   | Faerie  | Gold atta          | ck and fix                                                                                                                                                                                                                             | 90  |
|    | 8.5   | Intern  | al hash co         | ollision attack and fix                                                                                                                                                                                                                | 91  |
|    | 8.6   | Chang   | es to PRF          | inputs and truncation                                                                                                                                                                                                                  | 92  |
|    | 8.7   | In-bar  | nd secret          | distribution                                                                                                                                                                                                                           | 93  |
|    | 8.8   | Omiss   | ion in <b>Ze</b> i | rocash security proof                                                                                                                                                                                                                  | 94  |
|    | 8.9   | Misce   | llaneous           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                  | 95  |
| 9  | Ackı  | nowled  | lgements           |                                                                                                                                                                                                                                        | 95  |
|    |       | nge His |                    |                                                                                                                                                                                                                                        | 96  |
|    |       | rences  | _                  |                                                                                                                                                                                                                                        | 108 |
| 11 | пстс  | icrices |                    |                                                                                                                                                                                                                                        | 100 |
| A  | pe    | ndice   | S                  |                                                                                                                                                                                                                                        | 116 |
| Α  | Circ  | uit Des | J                  |                                                                                                                                                                                                                                        | 116 |
|    | A.1   |         |                    | traint Programs                                                                                                                                                                                                                        | 116 |
|    | A.2   | _       | ackground          | 116                                                                                                                                                                                                                                    |     |
|    | A.3   | Circui  | _                  | nents                                                                                                                                                                                                                                  | 117 |
|    |       | A.3.1   | Operation          | ons on individual bits                                                                                                                                                                                                                 | 118 |
|    |       |         | A.3.1.1            | Boolean constraints                                                                                                                                                                                                                    | 118 |
|    |       |         | A.3.1.2            | Conditional equality                                                                                                                                                                                                                   | 118 |
|    |       |         | A.3.1.3            | Selection constraints                                                                                                                                                                                                                  | 118 |
|    |       |         | A.3.1.4            | Nonzero constraints                                                                                                                                                                                                                    | 118 |
|    |       |         | A.3.1.5            | Exclusive-or constraints                                                                                                                                                                                                               | 118 |
|    |       | A.3.2   | Operation          | ons on multiple bits                                                                                                                                                                                                                   | 119 |
|    |       |         | A.3.2.1            | [Un]packing modulo $r_{\mathbb{S}}$                                                                                                                                                                                                    | 119 |
|    |       |         | A.3.2.2            | Range check                                                                                                                                                                                                                            | 119 |
|    |       | A.3.3   | Elliptic c         | curve operations                                                                                                                                                                                                                       | 121 |
|    |       |         | A.3.3.1            | Checking that affine Edwards coordinates are on the curve                                                                                                                                                                              | 121 |
|    |       |         | A.3.3.2            | Edwards [de]compression and validation                                                                                                                                                                                                 | 121 |
|    |       |         | A.3.3.3            | $Edwards \leftrightarrow Montgomery\ conversion\ \dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots$ | 122 |
|    |       |         | A.3.3.4            | Affine-Montgomery arithmetic                                                                                                                                                                                                           | 122 |
|    |       |         | A.3.3.5            | Affine-Edwards arithmetic                                                                                                                                                                                                              | 123 |
|    |       |         | A.3.3.6            | Affine-Edwards nonsmall-order check                                                                                                                                                                                                    | 124 |
|    |       |         | A.3.3.7            | Fixed-base affine-Edwards scalar multiplication                                                                                                                                                                                        | 124 |
|    |       |         | A.3.3.8            | Variable-base affine-Edwards scalar multiplication                                                                                                                                                                                     | 125 |
|    |       |         | A.3.3.9            | Pedersen hash                                                                                                                                                                                                                          | 126 |
|    |       |         | A.3.3.10           | Mixing Pedersen hash                                                                                                                                                                                                                   | 127 |
|    |       | A.3.4   | Merkle p           | oath check                                                                                                                                                                                                                             | 127 |
|    |       | A.3.5   |                    | ved Pedersen Commitment                                                                                                                                                                                                                | 128 |

|   |      | A.3.6 Homomorphic Pedersen Commitment | 128 |
|---|------|---------------------------------------|-----|
|   |      | A.3.7 BLAKE2s hashes                  | 128 |
|   | A.4  | The SaplingSpend circuit              | 130 |
|   | A.5  | The SaplingOutput circuit             | 130 |
| В | Bato | ching Optimizations                   | 131 |
|   | B.1  | RedDSA batch verification             | 131 |
|   | B.2  | Groth16 batch verification            | 131 |

### 1 Introduction

**Zcash** is an implementation of the *Decentralized Anonymous Payment* scheme **Zerocash** [BCGGMTV2014], with security fixes and improvements to performance and functionality. It bridges the existing transparent payment scheme used by **Bitcoin** [Nakamoto2008] with a *shielded* payment scheme secured by zero-knowledge succinct non-interactive arguments of knowledge (*zk-SNARKs*).

Changes from the original **Zerocash** are explained in §8 'Differences from the **Zerocash** paper' on p. 89, and highlighted in magenta throughout the document. Changes specific to the **Overwinter** upgrade (which are also changes from **Zerocash**) are highlighted in blue. Changes specific to the **Sapling** upgrade following **Overwinter** (which are also changes from **Zerocash**) are highlighted in green. The name **Sprout** is used for the **Zcash** protocol prior to **Sapling** (both before and after **Overwinter**).

Technical terms for concepts that play an important rôle in **Zcash** are written in *slanted text*. *Italics* are used for emphasis and for references between sections of the document.

The key words MUST, MUST NOT, SHOULD, SHOULD NOT, MAY, and RECOMMENDED in this document are to be interpreted as described in [RFC-2119] when they appear in ALL CAPS. These words may also appear in this document in lower case as plain English words, absent their normative meanings.

This specification is structured as follows:

- · Notation definitions of notation used throughout the document;
- · Concepts the principal abstractions needed to understand the protocol;
- · Abstract Protocol a high-level description of the protocol in terms of ideal cryptographic components;
- · Concrete Protocol how the functions and encodings of the abstract protocol are instantiated;
- Network Upgrades the strategy for upgrading to **Overwinter** and then **Sapling**;
- Consensus Changes from Bitcoin how Zcash differs from Bitcoin at the consensus layer, including the Proof of Work:
- Differences from the **Zerocash** protocol a summary of changes from the protocol in [BCGGMTV2014].
- · Appendix: Circuit Design details of how the **Sapling** circuit is defined as a *quadratic constraint program*.

#### 1.1 Caution

**Zcash** security depends on consensus. Should a program interacting with the **Zcash** network diverge from consensus, its security will be weakened or destroyed. The cause of the divergence doesn't matter: it could be a bug in your program, it could be an error in this documentation which you implemented as described, or it could be that you do everything right but other software on the network behaves unexpectedly. The specific cause will not matter to the users of your software whose wealth is lost.

Having said that, a specification of *intended* behaviour is essential for security analysis, understanding of the protocol, and maintenance of **Zcash** and related software. If you find any mistake in this specification, please file an issue at https://github.com/zcash/zips/issues or contact <security@z.cash>.

# 1.2 High-level Overview

The following overview is intended to give a concise summary of the ideas behind the protocol, for an audience already familiar with *block chain*-based cryptocurrencies such as **Bitcoin**. It is imprecise in some aspects and is not part of the normative protocol specification. This overview applies to both **Sprout** and **Sapling**, differences in the cryptographic constructions used notwithstanding.

Value in **Zcash** is either *transparent* or *shielded*. Transfers of *transparent* value work essentially as in **Bitcoin** and have the same privacy properties. *Shielded* value is carried by *notes*<sup>2</sup>, which specify an amount and (indirectly) a *shielded payment address*, which is a destination to which *notes* can be sent. As in **Bitcoin**, this is associated with a private key that can be used to spend *notes* sent to the address; in **Zcash** this is called a *spending key*.

To each *note* there is cryptographically associated a *note commitment*. Once the *transaction* creating the *note* has been mined, it is associated with a fixed *note position* in a tree of *note commitments*, and with a *nullifier*<sup>2</sup> unique to that *note*. Computing the *nullifier* requires the associated private *spending key* (or the *nullifier deriving key* for **Sapling** *notes*). It is infeasible to correlate the *note commitment* or *note position* with the corresponding *nullifier* without knowledge of at least this key. An unspent valid *note*, at a given point on the *block chain*, is one for which the *note commitment* has been publically revealed on the *block chain* prior to that point, but the *nullifier* has not.

A transaction can contain transparent inputs, outputs, and scripts, which all work as in **Bitcoin** [Bitcoin-Protocol]. It also includes JoinSplit descriptions, Spend descriptions, and Output descriptions. Together these describe shielded transfers which take in shielded input notes, and/or produce shielded output notes. (For **Sprout**, each JoinSplit description handles up to two shielded inputs and up to two shielded outputs. For **Sapling**, each shielded input or shielded output has its own description.) It is also possible for value to be transferred between the transparent and shielded domains.

The *nullifiers* of the input *notes* are revealed (preventing them from being spent again) and the commitments of the output *notes* are revealed (allowing them to be spent in future). A *transaction* also includes computationally sound *zk-SNARK* proofs and signatures, which prove that all of the following hold except with insignificant probability:

For each shielded input,

- [Sapling onward] there is a revealed value commitment to the same value as the input note;
- if the value is non-zero, some revealed *note commitment* exists for this *note*;
- the prover knew the *proof authorizing key* of the *note*;
- the *nullifier* and *note commitment* are computed correctly.

and for each shielded output,

- [Sapling onward] there is a revealed *value commitment* to the same value as the output *note*;
- the *note commitment* is computed correctly;
- it is infeasible to cause the *nullifier* of the output *note* to collide with the *nullifier* of any other *note*.

For **Sprout**, the *JoinSplit statement* also includes an explicit balance check. For **Sapling**, the *value commitments* corresponding to the inputs and outputs are checked to balance (together with any net *transparent* input or output) outside the *zk-SNARK*.

In addition, various measures (differing between **Sprout** and **Sapling**) are used to ensure that the *transaction* cannot be modified by a party not authorized to do so.

Outside the *zk-SNARK*, it is checked that the *nullifiers* for the input *notes* had not already been revealed (i.e. they had not already been spent).

A *shielded payment address* includes a *transmission key* for a key-private asymmetric encryption scheme. "*Key-private*" means that ciphertexts do not reveal information about which key they were encrypted to, except to a holder of the corresponding private key, which in this context is called the *receiving key*. This facility is used to communicate encrypted output *notes* on the *block chain* to their intended recipient, who can use the *receiving key* to scan the *block chain* for *notes* addressed to them and then decrypt those *notes*.

In **Sapling**, for each *spending key* there is a *full viewing key* that allows recognizing both incoming and outgoing *notes* without having spend authority. This is implemented by an additional ciphertext in each *Output description*.

<sup>&</sup>lt;sup>2</sup> In **Zerocash** [BCGGMTV2014], *notes* were called "coins", and *nullifiers* were called "serial numbers".

The basis of the privacy properties of **Zcash** is that when a *note* is spent, the spender only proves that some commitment for it had been revealed, without revealing which one. This implies that a spent *note* cannot be linked to the *transaction* in which it was created. That is, from an adversary's point of view the set of possibilities for a given *note* input to a *transaction*—its *note traceability set*—includes *all* previous notes that the adversary does not control or know to have been spent. This contrasts with other proposals for private payment systems, such as CoinJoin [Bitcoin-CoinJoin] or **CryptoNote** [vanSaberh2014], that are based on mixing of a limited number of transactions and that therefore have smaller *note traceability sets*.

The *nullifiers* are necessary to prevent double-spending: each *note* on the *block chain* only has one valid *nullifier*, and so attempting to spend a *note* twice would reveal the *nullifier* twice, which would cause the second *transaction* to be rejected.

### 2 Notation

 $\mathbb{B}$  means the type of bit values, i.e.  $\{0,1\}$ .  $\mathbb{B}^{\mathbb{Y}}$  means the type of byte values, i.e.  $\{0..255\}$ .

 $\mathbb{N}$  means the type of nonnegative integers.  $\mathbb{N}^+$  means the type of positive integers.  $\mathbb{Z}$  means the type of integers.  $\mathbb{Q}$  means the type of rationals.

x:T is used to specify that x has type T. A cartesian product type is denoted by  $S\times T$ , and a function type by  $S\to T$ . An argument to a function can determine other argument or result types.

The type of a randomized algorithm is denoted by  $S \xrightarrow{\mathbb{R}} T$ . The domain of a randomized algorithm may be (), indicating that it requires no arguments. Given  $f: S \xrightarrow{\mathbb{R}} T$  and s: S, sampling a variable x: T from the output of f applied to g is denoted by  $g \xleftarrow{\mathbb{R}} f(g)$ .

Initial arguments to a function or randomized algorithm may be written as subscripts, e.g. if x : X, y : Y, and  $f : X \times Y \to Z$ , then an invocation of f(x,y) can also be written  $f_x(y)$ .

 $\{x:T\mid p_x\}$  means the subset of x from T for which  $p_x$  (a boolean expression depending on x) holds.

 $T \subseteq U$  indicates that T is an inclusive subset or subtype of U.  $S \cup T$  means the set union of S and T.

 $S \cap T$  means the set intersection of S and T, i.e.  $\{x : S \mid x \in T\}$ .

 $S \setminus T$  means the set difference obtained by removing elements in T from S, i.e.  $\{x : S \mid x \notin T\}$ .

 $x:T\mapsto e_x:U$  means the function of type  $T\to U$  mapping formal parameter x to  $e_x$  (an expression depending on x). The types T and U are always explicit.

 $x:T\mapsto_{\neq y}e_x:U$  means  $x:T\mapsto e_x:U\cup\{y\}$  restricted to the domain  $\{x:T\mid e_x\neq y\}$  and range U.

 $\mathcal{P}(T)$  means the powerset of T.

 $T^{[\ell]}$ , where T is a type and  $\ell$  is an integer, means the type of sequences of length  $\ell$  with elements in T. For example,  $\mathbb{B}^{[\ell]}$  means the set of sequences of  $\ell$  bits, and  $\mathbb{B}^{\mathbb{Y}^{[k]}}$  means the set of sequences of k bytes.

 $\mathbb{B}^{\mathbb{Y}^{[\mathbb{N}]}}$  means the type of byte sequences of arbitrary length.

length(S) means the length of (number of elements in) S.

 $truncate_k(S)$  means the sequence formed from the first k elements of S.

0x followed by a string of monospace hexadecimal digits means the corresponding integer converted from hexadecimal.  $[0x00]^{\ell}$  means the sequence of  $\ell$  zero bytes.

"..." means the given string represented as a sequence of bytes in US-ASCII. For example, "abc" represents the byte sequence [0x61, 0x62, 0x63].

<sup>&</sup>lt;sup>3</sup> We make this claim only for *fully shielded transactions*. It does not exclude the possibility that an adversary may use data present in the cleartext of a *transaction* such as the number of inputs and outputs, or metadata-based heuristics such as timing, to make probabilistic inferences about *transaction* linkage. For consequences of this in the case of partially shielded *transactions*, see [Peterson2017], [Quesnelle2017], and [KYMM2018].

 $[0]^{\ell}$  means the sequence of  $\ell$  zero bits.  $[1]^{\ell}$  means the sequence of  $\ell$  one bits.

a..b, used as a subscript, means the sequence of values with indices a through b inclusive. For example,  $\mathsf{a}_{\mathsf{pk},1..N}^{\mathsf{new}}$ means the sequence  $[a_{pk,1}^{new}, a_{pk,2}^{new}, \dots a_{pk,N}^{new}]$ . (For consistency with the notation in [BCGGMTV2014] and in [BK2016], this specification uses 1-based indexing and inclusive ranges, notwithstanding the compelling arguments to the contrary made in [EWD-831].)

 $\{a .. b\}$  means the set or type of integers from a through b inclusive.

[ f(x) for x from a up to b ] means the sequence formed by evaluating f on each integer from a to b inclusive, in ascending order. Similarly, [f(x)] for x from a down to b means the sequence formed by evaluating f on each integer from a to b inclusive, in descending order.

 $a \parallel b$  means the concatenation of sequences a then b.

 $\mathsf{concat}_{\mathbb{R}}(S)$  means the sequence of bits obtained by concatenating the elements of S viewed as bit sequences. If the elements of S are byte sequences, they are converted to bit sequences with the *most significant* bit of each byte first.

sorted(S) means the sequence formed by sorting the elements of S.

 $\mathbb{F}_n$  means the finite field with n elements, and  $\mathbb{F}_n^*$  means its group under multiplication (which excludes 0).

Where there is a need to make the distinction, we denote the unique representative of  $a: \mathbb{F}_n$  in the range  $\{0..n-1\}$ (or the unique representative of  $a: \mathbb{F}_n^*$  in the range  $\{1..n-1\}$ ) as  $a \mod n$ . Conversely, we denote the element of  $\mathbb{F}_n$ corresponding to an integer  $k : \mathbb{Z}$  as  $k \pmod{n}$ . We also use the latter notation in the context of an equality k = k' $\pmod{n}$  as shorthand for  $k \mod n = k' \mod n$ , and similarly  $k \neq k' \pmod{n}$  as shorthand for  $k \mod n \neq k' \mod n$ . (When referring to constants such as 0 and 1 it is usually not necessary to make the distinction between field elements and their representatives, since the meaning is normally clear from context.)

 $\mathbb{F}_n[z]$  means the ring of polynomials over z with coefficients in  $\mathbb{F}_n$ .

a+b means the sum of a and b. This may refer to addition of integers, rationals, finite field elements, or group elements (see §4.1.8 'Represented Group' on p. 24) according to context.

-a means the value of the appropriate integer, rational, finite field, or group type such that (-a) + a = 0 (or when a is an element of a group  $\mathbb{G}$ ,  $(-a) + a = \mathcal{O}_{\mathbb{G}}$ ), and a - b means a + (-b).

 $a \cdot b$  means the product of multiplying a and b. This may refer to multiplication of integers, rationals, or finite field elements according to context (this notation is not used for group elements).

a/b, also written  $\frac{a}{b}$ , means the value of the appropriate integer, rational, or finite field type such that  $(a/b) \cdot b = a$ .

 $a \bmod q$ , for  $a : \mathbb{N}$  and  $q : \mathbb{N}^+$ , means the remainder on dividing a by q. (This usage does not conflict with the notation above for the unique representative of a field element.)

 $a \oplus b$  means the bitwise-exclusive-or of a and b, and  $a \otimes b$  means the bitwise-and of a and b. These are defined on integers or (equal-length) bit sequences according to context.

 $\sum_{i=1}^{\mathrm{N}} a_i \text{ means the sum of } a_{1..\mathrm{N}}. \quad \prod_{i=1}^{\mathrm{N}} a_i \text{ means the product of } a_{1..\mathrm{N}}. \quad \bigoplus_{i=1}^{\mathrm{N}} a_i \text{ means the bitwise exclusive-or of } a_{1..\mathrm{N}}.$  When N=0 these yield the appropriate neutral element, i.e.  $\sum_{i=1}^{\mathrm{0}} a_i = 0, \quad \prod_{i=1}^{\mathrm{0}} a_i = 1, \text{ and } \bigoplus_{i=1}^{\mathrm{0}} a_i = 0 \text{ or the all-zero bit sequence of the appropriate length given by the type of } a.$ 

 $\sqrt{a}$ , where  $a: \mathbb{F}_q$ , means the positive (i.e. in the range  $\{0...\frac{r_{\mathbb{J}}-1}{2}\}$ ) square root of a in  $\mathbb{F}_q$ . It is only used in cases where the square root must exist.

b? x: y means x when b = 1, or y when b = 0.

 $a^b$ , for a an integer or finite field element and  $b : \mathbb{Z}$ , means the result of raising a to the exponent b, i.e.

$$a^b := \begin{cases} \prod_{i=1}^b a, & \text{if } b \ge 0\\ \prod_{i=1}^{-b} \frac{1}{a}, & \text{otherwise.} \end{cases}$$

The [k] P notation for scalar multiplication in a group is defined in §4.1.8 'Represented Group' on p. 24.

The convention of affixing  $\star$  to a variable name is used for variables that denote bit-sequence representations of group elements.

The binary relations <,  $\le$ , =,  $\ge$ , and > have their conventional meanings on integers and rationals, and are defined lexicographically on sequences of integers.

floor(x) means the largest integer  $\leq x$ . ceiling (x) means the smallest integer  $\geq x$ .

bitlength(x), for  $x : \mathbb{N}$ , means the smallest integer  $\ell$  such that  $2^{\ell} > x$ .

The symbol  $\bot$  is used to indicate unavailable information, or a failed decryption or validity check.

The following integer constants will be instantiated in §5.3 'Constants' on p. 49:

$$\label{eq:MerkleDepth} \begin{split} & \mathsf{MerkleDepth}^{\mathsf{Sprout}}, \mathsf{MerkleDepth}^{\mathsf{Sapling}}, N^{\mathsf{old}}, N^{\mathsf{new}}, \ell_{\mathsf{value}}, \ell_{\mathsf{MerkleSprout}}, \ell_{\mathsf{MerkleSapling}}, \ell_{\mathsf{hSig}}, \ell_{\mathsf{PRFSprout}}, \ell_{\mathsf{PRFSpro$$

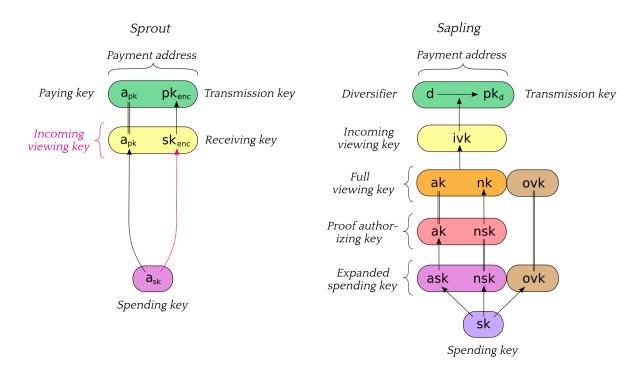
The bit sequence constants Uncommitted  $\mathbb{B}^{[\ell_{\mathsf{MerkleSprout}}]}$  and Uncommitted  $\mathbb{B}^{[\ell_{\mathsf{MerkleSapling}}]}$ , and rational constants Founders Fraction, PoWMaxAdjustDown, and PoWMaxAdjustUp will also be defined in that section.

# 3 Concepts

# 3.1 Payment Addresses and Keys

Users who wish to receive payments under this scheme first generate a random spending key. In **Sprout** this is called  $a_{sk}$  and in **Sapling** it is called sk.

The following diagram depicts the relations between key components in **Sprout** and **Sapling**. Arrows point from a component to any other component(s) that can be derived from it. Double lines indicate that the same component is used in multiple abstractions.



[Sprout] The receiving key  $sk_{enc}$ , the incoming viewing key  $ivk = (a_{pk}, sk_{enc})$ , and the shielded payment address  $addr_{pk} = (a_{pk}, pk_{enc})$  are derived from  $a_{sk}$ , as described in §4.2.1 'Sprout Key Components' on p. 27.

[Sapling onward] The spend authorizing key ask, proof authorizing key (ak, nsk), full viewing key (ak, nk, ovk), incoming viewing key ivk, and each diversified payment address addr<sub>d</sub> = (d, pk<sub>d</sub>) are derived from sk, as described in \$4.2.2 'Sapling Key Components' on p. 27.

The composition of *shielded payment addresses*, *incoming viewing keys*, *full viewing keys*, and *spending keys* is a cryptographic protocol detail that should not normally be exposed to users. However, user-visible operations should be provided to obtain a *shielded payment address* or *incoming viewing key* or *full viewing key* from a *spending key*.

Users can accept payment from multiple parties with a single *shielded payment address* and the fact that these payments are destined to the same payee is not revealed on the *block chain*, even to the paying parties. *However* if two parties collude to compare a *shielded payment address* they can trivially determine they are the same. In the case that a payee wishes to prevent this they should create a distinct *shielded payment address* for each payer.

[Sapling onward] Sapling provides a mechanism to allow the efficient creation of diversified payment addresses with the same spending authority. A group of such addresses shares the same full viewing key and incoming viewing key, and so creating as many unlinkable addresses as needed does not increase the cost of scanning the block chain for relevant transactions.

**Note:** It is conventional in cryptography to refer to the key used to encrypt a message in an asymmetric encryption scheme as the "public key". However, the public key used as the transmission key component of an address (pk<sub>enc</sub> or pk<sub>d</sub>) need not be publically distributed; it has the same distribution as the shielded payment address itself. As mentioned above, limiting the distribution of the shielded payment address is important for some use cases. This also helps to reduce reliance of the overall protocol on the security of the cryptosystem used for note encryption (see §4.16 'In-band secret distribution (**Sprout**)' on p. 43 and §4.17 'In-band secret distribution (**Sapling**)' on p. 44), since an adversary would have to know pk<sub>enc</sub> or some pk<sub>d</sub> in order to exploit a hypothetical weakness in that cryptosystem.

#### 3.2 Notes

A *note* (denoted  $\mathbf{n}$ ) can be a **Sprout** *note* or a **Sapling** *note*. In either case it represents that a value  $\mathbf{v}$  is spendable by the recipient who holds the *spending key* corresponding to a given *shielded payment address*.

Let MAX\_MONEY,  $\ell_{PRFSprout}$ ,  $\ell_{PRFnfSapling}$ , and  $\ell_{d}$  be as defined in §5.3 'Constants' on p. 49.

Let NoteCommit<sup>Sprout</sup> be as defined in §5.4.7.1 'Sprout Note Commitments' on p. 61.

Let NoteCommit Sapling be as defined in §5.4.7.2 Windowed Pedersen commitments' on p. 62.

Let KA<sup>Sapling</sup> be as defined in §5.4.4.3 'Sapling Key Agreement' on p. 58.

A **Sprout** *note* is a tuple  $(a_{nk}, v, \rho, rcm)$ , where:

- $a_{pk} : \mathbb{B}^{[\ell_{PRFSprout}]}$  is the paying key of the recipient's shielded payment address;
- v :  $\{0.. \text{MAX\_MONEY}\}$  is an integer representing the value of the *note* in *zatoshi* (1 **ZEC** =  $10^8$  *zatoshi*);
- $\cdot \ \rho : \mathbb{B}^{[\ell_{\mathsf{PRFSprout}}]}$  is used as input to  $\mathsf{PRF}^{\mathsf{nf}}_{\mathsf{a}_{\mathsf{sk}}}$  to derive the *nullifier* of the *note*;
- rcm: NoteCommit<sup>Sprout</sup>.Trapdoor is a random *commitment trapdoor* as defined in §4.1.7 'Commitment' on p. 23.

Let Note Sprout be the type of a Sprout note, i.e.

```
\mathsf{Note}^{\mathsf{Sprout}} := \mathbb{B}^{[\ell_{\mathsf{PRFSprout}}]} \times \{0 ... \mathsf{MAX\_MONEY}\} \times \mathbb{B}^{[\ell_{\mathsf{PRFSprout}}]} \times \mathsf{NoteCommit}^{\mathsf{Sprout}}.\mathsf{Trapdoor}.
```

A **Sapling** *note* is a tuple (d, pk<sub>d</sub>, v, rcm), where:

- d :  $\mathbb{B}^{[\ell_d]}$  is the diversifier of the recipient's shielded payment address;
- pk<sub>d</sub>: KA<sup>Sapling</sup>.PublicPrimeOrder is the diversified transmission key of the recipient's shielded payment address;
- $v : \{0 ... MAX\_MONEY\}$  is an integer representing the value of the *note* in *zatoshi*;
- rcm : NoteCommit<sup>Sapling</sup>.Trapdoor is a random *commitment trapdoor* as defined in §4.1.7 'Commitment' on p. 23.

Let Note Sapling be the type of a Sapling note, i.e.

```
\mathsf{Note}^{\mathsf{Sapling}} := \mathbb{B}^{[\ell_d]} \times \mathsf{KA}^{\mathsf{Sapling}}.\mathsf{PublicPrimeOrder} \times \{0 ... \mathsf{MAX\_MONEY}\} \times \mathsf{NoteCommit}^{\mathsf{Sapling}}.\mathsf{Trapdoor}.
```

Creation of new *notes* is described in §4.6 'Sending Notes' on p. 31. When *notes* are sent, only a commitment (see §4.1.7 'Commitment' on p. 23) to the above values is disclosed publically, and added to a data structure called the *note commitment tree*. This allows the value and recipient to be kept private, while the commitment is used by the zero-knowledge proof when the *note* is spent, to check that it exists on the *block chain*.

A **Sprout** note commitment on a note  $\mathbf{n} = (\mathbf{a}_{pk}, \mathbf{v}, \rho, rcm)$  is computed as

```
NoteCommit More Commit More Commit More Commit More (a_{pk}, v, \rho),
```

where NoteCommit Sprout is instantiated in §5.4.7.1 'Sprout Note Commitments' on p. 61.

Let DiversifyHash be as defined in §5.4.1.6 'DiversifyHash Hash Function' on p. 52.

A **Sapling** note commitment on a note  $\mathbf{n} = (d, pk_d, v, rcm)$  is computed as

```
\begin{split} & \mathsf{g}_{\mathsf{d}} := \mathsf{DiversifyHash}(\mathsf{d}) \\ & \mathsf{NoteCommitment}^{\mathsf{Sapling}}(\mathbf{n}) := \begin{cases} \bot, & \text{if } \mathsf{g}_{\mathsf{d}} = \bot \\ \mathsf{NoteCommit}^{\mathsf{Sapling}}(\mathsf{repr}_{\mathbb{J}}(\mathsf{g}_{\mathsf{d}}), \mathsf{repr}_{\mathbb{J}}(\mathsf{pk}_{\mathsf{d}}), \mathsf{v}), & \text{otherwise.} \end{cases} \end{split}
```

where NoteCommit Sapling is instantiated in §5.4.7.2 Windowed Pedersen commitments' on p. 62.

Notice that the above definition of a **Sapling** *note* does not have a  $\rho$  field. There is in fact a  $\rho$  value associated with each **Sapling** *note*, but this only be computed once its position in the *note commitment tree* is known (see §3.4 *'Transactions and Treestates'* on p. 14 and §3.7 *'Note Commitment Trees'* on p. 16). We refer to the combination of a *note* and its *note position* pos, as a *positioned note*.

For a positioned note, we can compute the value  $\rho$  as described in §4.14 'Note Commitments and Nullifiers' on p. 39.

A nullifier (denoted nf) is derived from the  $\rho$  value of a note and the recipient's spending key  $a_{sk}$  or nullifier deriving key nk. This computation uses a Pseudo Random Function (see §4.1.2 'Pseudo Random Functions' on p. 18), as described in §4.14 'Note Commitments and Nullifiers' on p. 39.

A note is spent by proving knowledge of  $(\rho, a_{sk})$  or  $(\rho, ak, nsk)$  in zero knowledge while publically disclosing its nullifier nf, allowing nf to be used to prevent double-spending. In the case of **Sapling**, a spend authorization signature is also required, in order to demonstrate knowledge of ask.

#### 3.2.1 Note Plaintexts and Memo Fields

Transmitted *notes* are stored on the *block chain* in encrypted form, together with a representation of the *note commitment* cm.

The note plaintexts in each JoinSplit description are encrypted to the respective transmission keys  $pk_{enc,1...N}^{new}$ .

Each **Sprout** *note plaintext* (denoted **np**) consists of

```
(v: \{0...2^{\ell_{\text{value}}}-1\}, \rho: \mathbb{B}^{[\ell_{\text{PRFSprout}}]}, \text{rcm}: \text{NoteCommit}^{\text{Sprout}}. \text{Trapdoor}, \underbrace{\mathbb{BY}^{[512]}}).
```

[Sapling onward] The *note plaintext* in each *Output description* is encrypted to the *diversified payment address*  $(d, pk_d)$ .

Each Sapling note plaintext (denoted np) consists of

```
(\mathsf{d} \mathrel{\mathop:} \mathbb{B}^{[\ell_\mathsf{d}]}, \mathsf{v} \mathrel{\mathop:} \{0 \mathinner{\ldotp\ldotp} 2^{\ell_\mathsf{value}} - 1\}, \underline{\mathsf{rcm}} \mathrel{\mathop:} \mathbb{B}^{\underline{\mathsf{v}}[32]}, \mathsf{memo} \mathrel{\mathop:} \mathbb{B}^{\underline{\mathsf{v}}[512]}).
```

memo represents a 512-byte *memo field* associated with this *note*. The usage of the *memo field* is by agreement between the sender and recipient of the *note*.

Other fields are as defined in §3.2 'Notes' on p. 12.

Encodings are given in §5.5 'Encodings of Note Plaintexts and Memo Fields' on p. 70. The result of encryption forms part of a transmitted note(s) ciphertext. For further details, see §4.16 'In-band secret distribution (**Sprout**)' on p. 43 and §4.17 'In-band secret distribution (**Sapling**)' on p. 44.

#### 3.3 The Block Chain

At a given point in time, each *full validator* is aware of a set of candidate *blocks*. These form a tree rooted at the *genesis block*, where each node in the tree refers to its parent via the hashPrevBlock *block header* field (see §7.5 *'Block Header'* on p. 82).

A path from the root toward the leaves of the tree consisting of a sequence of one or more valid *blocks* consistent with consensus rules, is called a *valid block chain*.

Each *block* in a *block chain* has a *block height*. The *block height* of the *genesis block* is 0, and the *block height* of each subsequent *block* in the *block chain* increments by 1.

In order to choose the *best valid block chain* in its view of the overall *block* tree, a node sums the work, as defined in §7.6.5 '*Definition of Work*' on p. 86, of all *blocks* in each *valid block chain*, and considers the *valid block chain* with greatest total work to be best. To break ties between leaf *blocks*, a node will prefer the *block* that it received first.

The consensus protocol is designed to ensure that for any given *block height*, the vast majority of nodes should eventually agree on their *best valid block chain* up to that height.

#### 3.4 Transactions and Treestates

Each *block* contains one or more *transactions*.

Transparent inputs to a transaction insert value into a transparent value pool associated with the transaction, and transparent outputs remove value from this pool. As in **Bitcoin**, the remaining value in the pool is available to miners as a fee.

**Consensus rule:** The remaining value in the *transparent value pool* **MUST** be nonnegative.

To each transaction there are associated initial treestates for Sprout and for Sapling. Each treestate consists of:

- a note commitment tree (§3.7 'Note Commitment Trees' on p. 16);
- a *nullifier set* (§3.8 'Nullifier Sets' on p. 17).

Validation state associated with *transparent transfers*, such as the UTXO (Unspent Transaction Output) set, is not described in this document; it is used in essentially the same way as in **Bitcoin**.

An *anchor* is a Merkle tree root of a *note commitment tree* (either the **Sprout** tree or the **Sapling** tree). It uniquely identifies a *note commitment tree* state given the assumed security properties of the Merkle tree's *hash function*. Since the *nullifier set* is always updated together with the *note commitment tree*, this also identifies a particular state of the associated *nullifier set* 

In a given block chain, for each of Sprout and Sapling, treestates are chained as follows:

- The input *treestate* of the first *block* is the empty *treestate*.
- The input *treestate* of the first *transaction* of a *block* is the final *treestate* of the immediately preceding *block*.
- The input *treestate* of each subsequent *transaction* in a *block* is the output *treestate* of the immediately preceding *transaction*.
- The final *treestate* of a *block* is the output *treestate* of its last *transaction*.

*JoinSplit descriptions* also have interstitial input and output *treestates* for **Sprout**, explained in the following section. There is no equivalent of interstitial *treestates* for **Sapling**.

# 3.5 JoinSplit Transfers and Descriptions

A *JoinSplit description* is data included in a *transaction* that describes a *JoinSplit transfer*, i.e. a *shielded* value transfer. In **Sprout**, this kind of value transfer was the primary **Zcash**-specific operation performed by *transactions*.

A *JoinSplit transfer* spends  $N^{\text{old}}$  *notes*  $\mathbf{n}_{1..N^{\text{old}}}^{\text{old}}$  and *transparent* input  $v_{\text{pub}}^{\text{old}}$ , and creates  $N^{\text{new}}$  *notes*  $\mathbf{n}_{1..N^{\text{new}}}^{\text{new}}$  and *transparent* output  $v_{\text{pub}}^{\text{new}}$ . It is associated with a *JoinSplit statement* instance (§4.15.1 '*JoinSplit Statement* (*Sprout*)' on p. 40), for which it provides a *zk-SNARK proof* .

Each transaction has a sequence of JoinSplit descriptions.

The total  $v_{pub}^{new}$  value adds to, and the total  $v_{pub}^{old}$  value subtracts from the *transparent value pool* of the containing *transaction*.

The anchor of each JoinSplit description in a transaction refers to a Sprout treestate.

For each of the  $N^{old}$  *shielded inputs*, a *nullifier* is revealed. This allows detection of double-spends as described in §3.8 *'Nullifier Sets'* on p. 17.

For each *JoinSplit description* in a *transaction*, an interstitial output *treestate* is constructed which adds the *note commitments* and *nullifiers* specified in that *JoinSplit description* to the input *treestate* referred to by its *anchor*. This interstitial output *treestate* is available for use as the *anchor* of subsequent *JoinSplit descriptions* in the same *transaction*. In general, therefore, the set of interstitial *treestates* associated with a *transaction* forms a tree in which the parent of each node is determined by its *anchor*.

Interstitial *treestates* are necessary because when a *transaction* is constructed, it is not known where it will eventually appear in a mined *block*. Therefore the *anchors* that it uses must be independent of its eventual position.

#### Consensus rules:

- The input and output values of each *JoinSplit transfer* **MUST** balance exactly.
- For the first *JoinSplit description* of a *transaction*, the *anchor* **MUST** be the output **Sprout** *treestate* of a previous *block*.
- The anchor of each JoinSplit description in a transaction MUST refer to either some earlier block's final Sprout treestate, or to the interstitial output treestate of any prior JoinSplit description in the same transaction.

# 3.6 Spend Transfers, Output Transfers, and their Descriptions

JoinSplit transfers are not used for **Sapling** notes. Instead, there is a separate Spend transfer for each shielded input, and a separate Output transfer for each shielded output.

Spend descriptions and Output descriptions are data included in a transaction that describe Spend transfers and Output transfers, respectively.

A Spend transfer spends a note  $\mathbf{n}^{\text{old}}$ . Its Spend description includes a Pedersen value commitment to the value of the note. It is associated with an instance of a Spend statement (§4.15.2 'Spend Statement (Sapling)' on p. 41) for which it provides a zk-SNARK proof.

An Output transfer creates a note  $\mathbf{n}^{\text{new}}$ . Similarly, its Output description includes a Pedersen value commitment to the note value. It is associated with an instance of an Output statement (§4.15.3 'Output Statement (Sapling)' on p. 42) for which it provides a zk-SNARK proof.

Each transaction has a sequence of Spend descriptions and a sequence of Output descriptions.

To ensure balance, we use a homomorphic property of *Pedersen commitments* that allows them to be added and subtracted, as elliptic curve points (\$5.4.7.3 *'Homomorphic Pedersen commitments*' on p. 62). The result of adding two *Pedersen value commitments*, committing to values  $v_1$  and  $v_2$ , is a new *Pedersen value commitment* that commits to  $v_1 + v_2$ . Subtraction works similarly.

Therefore, balance can be enforced by adding all of the *value commitments* for *shielded inputs*, subtracting all of the *value commitments* for *shielded outputs*, and proving by use of a *binding signature* (as described in §4.12 *Balance and Binding Signature* (*Sapling*)' on p. 36) that the result commits to a value consistent with the net *transparent* value change. This approach allows all of the *zk-SNARK statements* to be independent of each other, potentially increasing opportunities for precomputation.

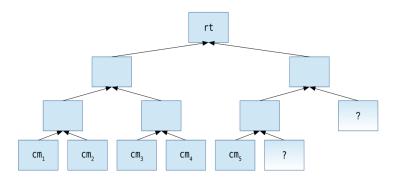
A *Spend description* includes an *anchor*, which refers to the output **Sapling** *treestate* of a previous *block*. It also reveals a *nullifier*, which allows detection of double-spends as described in §3.8 '*Nullifier Sets*' on p. 17.

**Non-normative note:** Interstitial *treestates* are not necessary for **Sapling**, because a *Spend transfer* in a given *transaction* cannot spend any of the *shielded outputs* of the same *transaction*. This is not an onerous restriction because, unlike **Sprout** where each *JoinSplit transfer* must balance individually, in **Sapling** it is only necessary for the whole *transaction* to balance.

#### Consensus rules:

- The transaction MUST balance as specified in §4.12 'Balance and Binding Signature (Sapling)' on p. 36.
- The anchor of each Spend description MUST refer to some earlier block's final Sapling treestate.

#### 3.7 Note Commitment Trees



A note commitment tree is an incremental Merkle tree of fixed depth used to store note commitments that Join-Split transfers or Spend transfers produce. Just as the unspent transaction output set (UTXO set) used in **Bitcoin**, it is used to express the existence of value and the capability to spend it. However, unlike the UTXO set, it is not the job of this tree to protect against double-spending, as it is append-only.

A root of a note commitment tree is associated with each treestate (§3.4 'Transactions and Treestates' on p. 14).

Each *node* in the *incremental Merkle tree* is associated with a *hash value* of size  $\ell_{\mathsf{MerkleSprout}}$  or  $\ell_{\mathsf{MerkleSapling}}$  bits. The *layer* numbered h, counting from *layer* 0 at the *root*, has  $2^h$  *nodes* with *indices* 0 to  $2^h - 1$  inclusive. The *hash value* associated with the *node* at *index* i in *layer* h is denoted  $M_i^h$ .

The index of a note's commitment at the leafmost layer (MerkleDepth Sprout, Sapling) is called its note position.

### 3.8 Nullifier Sets

Each full validator maintains a nullifier set logically associated with each treestate. As valid transactions containing JoinSplit transfers or Spend transfers are processed, the nullifiers revealed in JoinSplit descriptions and Spend descriptions are inserted into the nullifier set associated with the new treestate. Nullifiers are enforced to be unique within a valid block chain, in order to prevent double-spends.

**Consensus rule:** A *nullifier* **MUST NOT** repeat either within a *transaction*, or across *transactions* in a *valid block chain*. **Sprout** and **Sapling** *nullifiers* are considered disjoint, even if they have the same bit pattern.

# 3.9 Block Subsidy and Founders' Reward

Like **Bitcoin**, **Zcash** creates currency when *blocks* are mined. The value created on mining a *block* is called the *block subsidy*. It is composed of a *miner subsidy* and a *Founders' Reward*. As in **Bitcoin**, the miner of a *block* also receives *transaction fees*.

The calculations of the *block subsidy*, *miner subsidy*, and *Founders' Reward* depend on the *block height*, as defined in §3.3 'The Block Chain' on p.14.

These calculations are described in §7.7 'Calculation of Block Subsidy and Founders' Reward' on p. 86.

#### 3.10 Coinbase Transactions

The first (and only the first) *transaction* in a block is a *coinbase transaction*, which collects and spends any *miner subsidy* and *transaction fees* paid by *transactions* included in this *block*. The *coinbase transaction* **MUST** also pay the *Founders' Reward* as described in §7.8 '*Payment of Founders' Reward*' on p. 87.

### 4 Abstract Protocol

# 4.1 Abstract Cryptographic Schemes

#### 4.1.1 Hash Functions

Let MerkleDepth Sprout,  $\ell_{MerkleSprout}$ , MerkleDepth Sapling,  $\ell_{MerkleSapling}$ ,  $\ell_{ivk}$ ,  $\ell_{d}$ ,  $\ell_{Seed}$ ,  $\ell_{PRFSprout}$ ,  $\ell_{hSig}$ , and  $N^{old}$  be as defined in §5.3 'Constants' on p. 49.

Let  $\mathbb{J}$ ,  $\mathbb{J}^{(r)}$ ,  $\mathbb{J}^{(r)*}$ ,  $r_{\mathbb{J}}$ , and  $\ell_{\mathbb{J}}$  be as defined in §5.4.8.3 *'Jubjub'* on p. 66.

The functions  $\mathsf{MerkleCRH}^{\mathsf{Sprout}}: \{0 ... \mathsf{MerkleDepth}^{\mathsf{Sprout}} - 1\} \times \mathbb{B}^{[\ell_{\mathsf{MerkleSprout}}]} \times \mathbb{B}^{[\ell_{\mathsf{MerkleSprout}}]} \to \mathbb{B}^{[\ell_{\mathsf{MerkleSprout}}]}$  and (for  $\mathsf{Sapling}$ ),  $\mathsf{MerkleCRH}^{\mathsf{Sapling}}: \{0 ... \mathsf{MerkleDepth}^{\mathsf{Sapling}} - 1\} \times \mathbb{B}^{[\ell_{\mathsf{MerkleSapling}}]} \times \mathbb{B}^{[\ell_{\mathsf{MerkleSapling}}]} \to \mathbb{B}^{[\ell_{\mathsf{MerkleSapling}}]}$  are  $\mathsf{hash}$  functions used in §4.8 ' $\mathsf{Merkle}$  path  $\mathsf{validity}$ ' on p. 34.  $\mathsf{MerkleCRH}^{\mathsf{Sapling}}$  is collision-resistant on all its arguments, and  $\mathsf{MerkleCRH}^{\mathsf{Sprout}}$  is collision-resistant except on its first argument. Both of these functions are instantiated in §5.4.1.3 ' $\mathsf{Merkle}$  Tree  $\mathsf{Hash}$  Function' on p. 51.

 $\mathsf{hSigCRH} : \mathbb{B}^{[\ell_{\mathsf{Seed}}]} \times \mathbb{B}^{[\ell_{\mathsf{PRFSprout}}][N^{\mathsf{old}}]} \times \mathsf{JoinSplitSig.Public} \to \mathbb{B}^{[\ell_{\mathsf{hSig}}]} \text{ is a collision-resistant } \textit{hash function} \text{ used in } \$4.3 \\ \textit{`JoinSplit Descriptions'} \text{ on p. 29. It is instantiated in } \$5.4.1.4 \text{ '$h_{\mathsf{Sig}}$ } \textit{Hash Function'} \text{ on p. 52.}$ 

EquihashGen :  $(n: \mathbb{N}^+) \times \mathbb{N}^+ \times \mathbb{B}^{\mathbb{Y}[\mathbb{N}]} \times \mathbb{N}^+ \to \mathbb{B}^{[n]}$  is another *hash function*, used in §7.6.1 'Equihash' on p. 84 to generate input to the Equihash solver. The first two arguments, representing the Equihash parameters n and k, are written subscripted. It is instantiated in §5.4.1.9 'Equihash Generator' on p. 55.

CRH<sup>ivk</sup> :  $\mathbb{B}^{[\ell_{\mathbb{J}}]} \times \mathbb{B}^{[\ell_{\mathbb{J}}]} \to \{0...2^{\ell_{\text{ivk}}} - 1\}$  is a collision-resistant *hash function* used in §4.2.2 '**Sapling** Key Components' on p. 27 to derive an *incoming viewing key* for a **Sapling** *shielded payment address*. It is also used in the *Spend statement* (§4.15.2 '**Spend Statement** (**Sapling**)' on p. 41) to confirm use of the correct keys for the *note* being spent. It is instantiated in §5.4.1.5 'CRH<sup>ivk</sup> *Hash Function*' on p. 52.

Mixing Pedersen Hash  $: \mathbb{J} \times \{0...r_{\mathbb{J}} - 1\} \to \mathbb{J}$  is a hash function used in §4.14 'Note Commitments and Nullifiers' on p. 39 to derive the unique  $\rho$  value for a **Sapling** note. It is also used in the Spend statement to confirm use of the correct  $\rho$  value as an input to nullifier derivation. It is instantiated in §5.4.1.8 'Mixing Pedersen Hash Function' on p. 54.

DiversifyHash :  $\mathbb{B}^{[\ell_d]} \to \mathbb{J}^{(r)*}$  is a *hash function* instantiated in §5.4.1.6 'DiversifyHash *Hash Function*' on p. 52, and satisfying the Unlinkability security property described in that section. It is used to derive a *diversified base* from a *diversifier* in §4.2.2 '*Sapling Key Components*' on p. 27.

#### 4.1.2 Pseudo Random Functions

 $PRF_x$  is a *Pseudo Random Function* keyed by x.

 $\text{Let } \ell_{\mathsf{a}_\mathsf{sk}}, \ell_\phi, \ell_{\mathsf{hSig}}, \ell_{\mathsf{PRFSprout}}, \ell_{\mathsf{sk}}, \ell_{\mathsf{ovk}}, \ell_{\mathsf{PRFexpand}}, \ell_{\mathsf{PRFnfSapling}}, N^{\mathsf{old}}, \text{ and } N^{\mathsf{new}} \text{ be as defined in } \$5.3 \text{ } \textit{'Constants'} \text{ on p. 49.}$ 

Let  $\ell_{\mathbb{J}}$  and  $\mathbb{J}_{\star}^{(r)}$  be as defined in §5.4.8.3 'Jubjub' on p. 66.

Let Sym be as defined in §5.4.3 'Authenticated One-Time Symmetric Encryption' on p. 57.

For **Sprout**, four *independent*  $PRF_x$  are needed:

```
\begin{array}{lll} \mathsf{PRF}^{\mathsf{addr}} & : & \mathbb{B}^{[\ell_{\mathsf{a}_{\mathsf{s}k}}]} \times \mathbb{B}^{\mathbb{Y}} & \to \mathbb{B}^{[\ell_{\mathsf{PRFSprout}}]} \\ \mathsf{PRF}^{\mathsf{nf}} & : & \mathbb{B}^{[\ell_{\mathsf{a}_{\mathsf{s}k}}]} \times \mathbb{B}^{[\ell_{\mathsf{PRFSprout}}]} & \to \mathbb{B}^{[\ell_{\mathsf{PRFSprout}}]} \\ \mathsf{PRF}^{\mathsf{pk}} & : & \mathbb{B}^{[\ell_{\mathsf{a}_{\mathsf{s}k}}]} \times \left\{1..N^{\mathsf{old}}\right\} \times \mathbb{B}^{[\ell_{\mathsf{hSig}}]} & \to \mathbb{B}^{[\ell_{\mathsf{PRFSprout}}]} \\ \mathsf{PRF}^{\rho} & : & \mathbb{B}^{[\ell_{\phi}]} \times \left\{1..N^{\mathsf{new}}\right\} \times \mathbb{B}^{[\ell_{\mathsf{hSig}}]} & \to \mathbb{B}^{[\ell_{\mathsf{PRFSprout}}]} \end{array}
```

These are used in §4.15.1 'JoinSplit Statement (**Sprout**)' on p. 40; PRF<sup>addr</sup> is also used to derive a *shielded payment address* from a *spending key* in §4.2.1 '**Sprout** Key Components' on p. 27.

For **Sapling**, three additional  $PRF_x$  are needed:

```
\begin{array}{lll} \mathsf{PRF}^{\mathsf{expand}} & : & \mathbb{B}^{[\ell_{\mathsf{sk}}]} & \times \mathbb{B}^{\mathsf{Y}[\mathbb{N}]} & \to \mathbb{B}^{\mathsf{Y}[\ell_{\mathsf{PRFexpand}}/8]} \\ \mathsf{PRF}^{\mathsf{ock}} & : & \mathbb{B}^{\mathsf{Y}[\ell_{\mathsf{ovk}}/8]} \times \mathbb{B}^{\mathsf{Y}[\ell_{\mathbb{J}}/8]} \times \mathbb{B}^{\mathsf{Y}[\ell_{\mathbb{J}}/8]} \times \mathbb{B}^{\mathsf{Y}[\ell_{\mathbb{J}}/8]} & \to \mathsf{Sym}.\mathbf{K} \\ \mathsf{PRF}^{\mathsf{nfSapling}} & : & \mathbb{J}^{(r)}_{\star} & \times \mathbb{B}^{[\ell_{\mathbb{J}}]} & \to \mathbb{B}^{[\ell_{\mathsf{PRFnfSapling}}]} \end{array}
```

PRF<sup>expand</sup> is used in §4.2.2 'Sapling Key Components' on p. 27.

PRF<sup>ock</sup> is used in §4.17 'In-band secret distribution (Sapling)' on p. 44.

PRF<sup>nfSapling</sup> is used in §4.15.2 'Spend Statement (Sapling)' on p. 41.

All of these Pseudo Random Functions are instantiated in §5.4.2 'Pseudo Random Functions' on p. 55.

#### Security requirements:

- · Security definitions for Pseudo Random Functions are given in [BDJR2000, section 4].
- In addition to being *Pseudo Random Functions*, it is required that  $\mathsf{PRF}^\mathsf{nf}_x$ ,  $\mathsf{PRF}^\mathsf{addr}_x$ ,  $\mathsf{PRF}^\mathsf{p}_x$ , and  $\mathsf{PRF}^\mathsf{nfSapling}_x$  be collision-resistant across all x i.e. finding  $(x,y) \neq (x',y')$  such that  $\mathsf{PRF}^\mathsf{nf}_x(y) = \mathsf{PRF}^\mathsf{nf}_{x'}(y')$  should not be feasible, and similarly for  $\mathsf{PRF}^\mathsf{addr}_x$  and  $\mathsf{PRF}^\mathsf{p}_x(x') = \mathsf{PRF}^\mathsf{nfSapling}_x(x')$ .

**Non-normative note:** PRF<sup>nf</sup> was called PRF<sup>sn</sup> in **Zerocash** [BCGGMTV2014].

# 4.1.3 Authenticated One-Time Symmetric Encryption

Let Sym be an *authenticated one-time symmetric encryption scheme* with keyspace Sym.**K**, encrypting plaintexts in Sym.**P** to produce ciphertexts in Sym.**C**.

 $\mathsf{Sym}.\mathsf{Encrypt} : \mathsf{Sym}.\mathbf{K} \times \mathsf{Sym}.\mathbf{P} \to \mathsf{Sym}.\mathbf{C} \text{ is the encryption algorithm}.$ 

Sym.Decrypt : Sym. $\mathbf{K} \times \text{Sym.}\mathbf{C} \to \text{Sym.}\mathbf{P} \cup \{\bot\}$  is the decryption algorithm, such that for any  $K \in \text{Sym.}\mathbf{K}$  and  $P \in \text{Sym.}\mathbf{P}$ , Sym.Decrypt $_{K}(\text{Sym.Encrypt}_{K}(P)) = P$ .  $\bot$  is used to represent the decryption of an invalid ciphertext.

**Security requirement:** Sym must be one-time (INT-CTXT \(\Lambda\) IND-CPA)-secure [BN2007]. "One-time" here means that an honest protocol participant will almost surely encrypt only one message with a given key; however, the adversary may make many adaptive chosen ciphertext queries for a given key.

### 4.1.4 Key Agreement

A *key agreement scheme* is a cryptographic protocol in which two parties agree a shared secret, each using their private key and the other party's public key.

A key agreement scheme KA defines a type of public keys KA.Public, a type of private keys KA.Private, and a type of shared secrets KA.SharedSecret. Optionally, it also defines a type KA.PublicPrimeOrder  $\subseteq$  KA.Public.

Optional: Let KA.FormatPrivate  $: \mathbb{B}^{[\ell_{\mathsf{PRFSprout}}]} \to \mathsf{KA.Private}$  be a function to convert a bit string of length  $\ell_{\mathsf{PRFSprout}}$  to a KA private key.

Let KA.DerivePublic : KA.Private  $\times$  KA.Public  $\to$  KA.Public be a function that derives the KA public key corresponding to a given KA private key and base point.

Let KA.Agree : KA.Private  $\times$  KA.Public  $\rightarrow$  KA.SharedSecret be the agreement function.

Optional: Let KA.Base: KA.Public be a public base point.

**Note:** The range of KA.DerivePublic may be a strict subset of KA.Public.

#### Security requirements:

- · KA.FormatPrivate must preserve sufficient entropy from its input to be used as a secure KA private key.
- The key agreement and the KDF defined in the next section must together satisfy a suitable adaptive security assumption along the lines of [Bernstein2006, section 3] or [ABR1999, Definition 3].

More precise formalization of these requirements is beyond the scope of this specification.

### 4.1.5 Key Derivation

A Key Derivation Function is defined for a particular key agreement scheme and authenticated one-time symmetric encryption scheme; it takes the shared secret produced by the key agreement and additional arguments, and derives a key suitable for the encryption scheme.

The inputs to the Key Derivation Function differ between the Sprout and Sapling KDFs:

 $KDF^{Sprout}$  takes as input an output index in  $\{1..N^{new}\}$ , the value  $h_{Sig}$ , the shared Diffie-Hellman secret sharedSecret, the ephemeral public key epk, and the recipient's public  $transmission\ key\ pk_{enc}$ . It is suitable for use with KASprout and derives keys for Sym.Encrypt.

$$\mathsf{KDF}^{\mathsf{Sprout}} : \{1..N^{\mathsf{new}}\} \times \mathbb{B}^{[\ell_{\mathsf{hSig}}]} \times \mathsf{KA}^{\mathsf{Sprout}}.\mathsf{SharedSecret} \times \mathsf{KA}^{\mathsf{Sprout}}.\mathsf{Public} \times \mathsf{KA}^{\mathsf{Sprout}}.\mathsf{Public} \to \mathsf{Sym}.\mathbf{K}$$

 $KDF^{Sapling}$  takes as input the shared Diffie-Hellman secret sharedSecret and the ephemeral public key epk. (It does not have inputs taking the place of the output index,  $h_{Sig}$ , or  $pk_{enc}$ .) It is suitable for use with  $KA^{Sapling}$  and derives keys for Sym.Encrypt.

 $\mathsf{KDF}^\mathsf{Sapling} : \mathsf{KA}^\mathsf{Sapling}.\mathsf{SharedSecret} \times \mathsf{KA}^\mathsf{Sapling}.\mathsf{Public} \to \mathsf{Sym}.\mathbf{K}$ 

#### Security requirements:

- The asymmetric encryption scheme in §4.16 'In-band secret distribution (**Sprout**)' on p. 43, constructed from KA<sup>Sprout</sup>, KDF<sup>Sprout</sup> and Sym, is required to be IND-CCA2-secure and key-private.
- The asymmetric encryption scheme in §4.17 'In-band secret distribution (**Sapling**)' on p. 44, constructed from KA<sup>Sapling</sup>, KDF<sup>Sapling</sup> and Sym, is required to be IND-CCA2-secure and key-private.

Key privacy is defined in [BBDP2001].

# 4.1.6 Signature

A signature scheme Sig defines:

- · a type of signing keys Sig. Private;
- · a type of verifying keys Sig. Public;
- · a type of messages Sig. Message;
- · a type of signatures Sig. Signature;
- a randomized signing key generation algorithm Sig.GenPrivate: ()  $\stackrel{\mathbb{R}}{\rightarrow}$  Sig.Private;
- $\cdot$  an injective verifying key derivation algorithm Sig.DerivePublic : Sig.Private  $\to$  Sig.Public;
- a randomized signing algorithm Sig.Sign : Sig.Private  $\times$  Sig.Message  $\stackrel{\mathbb{R}}{\rightarrow}$  Sig.Signature;
- a verifying algorithm Sig.Verify : Sig.Public  $\times$  Sig.Message  $\times$  Sig.Signature  $\rightarrow$   $\mathbb{B}$ ;

such that for any signing key sk  $\stackrel{\mathbb{R}}{\leftarrow}$  Sig.GenPrivate() and corresponding verifying key vk = Sig.DerivePublic(sk), and any m : Sig.Message and  $s : \text{Sig.Signature} \stackrel{\mathbb{R}}{\leftarrow} \text{Sig.Sign}$ , Sig.Verify<sub>vk</sub>(m, s) = 1.

#### **Zcash** uses four signature schemes:

- one used for signatures that can be verified by script operations such as OP\_CHECKSIG and OP\_CHECKMULTISIG as in **Bitcoin**;
- one called JoinSplitSig (instantiated in §5.4.5 'JoinSplit Signature' on p. 58), which is used to sign transactions that contain at least one JoinSplit description;
- [Sapling onward] one called SpendAuthSig (instantiated in §5.4.6.1 'Spend Authorization Signature' on p. 61) which is used to sign authorizations of Spend transfers;
- [Sapling onward] one called BindingSig (instantiated in §5.4.6.2 'Binding Signature' on p. 61), which is used to enforce balance of Spend transfers and Output transfers, and to prevent their replay across transactions.

The following security property is needed for JoinSplitSig and BindingSig. Security requirements for SpendAuthSig are defined in the next section, §4.1.6.1 'Signature with Re-Randomizable Keys' on p. 21. An additional requirement for BindingSig is defined in §4.1.6.2 'Signature with Private Key to Public Key Homomorphism' on p. 22.

**Security requirement:** JoinSplitSig and BindingSig must be Strongly Unforgeable under (non-adaptive) Chosen Message Attack (SU-CMA), as defined for example in [BDEHR2011, Definition 6].<sup>4</sup> This allows an adversary to obtain signatures on chosen messages, and then requires it to be infeasible for the adversary to forge a previously unseen valid (message, signature) pair without access to the signing key.

<sup>&</sup>lt;sup>4</sup> The scheme defined in that paper was attacked in [LM2017], but this has no impact on the applicability of the definition.

#### Non-normative notes:

- We need separate signing key generation and verifying key derivation algorithms, rather than the more conventional combined key pair generation algorithm Sig.Gen : () → Sig.Private × Sig.Public, to support the key derivation in §4.2.2 'Sapling Key Components' on p. 27. This also simplifies some aspects of the definitions of signature schemes with additional features in §4.1.6.1 'Signature with Re-Randomizable Keys' on p. 21 and §4.1.6.2 'Signature with Private Key to Public Key Homomorphism' on p. 22.
- A fresh signature key pair is generated for each *transaction* containing a *JoinSplit description*. Since each key pair is only used for one signature (see §4.10 '*Non-malleability* (*Sprout*)' on p. 35), a one-time signature scheme would suffice for JoinSplitSig. This is also the reason why only security against *non-adaptive* chosen message attack is needed. In fact the instantiation of JoinSplitSig uses a scheme designed for security under adaptive attack even when multiple signatures are signed under the same key.
- [Sapling onward] The same remarks as above apply to BindingSig, except that the key is derived from the randomness of *value commitments*. This results in the same distribution as of freshly generated key pairs, for each *transaction* containing *Spend descriptions* or *Output descriptions*.
- SU-CMA security requires it to be infeasible for the adversary, not knowing the private key, to forge a distinct signature on a previously seen message. That is, *JoinSplit signatures* and *binding signatures* are intended to be nonmalleable in the sense of [BIP-62].

# 4.1.6.1 Signature with Re-Randomizable Keys

A signature scheme with re-randomizable keys Sig is a signature scheme that additionally defines:

- · a type of randomizers Sig.Random;
- a randomizer generator Sig.GenRandom  $: () \xrightarrow{R}$  Sig.Random;
- $\cdot$  a private key randomization algorithm Sig.RandomizePrivate : Sig.Random  $\times$  Sig.Private  $\rightarrow$  Sig.Private;
- $\cdot$  a public key randomization algorithm Sig.RandomizePublic : Sig.Random imes Sig.Public o Sig.Public;
- $\cdot$  a distinguished "identity" randomizer  $\mathcal{O}_{\mathsf{Sig.Random}}$  : Sig.Random

#### such that:

- for any  $\alpha$ : Sig.Random, Sig.RandomizePrivate $_{\alpha}$ : Sig.Private  $\to$  Sig.Private is injective and easily invertible;
- Sig.RandomizePrivate\_{\mathcal{O}\_{\mathsf{Sig.Random}}} is the identity function on Sig.Private.
- for any sk : Sig.Private,

```
\mathsf{Sig}.\mathsf{RandomizePrivate}(\alpha,\mathsf{sk}): \alpha \xleftarrow{\mathbb{R}} \mathsf{Sig}.\mathsf{GenRandom}()
```

is identically distributed to Sig.GenPrivate().

- for any sk  ${\rm \colon Sig.Private}$  and  $\alpha {\rm \colon Sig.Random},$ 

 $Sig.RandomizePublic(\alpha, Sig.DerivePublic(sk)) = Sig.DerivePublic(Sig.RandomizePrivate(\alpha, sk)).$ 

The following security requirement for such *signature schemes* is based on that given in [FKMSSS2016, section 3]. Note that we require Strong Unforgeability with Re-randomized Keys, not Existential Unforgeability with Re-randomized Keys (the latter is called "Unforgeability under Re-randomized Keys" in [FKMSSS2016, Definition 8]). Unlike the case for JoinSplitSig, we require security under adaptive chosen message attack with multiple messages signed using a given key. (Although each *note* uses a different re-randomized key pair, the same original key pair can be re-randomized for multiple *notes*, and also it can happen that multiple *transactions* spending the same *note* are revealed to an adversary.)

# Security requirement: Strong Unforgeability with Re-randomized Keys under adaptive Chosen Message Attack (SURK-CMA)

For any sk : Sig. Private, let

 $O_{\mathsf{sk}} : \mathsf{Sig}.\mathsf{Message} \times \mathsf{Sig}.\mathsf{Random} \to \mathsf{Sig}.\mathsf{Signature}$ 

be a signing oracle with state  $Q: \mathcal{P}(Sig.Message \times Sig.Signature)$  initialized to  $\{\}$  that records queried messages and corresponding signatures.

```
\begin{split} \mathsf{O}_\mathsf{sk} &:= \mathsf{var} \ Q \leftarrow \big\{ \big\} \ \mathsf{in} \ (m \ \text{:} \ \mathsf{Sig}.\mathsf{Message}, \alpha \ \text{:} \ \mathsf{Sig}.\mathsf{Random}) \mapsto \\ & \mathsf{let} \ \sigma = \mathsf{Sig}.\mathsf{Sign}_{\mathsf{Sig}.\mathsf{RandomizePrivate}(\alpha,\mathsf{sk})}(m) \\ & Q \leftarrow Q \cup \big\{ (m,\sigma) \big\} \\ & \mathsf{return} \ \sigma \ \text{:} \ \mathsf{Sig}.\mathsf{Signature}. \end{split}
```

For random sk  $\stackrel{\mathbb{R}}{\leftarrow}$  Sig.GenPrivate() and vk = Sig.DerivePublic(sk), it must be infeasible for an adversary given vk and a new instance of  $O_{sk}$  to find  $(m', \sigma', \alpha')$  such that Sig.Verify<sub>Sig.RandomizePublic( $\alpha'$ ,vk)</sub> $(m', \sigma') = 1$  and  $(m', \sigma') \notin O_{sk}$ . Q.

#### Non-normative notes:

- The randomizer and key arguments to Sig.RandomizePrivate and Sig.RandomizePublic are swapped relative to [FKMSSS2016, section 3].
- The requirement for the identity randomizer  $\mathcal{O}_{Sig.Random}$  simplifies the definition of SURK-CMA by removing the need for two oracles (because the oracle for original keys, called  $O_1$  in [FKMSSS2016], is a special case of the oracle for randomized keys).
- Since Sig.RandomizePrivate( $\alpha$ , sk) :  $\alpha \stackrel{\mathbb{R}}{\leftarrow}$  Sig.Random has an identical distribution to Sig.GenPrivate(), and since Sig.DerivePublic is a deterministic function, the combination of a re-randomized public key and signature(s) under that key do not reveal the key from which it was re-randomized.
- Since Sig.RandomizePrivate $_{\alpha}$  is injective and easily invertible, knowledge of Sig.RandomizePrivate( $\alpha$ , sk) and  $\alpha$  implies knowledge of sk.

#### 4.1.6.2 Signature with Private Key to Public Key Homomorphism

A signature scheme with private key to public key homomorphism Sig is a signature scheme that additionally defines:

- an abelian group on private keys, with operation  $\boxplus$ : Sig.Private  $\times$  Sig.Private  $\to$  Sig.Private and identity  $\mathcal{O}_{\boxplus}$ ;
- $\cdot$  an abelian group on public keys, with operation  $\oplus$ : Sig.Public imes Sig.Public imes Sig.Public and identity  $\mathcal{O}_{\oplus}$ .

such that for any  $sk_{1...2} \circ Sig.Private$ ,  $Sig.DerivePublic(sk_1 \boxplus sk_2) = Sig.DerivePublic(sk_1) \oplus Sig.DerivePublic(sk_2)$ . In other words, Sig.DerivePublic is an injective homomorphism from the private key group to the public key group.

For  $N : \mathbb{N}^+$ .

• 
$$\coprod_{i=1}^{N} \mathsf{sk}_{i} \text{ means } \mathsf{sk}_{1} \boxplus \mathsf{sk}_{2} \boxplus \cdots \boxplus \mathsf{sk}_{N};$$

$$\cdot \bigoplus_{i=1}^{N} \mathsf{vk}_{i} \text{ means } \mathsf{vk}_{1} \oplus \mathsf{vk}_{2} \oplus \cdots \oplus \mathsf{vk}_{N}.$$

When N = 0 these yield the appropriate group identity, i.e.  $\coprod_{i=1}^{0} \mathsf{sk}_i = \mathcal{O}_{\boxplus}$  and  $\bigoplus_{i=1}^{0} \mathsf{vk}_i = \mathcal{O}_{\oplus}$ .

 $\boxminus$ sk means the private key such that  $(\boxminus sk) \boxplus sk = \mathcal{O}_{\boxplus}$ , and  $sk_1 \boxminus sk_2$  means  $sk_1 \boxplus (\boxminus sk_2)$ .

 $\Leftrightarrow$  vk means the public key such that  $(\Leftrightarrow$  vk)  $\Leftrightarrow$  vk =  $\mathcal{O}_{\oplus}$ , and vk<sub>1</sub>  $\Leftrightarrow$  vk<sub>2</sub> means vk<sub>1</sub>  $\Leftrightarrow$   $(\Leftrightarrow$  vk<sub>2</sub>).

With a change of notation from  $\mu$  to Sig.DerivePublic, + to  $\boxplus$ , and · to  $\diamondsuit$ , this is similar to the definition of a "Signature with Secret Key to Public Key Homomorphism" in [DS2016, Definition 13], except for an additional requirement for the homomorphism to be injective.

**Security requirement:** For any  $\mathsf{sk}_1 : \mathsf{Sig}.\mathsf{Private}$ , and an unknown  $\mathsf{sk}_2 \not\in \mathsf{Sig}.\mathsf{GenPrivate}()$  chosen independently of  $\mathsf{sk}_1$ , the distribution of  $\mathsf{sk}_1 \boxplus \mathsf{sk}_2$  is computationally indistinguishable from that of  $\mathsf{Sig}.\mathsf{GenPrivate}()$ . (Since  $\boxplus$  is an abelian group operation, this implies that for  $n : \mathbb{N}^+$ ,  $\coprod_{i=1}^n \mathsf{sk}_i$  is computationally indistinguishable from  $\mathsf{Sig}.\mathsf{GenPrivate}()$  when at least one of  $\mathsf{sk}_{1..n}$  is unknown.)

#### 4.1.7 Commitment

A *commitment scheme* is a function that, given a *commitment trapdoor* generated at random and an input, can be used to commit to the input in such a way that:

- no information is revealed about it without the *trapdoor* ("hiding"),
- given the trapdoor and input, the commitment can be verified to "open" to that input and no other ("binding").

A commitment scheme COMM defines a type of inputs COMM.Input, a type of commitments COMM.Output, a type of commitment trapdoors COMM.Trapdoor, and a trapdoor generator COMM.GenTrapdoor: ()  $\stackrel{\mathbb{R}}{\longrightarrow}$  COMM.Trapdoor.

Let COMM  $\circ$  COMM. Trapdoor  $\times$  COMM. Input  $\to$  COMM. Output be a function satisfying the following security requirements.

#### Security requirements:

- Computational hiding: For all x, x': COMM.Input, the distributions {  $\mathsf{COMM}_r(x) \mid r \not\in \mathsf{COMM}.\mathsf{GenTrapdoor}()$  } and {  $\mathsf{COMM}_r(x') \mid r \not\in \mathsf{COMM}.\mathsf{GenTrapdoor}()$  } are computationally indistinguishable.
- Computational binding: It is infeasible to find x, x': COMM.Input and r, r': COMM.Trapdoor such that  $x \neq x'$  and  $\text{COMM}_r(x) = \text{COMM}_{r'}(x')$ .

#### Notes:

- COMM.GenTrapdoor need not produce the uniform distribution on COMM.Trapdoor. In that case, it is incorrect to choose a trapdoor from the latter distribution.
- If it were only feasible to find  $x : \mathsf{COMM}.\mathsf{Input}$  and  $r, r' : \mathsf{COMM}.\mathsf{Trapdoor}$  such that  $r \neq r'$  and  $\mathsf{COMM}_r(x) = \mathsf{COMM}_{r'}(x)$ , this would not contradict the computational binding security requirement. (In fact, this is feasible for NoteCommit Sapling and ValueCommit because trapdoors are equivalent modulo  $r_{\mathbb{J}}$ , and the range of a trapdoor for those algorithms is  $\{0...2^{\ell_{\mathsf{scalar}}} 1\}$  where  $2^{\ell_{\mathsf{scalar}}} > r_{\mathbb{J}}$ .)

```
Let \ell_{\text{rcm}}, \ell_{\text{MerkleSprout}}, \ell_{\text{PRFSprout}}, and \ell_{\text{value}} be as defined in §5.3 'Constants' on p. 49.
```

Define NoteCommit<sup>Sprout</sup>. Trapdoor :=  $\mathbb{B}^{[\ell_{rcm}]}$  and NoteCommit<sup>Sprout</sup>. Output :=  $\mathbb{B}^{[\ell_{MerkleSprout}]}$ .

Sprout uses a note commitment scheme

```
\begin{aligned} \mathsf{NoteCommit}^{\mathsf{Sprout}} : \ \mathsf{NoteCommit}^{\mathsf{Sprout}}.\mathsf{Trapdoor} \times \mathbb{B}^{[\ell_{\mathsf{PRFSprout}}]} \times \{0 \mathinner{\ldotp\ldotp} 2^{\ell_{\mathsf{value}}} - 1\} \times \mathbb{B}^{[\ell_{\mathsf{PRFSprout}}]} \\ & \to \mathsf{NoteCommit}^{\mathsf{Sprout}}.\mathsf{Output}, \end{aligned}
```

instantiated in §5.4.7.1 'Sprout Note Commitments' on p. 61.

```
Let \ell_{\text{scalar}} be as defined in §5.3 'Constants' on p. 49.
```

Let  $\mathbb{J}^{(r)}$  and  $r_{\mathbb{J}}$  be as defined in §5.4.8.3 'Jubjub' on p. 66.

#### Define:

```
\label{eq:NoteCommit} \begin{subarray}{l} NoteCommit \begin{subarray}{l} Sapling \end{subarray}. Output := \mathbb{J}; \\ ValueCommit. Trapdoor := \{0 \dots 2^{\ell_{\mathsf{scalar}}} - 1\} \end{subarray} and ValueCommit. Output := \mathbb{J}. \\ \end{subarray}
```

Sapling uses two additional commitment schemes:

$$\begin{aligned} \mathsf{NoteCommit}^{\mathsf{Sapling}} \ \colon \ \mathsf{NoteCommit}^{\mathsf{Sapling}}.\mathsf{Trapdoor} \times \mathbb{B}^{[\ell_{\mathbb{J}}]} \times \mathbb{B}^{[\ell_{\mathbb{J}}]} \times \{0 \mathinner{\ldotp\ldotp} 2^{\ell_{\mathsf{value}}} - 1\} \to \mathsf{NoteCommit}^{\mathsf{Sapling}}.\mathsf{Output} \\ \mathsf{ValueCommit} \ \colon \ \mathsf{ValueCommit}.\mathsf{Trapdoor} \times \left\{ -\frac{r_{\mathbb{J}} - 1}{2} \mathinner{\ldotp\ldotp} \cdot \frac{r_{\mathbb{J}} - 1}{2} \right\} & \to \mathsf{ValueCommit}.\mathsf{Output} \end{aligned}$$

NoteCommit Sapling is instantiated in §5.4.7.2 Windowed Pedersen commitments' on p. 62, and ValueCommit is instantiated in §5.4.7.3 'Homomorphic Pedersen commitments' on p. 62.

**Non-normative note:** NoteCommit Sapling and ValueCommit always return points in the subgroup  $\mathbb{J}^{(r)}$ . However, we declare the type of these commitment outputs to be  $\mathbb{J}$  because they are not checked to be in the subgroup when used in *Spend descriptions* and *Output descriptions*.

### 4.1.8 Represented Group

A represented group G consists of:

- a subgroup order parameter  $r_{\mathbb{G}} : \mathbb{N}^+$ , which must be prime;
- a cofactor parameter  $h_{\mathbb{G}}: \mathbb{N}^+$ ;
- · a group  $\mathbb{G}$  of order  $h_{\mathbb{G}} \cdot r_{\mathbb{G}}$ , written additively with operation + :  $\mathbb{G} \times \mathbb{G} \to \mathbb{G}$ , and additive identity  $\mathcal{O}_{\mathbb{G}}$ ;
- a bit-length parameter  $\ell_{\mathbb{G}}:\mathbb{N}$ ;
- a representation function  $\operatorname{repr}_{\mathbb{G}}:\mathbb{G}\to\mathbb{B}^{[\ell_{\mathbb{G}}]}$  and an abstraction function  $\operatorname{abst}_{\mathbb{G}}:\mathbb{B}^{[\ell_{\mathbb{G}}]}\to\mathbb{G}\cup\{\bot\}$ , such that  $\operatorname{abst}_{\mathbb{G}}$  is the left inverse of  $\operatorname{repr}_{\mathbb{G}}$ , i.e. for all  $P\in\mathbb{G}$ ,  $\operatorname{abst}_{\mathbb{G}}(\operatorname{repr}_{\mathbb{G}}(P))=P$ , and for all S not in the image of  $\operatorname{repr}_{\mathbb{G}}$ ,  $\operatorname{abst}_{\mathbb{G}}(S)=\bot$ .

Define  $\mathbb{G}^{(r)}$  as the order- $r_{\mathbb{G}}$  subgroup of  $\mathbb{G}$ , which is called a *represented subgroup*. Note that this includes  $\mathcal{O}_{\mathbb{G}}$ . For the set of points of order  $r_{\mathbb{G}}$  (which excludes  $\mathcal{O}_{\mathbb{G}}$ ), we write  $\mathbb{G}^{(r)*}$ .

$$\mathsf{Define} \ \mathbb{G}_{\bigstar}^{(r)} \coloneqq \{\mathsf{repr}_{\mathbb{G}}(P) : \mathbb{B}^{[\ell_{\mathbb{G}}]} \ | \ P \in \mathbb{G}^{(r)}\}.$$

For  $G : \mathbb{G}$  we write -G for the negation of G, such that  $(-G) + G = \mathcal{O}_{\mathbb{G}}$ . We write G - H for G + (-H).

We also extend the  $\sum$  notation to addition on group elements.

For  $G : \mathbb{G}$  and  $k : \mathbb{Z}$  we write [k] G for scalar multiplication on the group, i.e.

$$[k]\,G := \begin{cases} \sum_{i=1}^k G, & \text{if } k \geq 0 \\ \sum_{i=1}^{-k} (-G), & \text{otherwise}. \end{cases}$$

For  $G : \mathbb{G}$  and  $a : \mathbb{F}_{r_{\mathbb{G}}}$ , we may also write [a] G meaning  $[a \mod r_{\mathbb{G}}]$  G as defined above. (This variant is not defined for fields other than  $\mathbb{F}_{r_{\mathbb{G}}}$ .)

#### 4.1.9 Hash Extractor

A hash extractor for a represented group  $\mathbb G$  is a function  $\mathsf{Extract}_{\mathbb G^{(r)}}:\mathbb G^{(r)}\to T$  for some type T, such that  $\mathsf{Extract}_{\mathbb G^{(r)}}$  is injective on  $\mathbb G^{(r)}$  (the subgroup of  $\mathbb G$  of order  $r_{\mathbb G}$ ).

**Note:** Unlike the representation function  $\operatorname{repr}_{\mathbb{G}}$ , Extract<sub> $\mathbb{G}^{(p)}$ </sub> need not have an efficiently computable left inverse.

# 4.1.10 Group Hash

Given a represented subgroup  $\mathbb{G}^{(r)}$ , a family of group hashes into  $\mathbb{G}^{(r)}$ , GroupHash  $\mathbb{G}^{(r)}$ , consists of:

- · a type GroupHash.URSType of *Uniform Random Strings*;
- · a type GroupHash.Input of inputs;
- · a function GroupHash $^{\mathbb{G}^{(r)}}$ : GroupHash.URSType × GroupHash.Input  $\to \mathbb{G}^{(r)}$ .

In \$5.4.8.5 'Group Hash into Jubjub' on p. 68, we instantiate a family of group hashes into the Jubjub curve defined by \$5.4.8.3 'Jubjub' on p. 66.

**Security requirement:** For a randomly selected URS : GroupHash.URSType, it must be reasonble to model GroupHash $_{\mathsf{URS}}^{\mathbb{G}^{(r)}}$  (restricted to inputs for which it does not return  $\bot$ ) as a random oracle.

#### Non-normative notes:

• GroupHash  $\mathbb{J}^{(r)*}$  is used to obtain generators of the *Jubjub curve* for various purposes: the bases  $\mathcal{G}$  and  $\mathcal{H}$  used in **Sapling** key generation, the *Pedersen hash* defined in §5.4.1.7 *'Pedersen Hash Function'* on p. 53, and the commitment schemes defined in §5.4.7.2 *'Windowed Pedersen commitments'* on p. 62 and in §5.4.7.3 *'Homomorphic Pedersen commitments'* on p. 62.

The security property needed for these uses can alternatively be defined in the standard model as follows:

**Discrete Logarithm Independence**: For a randomly selected member GroupHash $_{\mathrm{URS}}^{\mathbb{G}^{(r)}}$  of the family, it is infeasible to find a sequence of distinct inputs  $m_{1..n}$ : GroupHash.Input $^{[n]}$  and a sequence of nonzero  $x_{1..n}$ :  $\mathbb{F}_{r_{\mathbb{G}}}^{*}$  such that  $\sum_{i=1}^{n} \left( [x_i] \operatorname{GroupHash}_{\mathrm{URS}}^{\mathbb{G}^{(r)}}(m_i) \right) = \mathcal{O}_{\mathbb{G}}$ .

- Under the Discrete Logarithm assumption on  $\mathbb{G}^{(r)}$ , a random oracle almost surely satisfies Discrete Logarithm Independence.
- Discrete Logarithm Independence implies collision resistance, since a collision  $(m_1, m_2)$  for GroupHash $_{\text{URS}}^{\mathbb{G}^{(r)}}$  trivially gives a discrete logarithm relation with  $x_1=1$  and  $x_2=-1$ . It is in fact stronger than collision resistance.
- GroupHash  $\mathbb{J}^{(r)*}$  is also used to instantiate DiversifyHash in §5.4.1.6 'DiversifyHash  $Hash\ Function$ ' on p. 52. We do not know how to prove the Unlinkability property defined in that section in the standard model, but in a model where GroupHash  $\mathbb{J}^{(r)*}$  (restricted to inputs for which it does not return  $\bot$ ) is taken as a random oracle, it is implied by the Decisional Diffie-Hellman assumption on  $\mathbb{J}^{(r)}$ .
- URS is a *Uniform Random String*; we choose it verifiably at random (see §5.9 'Randomness Beacon' on p. 75), after fixing the concrete group hash algorithm to be used. This mitigates the possibility that the group hash algorithm could have been backdoored.

# 4.1.11 Represented Pairing

A represented pairing  $\mathbb{P}$  consists of:

- a group order parameter  $r_{\mathbb{P}} : \mathbb{N}^+$  which must be prime;
- two represented subgroups  $\mathbb{P}_{1.2}^{(r)}$ , both of order  $r_{\mathbb{P}}$ ;
- · a group  $\mathbb{P}_T^{(r)}$  of order  $r_{\mathbb{P}}$ , written multiplicatively with operation · :  $\mathbb{P}_T^{(r)} \times \mathbb{P}_T^{(r)} \to \mathbb{P}_T^{(r)}$  and group identity  $\mathbf{1}_{\mathbb{P}}$ ;
- three generators  $\mathcal{P}_{\mathbb{P}_{1,2,T}}$  of  $\mathbb{P}_{1,2,T}^{(r)}$  respectively;
- a pairing function  $\hat{e}_{\mathbb{P}}: \mathbb{P}_1^{(r)} \times \mathbb{P}_2^{(r)} \to \mathbb{P}_T^{(r)}$  satisfying:
  - (Bilinearity) for all  $a,b : \mathbb{F}_r^*$ ,  $P : \mathbb{P}_1^{(r)}$ , and  $Q : \mathbb{P}_2^{(r)}$ ,  $\hat{e}_{\mathbb{P}}\big([a]\,P,[b]\,Q\big) = \hat{e}_{\mathbb{P}}(P,Q)^{a \cdot b}$ ; and
  - (Nondegeneracy) there does not exist  $P: \mathbb{P}_1^{(r)*}$  such that for all  $Q: \mathbb{P}_2^{(r)}, \ \hat{e}_{\mathbb{P}}(P,Q) = \mathbf{1}_{\mathbb{P}}$ .

### 4.1.12 Zero-Knowledge Proving System

A zero-knowledge proving system is a cryptographic protocol that allows proving a particular statement, dependent on primary and auxiliary inputs, in zero knowledge — that is, without revealing information about the auxiliary inputs other than that implied by the statement. The type of zero-knowledge proving system needed by **Zcash** is a preprocessing zk-SNARK.

A preprocessing zk-SNARK instance ZK defines:

- · a type of zero-knowledge proving keys, ZK.ProvingKey;
- · a type of zero-knowledge verifying keys, ZK. Verifying Key;
- · a type of primary inputs ZK.PrimaryInput;
- · a type of auxiliary inputs ZK. AuxiliaryInput;
- · a type of proofs ZK.Proof;
- a type ZK.SatisfyingInputs  $\subseteq$  ZK.PrimaryInput  $\times$  ZK.AuxiliaryInput of inputs satisfying the *statement*;
- a randomized key pair generation algorithm ZK.Gen  $: () \xrightarrow{\mathbb{R}} \mathsf{ZK}.\mathsf{ProvingKey} \times \mathsf{ZK}.\mathsf{VerifyingKey};$
- a proving algorithm ZK.Prove : ZK.ProvingKey  $\times$  ZK.SatisfyingInputs  $\rightarrow$  ZK.Proof;
- a verifying algorithm ZK. Verify: ZK. Verifying Key  $\times$  ZK. Primary Input  $\times$  ZK. Proof  $\rightarrow$   $\mathbb{B}$ ;

The security requirements below are supposed to hold with overwhelming probability for  $(pk, vk) \stackrel{R}{\leftarrow} ZK.Gen()$ .

#### Security requirements:

- Completeness: An honestly generated proof will convince a verifier: for any  $(x, w) \in \mathsf{ZK}.\mathsf{SatisfyingInputs}$ , if  $\mathsf{ZK}.\mathsf{Prove}_{\mathsf{pk}}(x, w)$  outputs  $\pi$ , then  $\mathsf{ZK}.\mathsf{Verify}_{\mathsf{vk}}(x, \pi) = 1$ .
- Knowledge Soundness: For any adversary  $\mathcal A$  able to find an x: ZK.PrimaryInput and proof  $\pi$ : ZK.Proof such that ZK.Verify<sub>vk</sub> $(x,\pi)=1$ , there is an efficient extractor  $E_{\mathcal A}$  such that if  $E_{\mathcal A}(vk,pk)$  returns w, then the probability that  $(x,w) \notin \mathsf{ZK}.\mathsf{SatisfyingInputs}$  is insignificant.
- Statistical Zero Knowledge: An honestly generated proof is statistical zero knowledge. That is, there is a feasible stateful simulator S such that, for all stateful distinguishers D, the following two probabilities are not significantly different:

$$\Pr \begin{bmatrix} (x,w) \in \mathsf{ZK}.\mathsf{SatisfyingInputs} & (\mathsf{pk},\mathsf{vk}) \xleftarrow{\mathbb{R}} \mathsf{ZK}.\mathsf{Gen}() \\ (x,w) \xleftarrow{\mathbb{R}} \mathcal{D}(\mathsf{pk},\mathsf{vk}) \\ \pi \xleftarrow{\mathbb{R}} \mathsf{ZK}.\mathsf{Prove}_{\mathsf{pk}}(x,w) \end{bmatrix} \text{ and } \Pr \begin{bmatrix} (x,w) \in \mathsf{ZK}.\mathsf{SatisfyingInputs} \\ \mathcal{D}(\pi) = 1 \end{bmatrix} \xrightarrow{(\mathsf{pk},\mathsf{vk}) \xleftarrow{\mathbb{R}} \mathcal{S}(x)} \begin{pmatrix} (\mathsf{pk},\mathsf{vk}) \xleftarrow{\mathbb{R}} \mathcal{S}(x) \\ (x,w) \xleftarrow{\mathbb{R}} \mathcal{D}(\mathsf{pk},\mathsf{vk}) \\ \pi \xleftarrow{\mathbb{R}} \mathcal{S}(x) \end{pmatrix}$$

These definitions are derived from those in [BCTV2014, Appendix C], adapted to state concrete security for a fixed circuit, rather than asymptotic security for arbitrary circuits. (ZK.Prove corresponds to P, ZK.Verify corresponds to V, and ZK.SatisfyingInputs corresponds to  $\mathcal{R}_C$  in the notation of that appendix.)

The Knowledge Soundness definition is a way to formalize the property that it is infeasible to find a new proof  $\pi$  where ZK. Verify<sub>vk</sub> $(x,\pi)=1$  without knowing an auxiliary input w such that  $(x,w)\in ZK$ . SatisfyingInputs. Note that Knowledge Soundness implies Soundness - i.e. the property that it is infeasible to find a new proof  $\pi$  where ZK. Verify<sub>vk</sub> $(x,\pi)=1$  without there existing an auxiliary input w such that  $(x,w)\in ZK$ . SatisfyingInputs.

**Non-normative note:** The above properties do not include nonmalleability [DSDCOPS2001], and the design of the protocol using the *zero-knowledge proving system* must take this into account.

Zcash uses two proving systems:

- PHGR13 (§5.4.9.1 *'PHGR13'* on p. 68) is used with the BN-254 pairing (§5.4.8.1 *'BN-254'* on p. 63), to prove and verify the **Sprout** *JoinSplit statement* (§4.15.1 *'JoinSplit Statement* (**Sprout**)' on p. 40) before **Sapling** activation.
- Groth16 (§5.4.9.2 'Groth16' on p. 69) is used with the BLS12-381 pairing (§5.4.8.2 'BLS12-381' on p. 64), to prove and verify the Sapling Spend statement (§4.15.2 'Spend Statement (Sapling)' on p. 41) and Output statement (§4.15.3 'Output Statement (Sapling)' on p. 42). It is also used to prove and verify the JoinSplit statement after Sapling activation.

These specializations are: ZKJoinSplit for the **Sprout** *JoinSplit statement* (with PHGR13 and BN-254, or Groth16 and BLS12-381); ZKSpend for the **Sapling** *Spend statement*; and ZKOutput for the **Sapling** *Output statement*.

We omit the key subscripts on ZKJoinSplit.Prove and ZKJoinSplit.Verify, taking them to be either the PHGR13 proving key and verifying key defined in §5.7 'Sprout zk-SNARK Parameters' on p. 75, or the sprout-groth16. params Groth16 proving key and verifying key defined in §5.8 'Sapling zk-SNARK Parameters' on p. 75, according to whether the proof appears in a block before or after Sapling activation.

We also omit subscripts on ZKSpend. Prove, ZKSpend. Verify, ZKOutput. Prove, and ZKOutput. Verify, taking them to be the relevant Groth16 proving keys and verifying keys defined in §5.8 'Sapling zk-SNARK Parameters' on p. 75.

# 4.2 Key Components

# 4.2.1 Sprout Key Components

Let  $\ell_{a_{ck}}$  be as defined in §5.3 'Constants' on p. 49.

Let PRF<sup>addr</sup> be a *Pseudo Random Function*, instantiated in §5.4.2 'Pseudo Random Functions' on p. 55.

Let KA<sup>Sprout</sup> be a key agreement scheme, instantiated in §5.4.4.1 'Sprout Key Agreement' on p. 57.

A new **Sprout** spending key  $a_{sk}$  is generated by choosing a bit sequence uniformly at random from  $\mathbb{B}^{[\ell_{a_{sk}}]}$ .

 $a_{pk}$ ,  $sk_{enc}$  and  $pk_{enc}$  are derived from  $a_{sk}$  as follows:

```
\begin{split} & \mathsf{a_{pk}} := \mathsf{PRF}_{\mathsf{a_{sk}}}^{\mathsf{addr}}(0) \\ & \mathsf{sk_{enc}} := \mathsf{KA^{Sprout}}.\mathsf{FormatPrivate}(\mathsf{PRF}_{\mathsf{a_{sk}}}^{\mathsf{addr}}(1)) \\ & \mathsf{pk_{enc}} := \mathsf{KA^{Sprout}}.\mathsf{DerivePublic}(\mathsf{sk_{enc}}, \mathsf{KA^{Sprout}}.\mathsf{Base}). \end{split}
```

# 4.2.2 Sapling Key Components

Let  $\ell_{PRFexpand}$ ,  $\ell_{sk}$ ,  $\ell_{ovk}$ , and  $\ell_d$  be as defined in §5.3 'Constants' on p. 49.

Let PRF<sup>expand</sup> and PRF<sup>ock</sup> be *Pseudo Random Functions* instantiated in §5.4.2 *'Pseudo Random Functions'* on p. 55.

Let KA<sup>Sapling</sup> be a key agreement scheme, instantiated in §5.4.4.3 'Sapling Key Agreement' on p. 58.

Let CRH<sup>ivk</sup> be a *hash function*, instantiated in §5.4.1.5 'CRH<sup>ivk</sup> *Hash Function*' on p. 52.

Let DiversifyHash be a hash function, instantiated in §5.4.1.6 'DiversifyHash Hash Function' on p. 52.

Let SpendAuthSig, instantiated in §5.4.6.1 'Spend Authorization Signature' on p. 61, be a signature scheme with re-randomizable keys.

Let  $\operatorname{repr}_{\mathbb{J}}$ ,  $\mathbb{J}^{(r)}$ ,  $\mathbb{J}^{(r)*}$ , and  $\mathbb{J}^{(r)}_{\star}$  be as defined in §5.4.8.3 'Jubjub' on p. 66, and let FindGroupHash  $\mathbb{J}^{(r)*}$  be as defined in §5.4.8.5 'Group Hash into Jubjub' on p. 68.

Let LEBS2OSP :  $(\ell : \mathbb{N}) \times \mathbb{B}^{[\ell]} \to \mathbb{BY}^{[\text{ceiling}(\ell/8)]}$  and LEOS2IP :  $(\ell : \mathbb{N} \mid \ell \mod 8 = 0) \times \mathbb{BY}^{[\ell/8]} \to \{0...2^{\ell}-1\}$  be as defined in §5.2 'Integers, Bit Sequences, and Endianness' on p. 48.

```
Define \mathcal{H} := \mathsf{FindGroupHash}^{\mathbb{J}^{(r)*}} \big( \mathsf{"Zcash\_H\_"}, \mathsf{""} \big). Define \mathsf{ToScalar}(x : \mathbb{B}^{\mathbb{Y}^{[\ell_{\mathsf{PRFexpand}}/8]}}) := \mathsf{LEOS2IP}_{\ell_{\mathsf{PRFexpand}}}(x) \pmod{r_{\mathbb{J}}}.
```

A new **Sapling** spending key sk is generated by choosing a bit sequence uniformly at random from  $\mathbb{B}^{[\ell_{sk}]}$ .

From this spending key, the spend authorizing key ask  $\mathbb{F}_{r_{\mathbb{J}}}^*$ , the proof authorizing key nsk  $\mathbb{F}_{r_{\mathbb{J}}}$ , and the outgoing viewing key ovk  $\mathbb{F}_{r_{\mathbb{J}}}^{\ell_{\text{ovk}}/8}$  are derived as follows:

```
\begin{split} & \mathsf{ask} := \mathsf{ToScalar}(\mathsf{PRF}^{\mathsf{expand}}_{\mathsf{sk}}([0])) \\ & \mathsf{nsk} := \mathsf{ToScalar}(\mathsf{PRF}^{\mathsf{expand}}_{\mathsf{sk}}([1])) \\ & \mathsf{ovk} := \mathsf{truncate}_{(\ell_{\mathsf{ovk}}/8)}(\mathsf{PRF}^{\mathsf{expand}}_{\mathsf{sk}}([2])) \end{split}
```

If ask = 0, discard this key and repeat with a new sk.

ak :  $\mathbb{J}^{(r)*}$ , nk :  $\mathbb{J}^{(r)}$ , and the *incoming viewing key* ivk :  $\{0...2^{\ell_{\text{ivk}}}-1\}$  are then derived as:

```
\begin{split} ak &:= \mathsf{SpendAuthSig.DerivePublic}(\mathsf{ask}) \\ nk &:= [\mathsf{nsk}] \, \mathcal{H} \\ \mathsf{ivk} &:= \mathsf{CRH}^{\mathsf{ivk}} \big( \mathsf{repr}_{\mathbb{J}}(\mathsf{ak}), \mathsf{repr}_{\mathbb{J}}(\mathsf{nk}) \big). \end{split}
```

If ivk = 0, discard this key and repeat with a new sk.

As explained in §3.1 'Payment Addresses and Keys' on p. 11, Sapling allows the efficient creation of multiple diversified payment addresses with the same spending authority. A group of such addresses shares the same full viewing key and incoming viewing key.

To create a new diversified payment address given an incoming viewing key ivk, repeatedly pick a diversifier d uniformly at random from  $\mathbb{B}^{[\ell_d]}$  until  $g_d$  = DiversifyHash(d) is not  $\bot$ . Then calculate:

```
pk_d := KA^{Sapling}.DerivePublic(ivk, g_d).
```

The resulting *diversified payment address* is  $(d : \mathbb{B}^{[\ell_d]}, pk_d : KA^{Sapling}.PublicPrimeOrder)$ .

For each *spending key*, there is also a *default diversified payment address* with a "random-looking" *diversifier*. This allows an implementation that does not expose diversified addresses as a user-visible feature, to use a default address that cannot be distinguished (without knowledge of the *spending key*) from one with a random *diversifier* as above.

Let first :  $(\mathbb{B}^{\mathbb{Y}} \to T \cup \{\bot\}) \to T \cup \{\bot\}$  be as defined in §5.4.8.5 *'Group Hash into Jubjub'* on p. 68. Define:

```
CheckDiversifier(d: \mathbb{B}^{[\ell_d]}) :=  \begin{cases} \bot, & \text{if DiversifyHash(d)} = \bot \\ d, & \text{otherwise} \end{cases}
```

 $\mathsf{DefaultDiversifier}(\mathsf{sk} \ \ : \ \mathbb{B}^{[\ell_{\mathsf{sk}}]}) := \mathsf{first} \big( i \ : \ \mathbb{B}^{\underline{\mathsf{Y}}} \mapsto \mathsf{CheckDiversifier}(\mathsf{truncate}_{(\ell_{\mathsf{d}}/8)}(\mathsf{PRF}^{\mathsf{expand}}_{\mathsf{sk}}([3,i]))) \ : \ \mathbb{J}^{(r)*} \cup \big\{\bot\big\} \big).$ 

For a random spending key, DefaultDiversifier returns  $\perp$  with probability approximately  $2^{-256}$ ; if this happens, discard the key and repeat with a different sk.

#### Notes:

- The protocol does not prevent using the *diversifier* d to produce "vanity" addresses that start with a meaningful string when encoded in Bech32 (see §5.6.4 'Sapling Shielded Payment Addresses' on p. 72). Users and writers of software that generates addresses should be aware that this provides weaker privacy properties than a randomly chosen *diversifier*, since a vanity address can obviously be distinguished, and might leak more information than intended as to who created it.
- Similarly, address generators MAY encode information in the diversifier that can be recovered by the recipient of a payment to determine which diversified payment address was used. It is RECOMMENDED that such diversifiers be randomly chosen unique values used to index into a database, rather than directly encoding the needed data.

#### Non-normative notes:

· Assume that PRF<sup>expand</sup> is a PRF with output range  $\mathbb{BY}^{[\ell_{\mathsf{PRFexpand}}/8]}$ , where  $2^{\ell_{\mathsf{PRFexpand}}}$  is large compared to  $r_{\mathbb{J}}$ .

Define 
$$f: \mathbb{B}^{[\ell_{\mathsf{sk}}]} \times \mathbb{B}^{\mathsf{y}[\mathbb{N}]} \to \mathbb{F}_{r_{\mathbb{I}}}$$
 by  $f_{\mathsf{sk}}(t) := \mathsf{ToScalar}(\mathsf{PRF}^{\mathsf{expand}}_{\mathsf{sk}}(t))$ .

Then f is also a PRF, since  $\mathsf{LEOS2IP}_{\ell_{\mathsf{PRFexpand}}} : \mathbb{BY}^{[\ell_{\mathsf{PRFexpand}}/8]} \to \{0 \dots 2^{\ell_{\mathsf{PRFexpand}}} - 1\}$  is injective, and the bias introduced by the reduction modulo  $r_{\mathbb{J}}$  is small because §5.3 'Constants' on p. 49 defines  $\ell_{\mathsf{PRFexpand}}$  as 512, while  $r_{\mathbb{J}}$  has length 252 bits.

It follows that the distribution of ask, i.e.  $\mathsf{PRF}^{\mathsf{expand}}_{\mathsf{sk}}([0]): \mathsf{sk} \overset{\mathbb{R}}{\leftarrow} \mathbb{B}^{[\ell_{\mathsf{sk}}]}$ , is computationally indistinguishable from that of SpendAuthSig.GenPrivate() (defined in §5.4.6.1 *'Spend Authorization Signature'* on p. 61).

· Similarly, the distribution of nsk, i.e. ToScalar(PRF $_{sk}^{expand}([1])): sk 

<math>\leftarrow \mathbb{B}^{[\ell_{sk}]}$ , is computationally indistinguishable from the uniform distribution on  $\mathbb{F}_{r_{\mathbb{J}}}$ . Since nsk  $: \mathbb{F}_{r_{\mathbb{J}}} \mapsto \operatorname{repr}_{\mathbb{J}}([\operatorname{nsk}]\mathcal{H}): \mathbb{J}_{\star}^{(r)}$  is bijective, the distribution of  $\operatorname{repr}_{\mathbb{J}}(\operatorname{nk})$  will be computationally indistinguishable from the uniform distribution on  $\mathbb{J}_{\star}^{(r)}$  which is the keyspace of PRF $_{\mathrm{nfSapling}}^{\mathrm{nfSapling}}$ .

# 4.3 JoinSplit Descriptions

A JoinSplit transfer, as specified in §3.5 'JoinSplit Transfers and Descriptions' on p. 15, is encoded in transactions as a JoinSplit description.

Each *transaction* includes a sequence of zero or more *JoinSplit descriptions*. When this sequence is non-empty, the *transaction* also includes encodings of a JoinSplitSig public verification key and signature.

Let  $\ell_{\mathsf{MerkleSprout}}$ ,  $\ell_{\mathsf{PRFSprout}}$ ,  $\ell_{\mathsf{Seed}}$ ,  $N^{\mathsf{old}}$ ,  $N^{\mathsf{new}}$ , and MAX\_MONEY be as defined in §5.3 'Constants' on p. 49.

Let hSigCRH be as defined in §4.1.1 'Hash Functions' on p. 17.

Let NoteCommit<sup>Sprout</sup> be as defined in §4.1.7 'Commitment' on p. 23.

Let KA<sup>Sprout</sup> be as defined in §4.1.4 'Key Agreement' on p. 19.

Let Sym be as defined in §4.1.3 'Authenticated One-Time Symmetric Encryption' on p.19.

Let ZKJoinSplit be as defined in §4.1.12 'Zero-Knowledge Proving System' on p. 26.

 $\label{eq:consists} \text{A \textit{JoinSplit description}} \text{ consists of } (\textbf{v}_{\text{pub}}^{\text{old}}, \textbf{v}_{\text{pub}}^{\text{new}}, \textbf{rt}, \textbf{nf}_{1..N^{\text{old}}}^{\text{old}}, \textbf{cm}_{1..N^{\text{new}}}^{\text{new}}, \text{epk}, \textbf{randomSeed}, \textbf{h}_{1..N^{\text{old}}}, \pi_{\text{ZKJoinSplit}}, \textbf{C}_{1..N^{\text{new}}}^{\text{enc}}) \\ \text{where} \\$ 

- $\cdot \ v_{pub}^{old}: \{0... \mathsf{MAX\_MONEY}\} \ is \ the \ value \ that \ the \ \textit{JoinSplit transfer} \ removes \ from \ the \ \textit{transparent value pool};$
- $\cdot$   $v_{\text{pub}}^{\text{new}} : \{0 ... \text{MAX\_MONEY}\}\$ is the value that the *JoinSplit transfer* inserts into the *transparent value pool*;
- rt :  $\mathbb{B}^{[\ell_{\mathsf{MerkleSprout}}]}$  is an *anchor*, as defined in §3.3 *'The Block Chain'* on p. 14, for the output *treestate* of either a previous *block*, or a previous *JoinSplit transfer* in this *transaction*.
- $\inf_{1=N^{\text{old}}}^{\text{old}} : \mathbb{B}^{[\ell_{PRFSprout}][N^{\text{old}}]}$  is the sequence of *nullifiers* for the input *notes*;
- $\cdot \ \mathsf{cm}^{\mathsf{new}}_{1..N^{\mathsf{new}}} \ \text{`NoteCommit}^{\mathsf{Sprout}}. \mathsf{Output}^{[N^{\mathsf{new}}]} \ \mathsf{is} \ \mathsf{the} \ \mathsf{sequence} \ \mathsf{of} \ \mathit{note} \ \mathit{commitments} \ \mathsf{for} \ \mathsf{the} \ \mathsf{output} \ \mathit{notes};$
- epk : KA<sup>Sprout</sup>. Public is a key agreement public key, used to derive the key for encryption of the *transmitted* notes ciphertext (§ 4.16 *'In-band secret distribution (Sprout)*' on p. 43);
- randomSeed :  $\mathbb{B}^{[\ell_{Seed}]}$  is a seed that must be chosen independently at random for each *JoinSplit description*;
- $\cdot \ \ h_{1..N^{old}} : \mathbb{B}^{[\ell_{\mathsf{PRFSprout}}][N^{\mathsf{old}}]} \ \text{is a sequence of tags that bind } h_{\mathsf{Sig}} \ \text{to each a}_{\mathsf{sk}} \ \text{of the input } \textit{notes};$
- $\pi_{\mathsf{ZKJoinSplit}}$  3 ZKJoinSplit. Proof is a zk proof with primary input (rt,  $\mathsf{nf}^{\mathsf{old}}_{1..N^{\mathsf{old}}}$ ,  $\mathsf{cm}^{\mathsf{new}}_{1..N^{\mathsf{new}}}$ ,  $\mathsf{v}^{\mathsf{old}}_{\mathsf{pub}}$ ,  $\mathsf{v}^{\mathsf{new}}_{\mathsf{pub}}$ ,  $\mathsf{h}_{\mathsf{Sig}}$ ,  $\mathsf{h}_{1..N^{\mathsf{old}}}$ ) for the JoinSplit Statement defined in §4.15.1 'JoinSplit Statement (Sprout)' on p. 40 (this is a PHGR13 proof before Sapling activation, and a Groth16 proof after Sapling activation);
- $C_{1..N^{\text{new}}}^{\text{enc}}$ : Sym. $\mathbf{C}^{[N^{\text{new}}]}$  is a sequence of ciphertext components for the encrypted output *notes*.

The ephemeralKey and encCiphertexts fields together form the transmitted notes ciphertext.

The value  $h_{Sig}$  is also computed from randomSeed,  $nf_{1...N^{old}}^{old}$ , and the joinSplitPubKey of the containing transaction:

 $\mathsf{h}_{\mathsf{Sig}} := \mathsf{hSigCRH}(\mathsf{randomSeed}, \mathsf{nf}^{\mathsf{old}}_{1..\mathsf{N}^{\mathsf{old}}}, \mathsf{joinSplitPubKey}).$ 

#### Consensus rules:

- Elements of a *JoinSplit description* **MUST** have the types given above (for example:  $0 \le v_{pub}^{old} \le MAX\_MONEY$  and  $0 \le v_{pub}^{new} \le MAX\_MONEY$ ).
- Either  $v_{pub}^{old}$  or  $v_{pub}^{new}$  **MUST** be zero.
- The proof  $\pi_{\mathsf{ZKJoinSplit}}$  **MUST** be valid given a *primary input* formed from the relevant other fields and  $\mathsf{h_{Sig}}$  i.e.  $\mathsf{ZKJoinSplit}.\mathsf{Verify}((\mathsf{rt},\mathsf{nf}_{1...\mathsf{N}^{\mathsf{old}}}^{\mathsf{old}},\mathsf{cm}_{1...\mathsf{N}^{\mathsf{new}}}^{\mathsf{new}},\mathsf{v_{\mathsf{pub}}^{\mathsf{old}}},\mathsf{h_{\mathsf{Sig}}},\mathsf{h}_{1...\mathsf{N}^{\mathsf{old}}}),\pi_{\mathsf{ZKJoinSplit}}) = 1.$

# 4.4 Spend Descriptions

A Spend transfer, as specified in §3.6 'Spend Transfers, Output Transfers, and their Descriptions' on p. 15, is encoded in transactions as a Spend description.

Each transaction includes a sequence of zero or more Spend descriptions.

Each Spend description is authorized by a signature, called the spend authorization signature.

Let  $\ell_{\mathsf{MerkleSapling}}$  and  $\ell_{\mathsf{PRFnfSapling}}$  be as defined in §5.3 'Constants' on p. 49.

Let ValueCommit.Output be as defined in §4.1.7 'Commitment' on p. 23.

Let SpendAuthSig be as defined in §4.13 'Spend Authorization Signature' on p. 38.

Let ZKSpend be as defined in §4.1.12 'Zero-Knowledge Proving System' on p. 26.

A Spend description consists of (cv, rt, nf, rk,  $\pi_{ZKSpend}$ , spendAuthSig) where

- · cv : ValueCommit.Output is the value commitment to the value of the input note;
- rt :  $\mathbb{B}^{[\ell_{\mathsf{MerkleSapling}}]}$  is an *anchor*, as defined in §3.3 *'The Block Chain'* on p. 14, for the output *treestate* of a previous *block*;
- nf :  $\mathbb{B}^{[\ell_{PRFnfSapling}]}$  is the *nullifier* for the input *note*;
- · rk: SpendAuthSig. Public is a randomized public key that should be used to verify spendAuthSig;
- π<sub>ZKSpend</sub> \* ZKSpend.Proof is a *zero-knowledge proof* with *primary input* (cv, rt, nf, rk) for the *Spend state-ment* defined in §4.15.2 *'Spend Statement (Sapling)'* on p. 41;
- spendAuthSig: SpendAuthSig.Signature is as specified in §4.13 'Spend Authorization Signature' on p. 38.

#### Consensus rules:

- Elements of a Spend description MUST be canonical encodings of the types given above.
- · cv and rk MUST NOT be of small order, i.e.  $[h_{\mathbb{J}}]$  cv MUST NOT be  $\mathcal{O}_{\mathbb{J}}$  and  $[h_{\mathbb{J}}]$  rk MUST NOT be  $\mathcal{O}_{\mathbb{J}}$ .
- The proof  $\pi_{ZKSpend}$  **MUST** be valid given a *primary input* formed from the other fields except spendAuthSig i.e. ZKSpend.Verify((cv, rt, nf, rk),  $\pi_{ZKSpend}$ ) = 1.
- Let SigHash be the SIGHASH transaction hash of this transaction, not associated with an input, as defined in §4.9 'SIGHASH Transaction Hashing' on p. 35 using SIGHASH\_ALL.

The spend authorization signature MUST be a valid SpendAuthSig signature over SigHash using rk as the public key - i.e. SpendAuthSig.Verify<sub>rk</sub>(SigHash, spendAuthSig) = 1.

**Non-normative note:** The check that rk is not of small order is technically redundant with a check in the *Spend circuit*, but it is simple and cheap to also check this outside the circuit.

# 4.5 Output Descriptions

An Output transfer, as specified in §3.6 'Spend Transfers, Output Transfers, and their Descriptions' on p.15, is encoded in transactions as an Output description.

Each *transaction* includes a sequence of zero or more *Output descriptions*. There are no signatures associated with *Output descriptions*.

Let ValueCommit.Output be as defined in §4.1.7 'Commitment' on p. 23.

Let KA<sup>Sapling</sup> be as defined in §4.1.4 'Key Agreement' on p. 19.

Let Sym be as defined in §4.1.3 'Authenticated One-Time Symmetric Encryption' on p. 19.

Let ZKSpend be as defined in §4.1.12 'Zero-Knowledge Proving System' on p. 26.

An *Output description* consists of (cv, cm<sub>u</sub>, epk,  $C^{enc}$ ,  $C^{out}$ ,  $\pi_{ZKOutput}$ ) where

- · cv : ValueCommit.Output is the *value commitment* to the value of the output *note*;
- cm<sub>u</sub> :  $\mathbb{B}^{[\ell_{\mathsf{MerkleSapling}}]}$  is the result of applying Extract<sub> $\mathbb{J}^{(r)}$ </sub> (defined in §5.4.8.4 'Hash Extractor for Jubjub' on p. 67) to the note commitment for the output note;
- epk : KA<sup>Sapling</sup>. Public is a key agreement public key, used to derive the key for encryption of the *transmitted* note ciphertext (§4.17 *'In-band secret distribution (Sapling)*' on p. 44);
- · C<sup>enc</sup>: Sym.C is a ciphertext component for the encrypted output *note*;
- C<sup>out</sup>: Sym.C is a ciphertext component that allows the holder of a *full viewing key* to recover the recipient *diversified transmission key* pk<sub>d</sub> and the ephemeral private key esk (and therefore the entire *note plaintext*);
- $\pi_{\mathsf{ZKOutput}}$ :  $\mathsf{ZKOutput}.\mathsf{Proof}$  is a  $\mathsf{zero}$ -knowledge proof with  $\mathsf{primary}$  input ( $\mathsf{cv}, \mathsf{cm}_u, \mathsf{epk}$ ) for the  $\mathsf{Output}$   $\mathsf{state}$ - $\mathsf{ment}$  defined in §4.15.3 ' $\mathsf{Output}$   $\mathsf{State}$   $\mathsf{ment}$  ( $\mathsf{Sapling}$ )' on p. 42.

#### Consensus rules:

- · Elements of an Output description MUST be canonical encodings of the types given above.
- · cv and epk MUST NOT be of small order, i.e.  $[h_{\mathbb{I}}]$  cv MUST NOT be  $\mathcal{O}_{\mathbb{I}}$  and  $[h_{\mathbb{I}}]$  epk MUST NOT be  $\mathcal{O}_{\mathbb{I}}$ .
- The proof  $\pi_{ZKOutput}$  **MUST** be valid given a *primary input* formed from the other fields except  $C^{enc}$  and  $C^{out}$  i.e.  $ZKSpend.Verify((cv, cm_u, epk), \pi_{ZKOutput}) = 1$ .

# 4.6 Sending Notes

### 4.6.1 Sending Notes (Sprout)

In order to send **Sprout** *shielded* value, the sender constructs a *transaction* containing one or more *JoinSplit descriptions*. This involves first generating a new JoinSplitSig key pair:

For each *JoinSplit description*, the sender chooses randomSeed uniformly at random on  $\mathbb{B}^{[\ell_{\mathsf{Seed}}]}$ , and selects the input *notes*. At this point there is sufficient information to compute  $h_{\mathsf{Sig}}$ , as described in the previous section. The sender also chooses  $\varphi$  uniformly at random on  $\mathbb{B}^{[\ell_{\varphi}]}$ . Then it creates each output *note* with index  $i: \{1...N^{\mathsf{new}}\}$ :

- · Choose uniformly random  $rcm_i^{new} \stackrel{R}{\leftarrow} NoteCommit^{Sprout}$ .GenTrapdoor().
- Compute  $\rho_i^{\text{new}} = PRF_{\phi}^{\rho}(i, h_{Sig})$ .
- · Compute  $cm_i^{new} = NoteCommit_{rcm_i^{new}}^{Sprout}(a_{pk,i}^{new}, v_i^{new}, \rho_i^{new}).$
- · Let  $\mathbf{np}_i = (\mathsf{v}_i^{\mathsf{new}}, \rho_i^{\mathsf{new}}, \mathsf{rcm}_i^{\mathsf{new}}, \mathsf{memo}_i)$ .

 $\mathbf{np}_{1..\mathrm{N}^{\mathsf{new}}}$  are then encrypted to the recipient *transmission keys*  $\mathsf{pk}^{\mathsf{new}}_{\mathsf{enc},1..\mathrm{N}^{\mathsf{new}}}$ , giving the *transmitted notes ciphertext* (epk,  $\mathsf{C}^{\mathsf{enc}}_{1..\mathrm{N}^{\mathsf{new}}}$ ), as described in §4.16 *'In-band secret distribution (Sprout)'* on p. 43.

In order to minimize information leakage, the sender **SHOULD** randomize the order of the input *notes* and of the output *notes*. Other considerations relating to information leakage from the structure of *transactions* are beyond the scope of this specification.

After generating all of the *JoinSplit descriptions*, the sender obtains dataToBeSigned :  $\mathbb{B}^{\mathbb{Y}^{[\mathbb{N}]}}$  as described in §4.10 '*Non-malleability* (**Sprout**)' on p. 35, and signs it with the private *JoinSplit signing key*:

```
joinSplitSig \stackrel{R}{\leftarrow} JoinSplitSig.Sign_{joinSplitPrivKev}(dataToBeSigned)
```

Then the encoded *transaction* including joinSplitSig is submitted to the network.

# 4.6.2 Sending Notes (Sapling)

In order to send **Sapling** shielded value, the sender constructs a transaction containing one or more Output descriptions.

Let ValueCommit and NoteCommit be as specified in §4.1.7 'Commitment' on p. 23.

Let  $\operatorname{repr}_{\mathbb{I}}$  and  $h_{\mathbb{I}}$  be as defined in §5.4.8.3 'Jubjub' on p. 66.

Let ovk be an outgoing viewing key that is intended to be able to decrypt this payment. This may be one of:

- · the outgoing viewing key for the address (or one of the addresses) from which the payment was sent;
- the outgoing viewing key for all payments associated with an "account", to be defined in [ZIP-32];
- $\cdot$   $\perp$ , if the sender should not be able to decrypt the payment once it has deleted its own copy.

**Note:** Choosing ovk =  $\perp$  is useful if the sender prefers to obtain forward secrecy of the payment information with respect to compromise of its own secrets.

For each *Output description*, the sender selects a value  $v^{new}$  and a destination **Sapling** shielded payment address  $(d, pk_d)$ , and then performs the following steps:

- · Check that  $pk_d$  is of type KA<sup>Sapling</sup>.PublicPrimeOrder, i.e. it is a valid Edwards point on the *Jubjub curve* not equal to  $\mathcal{O}_{\mathbb{J}}$ , and  $[r_{\mathbb{J}}]$   $pk_d = \mathcal{O}_{\mathbb{J}}$ .
- · Calculate  $g_d$  = DiversifyHash(d) and check that  $g_d \neq \bot$ .
- · Choose independent uniformly random commitment trapdoors:

```
\begin{tabular}{lll} $\mathsf{rcv}^{\mathsf{new}}$ & $\stackrel{R}{\longleftarrow}$ & \mathsf{ValueCommit.GenTrapdoor()} \\ $\mathsf{rcm}^{\mathsf{new}}$ & $\stackrel{R}{\longleftarrow}$ & \mathsf{NoteCommit}^{\mathsf{Sapling}}.\mathsf{GenTrapdoor()} \\ \end{tabular}
```

· Calculate

```
\begin{split} & \mathsf{cv}^{\mathsf{new}} := \mathsf{ValueCommit}_{\mathsf{rcv}^{\mathsf{new}}}(\mathsf{v}^{\mathsf{new}}) \\ & \mathsf{cm}^{\mathsf{new}} := \mathsf{NoteCommit}_{\mathsf{rcm}^{\mathsf{new}}}^{\mathsf{Sapling}}(\mathsf{repr}_{\mathbb{J}}(\mathsf{g}_\mathsf{d}), \mathsf{repr}_{\mathbb{J}}(\mathsf{pk}_\mathsf{d}), \mathsf{v}^{\mathsf{new}}) \end{split}
```

- Let  $\mathbf{np} = (\mathsf{d}, \mathsf{v}^{\mathsf{new}}, \mathsf{rcm}, \mathsf{memo})$ , where  $\mathsf{rcm} = \mathsf{LEBS2OSP}_{256}(\mathsf{I2LEBSP}_{256}(\mathsf{rcm}^{\mathsf{new}}))$ .
- Encrypt np to the recipient diversified transmission key pk<sub>d</sub> with diversified transmission base g<sub>d</sub>, and to the outgoing viewing key ovk, giving the transmitted note ciphertext (epk, C<sup>enc</sup>, C<sup>out</sup>) as described in §4.17.1 'Encryption (Sapling)' on p. 45. This procedure also uses cv<sup>new</sup> and cm<sup>new</sup> to derive the outgoing cipher key.
- · Generate a proof  $\pi_{ZKOutput}$  for the *Output statement* in §4.15.3 'Output Statement (**Sapling**)' on p. 42.
- Return ( $cv^{new}$ ,  $cm^{new}$ , epk,  $C^{enc}$ ,  $C^{out}$ ,  $\pi_{ZKOutput}$ ).

In order to minimize information leakage, the sender **SHOULD** randomize the order of *Output descriptions* in a *transaction*. Other considerations relating to information leakage from the structure of *transactions* are beyond the scope of this specification. The encoded *transaction* is submitted to the network.

# 4.7 Dummy Notes

# 4.7.1 Dummy Notes (Sprout)

The fields in a *JoinSplit description* allow for  $N^{old}$  input *notes*, and  $N^{new}$  output *notes*. In practice, we may wish to encode a *JoinSplit transfer* with fewer input or output *notes*. This is achieved using *dummy notes*.

Let  $\ell_{a_{ck}}$  and  $\ell_{PRFSprout}$  be as defined in §5.3 'Constants' on p. 49.

Let PRF<sup>nf</sup> be as defined in §4.1.2 'Pseudo Random Functions' on p. 18.

Let NoteCommit<sup>Sprout</sup>. Trapdoor be as defined in §4.1.7 'Commitment' on p. 23.

A *dummy* **Sprout** input *note*, with index *i* in the *JoinSplit description*, is constructed as follows:

- · Generate a new uniformly random spending key  $a_{sk,i}^{old} 
  otin \mathbb{B}^{[\ell_{a_{sk}}]}$  and derive its paying key  $a_{pk,i}^{old}$ .
- Set  $v_i^{\text{old}} = 0$ .
- · Choose uniformly random  $\rho_i^{\text{old}} \overset{\mathbb{R}}{\leftarrow} \mathbb{B}^{[\ell_{\text{PRFSprout}}]}$  and  $\mathsf{rcm}_i^{\text{old}} \overset{\mathbb{R}}{\leftarrow} \mathsf{NoteCommit}^{\mathsf{Sprout}}$ . GenTrapdoor().
- Compute  $nf_i^{old} = PRF_{a_{old}}^{nf}(\rho_i^{old})$ .
- Let  $path_i$  be a *dummy Merkle path* for the *auxiliary input* to the *JoinSplit statement* (this will not be checked).
- When generating the *JoinSplit proof*, set enforceMerklePath<sub>i</sub> to 0.

A *dummy* **Sprout** output *note* is constructed as normal but with zero value, and sent to a random *shielded payment address*.

# 4.7.2 Dummy Notes (Sapling)

In **Sapling** there is no need to use *dummy notes* simply in order to fill otherwise unused inputs as in the case of a *JoinSplit description*; nevertheless it may be useful for privacy to obscure the number of real *shielded inputs* from **Sapling** *notes*.

Let  $\ell_{sk}$  be as defined in §5.3 'Constants' on p. 49.

Let  $r_{\mathbb{J}}$  and repr<sub> $\mathbb{J}$ </sub> be as defined in §5.4.8.3 'Jubjub' on p. 66.

Let  $\mathcal{H}$  be as defined in §4.2.2 'Sapling Key Components' on p. 27.

Let PRF<sup>nfSapling</sup> be as defined in §4.1.2 'Pseudo Random Functions' on p. 18.

Let NoteCommit Sapling. Trapdoor be as defined in §4.1.7 'Commitment' on p. 23.

A dummy **Sapling** input note is constructed as follows:

- Choose uniformly random sk  $\stackrel{R}{\leftarrow} \mathbb{B}^{[\ell_{sk}]}$ .
- Generate a new *diversified payment address* (d, pk<sub>d</sub>) for sk as described in §4.2.2 '**Sapling** Key Components' on p. 27.
- Set  $v^{old} = 0$ , and set pos = 0.
- · Choose uniformly random rcm  $\stackrel{R}{\leftarrow}$  NoteCommit<sup>Sapling</sup>.GenTrapdoor(). and nsk  $\stackrel{R}{\leftarrow}$   $\mathbb{F}_{r_v}$ .
- Compute  $nk = [nsk] \mathcal{H}$  and  $nk \neq = repr_{\pi}(nk)$ .
- $\cdot \ \, \mathsf{Compute} \ \, \rho = \mathsf{cm}^{\mathsf{old}} = \mathsf{NoteCommit}^{\mathsf{Sapling}}_{\mathsf{rcm}}(\mathsf{repr}_{\mathbb{J}}(\mathsf{g}_{\mathsf{d}}), \mathsf{repr}_{\mathbb{J}}(\mathsf{pk}_{\mathsf{d}}), \mathsf{v}^{\mathsf{old}}).$
- $\cdot \ \, \text{Compute nf}^{\text{old}} = \mathsf{PRF}^{\mathsf{nfSapling}}_{\mathsf{nk}\star}(\mathsf{repr}_{\mathbb{J}}(\rho)).$
- Construct a *dummy Merkle path* path for use in the *auxiliary input* to the *Spend statement* (this will not be checked, because  $v^{old} = 0$ ).

As in **Sprout**, a *dummy* **Sapling** output *note* is constructed as normal but with zero value, and sent to a random *shielded payment address*.

# 4.8 Merkle path validity

Let MerkleDepth be MerkleDepth<sup>Sprout</sup> for the **Sprout** *note commitment tree*, or MerkleDepth<sup>Sapling</sup> for the **Sapling** *note commitment tree*. These constants are defined in §5.3 'Constants' on p. 49.

Similarly, let MerkleCRH be MerkleCRH<sup>Sprout</sup> for **Sprout**, or MerkleDepth<sup>Sapling</sup> for **Sapling**.

The following discussion applies independently to the **Sprout** and **Sapling** *note commitment trees*.

Each node in the incremental Merkle tree is associated with a hash value, which is a bit sequence.

The *layer* numbered h, counting from *layer* 0 at the *root*, has  $2^h$  nodes with indices 0 to  $2^h - 1$  inclusive.

Let  $M_i^h$  be the *hash value* associated with the *node* at *index* i in *layer* h.

The *nodes* at *layer* MerkleDepth are called *leaf nodes*. When a *note commitment* is added to the tree, it occupies the *leaf node hash value*  $M_i^{\text{MerkleDepth}}$  for the next available i.

As-yet unused *leaf nodes* are associated with a distinguished *hash value* Uncommitted Or Uncommitted It is assumed to be infeasible to find a preimage *note*  $\mathbf{n}$  such that NoteCommitment  $(\mathbf{n}) = \mathsf{Uncommitted}^{\mathsf{Sprout}}$ . (No similar assumption is needed for **Sapling** because we use a representation for Uncommitted It cannot occur as an output of NoteCommitment  $(\mathbf{n}) = \mathsf{Uncommitted}^{\mathsf{Sapling}}$ .)

The nodes at layers 0 to MerkleDepth -1 inclusive are called *internal nodes*, and are associated with MerkleCRH outputs. *Internal nodes* are computed from their children in the next *layer* as follows: for  $0 \le h < MerkleDepth$  and  $0 \le i < 2^h$ ,

$$\mathsf{M}_i^h := \mathsf{MerkleCRH}(\mathsf{M}_{2i}^{h+1}, \mathsf{M}_{2i+1}^{h+1}).$$

A  $\mathit{Merkle\ path}\ \mathrm{from}\ \mathit{leaf\ node}\ \mathrm{M}_i^{\mathrm{Merkle\ Depth}}$  in the  $\mathit{incremental\ Merkle\ tree}$  is the sequence

[ 
$$\mathsf{M}^h_{\mathsf{sibling}(h,i)}$$
 for  $h$  from MerkleDepth down to  $1$  ],

where

$$\mathsf{sibling}(h,i) \coloneqq \mathsf{floor}\bigg(\frac{i}{2^{\mathsf{MerkleDepth}-h}}\bigg) \oplus 1$$

Given such a Merkle path, it is possible to verify that leaf node  $M_i^{\text{MerkleDepth}}$  is in a tree with a given root  $\mathsf{rt} = M_0^0$ .

# 4.9 SIGHASH Transaction Hashing

**Bitcoin** and **Zcash** use signatures and/or non-interactive proofs associated with *transaction* inputs to authorize spending. Because these signatures or proofs could otherwise be replayed in a different *transaction*, it is necessary to "bind" them to the *transaction* for which they are intended. This is done by hashing information about the *transaction* and (where applicable) the specific input, to give a *SIGHASH transaction hash* which is then used for the spend authorization. The means of authorization differs between *transparent inputs*, inputs to **Sprout** *JoinSplit transfers*, and **Sapling** *Spend transfers*, but (for a given *transaction version*) the same *SIGHASH transaction hash* algorithm is used.

In the case of **Zcash**, the PHGR13 and Groth16 proving systems used are *malleable*, meaning that there is the potential for an adversary who does not know all of the *auxiliary inputs* to a proof, to malleate it in order to create a new proof involving related *auxiliary inputs* [DSDCOPS2001]. This can be understood as similar to a malleability attack on an encryption scheme, in which an adversary can malleate a ciphertext in order to create an encryption of a related plaintext, without knowing the original plaintext. **Zcash** has been designed to mitigate malleability attacks, as described in §4.10 '*Non-malleability* (*Sprout*)' on p. 35, §4.12 '*Balance and Binding Signature* (*Sapling*)' on p. 36, and §4.13 '*Spend Authorization Signature*' on p. 38.

To provide additional flexibility when combining spend authorizations from different sources, **Bitcoin** defines several *SIGHASH types* that cover various parts of a transaction [Bitcoin-SigHash]. One of these types is SIGHASH\_ALL, which is used for **Zcash**-specific signatures, i.e. *JoinSplit signatures*, spend authorization signatures, and binding signatures. In these cases the *SIGHASH transaction hash* is not associated with a *transparent input*, and so the input to hashing excludes *all* of the scriptSig fields in the non-**Zcash**-specific parts of the *transaction*.

In **Zcash**, all *SIGHASH types* are extended to cover the **Zcash**-specific fields nJoinSplit, vJoinSplit, and if present joinSplitPubKey. These fields are described in §7.1 *Encoding of Transactions*' on p. 77. The hash *does not* cover the field joinSplitSig. After **Overwinter** activation, all *SIGHASH types* are also extended to cover *transaction* fields introduced in that upgrade, and similarly after **Sapling** activation.

The original *SIGHASH* algorithm defined by **Bitcoin** suffered from some deficiencies as described in [ZIP-143]; in **Zcash** these are to be addressed by changing this algorithm as part of the **Overwinter** upgrade.

[Pre-Overwinter] The SIGHASH algorithm used prior to Overwinter activation, i.e. for version 1 and 2 transactions, will be defined in [ZIP-76] (to be written).

[Overwinter only, pre-Sapling] The SIGHASH algorithm used after Overwinter activation and before Sapling activation, i.e. for version 3 *transactions*, is defined in [ZIP-143].

[Sapling onward] The SIGHASH algorithm used after Sapling activation, i.e. for version 4 transactions, is defined in [ZIP-243].

# 4.10 Non-malleability (Sprout)

Let dataToBeSigned be the hash of the *transaction*, not associated with an input, using the SIGHASH\_ALL SIGHASH type.

In order to ensure that a *JoinSplit description* is cryptographically bound to the *transparent* inputs and outputs corresponding to  $v_{pub}^{new}$  and  $v_{pub}^{old}$ , and to the other *JoinSplit descriptions* in the same *transaction*, an ephemeral JoinSplitSig key pair is generated for each *transaction*, and the dataToBeSigned is signed with the private signing key of this key pair. The corresponding public verification key is included in the *transaction* encoding as joinSplitPubKey.

JoinSplitSig is instantiated in §5.4.5 'JoinSplit Signature' on p. 58.

If nJoinSplit is zero, the joinSplitPubKey and joinSplitSig fields are omitted. Otherwise, a *transaction* has a correct *JoinSplit signature* if and only if JoinSplitSig. Verify joinSplitPubKey (dataToBeSigned, joinSplitSig) = 1.

Let h<sub>Sig</sub> be computed as specified in §4.3 'JoinSplit Descriptions' on p. 29.

Let PRF<sup>pk</sup> be as defined in §4.1.2 'Pseudo Random Functions' on p. 18.

For each  $i \in \{1..N^{\text{old}}\}$ , the creator of a *JoinSplit description* calculates  $h_i = \mathsf{PRF}^{\mathsf{pk}}_{\mathsf{a}^{\mathsf{old}}_{\mathsf{sk},i}}(i,\mathsf{h}_{\mathsf{Sig}})$ .

The correctness of  $h_{1..N^{\text{old}}}$  is enforced by the *JoinSplit statement* given in §4.15.1 '*Non-malleability*' on p. 40. This ensures that a holder of all of the  $a_{\text{sk},1..N^{\text{old}}}^{\text{old}}$  for every *JoinSplit description* in the *transaction* has authorized the use of the private signing key corresponding to joinSplitPubKey to sign this *transaction*.

# 4.11 Balance (Sprout)

In **Bitcoin**, all inputs to and outputs from a *transaction* are transparent. The total value of *transparent outputs* must not exceed the total value of *transparent inputs*. The net value of *transparent outputs* minus *transparent inputs* is transferred to the miner of the *block* containing the *transaction*; it is added to the *miner subsidy* in the *coinbase transaction* of the *block*.

**Zcash Sprout** extends this by adding *JoinSplit transfers*. Each *JoinSplit transfer* can be seen, from the perspective of the *transparent value pool*, as an input and an output simultaneously.

 $v_{pub}^{old}$  takes value from the *transparent value pool* and  $v_{pub}^{new}$  adds value to the *transparent value pool*. As a result,  $v_{pub}^{old}$  is treated like an *output* value, whereas  $v_{pub}^{new}$  is treated like an *input* value.

Unlike original **Zerocash** [BCGGMTV2014], **Zcash** does not have a distinction between Mint and Pour operations. The addition of v<sub>pub</sub> to a *JoinSplit description* subsumes the functionality of both Mint and Pour.

Also, a difference in the number of real input *notes* does not by itself cause two *JoinSplit descriptions* to be distinguishable.

As stated in §4.3 'JoinSplit Descriptions' on p. 29, either  $v_{pub}^{old}$  or  $v_{pub}^{new}$  MUST be zero. No generality is lost because, if a transaction in which both  $v_{pub}^{old}$  and  $v_{pub}^{new}$  were nonzero were allowed, it could be replaced by an equivalent one in which  $min(v_{pub}^{old}, v_{pub}^{new})$  is subtracted from both of these values. This restriction helps to avoid unnecessary distinctions between transactions according to client implementation.

# 4.12 Balance and Binding Signature (Sapling)

**Sapling** adds *Spend transfers* and *Output transfers* to the transparent and *JoinSplit transfers* present in **Sprout**. The net value of *Spend transfers* minus *Output transfers* in a *transaction* is called the *balancing value*, measured in *zatoshi* as a signed integer v<sup>balance</sup>.

v<sup>balance</sup> is encoded explicitly in a transaction as the field valueBalance; see §7.1 'Encoding of Transactions' on p. 77.

A positive balancing value takes value from the **Sapling** value pool and adds it to the transparent value pool. A negative balancing value does the reverse. As a result, positive  $v^{balance}$  is treated like an *input* to the transparent value pool, whereas negative  $v^{balance}$  is treated like an *output* from that pool.

Consistency of v<sup>balance</sup> with the *value commitments* in *Spend descriptions* and *Output descriptions* is enforced by the *binding signature*. This signature has a dual rôle in the **Sapling** protocol:

- To prove that the total value spent by *Spend transfers*, minus that produced by *Output transfers*, is consistent with the v<sup>balance</sup> field of the *transaction*;
- To prove that the signer knew the randomness used for the spend and output *value commitments*, in order to prevent *Output descriptions* from being replayed by an adversary in a different *transaction*. (A *Spend description* already cannot be replayed due to its *spend authorization signature*.)

Instead of generating a key pair at random, we generate it as a function of the *value commitments* in the *Spend descriptions* and *Output descriptions* of the *transaction*, and the *balancing value*.

Let  $\mathbb{J}^{(r)}$ ,  $\mathbb{J}^{(r)*}$ , and  $r_{\mathbb{J}}$  be as defined in §5.4.8.3 'Jubjub' on p. 66.

Let ValueCommit, V, and R be as defined in §5.4.7.3 'Homomorphic Pedersen commitments' on p. 62:

 $\mathsf{ValueCommit}: \mathsf{ValueCommit}. \mathsf{Trapdoor} \times \left\{ -\frac{r_{\mathbb{J}} - 1}{2} \dots \frac{r_{\mathbb{J}} - 1}{2} \right\} \to \mathsf{ValueCommit}. \mathsf{Output};$ 

 $\mathcal{V}: \mathbb{J}^{(r)*}$  is the value base in ValueCommit;

 $\mathcal{R}: \mathbb{J}^{(r)*}$  is the randomness base in ValueCommit.

BindingSig,  $\Leftrightarrow$ , and  $\boxplus$  are instantiated in §5.4.6.2 'Binding Signature' on p. 61. These and the derived notation  $\Leftrightarrow$ ,  $\bigoplus_{i=1}^{N}$ ,  $\boxminus$ , and  $\boxplus_{i=1}^{N}$  are specified in §4.1.6.2 'Signature with Private Key to Public Key Homomorphism' on p. 22.

Suppose that the transaction has:

- $\cdot \ n \ Spend \ descriptions \ with \ value \ commitments \ {\sf cv}^{\sf old}_{1..n},$  committing to values  ${\sf v}^{\sf old}_{1..n}$  with randomness  ${\sf rcv}^{\sf old}_{1..n};$
- m Output descriptions with value commitments  $cv_{1..m}^{new}$ , committing to values  $v_{1..m}^{new}$  with randomness  $rcv_{1..m}^{new}$ ;
- · balancing value v<sup>balance</sup>.

In a correctly constructed transaction,  $\mathbf{v}^{\text{balance}} = \sum_{i=1}^{n} \mathbf{v}_{i}^{\text{old}} - \sum_{j=1}^{m} \mathbf{v}_{j}^{\text{new}}$ , but validators cannot check this directly because the values are hidden by the commitments.

Instead, validators calculate the transaction binding verification key as:

$$\mathsf{bvk} := \left( \bigoplus_{i=1}^n \mathsf{cv}_i^\mathsf{old} \right) \diamondsuit \left( \bigoplus_{j=1}^m \mathsf{cv}_j^\mathsf{new} \right) \diamondsuit \mathsf{ValueCommit}_0 \left( \mathsf{v}^\mathsf{balance} \right).$$

(This key is not encoded explicitly in the transaction and must be recalculated.)

The signer knows  $rcv_{1..n}^{old}$  and  $rcv_{1..m}^{new}$ , and so can calculate the corresponding signing key as:

$$\mathsf{bsk} := \left( \displaystyle \coprod_{i=1}^n \mathsf{rcv}_i^{\mathsf{old}} \right) \boxminus \left( \displaystyle \coprod_{j=1}^m \mathsf{rcv}_j^{\mathsf{new}} \right).$$

In order to check for implementation faults, the signer SHOULD also check that

bvk = BindingSig.DerivePublic(bsk).

Let SigHash be the SIGHASH transaction hash as defined in [ZIP-243], not associated with an input, using the SIGHASH type SIGHASH\_ALL.

A validator checks balance by verifying that  $BindingSig.Verify_{bvk}(SigHash, bindingSig) = 1$ .

We now explain why this works.

A binding signature proves knowledge of the discrete logarithm bsk of bvk with respect to  $\mathcal{R}$ . That is, bvk = [bsk]  $\mathcal{R}$ . So the value 0 and randomness bsk is an opening of the Pedersen commitment bvk = ValueCommit\_bsk(0). By the binding property of the Pedersen commitment, it is infeasible to find another opening of this commitment to a different value.

Similarly, the binding property of the *value commitments* in the *Spend descriptions* and *Output descriptions* ensures that an adversary cannot find more than one opening for any of those commitments, i.e. we may assume that  $\mathsf{v}_{1..n}^{\mathsf{old}}$  and  $\mathsf{rcv}_{1..n}^{\mathsf{old}}$  are determined by  $\mathsf{cv}_{1..n}^{\mathsf{old}}$ , and that  $\mathsf{v}_{1..m}^{\mathsf{new}}$  and  $\mathsf{rcv}_{1..m}^{\mathsf{new}}$  are determined by  $\mathsf{cv}_{1..m}^{\mathsf{new}}$ .

Using the fact that  $ValueCommit_{rcv}(v) = [v] \mathcal{V} \oplus [rcv] \mathcal{R}$ , the expression for bvk above is equivalent to:

$$\begin{aligned} \mathsf{bvk} &= \left[ \left( \bigoplus_{i=1}^n \mathsf{v}_i^{\mathsf{old}} \right) \boxminus \left( \bigoplus_{j=1}^m \mathsf{v}_j^{\mathsf{new}} \right) \boxminus \mathsf{v}^{\mathsf{balance}} \right] \mathcal{V} \, \oplus \left[ \left( \bigoplus_{i=1}^n \mathsf{rcv}_i^{\mathsf{old}} \right) \boxminus \left( \bigoplus_{j=1}^m \mathsf{rcv}_j^{\mathsf{new}} \right) \right] \mathcal{R} \\ &= \mathsf{ValueCommit}_{\mathsf{bsk}} \left( \sum_{i=1}^n \mathsf{v}_i^{\mathsf{old}} - \sum_{j=1}^m \mathsf{v}_j^{\mathsf{new}} - \mathsf{v}^{\mathsf{balance}} \right). \end{aligned}$$

Let 
$$v^* = \sum_{i=1}^n v_i^{\text{old}} - \sum_{i=1}^m v_j^{\text{new}} - v^{\text{balance}}$$
.

Suppose that  $v^* = v^{bad} \neq 0 \pmod{r_{\mathbb{J}}}$ . Then  $bvk = ValueCommit_{bsk}(v^{bad})$ . If the adversary were able to find the discrete logarithm of this bvk with respect to  $\mathcal{R}$ , say bsk' (as needed to create a valid binding signature), then  $(v^{bad}, bsk)$  and (0, bsk') would be distinct openings of bvk to different values, breaking the binding property of the value commitment scheme.

The above argument shows only that  $\mathbf{v}^* = 0 \pmod{r_{\mathbb{J}}}$ ; in order to show that  $\mathbf{v}^* = 0$ , we will also demonstrate that it does not overflow  $\left\{-\frac{r_{\mathbb{J}}-1}{2} ... \frac{r_{\mathbb{J}}-1}{2}\right\}$ .

The  $Spend \ statements$  prove that all of  $v_{1...m}^{\text{old}}$  are in  $\{0...2^{\ell_{\text{value}}}-1\}$ . Similarly the  $Output \ statements$  prove that all of  $v_{1...m}^{\text{new}}$  are in  $\{0...2^{\ell_{\text{value}}}-1\}$ .  $v_{1...m}^{\text{balance}}$  is encoded in the transaction as a signed two's complement 64-bit integer in the range  $\{-2^{63}...2^{63}-1\}$ .  $\ell_{\text{value}}$  is defined as 64, so  $v^*$  is in the range  $\{-m\cdot(2^{64}-1)-2^{63}+1...n\cdot(2^{64}-1)+2^{63}\}$ . The maximum transaction size of 2 MB limits n to at most floor  $\left(\frac{2000000}{384}\right)=5208$  and m to at most floor  $\left(\frac{2000000}{948}\right)=2109$ , ensuring  $v^*\in\{-38913406623490299131842...96079866507916199586728\}$  which is a subrange of  $\left\{-\frac{r_{\mathbb{J}}-1}{2}...\frac{r_{\mathbb{J}}-1}{2}\right\}$ .

Thus checking the *binding signature* ensures that the *transaction* balances, without the individual values of the *Spend descriptions* and *Output descriptions* being revealed.

In addition this proves that the signer, knowing the  $\square$ -sum of the *value commitment* randomnesses, authorized a *transaction* with the given *SIGHASH transaction hash* by signing SigHash.

**Note:** The spender **MAY** reveal any strict subset of the *value commitment* randomnesses to other parties that are cooperating to create the *transaction*. If all of the *value commitment* randomnesses are revealed, that could allow replaying the *Output descriptions* of the *transaction*.

**Non-normative note:** The technique of checking signatures using a public key derived from a sum of *Pedersen commitments* is also used in the **Mimblewimble** protocol [Jedusor2016].

# 4.13 Spend Authorization Signature

SpendAuthSig is used in **Sapling** to prove knowledge of the *spending key* authorizing spending of an input *note*. It is instantiated in §5.4.6.1 'Spend Authorization Signature' on p. 61.

Knowledge of the *spending key* could have been proven directly in the *Spend statement*, similar to the check in §4.15.1 '*Spend authority*' on p. 40 that is part of the *JoinSplit statement*. The motivation for a separate signature is to allow devices that are limited in memory and computational capacity, such as hardware wallets, to authorize a **Sapling** shielded spend. Typically such devices cannot create, and may not be able to verify, *zk-SNARK proofs* for a *statement* of the size needed using the PHGR13 or Groth16 proving systems.

The verifying key of the signature must be revealed in the *Spend description* so that the signature can be checked by validators. To ensure that the verifying key cannot be linked to the *shielded payment address* or *spending key* from which the *note* was spent, we use a *signature scheme with re-randomizable keys*. The *Spend statement* proves that this verifying key is a re-randomization of the *spend authorization address key* ak with a randomizer known to the signer. The *spend authorization signature* is over the *SIGHASH transaction hash*, so that it cannot be replayed in other *transactions*.

Let SigHash be the SIGHASH transaction hash as defined in [ZIP-243], not associated with an input, using the SIGHASH type SIGHASH\_ALL.

Let ask be the spend authorization private key as defined in §4.2.2 'Sapling Key Components' on p. 27.

For each *Spend description*, the signer uses a fresh *spend authorization randomizer*  $\alpha$ :

- 1. Choose  $\alpha \stackrel{\mathbb{R}}{\leftarrow} \mathsf{SpendAuthSig.GenRandom}()$ .
- 2. Let  $rsk = SpendAuthSig.RandomizePrivate(\alpha, ask)$ .
- 3. Let rk = SpendAuthSig.DerivePublic(rsk).
- 4. Generate a proof  $\pi_{\mathsf{ZKSpend}}$  of the *Spend statement* (§4.15.2 '*Spend Statement* (*Sapling*)' on p. 41), with  $\alpha$  in the *auxiliary input* and rk in the *primary input*.
- 5. Let  $spendAuthSig = SpendAuthSig.Sign_{rsk}(SigHash)$ .

The resulting spendAuthSig and  $\pi_{ZKSpend}$  are included in the *Spend description*.

**Note:** If the spender is computationally or memory-limited, step 4 **MAY** be delegated to a different party that is capable of performing the *zk proof*. In this case privacy will be lost to that party since it needs ak and the *proof authorizing key* nsk; this allows also deriving the nk component of the *full viewing key*. Together ak and nk are sufficient to recognize spent *notes* and to recognize and decrypt incoming *notes*. However, the other party will not obtain spending authority for other *transactions*, since it is not able to create a *spend authorization signature* by itself.

## 4.14 Note Commitments and Nullifiers

A *transaction* that contains one or more *JoinSplit descriptions* or *Spend descriptions*, when entered into the *block chain*, appends to the *note commitment tree* with all constituent *note commitments*.

All of the constituent *nullifiers* are also entered into the *nullifier set* of the associated *treestate*. A *transaction* is not valid if it would have added a *nullifier* to the *nullifier set* that already exists in the set (see §3.8 'Nullifier Sets' on p. 17).

In **Sprout**, each *note* has a  $\rho$  component.

In **Sapling**, each *positioned note* has an associated  $\rho$  value which is computed from its *note commitment* cm and *note position* pos as follows:

```
\rho := MixingPedersenHash(cm, pos).
```

Mixing Pedersen Hash is defined in §5.4.1.8 'Mixing Pedersen Hash Function' on p. 54.

Let PRF<sup>nf</sup> and PRF<sup>nfSapling</sup> be as instantiated in §5.4.2 'Pseudo Random Functions' on p. 55.

For a **Sprout** note, the nullifier is derived as  $\mathsf{PRF}_{\mathsf{a}_{\mathsf{s}\mathsf{k}}}^{\mathsf{nf}}(\rho)$ , where  $\mathsf{a}_{\mathsf{s}\mathsf{k}}$  is the spending key associated with the note.

For a **Sapling** note, the nullifier is derived as  $\mathsf{PRF}^{\mathsf{nfSapling}}_{\mathsf{nk}\star}(\rho\star)$ , where  $\mathsf{nk}\star$  is a representation of the nullifier deriving key associated with the note and  $\rho\star = \mathsf{repr}_{\mathbb{T}}(\rho)$ .

## 4.15 Zk-SNARK Statements

## 4.15.1 JoinSplit Statement (Sprout)

Let  $\ell_{\mathsf{MerkleSprout}}$ ,  $\ell_{\mathsf{PRFSprout}}$ , MerkleDepth  $^{\mathsf{Sprout}}$ ,  $\ell_{\mathsf{value}}$ ,  $\ell_{\mathsf{a}_{\mathsf{sk}}}$ ,  $\ell_{\phi}$ ,  $\ell_{\mathsf{hSig}}$ ,  $N^{\mathsf{old}}$ ,  $N^{\mathsf{new}}$  be as defined in §5.3 'Constants' on p. 49. Let  $\mathsf{PRF}^{\mathsf{addr}}$ ,  $\mathsf{PRF}^{\mathsf{nf}}$ ,  $\mathsf{PRF}^{\mathsf{pk}}$ , and  $\mathsf{PRF}^{\rho}$  be as defined in §4.1.2 'Pseudo Random Functions' on p. 18.

Let NoteCommit<sup>Sprout</sup> be as defined in §4.1.7 'Commitment' on p. 23, and let Note<sup>Sprout</sup> and NoteCommitment<sup>Sprout</sup> be as defined in §3.2 'Notes' on p. 12.

A valid instance of  $\pi_{\mathsf{ZKJoinSplit}}$  assures that given a *primary input*:

```
\begin{split} & (\mathsf{rt} : \mathbb{B}^{[\ell_{\mathsf{MerkleSprout}}]}, \\ & \mathsf{nf}^{\mathsf{old}}_{1..N^{\mathsf{old}}} : \mathbb{B}^{[\ell_{\mathsf{PRFSprout}}][N^{\mathsf{old}}]}, \\ & \mathsf{cm}^{\mathsf{new}}_{1..N^{\mathsf{new}}} : \mathsf{NoteCommit}^{\mathsf{Sprout}}.\mathsf{Output}^{[N^{\mathsf{new}}]}, \\ & \mathsf{v}^{\mathsf{old}}_{\mathsf{pub}} : \{0 ... 2^{\ell_{\mathsf{value}}} - 1\}, \\ & \mathsf{v}^{\mathsf{new}}_{\mathsf{pub}} : \{0 ... 2^{\ell_{\mathsf{value}}} - 1\}, \\ & \mathsf{h}_{\mathsf{Sig}} : \mathbb{B}^{[\ell_{\mathsf{hSig}}]}, \\ & \mathsf{h}_{1..N^{\mathsf{old}}} : \mathbb{B}^{[\ell_{\mathsf{PRFSprout}}][N^{\mathsf{old}}]}), \end{split}
```

the prover knows an auxiliary input:

```
\begin{split} & \left(\mathsf{path}_{1..N^{\mathsf{old}}} : \mathbb{B}^{[\ell_{\mathsf{MerkleSprout}}][\mathsf{MerkleDepth}^{\mathsf{Sprout}}][N^{\mathsf{old}}]} \\ & \mathsf{pos}_{1..N^{\mathsf{old}}} : \left\{0 \dots 2^{\mathsf{MerkleDepth}^{\mathsf{Sprout}}} - 1\right\}^{[N^{\mathsf{old}}]}, \\ & \mathbf{n}^{\mathsf{old}}_{1..N^{\mathsf{old}}} : \mathsf{Note}^{\mathsf{Sprout}[N^{\mathsf{old}}]}, \\ & \mathsf{a}^{\mathsf{old}}_{\mathsf{sk},1..N^{\mathsf{old}}} : \mathbb{B}^{[\ell_{\mathsf{a_{sk}}}][N^{\mathsf{old}}]}, \\ & \mathbf{n}^{\mathsf{new}}_{1..N^{\mathsf{new}}} : \mathsf{Note}^{\mathsf{Sprout}[N^{\mathsf{new}}]}, \\ & \phi : \mathbb{B}^{[\ell_{\phi}]}, \\ & \mathsf{enforceMerklePath}_{1..N^{\mathsf{old}}} : \mathbb{B}^{[N^{\mathsf{old}}]}), \end{split}
```

where:

for each 
$$i \in \{1..N^{\text{old}}\}$$
:  $\mathbf{n}_i^{\text{old}} = (\mathsf{a}_{\mathsf{pk},i}^{\text{old}}, \mathsf{v}_i^{\text{old}}, \mathsf{p}_i^{\text{old}}, \mathsf{rcm}_i^{\text{old}})$ ; for each  $i \in \{1..N^{\text{new}}\}$ :  $\mathbf{n}_i^{\text{new}} = (\mathsf{a}_{\mathsf{pk},i}^{\text{new}}, \mathsf{v}_i^{\text{new}}, \mathsf{p}_i^{\text{new}}, \mathsf{rcm}_i^{\text{new}})$ 

such that the following conditions hold:

Merkle path validity for each  $i \in \{1..N^{\text{old}}\}\ |\ \text{enforceMerklePath}_i = 1$ :  $(\text{path}_i, \text{pos}_i)$  is a valid Merkle path (see §4.8 'Merkle path validity' on p. 34) of depth MerkleDepth from NoteCommitment  $(\mathbf{n}_i^{\text{old}})$  to the anchor rt. Note: Merkle path validity covers conditions 1. (a) and 1. (d) of the NP statement in [BCGGMTV2014, section 4.2].

 $\textbf{Merkle path enforcement} \quad \text{for each } i \in \{1..\text{N}^{\mathsf{old}}\}, \text{if } \mathsf{v}_i^{\mathsf{old}} \neq 0 \text{ then enforceMerklePath}_i = 1.$ 

$$\mathbf{Balance} \quad \mathbf{v}_{\mathsf{pub}}^{\mathsf{old}} + \sum\nolimits_{i=1}^{N^{\mathsf{old}}} \mathbf{v}_{i}^{\mathsf{old}} = \mathbf{v}_{\mathsf{pub}}^{\mathsf{new}} + \sum\nolimits_{i=1}^{N^{\mathsf{new}}} \mathbf{v}_{i}^{\mathsf{new}} \in \{0 \dots 2^{\ell_{\mathsf{value}}} - 1\}.$$

 $\textbf{Nullifier integrity} \quad \text{for each } i \in \{1..\text{N}^{\mathsf{old}}\} : \mathsf{nf}_i^{\mathsf{old}} = \mathsf{PRF}_{\mathsf{a}_{\mathsf{c}^{\mathsf{l}}}^{\mathsf{old}}_i}^{\mathsf{old}}(\rho_i^{\mathsf{old}}).$ 

 $\mathbf{Spend} \ \mathbf{authority} \quad \text{for each } i \in \{1..\mathrm{N}^{\mathsf{old}}\} \colon \mathsf{a}^{\mathsf{old}}_{\mathsf{pk},i} = \mathsf{PRF}^{\mathsf{addr}}_{\mathsf{a}^{\mathsf{old}}_{\mathsf{sk},i}}(0).$ 

 $\textbf{Non-malleability} \quad \text{for each } i \in \{1..\text{N}^{\mathsf{old}}\} : \, \mathsf{h}_i = \mathsf{PRF}^{\mathsf{pk}}_{\mathsf{a}^{\mathsf{old}}_{\mathsf{sk},i}}(i,\mathsf{h}_{\mathsf{Sig}}).$ 

**Uniqueness of**  $\rho_i^{\text{new}}$  for each  $i \in \{1...N^{\text{new}}\}$ :  $\rho_i^{\text{new}} = \mathsf{PRF}_{\omega}^{\rho}(i, \mathsf{h}_{\mathsf{Sig}})$ 

 $\textbf{Note commitment integrity} \quad \text{for each } i \in \{1..\text{N}^{\mathsf{new}}\} : \mathsf{cm}^{\mathsf{new}}_i = \mathsf{NoteCommitment}^{\mathsf{Sprout}}(\mathbf{n}^{\mathsf{new}}_i).$ 

For details of the form and encoding of proofs, see §5.4.9.1 'PHGR13' on p. 68.

## 4.15.2 Spend Statement (Sapling)

Let  $\ell_{\mathsf{MerkleSapling}}$ ,  $\ell_{\mathsf{PRFnfSapling}}$ , and  $\ell_{\mathsf{scalar}}$  be as defined in §5.3 'Constants' on p. 49.

Let ValueCommit and NoteCommit Sapling be as specified in §4.1.7 'Commitment' on p. 23.

Let SpendAuthSig be as defined in §5.4.6.1 'Spend Authorization Signature' on p. 61.

Let  $\mathbb{J}$ ,  $\mathbb{J}^{(r)}$ , repr $_{\mathbb{J}}$ ,  $q_{\mathbb{J}}$ ,  $r_{\mathbb{J}}$ , and  $h_{\mathbb{J}}$  be as defined in §5.4.8.3 'Jubjub' on p. 66.

Let  $\mathsf{Extract}_{\mathbb{I}^{(r)}}: \mathbb{J}^{(r)} \to \mathbb{B}^{[\ell_{\mathsf{MerkleSapling}}]}$  be as defined in §5.4.8.4 *'Hash Extractor for Jubjub'* on p. 67.

Let  $\mathcal{H}$  be as defined in §4.2.2 'Sapling Key Components' on p. 27.

A valid instance of  $\pi_{ZKSpend}$  assures that given a *primary input*:

```
\begin{split} & (\text{rt} \ {}^{\circ} \ \mathbb{B}^{[\ell_{\mathsf{MerkleSapling}}]}, \\ & \text{cv}^{\mathsf{old}} \ {}^{\circ} \ \mathsf{ValueCommit.Output}, \\ & \text{nf}^{\mathsf{old}} \ {}^{\circ} \ \mathbb{B}^{[\ell_{\mathsf{PRFnfSapling}}]}, \\ & \text{rk} \ {}^{\circ} \ \mathsf{SpendAuthSig.Public}), \end{split}
```

the prover knows an auxiliary input:

```
\begin{split} & (\mathsf{path} \, \colon \mathbb{B}^{[\ell_{\mathsf{Merkle}}]}[\mathsf{MerkleDepth}^{\mathsf{Sapling}}], \\ & \mathsf{pos} \, \colon \{0 \dots 2^{\mathsf{MerkleDepth}^{\mathsf{Sapling}}} - 1\}, \\ & \mathsf{g_d} \, \colon \mathbb{J}, \\ & \mathsf{pk_d} \, \colon \mathbb{J}, \\ & \mathsf{v}^{\mathsf{old}} \, \colon \{0 \dots 2^{\ell_{\mathsf{value}}} - 1\}, \\ & \mathsf{rcv}^{\mathsf{old}} \, \colon \{0 \dots 2^{\ell_{\mathsf{scalar}}} - 1\}, \\ & \mathsf{cm}^{\mathsf{old}} \, \colon \mathbb{J}, \\ & \mathsf{rcm}^{\mathsf{old}} \, \colon \mathbb{J}, \\ & \mathsf{rcm}^{\mathsf{old}} \, \colon \{0 \dots 2^{\ell_{\mathsf{scalar}}} - 1\}, \\ & \alpha \, \colon \{0 \dots 2^{\ell_{\mathsf{scalar}}} - 1\}, \\ & \mathsf{ak} \, \colon \mathsf{SpendAuthSig.Public}, \\ & \mathsf{nsk} \, \colon \{0 \dots 2^{\ell_{\mathsf{scalar}}} - 1\}) \end{split}
```

such that the following conditions hold:

 $\textbf{Note commitment integrity} \quad \mathsf{cm}^{\mathsf{old}} = \mathsf{NoteCommit}^{\mathsf{Sapling}}_{\mathsf{rcm}^{\mathsf{old}}}(\mathsf{repr}_{\mathbb{J}}(\mathsf{g}_{\mathsf{d}}), \mathsf{repr}_{\mathbb{J}}(\mathsf{pk}_{\mathsf{d}}), \mathsf{v}^{\mathsf{old}}).$ 

**Merkle path validity** Either  $v^{old} = 0$ ; or (path, pos) is a valid *Merkle path* of depth MerkleDepth<sup>Sapling</sup>, as defined in §4.8 '*Merkle path validity*' on p. 34, from  $cm_u = Extract_{T^{(r)}}(cm^{old})$  to the *anchor* rt.

 $\label{eq:ValueCommitment} \textbf{Value commitment integrity} \quad \mathsf{cv}^{\mathsf{old}} = \mathsf{ValueCommit}_{\mathsf{rcv}^{\mathsf{old}}}(\mathsf{v}^{\mathsf{old}}).$ 

**Small order checks**  $g_d$  and ak are not of small order, i.e.  $[h_{\mathbb{J}}] g_d \neq \mathcal{O}_{\mathbb{J}}$  and  $[h_{\mathbb{J}}] ak \neq \mathcal{O}_{\mathbb{J}}$ .

```
Nullifier integrity nf^{old} = PRF_{nk\star}^{nfSapling}(\rho\star) where nk\star = repr_{\mathbb{J}}([nsk] \mathcal{H}) \rho\star = repr_{\mathbb{J}}(MixingPedersenHash(cm^{old}, pos)).
```

**Spend authority**  $rk = SpendAuthSig.RandomizePublic(<math>\alpha$ , ak).

**Diversified address integrity**  $pk_d = [ivk] g_d$  where

```
ivk = CRH^{ivk}(ak\star, nk\star)

ak\star = repr_{T}(ak).
```

For details of the form and encoding of Spend statement proofs, see §5.4.9.2 'Groth16' on p. 69.

### Notes:

• Public and *auxiliary inputs* **MUST** be constrained to have the types specified. In particular, see §A.3.3.2 '*Edwards [de]compression and validation*' on p. 121 for implementation of validity checks on compressed representations of *Jubjub curve* points.

The ValueCommit.Output and SpendAuthSig.Public types also represent points, i.e. J.

- In the Merkle path validity check, each *layer* does *not* check that its input bit sequence is a canonical encoding (in  $\{0...r_{\mathbb{J}}-1\}$ ) of the integer from the previous *layer*.
- It is *not* checked in the *Spend statement* that rk is not of small order. However, this *is* checked outside the *Spend statement*, as specified in §4.4 *'Spend Descriptions'* on p. 30.
- It is *not* checked that  $rcv^{old} < r_{\mathbb{I}}$  or that  $rcm^{old} < r_{\mathbb{I}}$ .
- SpendAuthSig.RandomizePublic( $\alpha$ , ak) = ak+[ $\alpha$ ]  $\mathcal{G}$ . ( $\mathcal{G}$  is as defined in §5.4.6.1 'Spend Authorization Signature' on p. 61.)

## 4.15.3 Output Statement (Sapling)

Let  $\ell_{\mathsf{MerkleSapling}}$ ,  $\ell_{\mathsf{PRFnfSapling}}$ , and  $\ell_{\mathsf{scalar}}$  be as defined in §5.3 'Constants' on p. 49.

Let ValueCommit and NoteCommit Sapling be as specified in §4.1.7 'Commitment' on p. 23.

Let  $\mathbb{J}$ , repr<sub> $\mathbb{J}$ </sub>, and  $h_{\mathbb{J}}$  be as defined in §5.4.8.3 'Jubjub' on p. 66.

A valid instance of  $\pi_{ZKOutput}$  assures that given a *primary input*:

```
 \begin{split} & \left( \mathsf{cv}^\mathsf{new} : \mathsf{ValueCommit.Output}, \right. \\ & \left. \mathsf{cm}_u : \mathbb{B}^{\left[\ell_{\mathsf{MerkleSapling}}\right]}, \\ & \left. \mathsf{epk} : \mathbb{J} \right), \end{split}
```

the prover knows an auxiliary input:

```
\begin{split} &(\mathsf{g_d} \circ \mathbb{J}, \\ &\mathsf{pk} \star_\mathsf{d} \circ \mathbb{B}^{[\ell_{\mathbb{J}}]}, \\ &\mathsf{v}^\mathsf{new} \circ \{0 \dots 2^{\ell_{\mathsf{value}}} - 1\}, \\ &\mathsf{rcv}^\mathsf{new} \circ \{0 \dots 2^{\ell_{\mathsf{scalar}}} - 1\}, \\ &\mathsf{rcm}^\mathsf{new} \circ \{0 \dots 2^{\ell_{\mathsf{scalar}}} - 1\}, \\ &\mathsf{esk} \circ \{0 \dots 2^{\ell_{\mathsf{scalar}}} - 1\}) \end{split}
```

such that the following conditions hold:

 $\textbf{Note commitment integrity} \quad \mathsf{cm}_u = \mathsf{Extract}_{\mathbb{J}^{(r)}} \big( \mathsf{NoteCommit}_{\mathsf{rcm}^{\mathsf{new}}}^{\mathsf{Sapling}} (\mathsf{g} \star_{\mathsf{d}}, \mathsf{pk} \star_{\mathsf{d}}, \mathsf{v}^{\mathsf{new}}) \big), \text{ where } \mathsf{g} \star_{\mathsf{d}} = \mathsf{repr}_{\mathbb{J}} (\mathsf{g}_{\mathsf{d}}).$ 

 $\label{eq:Value commitment} \textbf{Value commitment integrity} \quad \mathsf{cv}^{\mathsf{new}} = \mathsf{ValueCommit}_{\mathsf{rcv}^{\mathsf{new}}}(\mathsf{v}^{\mathsf{new}}).$ 

**Small order check**  $g_d$  is not of small order, i.e.  $[h_J] g_d \neq \mathcal{O}_J$ .

**Ephemeral public key integrity** epk = [esk] g<sub>d</sub>.

For details of the form and encoding of Output statement proofs, see §5.4.9.2 'Groth16' on p. 69.

### Notes:

• Public and *auxiliary inputs* **MUST** be constrained to have the types specified. In particular, see §A.3.3.2 '*Edwards [de]compression and validation*' on p. 121 for implementation of validity checks on compressed representations of *Jubjub curve* points.

The ValueCommit.Output type also represents points, i.e. J.

- The validity of  $pk*_d$  is *not* checked in this circuit.
- It is *not* checked that  $rcv^{old} < r_{\mathbb{T}}$  or that  $rcm^{old} < r_{\mathbb{T}}$ .

# 4.16 In-band secret distribution (Sprout)

In **Sprout**, the secrets that need to be transmitted to a recipient of funds in order for them to later spend, are v,  $\rho$ , and rcm. A *memo field* (§ 3.2.1 '*Note Plaintexts and Memo Fields*' on p. 13) is also transmitted.

To transmit these secrets securely to a recipient *without* requiring an out-of-band communication channel, the *transmission key* pk<sub>enc</sub> is used to encrypt them. The recipient's possession of the associated *incoming viewing key* ivk is used to reconstruct the original *note* and *memo field*.

A single ephemeral public key is shared between encryptions of the N<sup>new</sup> shielded outputs in a JoinSplit description. All of the resulting ciphertexts are combined to form a *transmitted notes ciphertext*.

For both encryption and decryption,

- · let Sym be the scheme instantiated in §5.4.3 'Authenticated One-Time Symmetric Encryption' on p. 57;
- · let KDF<sup>Sprout</sup> be the *Key Derivation Function* instantiated in §5.4.4.2 '**Sprout** Key Derivation' on p. 57;
- · let KA<sup>Sprout</sup> be the *key agreement scheme* instantiated in §5.4.4.1 '**Sprout** Key Agreement' on p. 57;
- · let  $h_{Sig}$  be the value computed for this *JoinSplit description* in §4.3 'JoinSplit Descriptions' on p. 29.

# 4.16.1 Encryption (Sprout)

Let KA<sup>Sprout</sup> be the key agreement scheme instantiated in §5.4.4.1 'Sprout Key Agreement' on p. 57.

Let  $pk_{enc,1,N^{new}}^{new}$  be the *transmission keys* for the intended recipient addresses of each new *note*.

Let  $np_{1..N^{new}}$  be **Sprout** note plaintexts defined in §5.5 'Encodings of Note Plaintexts and Memo Fields' on p. 70.

Then to encrypt:

```
\begin{split} \cdot & \text{ Generate a new KA}^{\mathsf{Sprout}} \text{ (public, private) key pair (epk, esk).} \\ \cdot & \text{ For } i \in \{1..\mathsf{N}^{\mathsf{new}}\}, \\ & - \text{ Let P}^{\mathsf{enc}}_i \text{ be the raw encoding of } \mathbf{np}_i. \\ & - \text{ Let sharedSecret}_i := \mathsf{KA}^{\mathsf{Sprout}}. \mathsf{Agree}(\mathsf{esk}, \mathsf{pk}^{\mathsf{new}}_{\mathsf{enc},i}). \\ & - \text{ Let K}^{\mathsf{enc}}_i := \mathsf{KDF}^{\mathsf{Sprout}}(i, \mathsf{h}_{\mathsf{Sig}}, \mathsf{sharedSecret}_i, \mathsf{epk}, \mathsf{pk}^{\mathsf{new}}_{\mathsf{enc},i}). \\ & - \text{ Let C}^{\mathsf{enc}}_i := \mathsf{Sym.Encrypt}_{\mathsf{K}^{\mathsf{enc}}_i}(\mathsf{P}^{\mathsf{enc}}_i). \end{split}
```

The resulting transmitted notes ciphertext is  $(epk, C_{1..N}^{enc})$ .

**Note:** It is technically possible to replace  $C_i^{enc}$  for a given *note* with a random (and undecryptable) dummy ciphertext, relying instead on out-of-band transmission of the *note* to the recipient. In this case the ephemeral key **MUST** still be generated as a random public key (rather than a random bit sequence) to ensure indistinguishability from other *JoinSplit descriptions*. This mode of operation raises further security considerations, for example of how to validate a **Sprout** *note* received out-of-band, which are not addressed in this document.

## 4.16.2 Decryption (Sprout)

Let ivk =  $(a_{pk}, sk_{enc})$  be the recipient's *incoming viewing key*, and let  $pk_{enc}$  be the corresponding *transmission key* derived from  $sk_{enc}$  as specified in §4.2.1 '**Sprout** Key Components' on p. 27.

Let  $cm_{1 N^{new}}^{new}$  be the *note commitments* of each output coin.

Then for each  $i \in \{1..N^{new}\}$ , the recipient will attempt to decrypt that ciphertext component (epk,  $C_i^{enc}$ ) as follows:

```
\begin{split} & \text{let sharedSecret}_i = \text{KA}^{\text{Sprout}}.\text{Agree}(\text{sk}_{\text{enc}}, \text{epk}) \\ & \text{let } \mathsf{K}_i^{\text{enc}} = \text{KDF}^{\text{Sprout}}(i, \mathsf{h}_{\text{Sig}}, \text{sharedSecret}_i, \text{epk}, \text{pk}_{\text{enc}}) \\ & \text{return DecryptNoteSprout}(\mathsf{K}_i^{\text{enc}}, \mathsf{C}_i^{\text{enc}}, \text{cm}_i^{\text{new}}, \mathsf{a}_{\text{pk}}). \end{split} & \text{DecryptNoteSprout}(\mathsf{K}_i^{\text{enc}}, \mathsf{C}_i^{\text{enc}}, \text{cm}_i^{\text{new}}, \mathsf{a}_{\text{pk}}) \text{ is defined as follows:} \\ & \text{let } \mathsf{P}_i^{\text{enc}} = \text{Sym.Decrypt}_{\mathsf{K}_i^{\text{enc}}}(\mathsf{C}_i^{\text{enc}}) \\ & \text{if } \mathsf{P}_i^{\text{enc}} = \bot, \text{ return } \bot \end{split}
```

```
if NoteCommitmentSprout((a_{nk}, v_i^{new}, \rho_i^{new}, rcm_i^{new})) \neq cm<sub>i</sub><sup>new</sup>, return \perp, else return \mathbf{np}_i.
```

To test whether a *note* is unspent in a particular *block chain* also requires the *spending key*  $a_{sk}$ ; the coin is unspent if and only if  $nf = PRF_{a_{sk}}^{nf}(\rho)$  is not in the *nullifier set* for that *block chain*.

 $\mathsf{extract} \ \mathbf{np}_i = (\mathsf{v}_i^\mathsf{new} : \{0 \dots 2^{\ell_\mathsf{value}} - 1\}, \rho_i^\mathsf{new} : \mathbb{B}^{[\ell_\mathsf{PRFSprout}]}, \mathsf{rcm}_i^\mathsf{new} : \mathsf{NoteCommit}^\mathsf{Sprout}. \mathsf{Trapdoor}, \mathsf{memo}_i : \mathbb{B}^{\mathbb{Y}^{[512]}}) \ \mathsf{from}_i = (\mathsf{v}_i^\mathsf{new} : \{0 \dots 2^{\ell_\mathsf{value}} - 1\}, \rho_i^\mathsf{new} : \mathbb{B}^{[\ell_\mathsf{PRFSprout}]}, \mathsf{rcm}_i^\mathsf{new} : \mathsf{NoteCommit}^\mathsf{Sprout}. \mathsf{Trapdoor}, \mathsf{memo}_i : \mathbb{B}^{\mathbb{Y}^{[512]}}) \ \mathsf{from}_i = (\mathsf{v}_i^\mathsf{new} : \{0 \dots 2^{\ell_\mathsf{value}} - 1\}, \rho_i^\mathsf{new} : \mathbb{B}^{[\ell_\mathsf{PRFSprout}]}, \mathsf{rcm}_i^\mathsf{new} : \mathsf{NoteCommit}^\mathsf{Sprout}. \mathsf{Trapdoor}, \mathsf{memo}_i : \mathbb{B}^{\mathbb{Y}^{[512]}}) \ \mathsf{from}_i = (\mathsf{v}_i^\mathsf{new} : \{0 \dots 2^{\ell_\mathsf{value}} - 1\}, \rho_i^\mathsf{new} : \mathbb{B}^{[\ell_\mathsf{PRFSprout}]}, \mathsf{rcm}_i^\mathsf{new} : \mathsf{NoteCommit}^\mathsf{Sprout}. \mathsf{Trapdoor}, \mathsf{memo}_i : \mathbb{B}^{[\ell_\mathsf{PRFSprout}]}, \mathsf{new}_i : \mathsf{NoteCommit}^\mathsf{Sprout}. \mathsf{NoteCommit}^\mathsf{Sprout}. \mathsf{NoteCommit}^\mathsf{Sprout}, \mathsf{NoteCommit}^\mathsf{Sprout}. \mathsf{NoteCommit}^\mathsf{Sprout}, \mathsf{NoteCom$ 

#### Notes:

- The decryption algorithm corresponds to step 3 (b) i. and ii. (first bullet point) of the Receive algorithm shown in [BCGGMTV2014, Figure 2].
- A *note* can change from being unspent to spent as a node's view of the best *block chain* is extended by new *transactions*. Also, *block chain* reorganizations can cause a node to switch to a different best *block chain* that does not contain the *transaction* in which a *note* was output.

See §8.7 'In-band secret distribution' on p.93 for further discussion of the security and engineering rationale behind this encryption scheme.

# 4.17 In-band secret distribution (Sapling)

In **Sapling**, the secrets that need to be transmitted to a recipient of funds in order for them to later spend, are d, v, and rcm. A *memo field* (§3.2.1 'Note Plaintexts and Memo Fields' on p. 13) is also transmitted.

To transmit these secrets securely to a recipient *without* requiring an out-of-band communication channel, the *diversified transmission key* pk<sub>d</sub> is used to encrypt them. The recipient's possession of the associated *incoming viewing key* ivk is used to reconstruct the original *note* and *memo field*.

Unlike in a **Sprout** *JoinSplit description*, each **Sapling** *shielded output* is encrypted using a fresh ephemeral public key.

For both encryption and decryption,

- · let  $\ell_{\text{ovk}}$  be as defined in §5.3 'Constants' on p. 49;
- · let Sym be the scheme instantiated in §5.4.3 'Authenticated One-Time Symmetric Encryption' on p. 57;
- · let KDF<sup>Sapling</sup> be the *Key Derivation Function* instantiated in §5.4.4.4 '**Sapling** Key Derivation' on p. 58;
- · let KA<sup>Sapling</sup> be the *key agreement scheme* instantiated in §5.4.4.3 '**Sapling** Key Agreement' on p. 58;
- · let  $\ell_{\mathbb{I}}$  and repr<sub>I</sub> be as defined in §5.4.8.3 'Jubjub' on p. 66;
- · let Extractor for Jubjub' on p. 67;
- · let PRFock be as instantiated in §5.4.2 'Pseudo Random Functions' on p. 55.

## 4.17.1 Encryption (Sapling)

Let  $pk_d^{new}$ : KA<sup>Sapling</sup>.PublicPrimeOrder be the *diversified transmission key* for the intended recipient address of a new **Sapling** *note*, and let  $g_d^{new}$ : KA<sup>Sapling</sup>.PublicPrimeOrder be the corresponding *diversified base* computed as DiversifyHash(d).

Since **Sapling** note encryption is used only in the context of §4.6.2 'Sending Notes (Sapling)' on p. 32, we may assume that  $g_d^{new}$  has already been calculated and is not  $\perp$ .

Let ovk :  $\mathbb{B}^{\mathbb{Y}^{[\ell_{ovk}/8]}} \cup \{\bot\}$  be as described in §4.6.2 *'Sending Notes (Sapling)'* on p. 32, i.e. the *outgoing viewing key* of the *shielded payment address* from which the *note* is being spent, or an *outgoing viewing key* associated with a [ZIP-32] account. or  $\bot$ .

Let np = (d, v, rcm, memo) be the **Sapling** note plaintext.

np is encoded as defined in §5.5 'Encodings of Note Plaintexts and Memo Fields' on p. 70.

Let cy<sup>new</sup> be the *value commitment* for the new *note*, and let cm<sup>new</sup> be the *note commitment*.

Then to encrypt:

```
choose a uniformly random ephemeral private key esk \stackrel{R}{\leftarrow} KA<sup>Sapling</sup>.Private \ {0} let epk = KA<sup>Sapling</sup>.DerivePublic(esk, g_d^{new}) let P^{enc} be the raw encoding of \mathbf{np} let sharedSecret = KA<sup>Sapling</sup>.Agree(esk, pk_d^{new}) let K^{enc} = KDF<sup>Sapling</sup>(sharedSecret, epk) let C^{enc} = Sym.Encrypt<sub>K</sub><sup>enc</sup>(P^{enc}) if ovk = \bot: choose random ock R^{enc} Sym.K and \mathbf{op} R^{enc} \mathbf{proper} \mathbf{pro
```

The resulting *transmitted note ciphertext* is (epk, C<sup>enc</sup>, C<sup>out</sup>).

**Note:** It is technically possible to replace C<sup>enc</sup> for a given *note* with a random (and undecryptable) dummy ciphertext, relying instead on out-of-band transmission of the *note* to the recipient. In this case the ephemeral key **MUST** still be generated as a random public key (rather than a random bit sequence) to ensure indistinguishability from other *Output descriptions*. This mode of operation raises further security considerations, for example of how to validate a **Sapling** *note* received out-of-band, which are not addressed in this document.

# 4.17.2 Decryption using an Incoming Viewing Key (Sapling)

Let ivk  $: \{0...2^{\ell_{ivk}}-1\}$  be the recipient's *incoming viewing key*, as specified in §4.2.2 '**Sapling** Key Components' on p. 27.

Let  $(epk, C^{enc}, C^{out})$  be the *transmitted note ciphertext* from the *Output description*. Let cmu be that field of the *Output description* (encoding the u-coordinate of the *note commitment*).

The recipient will attempt to decrypt the epk and Cenc components of the transmitted note ciphertext as follows:

```
let sharedSecret = KA<sup>Sapling</sup>.Agree(ivk, epk) let K^{enc} = KDF^{Sapling}(sharedSecret, epk) let P^{enc} = Sym.Decrypt_{K^{enc}}(C^{enc}) if P^{enc} = \bot, return \bot extract \mathbf{np} = (d : \mathbb{B}^{[\ell_d]}, v : \{0 ... 2^{\ell_{value}} - 1\}, \underline{rcm} : \mathbb{B}^{v[32]}, memo : \mathbb{B}^{v[512]}) from P^{enc} let rcm = LEOS2IP_{256}(\underline{rcm}) and g_d = DiversifyHash(d) if rcm \ge r_{\mathbb{J}} or g_d = \bot, return \bot let pk_d = KA^{Sapling}.DerivePublic(ivk, <math>p_d) let pk_d = KA^{Sapling}. pk_d = KA^{Sapling} (pk_d = KA^{Sapling}) from pk_d = KA^{Sapling} (pk_d = KA^{Sapling}) from pk_d = KA^{Sapling} (pk_d = KA^{Sapling}) from pk_d = KA^{Sapling}) from pk_d = KA^{Sapling} from p
```

A received **Sapling** *note* is necessarily a *positioned note*, and so its  $\rho$  value can immediately be calculated as described in §4.14 '*Note Commitments and Nullifiers*' on p. 39.

To test whether a **Sapling** note is unspent in a particular block chain also requires the nullifier deriving key nk\*; the coin is unspent if and only if  $nf = PRF_{nk*}^{nfSapling}(repr_{\mathbb{J}}(\rho))$  is not in the nullifier set for that block chain.

**Note:** A *note* can change from being unspent to spent as a node's view of the best *block chain* is extended by new *transactions*. Also, *block chain* reorganizations can cause a node to switch to a different best *block chain* that does not contain the *transaction* in which a *note* was output.

## 4.17.3 Decryption using a Full Viewing Key (Sapling)

Let ovk :  $\mathbb{B}^{\mathbb{Y}^{[\ell_{ovk}/8]}}$  be the *outgoing viewing key*, as specified in §4.2.2 '**Sapling** Key Components' on p. 27, that is to be used for decryption. (If ovk =  $\bot$  was used for encryption, the payment is not decryptable by this method.)

Let  $(epk, C^{enc}, C^{out})$  be the *transmitted note ciphertext*, and let cv, cmu, and ephemeralKey be those fields of the *Output description* (encoding the *value commitment*, the u-coordinate of the *note commitment*, and epk).

The outgoing viewing key holder will attempt to decrypt the transmitted note ciphertext as follows:

```
let ock = PRF_{ovk}^{ock}(cv, cmu, ephemeralKey)
let op = Sym.Decrypt_{ock}(C^{out})
if \mathbf{op} = \bot, return \bot
extract (pk\star_d : \mathbb{B}^{[\ell_{\mathbb{J}}]}, esk : \mathbb{B}^{\mathbb{Y}^{[32]}}) from \mathbf{op}
let esk = LEOS2IP<sub>256</sub>(esk) and pk_d = abst_{\mathbb{J}}(pk \star_d)
if esk \geq r_{\mathbb{I}} or \mathsf{pk_d} \notin \mathsf{KA}^{\mathsf{Sapling}}.\mathsf{PublicPrimeOrder}, return \perp
let \ sharedSecret = KA^{Sapling}.Agree(esk, pk_d)
let K^{enc} = KDF^{Sapling}(sharedSecret, epk)
let P^{enc} = Sym.Decrypt_{\kappa^{enc}}(C^{enc})
if P^{enc} = \bot, return \bot
extract \mathbf{np} = (d : \mathbb{B}^{[\ell_d]}, \mathsf{v} : \{0 ... 2^{\ell_{\mathsf{value}}} - 1\}, \mathsf{rcm} : \mathbb{B}^{\mathbb{Y}^{[32]}}, \mathsf{memo} : \mathbb{B}^{\mathbb{Y}^{[512]}}) \text{ from } \mathsf{P}^{\mathsf{enc}}
let rcm = LEOS2IP_{256}(rcm) and g_d = DiversifyHash(d)
if \operatorname{rcm} \geq r_{\mathbb{J}} or \operatorname{g}_{\mathsf{d}} = \bot, \operatorname{return} \bot
if KA^{Sapling}. Derive Public (esk, g_d) \neq epk, return \perp
\mathsf{let}\;\mathsf{cm}_u' = \mathsf{Extract}_{\mathbb{J}^{(r)}}\big(\mathsf{NoteCommit}^{\mathsf{Sapling}}_{\mathsf{rcm}^{\mathsf{new}}}(\mathsf{repr}_{\mathbb{J}}(\mathsf{g}_\mathsf{d}),\mathsf{repr}_{\mathbb{J}}(\mathsf{pk}_\mathsf{d}),\mathsf{v})\big).
if LEBS2OSP<sub>256</sub> (cm'<sub>u</sub>) \neq cmu, return \perp, else return np.
```

**Note:** For a valid *transaction* it must be the case that ephemeralKey = LEBS2OSP<sub> $\ell_{\mathbb{T}}$ </sub> (repr<sub> $\mathbb{T}$ </sub> (epk)).

# 4.18 Block Chain Scanning (Sprout)

The following algorithm can be used, given the *block chain* and a **Sprout** *spending key*  $a_{sk}$ , to obtain each *note* sent to the corresponding *shielded payment address*, its *memo field* field, and its final status (spent or unspent).

Let  $\ell_{\mathsf{PRFSprout}}$  be as defined in §5.3 'Constants' on p. 49.

Let Note Sprout be as defined in §3.2 'Notes' on p. 12.

Let ivk =  $(a_{pk} : \mathbb{B}^{[\ell_{PRFSprout}]}, sk_{enc} : KA^{Sprout}$ . Private) be the *incoming viewing key* corresponding to  $a_{sk}$ , and let  $pk_{enc}$  be the associated *transmission key*, as specified in §4.2.1 '**Sprout** Key Components' on p. 27.

Initialize ReceivedSet :  $\mathcal{P}(\mathsf{Note}^{\mathsf{Sprout}} \times \mathbb{B}^{[512]}) = \{\}.$ 

Initialize SpentSet  $: \mathcal{P}(Note^{Sprout}) = \{\}.$ 

Initialize NullifierMap :  $\mathbb{B}^{[\ell_{PRFSprout}]} \to \mathsf{Note}^{\mathsf{Sprout}}$  to the empty mapping.

For each transaction tx,

For each JoinSplit description in tx,

Let (epk,  $C_{1..N^{\text{new}}}^{\text{enc}}$ ) be the transmitted notes ciphertext of the JoinSplit description.

For i in 1.. $N^{new}$ .

Attempt to decrypt the *transmitted note ciphertext* component (epk,  $C_i^{enc}$ ) using ivk with the algorithm in §4.16.2 '*Decryption (Sprout)*' on p. 44. If this succeeds giving np:

Extract  $\mathbf{n}$  and memo :  $\mathbb{BY}^{[512]}$  from  $\mathbf{np}$  (taking the  $a_{pk}$  field of the *note* to be  $a_{pk}$  from ivk).

Add (n. memo) to ReceivedSet.

Calculate the nullifier nf of n using  $a_{sk}$  as described in §3.2 'Notes' on p. 12.

Add the mapping  $nf \rightarrow n$  to NullifierMap.

Let  $nf_{1-N^{old}}$  be the *nullifiers* of the *JoinSplit description*.

For i in 1..N<sup>old</sup>,

If  $nf_i$  is present in NullifierMap, add NullifierMap( $nf_i$ ) to SpentSet.

Return (ReceivedSet, SpentSet).

# 4.19 Block Chain Scanning (Sapling)

In **Sapling**, block chain scanning requires only the nk and ivk key components, rather than a spending key as in **Sprout**.

Typically, these components are derived from a *full viewing key* as described in §4.2.2 '**Sapling** Key Components' on p. 27.

The following algorithm can be used, given the *block chain* and (nk :  $\mathbb{J}^{(r)}$ , ivk :  $\{0...2^{\ell_{ivk}}-1\}$ ), to obtain each *note* sent to the corresponding *shielded payment address*, its *memo field* field, and its final status (spent or unspent).

Let  $\ell_{\mathsf{PRFnfSapling}}$  be as defined in §5.3 'Constants' on p. 49.

Let Note Sapling be as defined in §3.2 'Notes' on p. 12.

```
Initialize ReceivedSet : \mathcal{P}(\mathsf{Note}^{\mathsf{Sapling}} \times \mathbb{BY}^{[512]}) = \{\}.
```

Initialize SpentSet :  $\mathcal{P}(Note^{Sapling}) = \{\}.$ 

Initialize NullifierMap :  $\mathbb{B}^{[\ell_{PRFnfSapling}]} \to Note^{Sapling}$  to the empty mapping.

For each transaction tx.

For each Output description in tx with note position pos,

Attempt to decrypt the *transmitted note ciphertext* components epk and C<sup>enc</sup> using ivk with the algorithm in §4.17.2 'Decryption using an Incoming Viewing Key (Sapling)' on p. 45. If this succeeds giving np:

Extract  $\mathbf{n}$  and memo :  $\mathbb{B}^{\mathbb{Y}^{[512]}}$  from  $\mathbf{np}$ .

Add (n. memo) to ReceivedSet.

Calculate the nullifier nf of n using nk and pos as described in §3.2 'Notes' on p. 12.

Add the mapping  $nf \rightarrow n$  to NullifierMap.

For each Spend description in tx,

Let nf be the *nullifier* of the *Spend description*.

If nf is present in NullifierMap, add NullifierMap(nf) to SpentSet.

Return (ReceivedSet, SpentSet).

#### Non-normative notes:

- The above algorithm does not use the ovk key component, or the C<sup>out</sup> transmitted note ciphertext component. When scanning the whole block chain, these are indeed not necessary. The advantage of supporting decryption using ovk as described in §4.17.3 'Decryption using a Full Viewing Key (Sapling)' on p. 46, is that it allows recovering information about the note plaintexts sent in a transaction from that transaction alone.
- When scanning only part of a block chain, it may be useful to augment the above algorithm with decryption
  of C<sup>out</sup> components for each transaction, in order to obtain information about notes that were spent in the
  scanned period but received outside it.
- The above algorithm does not detect *notes* that were sent "out-of-band" or with incorrect *transmitted note ciphertexts*. It is possible to detect whether such *notes* were spent only if their *nullifiers* are known.

### 5 Concrete Protocol

## 5.1 Caution

TODO: Explain the kind of things that can go wrong with linkage between abstract and concrete protocol. E.g. §8.5 *'Internal hash collision attack and fix'* on p. 91

# 5.2 Integers, Bit Sequences, and Endianness

All integers in **Zcash**-specific encodings are unsigned, have a fixed bit length, and are encoded in little-endian byte order *unless otherwise specified*.

The following functions convert between sequences of bits, sequences of bytes, and integers:

• I2LEBSP :  $(\ell : \mathbb{N}) \times \{0...2^{\ell} - 1\} \to \mathbb{B}^{[\ell]}$ , such that I2LEBSP $_{\ell}(x)$  is the sequence of  $\ell$  bits representing x in little-endian order;

- I2BEBSP  $: (\ell : \mathbb{N}) \times \{0...2^{\ell} 1\} \to \mathbb{B}^{[\ell]}$  such that I2BEBSP $_{\ell}(x)$  is the sequence of  $\ell$  bits representing x in big-endian order.
- LEOS2IP :  $(\ell : \mathbb{N} \mid \ell \mod 8 = 0) \times \mathbb{B}^{\mathbb{N}[\ell/8]} \to \{0...2^{\ell} 1\}$  such that LEOS2IP $_{\ell}(S)$  is the integer represented in little-endian order by the byte sequence S of length  $\ell/8$ .
- LEBS2OSP :  $(\ell:\mathbb{N}) \times \mathbb{B}^{[\ell]} \to \mathbb{BY}^{[\text{ceiling}(\ell/8)]}$  defined as follows: pad the input on the right with  $8 \cdot \text{ceiling}(\ell/8) \ell$  zero bits so that its length is a multiple of 8 bits. Then convert each group of 8 bits to a byte value with the *least* significant bit first, and concatenate the resulting bytes in the same order as the groups.
- LEOS2BSP :  $(\ell : \mathbb{N} \mid \ell \mod 8 = 0) \times \mathbb{BY}^{[\text{ceiling}(\ell/8)]} \to \mathbb{B}^{[\ell]}$  defined as follows: convert each byte to a group of 8 bits with the *least* significant bit first, and concatenate the resulting groups in the same order as the bytes.

In bit layout diagrams, each box of the diagram represents a sequence of bits. Diagrams are read from left-to-right, with lines read from top-to-bottom; the breaking of boxes across lines has no significance. The bit length  $\ell$  is given explicitly in each box, except when it is obvious (e.g. for a single bit, or for the notation  $[0]^{\ell}$  representing the sequence of  $\ell$  zero bits, or for the output of LEBS2OSP $_{\ell}$ ).

The entire diagram represents the sequence of *bytes* formed by first concatenating these bit sequences, and then treating each subsequence of 8 bits as a byte with the bits ordered from *most significant* to *least significant*. Thus the *most significant* bit in each byte is toward the left of a diagram. (This convention is used only in descriptions of the **Sprout** design; in the **Sapling** additions, bit/byte sequence conversions are always specified explicitly.) Where bit fields are used, the text will clarify their position in each case.

### 5.3 Constants

Define:

```
MerkleDepth^{Sprout}: \mathbb{N} := 29
MerkleDepth^{Sapling} : \mathbb{N} := 32
N^{\mathsf{old}} : \mathbb{N} := 2
N^{\mathsf{new}} : \mathbb{N} := 2
\ell_{\mathsf{value}} : \mathbb{N} := 64
\ell_{\mathsf{MerkleSprout}} : \mathbb{N} := 256
\ell_{\mathsf{MerkleSapling}} : \mathbb{N} := 255
\ell_{\mathsf{hSig}} : \mathbb{N} := 256
\ell_{\mathsf{PRFSprout}} : \mathbb{N} := 256
\ell_{\mathsf{PRFexpand}} : \mathbb{N} := 512
\ell_{\mathsf{PRFnfSapling}} : \mathbb{N} := 256
\ell_{\mathsf{rcm}} : \mathbb{N} := 256
\ell_{\mathsf{Seed}} : \mathbb{N} := 256
\ell_{\mathsf{a}_\mathsf{sk}}:\mathbb{N}:=252
\ell_{\mathfrak{m}} : \mathbb{N} := 252
\ell_{\mathsf{sk}} : \mathbb{N} := 256
\ell_d: \mathbb{N} := 88
\ell_{\mathsf{ivk}} : \mathbb{N} := 251
\ell_{\text{ovk}} : \mathbb{N} := 256
\ell_{\mathsf{scalar}} : \mathbb{N} := 252
Uncommitted \mathbb{B}^{[\ell_{\mathsf{MerkleSprout}}]} := [0]^{\ell_{\mathsf{MerkleSprout}}}
```

 $\mathsf{Uncommitted}^{\mathsf{Sapling}} : \mathbb{B}^{[\ell_{\mathsf{MerkleSapling}}]} := \mathsf{I2LEBSP}_{\ell_{\mathsf{MerkleSapling}}}(1)$ 

 $\mathsf{MAX\_MONEY}: \mathbb{N} := 2.1 \cdot 10^{15} \ (zatoshi)$ 

SlowStartInterval  $\mathbb{N} := 20000$ HalvingInterval  $\mathbb{N} := 840000$ 

MaxBlockSubsidy  $\mathbb{N} := 1.25 \cdot 10^9 (zatoshi)$ 

 ${\sf NumFounderAddresses} : \mathbb{N} := 48$ 

FoundersFraction :  $\mathbb{Q} := \frac{1}{5}$ 

 $\text{PoWLimit}: \mathbb{N} := \begin{cases} 2^{243} - 1, \text{ for the production network} \\ 2^{251} - 1, \text{ for the test network} \end{cases}$ 

 ${\sf PoWAveragingWindow}: \mathbb{N} := 17$ 

 $\mathsf{PoWMedianBlockSpan} : \mathbb{N} := 11$ 

PoWMaxAdjustDown :  $\mathbb{Q} := \frac{32}{100}$ 

 $PoWMaxAdjustUp : \mathbb{Q} := \frac{16}{100}$ 

 $\mathsf{PoWDampingFactor} : \mathbb{N} := 4$ 

PoWTargetSpacing :  $\mathbb{N} := 150$  (seconds).

# 5.4 Concrete Cryptographic Schemes

### 5.4.1 Hash Functions

## 5.4.1.1 SHA-256 and SHA256Compress Hash Functions

SHA-256 is defined by [NIST2015].

Zcash uses the full SHA-256 hash function to instantiate NoteCommitment Sprout.

$$\mathsf{SHA}\text{-}256: \mathbb{BY}^{[\mathbb{N}]} \to \mathbb{BY}^{[32]}$$

[NIST2015] strictly speaking only specifies the application of SHA-256 to messages that are bit sequences, producing outputs ("message digests") that are also bit sequences. In practice, SHA-256 is universally implemented with a byte-sequence interface for messages and outputs, such that the *most significant* bit of each byte corresponds to the first bit of the associated bit sequence. (In the NIST specification "first" is conflated with "leftmost".)

**Zcash** also uses the *SHA-256 compression function*, SHA256Compress. This operates on a single 512-bit block and *excludes* the padding step specified in [NIST2015, section 5.1].

That is, the input to SHA256Compress is what [NIST2015, section 5.2] refers to as "the message and its padding". The Initial Hash Value is the same as for full SHA-256.

SHA256Compress is used to instantiate several Pseudo Random Functions and MerkleCRH<sup>Sprout</sup>.

$$\mathsf{SHA256Compress}: \mathbb{B}^{[512]} \to \mathbb{B}^{[256]}$$

The ordering of bits within words in the interface to SHA256Compress is consistent with [NIST2015, section 3.1], i.e. big-endian.

### 5.4.1.2 BLAKE2 Hash Function

BLAKE2 is defined by [ANWW2013]. Zcash uses both the BLAKE2b and BLAKE2s variants.

BLAKE2b- $\ell(p,x)$  refers to unkeyed BLAKE2b- $\ell$  in sequential mode, with an output digest length of  $\ell/8$  bytes, 16-byte personalization string p, and input x.

BLAKE2b is used to instantiate hSigCRH, EquihashGen, and KDF<sup>Sprout</sup>. From **Overwinter** onward, it is used to compute *SIGHASH transaction hashes* as specified in [ZIP-143], or as in [ZIP-243] after **Sapling** activation. For **Sapling**, it is also used to instantiate PRF<sup>expand</sup>, PRF<sup>ock</sup>, KDF<sup>Sapling</sup>, and in the RedJubjub *signature scheme* which instantiates SpendAuthSig and BindingSig.

$$\mathsf{BLAKE2b}\text{-}\ell: \mathbb{B}^{\mathbb{Y}^{[16]}} \times \mathbb{B}^{\mathbb{Y}^{[\mathbb{N}]}} \to \mathbb{B}^{\mathbb{Y}^{[\ell/8]}}$$

**Note:** BLAKE2b- $\ell$  is not the same as BLAKE2b-512 truncated to  $\ell$  bits, because the digest length is encoded in the parameter block.

BLAKE2s- $\ell(p,x)$  refers to unkeyed BLAKE2s- $\ell$  in sequential mode, with an output digest length of  $\ell/8$  bytes, 8-byte personalization string p, and input x.

BLAKE2s is used to instantiate PRF $^{nfSapling}$ , CRH $^{ivk}$ , and GroupHash $^{\mathbb{J}^{(r)*}}$ .

$$\mathsf{BLAKE2s-}\ell: \mathbb{BY}^{[8]} \times \mathbb{BY}^{[\mathbb{N}]} \to \mathbb{BY}^{[\ell/8]}$$

#### 5.4.1.3 Merkle Tree Hash Function

MerkleCRH<sup>Sprout</sup> and MerkleCRH<sup>Sapling</sup> are used to hash *incremental Merkle tree hash values* for **Sprout** and **Sapling** respectively.

## MerkleCRH<sup>Sprout</sup> Hash Function

Let SHA256Compress be as specified in §5.4.1.1 'SHA-256 and SHA256Compress Hash Functions' on p. 50.

$$\begin{split} \mathsf{MerkleCRH}^{\mathsf{Sprout}} & \colon \{0 \, .. \, \mathsf{MerkleDepth}^{\mathsf{Sprout}} - 1\} \times \mathbb{B}^{[\ell_{\mathsf{MerkleSprout}}]} \times \mathbb{B}^{[\ell_{\mathsf{MerkleSprout}}]} \to \mathbb{B}^{[\ell_{\mathsf{MerkleSprout}}]} \text{ is defined as follows:} \\ \mathsf{MerkleCRH}^{\mathsf{Sprout}}(\mathsf{layer}, \mathsf{left}, \mathsf{right}) & \coloneqq \mathsf{SHA256Compress} \left( \boxed{ 256\text{-bit left}} \boxed{ 256\text{-bit right}} \right). \end{split}$$

**Security requirement:** SHA256Compress must be collision-resistant, and it must be infeasible to find a preimage x such that SHA256Compress $(x) = [0]^{256}$ .

#### Notes:

- The layer argument does not affect the output.
- · SHA256Compress is not the same as the SHA-256 function, which hashes arbitrary-length byte sequences.

## MerkleCRH<sup>Sapling</sup> Hash Function

Let PedersenHash be as specified in §5.4.1.7 'Pedersen Hash Function' on p. 53.

 $\mathsf{MerkleCRH}^{\mathsf{Sapling}}: \{0 ... \, \mathsf{MerkleDepth}^{\mathsf{Sapling}} - 1\} \times \mathbb{B}^{[\ell_{\mathsf{MerkleSapling}}]} \times \mathbb{B}^{[\ell_{\mathsf{MerkleSapling}}]} \to \mathbb{B}^{[\ell_{\mathsf{MerkleSapling}}]} \text{ is defined as follows:}$ 

$$\label{eq:MerkleCRHSapling} \begin{split} \mathsf{MerkleCRH}^{\mathsf{Sapling}}(\mathsf{layer},\mathsf{left},\mathsf{right}) := \mathsf{PedersenHash}(\mathsf{"Zcash\_PH"},l \mid\mid \mathsf{left} \mid\mid \mathsf{right}) \\ \mathsf{where} \ l = \mathsf{I2LEBSP}_6\big(\mathsf{MerkleDepth}^{\mathsf{Sapling}} - 1 - \mathsf{layer}\big). \end{split}$$

**Security requirement:** PedersenHash must be collision-resistant.

**Note:** The prefix l provides domain separation between inputs at different layers of the *note commitment tree*. It is distinct from the NoteCommit<sup>Sapling</sup> prefix as noted in §5.4.7.2 'Windowed Pedersen commitments' on p. 62.

### 5.4.1.4 h<sub>Sig</sub> Hash Function

hSigCRH is used to compute the value h<sub>Sig</sub> in §4.3 'JoinSplit Descriptions' on p. 29.

 $\mathsf{hSigCRH}(\mathsf{randomSeed}, \mathsf{nf}^{\mathsf{old}}_{1..N^{\mathsf{old}}}, \mathtt{joinSplitPubKey}) := \mathsf{BLAKE2b-256}\big( \texttt{"ZcashComputehSig"}, \ \mathsf{hSigInput} \big)$ 

where

 $\mathsf{hSigInput} := \begin{bmatrix} 256\text{-bit randomSeed} & 256\text{-bit nf}_1^\mathsf{old} & \dots & 256\text{-bit nf}_{N^\mathsf{old}}^\mathsf{old} & 256\text{-bit joinSplitPubKey} \end{bmatrix}$ 

BLAKE2b-256(p, x) is defined in §5.4.1.2 'BLAKE2 Hash Function' on p. 51.

**Security requirement:** BLAKE2b-256 ("ZcashComputehSig", x) must be collision-resistant on x.

## 5.4.1.5 CRH<sup>ivk</sup> Hash Function

CRH<sup>ivk</sup> is used to derive the *incoming viewing key* ivk for a **Sapling** *shielded payment address*. For its use when generating an address see §4.2.2 '**Sapling** *Key Components*' on p. 27, and for its use in the *Spend statement* see §4.15.2 '*Spend Statement* (**Sapling**)' on p. 41.

It is defined as follows:

 $\mathsf{CRH}^{\mathsf{ivk}}(\mathsf{ak}\star,\mathsf{nk}\star) \coloneqq \mathsf{LEOS2IP}_{256}\big(\mathsf{BLAKE2s-256}\big(\text{"Zcashivk"},\ \mathsf{crhInput}\big)\big) \bmod 2^{\ell_{\mathsf{ivk}}}$  where

$$\mathsf{crhInput} := \begin{array}{|c|c|c|} \mathsf{LEBS2OSP}_{256}(\mathsf{ak}\star) & \mathsf{LEBS2OSP}_{256}(\mathsf{nk}\star) \\ \end{array}$$

BLAKE2b-256(p, x) is defined in §5.4.1.2 'BLAKE2 Hash Function' on p. 51.

Security requirement: LEOS2IP $_{256}$  (BLAKE2s-256 ("Zcashivk", x)) mod  $2^{\ell_{\rm ivk}}$  must be collision-resistant on a 64-byte input x. Note that this does not follow from collision resistance of BLAKE2s-256 (and the best possible concrete security is that of a 251-bit hash rather than a 256-bit hash), but it is a reasonable assumption given the design, structure, and cryptanalysis to date of BLAKE2s.

**Non-normative note:** BLAKE2s has a variable output digest length feature, but it does not support arbitrary bit lengths, otherwise it would have been used rather than external truncation. However, the protocol-specific personalization string together with truncation achieve essentially the same effect as using that feature.

### **5.4.1.6** DiversifyHash Hash Function

DiversifyHash is used to derive a diversified base from a diversifier in §4.2.2 'Sapling Key Components' on p. 27.

Let GroupHash  $\mathbb{J}^{(r)*}$  and U be as defined in §5.4.8.5 'Group Hash into Jubjub' on p. 68.

Define

$$\mathsf{DiversifyHash}(\mathsf{d}) := \mathsf{GroupHash}_U^{\mathbb{J}^{(r)*}} \Big( \text{``Zcash\_gd''}, \mathsf{LEBS2OSP}_{\ell_{\mathsf{d}}}(\mathsf{d}) \Big)$$

**Security requirement:** Unlinkability: Given two randomly selected *shielded payment addresses* from different spend authorities, and a third *shielded payment address* which could be derived from either of those authorities, it is not possible to tell which authority the third address was derived from.

### Non-normative notes:

- Suppose that GroupHash  $\mathbb{J}^{(r)*}$  (restricted to inputs for which it does not return  $\bot$ ) is modelled as a random oracle from *diversifiers* to points of order  $r_{\mathbb{J}}$  on the *Jubjub curve*. In this model, Unlinkability of DiversifyHash holds under the Decisional Diffie-Hellman assumption on the *Jubjub curve*.
- Informally, the random self-reducibility property of DDH implies that an adversary would gain no advantage from being able to query an oracle for additional  $(g_d, pk_d)$  pairs with the same spend authority as an existing *shielded payment address*, since they could also create such pairs on their own. This justifies only considering two *shielded payment addresses* in the security definition.

#### 5.4.1.7 Pedersen Hash Function

PedersenHash is an algebraic *hash function* with collision resistance (for fixed input length) derived from assumed hardness of the Discrete Logarithm Problem on the *Jubjub curve*. It is based on the work of David Chaum, Ivan Damgård, Jeroen van de Graaf, Jurjen Bos, George Purdy, Eugène van Heijst and Birgit Pfitzmann in [CDvdG1987], [BCP1988] and [CvHP1991], and of Mihir Bellare, Oded Goldreich, and Shafi Goldwasser in [BGG1995], with optimizations for efficient instantiation in *zk-SNARK circuits* by Sean Bowe and Daira Hopwood.

PedersenHash is used in the *incremental Merkle tree* over *note commitments* (§3.7 'Note Commitment Trees' on p. 16) and in the definition of Pedersen commitments (§5.4.7.2 'Windowed Pedersen commitments' on p. 62).

Let  $\mathbb{J}$ ,  $\mathbb{J}^{(r)}$ ,  $\mathcal{O}_{\mathbb{J}}$ ,  $q_{\mathbb{J}}$ ,  $r_{\mathbb{J}}$ ,  $a_{\mathbb{J}}$ , and  $d_{\mathbb{J}}$  be as defined in §5.4.8.3 'Jubjub' on p. 66.

Let  $\mathsf{Extract}_{\mathbb{T}^{(r)}}: \mathbb{J}^{(r)} \to \mathbb{B}^{[\ell_{\mathsf{MerkleSapling}}]}$  be as defined in §5.4.8.4 *'Hash Extractor for Jubjub'* on p. 67.

Let FindGroupHash $^{\mathbb{J}^{(r)*}}$  be as defined in §5.4.8.5 'Group Hash into Jubjub' on p. 68.

Let c := 63.

Define  $\mathcal{I}: \mathbb{B}^{\mathbb{Y}^{[8]}} \times \mathbb{N} \to \mathbb{J}^{(r)*}$  by:

$$\mathcal{I}_i^D := \mathsf{FindGroupHash}^{\mathbb{J}^{(r)*}} \Big( D, \boxed{ \quad 32\text{-bit } i-1 \quad } \Big)$$

Define PedersenHashToPoint $(D:\mathbb{BY}^{[8]},M:\mathbb{B}^{[\mathbb{N}^+]})\to \mathbb{J}^{(r)}$  as follows:

Pad M to a multiple of 3 bits by appending zero bits, giving M'.

Let 
$$n = \operatorname{ceiling}\left(\frac{\operatorname{length}(M')}{3 \cdot c}\right)$$
.

Split M' into n "segments"  $M_{1...n}$  so that  $M' = \mathsf{concat}_{\mathbb{B}}(M_{1...n})$ , and each of  $M_{1...n-1}$  is of length  $3 \cdot c$  bits. ( $M_n$  may be shorter.)

$$\text{Return } \sum\nolimits_{i=1}^{n} \left[ \left\langle M_{i} \right\rangle \right] \mathcal{I}_{i}^{D} : \mathbb{J}^{(r)}.$$

where  $\langle {ullet} \rangle: \mathbb{B}^{[3 \cdot \{1 \dots c\}]} \to \{-\frac{r_{\mathbb{J}}-1}{2} \dots \frac{r_{\mathbb{J}}-1}{2}\} \setminus \{0\}$  is defined as:

Let  $k_i = \text{length}(M_i)/3$ .

Split  $M_i$  into 3-bit "chunks"  $m_{1...k_i}$  so that  $M_i = \mathsf{concat}_{\mathbb{B}}(m_{1...k_i})$ .

Write each  $m_j$  as  $[s_0^j, s_1^j, s_2^j]$ , and let  $\operatorname{enc}(m_j) = (1 - 2 \cdot s_2^j) \cdot (1 + s_0^j + 2 \cdot s_1^j) : \mathbb{Z}$ .

Let 
$$\langle M_i \rangle = \sum_{j=1}^{k_i} \operatorname{enc}(m_j) \cdot 2^{4 \cdot (j-1)}$$
.

Finally, define PedersenHash  $: \mathbb{B}^{\mathbb{Y}^{[8]}} \times \mathbb{B}^{[\mathbb{N}^+]} \to \mathbb{B}^{[\ell_{\mathsf{MerkleSapling}}]}$  by:

 $\mathsf{PedersenHash}(D,M) := \mathsf{Extract}_{\mathbb{J}^{(r)}} \big( \mathsf{PedersenHashToPoint}(D,M) \big).$ 

See §A.3.3.9 'Pedersen hash' on p. 126 for rationale and efficient circuit implementation of these functions.

Security requirement: PedersenHash and PedersenHashToPoint are required to be collision-resistant between inputs of fixed length, for a given personalization input D. No other security properties commonly associated with hash functions are needed.

**Non-normative note:** These *hash functions* are *not* collision-resistant for variable-length inputs.

**Theorem 5.4.1.** *The encoding function*  $\langle \cdot \rangle$  *is injective.* 

*Proof.* We first check that the range of  $\sum_{j=1}^{k_i} \operatorname{enc}(m_j) \cdot 2^{4 \cdot (j-1)}$  is a subset of the allowable range  $\{-\frac{r_{\mathbb{J}}-1}{2} \dots \frac{r_{\mathbb{J}}-1}{2}\} \setminus \{0\}$ .

The range of this expression is a subset of  $\{-\Delta ... \Delta\} \setminus \{0\}$  where  $\Delta = 4 \cdot \sum_{i=1}^{c} 2^{4 \cdot (i-1)} = 4 \cdot \frac{2^{4 \cdot c}}{15}$ .

When c = 63, we have

$$\frac{r_{\mathbb{J}}-1}{2} = \texttt{0x73EDA753299D7D483339D80809A1D8053341049E6640841684B872F6B7B965B}$$

so the required condition is met. This implies that there is no "wrap around" and so  $\sum_{i=1}^{k_i} \operatorname{enc}(m_j) \cdot 2^{4 \cdot (j-1)}$  may be treated as an integer expression.

enc is injective. In order to prove that  $\langle \bullet \rangle$  is injective, consider  $\langle \bullet \rangle^{\Delta}$ :  $\mathbb{B}^{[3 \cdot \{1 \dots c\}]} \to \{0 \dots 2 \cdot \Delta\}$  such that  $\langle M_i \rangle^{\Delta} = 0$  $\langle M_i \rangle + \Delta$ . With  $k_i$  and  $m_j$  defined as above, we have  $\langle M_i \rangle^{\Delta} = \sum_{j=1}^{k_i} \mathrm{enc'}(m_j) \cdot 2^{4 \cdot (j-1)}$  where  $\mathrm{enc'}(m_j) = \mathrm{enc}(m_j) + 4$ is in  $\{0..8\}$  and enc' is injective. Express this sum in hexadecimal; then each  $m_i$  affects only one hex digit, and it is easy to see that  $\langle \cdot \rangle^{\Delta}$  is injective. Therefore so is  $\langle \cdot \rangle$ .

Since the security proof from [BGG1995, Appendix A] depends only on the encoding being injective and its range not including zero, the proof can be adapted straightforwardly to show that PedersenHashToPoint is collision-resistant under the same assumptions and security bounds. Because Extract (10) is injective, it follows that PedersenHash is equally collision-resistant.

 $\textbf{Theorem 5.4.2.} \ \ \mathsf{Uncommitted}^{\mathsf{Sapling}} = \mathsf{I2LEBSP}_{\ell_{\mathsf{MerkleSapling}}}(1) \ \textit{is not in the range of} \ \mathsf{PedersenHash}.$ 

 $\textit{Proof.} \ \ \text{By injectivity of I2LEBSP}_{\ell_{\mathsf{MerkleSapling}}} \ \text{and the definitions of PedersenHash and Extract}_{\mathbb{J}^{(r)}}, \ \text{I2LEBSP}_{\ell_{\mathsf{MerkleSapling}}}(1) \ \text{candidates} \ \text{and the definitions of PedersenHash} \ \text{and Extract}_{\mathbb{J}^{(r)}}, \ \text{I2LEBSP}_{\ell_{\mathsf{MerkleSapling}}}(1) \ \text{candidates} \ \text{and the definitions of PedersenHash} \ \text{and Extract}_{\mathbb{J}^{(r)}}, \ \text{I2LEBSP}_{\ell_{\mathsf{MerkleSapling}}}(1) \ \text{candidates} \ \text{and the definitions} \ \text{of PedersenHash} \ \text{and Extract}_{\mathbb{J}^{(r)}}, \ \text{I2LEBSP}_{\ell_{\mathsf{MerkleSapling}}}(1) \ \text{candidates} \ \text{of PedersenHash} \ \text{of PedersenHash}$ be in the range of PedersenHash only if there exist  $(D:\mathbb{B}^{\mathbb{Y}^{[8]}},M:\mathbb{B}^{[\mathbb{N}^+]})$  such that  $U(\mathsf{PedersenHashToPoint}(D,M))=1.$ The latter can only be the affine-Edwards u-coordinate of a point in  $\mathbb{J}$ . We show that there are no points in  $\mathbb{J}$  with affine-Edwards u-coordinate 1. Suppose for a contradiction that  $(u,v) \in \mathbb{J}$  for u=1 and some  $v : \mathbb{F}_{r_u}$ . By writing the curve equation as  $v^2 = (1 - a_{\mathbb{J}} \cdot u^2)/(1 - d_{\mathbb{J}} \cdot u^2)$ , and noting that  $1 - d_{\mathbb{J}} \cdot u^2 \neq 0$ , we have  $v^2 = (1 - a_{\mathbb{J}})/(1 - d_{\mathbb{J}})$ . The right-hand-side is a nonsquare in  $\mathbb{F}_{r_{\mathbb{J}}}$ , so there are no solutions for v (contradiction).

### 5.4.1.8 Mixing Pedersen Hash Function

A mixing *Pedersen hash* is used to compute  $\rho$  from cm and pos in §4.14 'Note Commitments and Nullifiers' on p. 39. It takes as input a *Pedersen commitment* P, and hashes it with another input x.

Define 
$$\mathcal{J} := \mathsf{FindGroupHash}^{\mathbb{J}^{(r)*}}(\mathsf{"Zcash\_J\_"}, \mathsf{""}).$$

We define MixingPedersenHash :  $\mathbb{J} \times \{0 ... r_{\mathbb{I}} - 1\} \to \mathbb{J}$  by:

 $MixingPedersenHash(P, x) := P + [x] \mathcal{J}.$ 

**Security requirement:** The function

$$(r,M,x):\{0\mathinner{.\,.} r_{\mathbb{J}}-1\}\times\mathbb{B}^{[\mathbb{N}^+]}\times\{0\mathinner{.\,.} r_{\mathbb{J}}-1\}\mapsto \mathsf{MixingPedersenHash}(\mathsf{WindowedPedersenCommit}_r(M),x):\mathbb{J}$$
 must be collision-resistant on  $(r,M,x)$ .

See §A.3.3.10 'Mixing Pedersen hash' on p. 127 for efficient circuit implementation of this function.

## 5.4.1.9 Equihash Generator

EquihashGen<sub>n,k</sub> is a specialized *hash function* that maps an input and an index to an output of length n bits. It is used in §7.6.1 'Equihash' on p. 84.

$$\label{eq:Let powtag} \text{Let powtag} := \boxed{ 64\text{-bit "ZcashPoW"} } \boxed{ 32\text{-bit }n } \boxed{ 32\text{-bit }k } \ .$$
 
$$\text{Let powcount}(g) := \boxed{ 32\text{-bit }g } \ .$$
 
$$\text{Let EquihashGen}_{n,k}(S,i) := T_{h+1\dots h+n}, \text{ where }$$
 
$$m := \text{floor}\big(\frac{512}{n}\big);$$
 
$$h := (i-1 \bmod m) \cdot n;$$
 
$$T := \text{BLAKE2b-}(n \cdot m) \big( \text{powtag}, \, S \mid\mid \text{powcount}(\text{floor}\big(\frac{i-1}{m}\big)) \big).$$

Indices of bits in T are 1-based.

BLAKE2b- $\ell(p, x)$  is defined in §5.4.1.2 'BLAKE2 Hash Function' on p. 51.

**Security requirement:** BLAKE2b- $\ell$ (powtag, x) must generate output that is sufficiently unpredictable to avoid short-cuts to the Equihash solution process. It would suffice to model it as a random oracle.

**Note:** When EquihashGen is evaluated for sequential indices, as in the Equihash solving process (§7.6.1 'Equihash' on p. 84), the number of calls to BLAKE2b can be reduced by a factor of floor  $\left(\frac{512}{n}\right)$  in the best case (which is a factor of 2 for n = 200).

### 5.4.2 Pseudo Random Functions

PRF<sup>addr</sup>, PRF<sup>nf</sup>, PRF<sup>pk</sup>, and PRF<sup>p</sup>, described in §4.1.2 'Pseudo Random Functions' on p.18, are all instantiated using the *SHA-256 compression function* defined in §5.4.1.1 'SHA-256 and SHA256Compress Hash Functions' on p. 50:

| $PRF^{addr}_x(t) := SHA256Compress\left( \begin{array}{ c c c c c } \hline 1 & 1 & 0 & 0 \\ \hline \end{array} \right)$ | 252-bit $x$             | 8-bit $t$ $[0]^{248}$    |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|
| $PRF^{nf}_{a_{sk}}(\rho) := SHA256Compress\left( \begin{array}{ c c c c c c c c c c c c c c c c c c c$                  | 252-bit a <sub>sk</sub> | 256-bit ρ                |
| $PRF^{pk}_{a_{sk}}(i,h_{Sig}) := SHA256Compress\left( \begin{array}{ c c c c c c c c c c c c c c c c c c c$             | 252-bit a <sub>sk</sub> | 256-bit h <sub>Sig</sub> |
| $PRF^{p}_{\phi}(i,h_{Sig}) := SHA256Compress\left( \boxed{0}_{i1} \ 1 \ \boxed{0} \right)$                              | $252$ -bit $\phi$       | 256-bit h <sub>Sig</sub> |

### Security requirements:

- The SHA-256 compression function must be collision-resistant.
- The SHA-256 compression function must be a PRF when keyed by the bits corresponding to x,  $a_{sk}$  or  $\phi$  in the above diagrams, with input in the remaining bits.

**Note:** The first four bits –i.e. the most significant four bits of the first byte– are used to separate distinct uses of SHA256Compress, ensuring that the functions are independent. As well as the inputs shown here, bits 1011 in this position are used to distinguish uses of the full SHA-256 hash function; see §5.4.7.1 '**Sprout Note Commitments**' on p. 61.

(The specific bit patterns chosen here were motivated by the possibility of future extensions that might have increased  $N^{\text{old}}$  and/or  $N^{\text{new}}$  to 3, or added an additional bit to  $a_{\text{sk}}$  to encode a new key type, or that would have required an additional PRF. In fact since **Sapling** switches to non-SHA256Compress-based cryptographic primitives, these extensions are unlikely to be necessary.)

PRF<sup>expand</sup> is used in §4.2.2 '**Sapling** Key Components' on p. 27 to derive the spend authorizing key ask and the proof authorizing key nsk.

It is instantiated using the BLAKE2b hash function defined in §5.4.1.2 'BLAKE2 Hash Function' on p. 51:

$$\mathsf{PRF}^{\mathsf{expand}}_{\mathsf{sk}}(t) \coloneqq \mathsf{BLAKE2b\text{-}512} \big( \texttt{"Zcash\_ExpandSeed"}, \mathsf{LEBS2OSP}_{256}(\mathsf{sk}) \mid\mid t \big)$$

Security requirement: BLAKE2b-512 ("Zcash\_ExpandSeed", LEBS2OSP $_{256}$ (sk)  $||\ t$ ) must be a PRF for output range  $\mathbb{B}^{\mathbb{Y}^{[\ell_{\mathsf{PRFexpand}}/8]}}$  when keyed by the bits corresponding to sk, with input in the bits corresponding to t.

PRF<sup>ock</sup> is used in §4.17.1 *Encryption (Sapling)*' on p. 45 to derive the *outgoing cipher key* ock used to encrypt an *output ciphertext*.

It is instantiated using the BLAKE2b hash function defined in §5.4.1.2 'BLAKE2 Hash Function' on p. 51:

```
\begin{split} \mathsf{PRF}^\mathsf{ock}_\mathsf{ovk}(\mathsf{cv},\mathsf{cmu},\mathsf{ephemeralKey}) &:= \mathsf{BLAKE2b-256}\big(\text{"Zcash\_Derive\_ock"},\mathsf{ockInput}\big) \\ \mathsf{where}\; \mathsf{ockInput} &= \boxed{ \mathsf{LEBS2OSP}_{256}(\mathsf{ovk}) } & 32\text{-byte}\; \mathsf{cv} & 32\text{-byte}\; \mathsf{cmu} & 32\text{-byte}\; \mathsf{ephemeralKey} \end{split}
```

Security requirement: BLAKE2b-512 ("Zcash\_Derive\_ock", ocklnput) must be a PRF for output range Sym.K (defined in §5.4.3 'Authenticated One-Time Symmetric Encryption' on p. 57) when keyed by the bits corresponding to ovk, with input in the bits corresponding to cv, cmu, and ephemeralKey.

PRF<sup>nfSapling</sup> is used to derive the *nullifier* for a **Sapling** *note*. It is instantiated using the BLAKE2s *hash function* defined in §5.4.1.2 *'BLAKE2 Hash Function*' on p. 51:

$$\mathsf{PRF}^{\mathsf{nfSapling}}_{\mathsf{nk}\star}(\rho\star) := \mathsf{BLAKE2s-256}\Big( \texttt{"Zcash\_nf"}, \quad \mathsf{LEBS2OSP}_{256}(\mathsf{nk}\star) \quad \mathsf{LEBS2OSP}_{256}\big(\rho\star\big) \quad \Big).$$

Security requirement: BLAKE2s-256 ("Zcash\_nf", LEBS2OSP $_{256}$  (nk\*) LEBS2OSP $_{256}$  ( $\rho*$ ) ) must be a collision-resistant PRF for output range  $\mathbb{B}^{\mathbb{Y}^{[32]}}$  when keyed by the bits corresponding to nk\*, with input in the bits corresponding to  $\rho*$ . Note that nk\* :  $\mathbb{J}^{(r)}_{\star}$  is a representation of a point in the  $r_{\mathbb{J}}$ -order subgroup of the *Jubjub curve*, and therefore is not uniformly distributed on  $\mathbb{B}^{[\ell_{\mathbb{J}}]}$ .  $\mathbb{J}^{(r)}_{\star}$  is defined in §5.4.8.3 '*Jubjub*' on p. 66.

## 5.4.3 Authenticated One-Time Symmetric Encryption

```
Let Sym.\mathbf{K} := \mathbb{B}^{[256]}, Sym.\mathbf{P} := \mathbb{B}^{\mathbb{Y}^{[\mathbb{N}]}}, and Sym.\mathbf{C} := \mathbb{B}^{\mathbb{Y}^{[\mathbb{N}]}}.
```

Let  $\mathsf{Sym}.\mathsf{Encrypt}_\mathsf{K}(\mathsf{P})$  be authenticated encryption using  $\mathsf{AEAD\_CHACHA20\_POLY1305}$  [RFC-7539] encryption of plaintext  $\mathsf{P} \in \mathsf{Sym}.\mathbf{P}$ , with empty "associated data", all-zero nonce  $[0]^{96}$ , and 256-bit key  $\mathsf{K} \in \mathsf{Sym}.\mathbf{K}$ .

Similarly, let  $\mathsf{Sym}.\mathsf{Decrypt}_\mathsf{K}(\mathsf{C})$  be  $\mathsf{AEAD\_CHACHA20\_POLY1305}$  decryption of ciphertext  $\mathsf{C} \in \mathsf{Sym}.\mathbf{C}$ , with empty "associated data", all-zero nonce  $[0]^{96}$ , and 256-bit key  $\mathsf{K} \in \mathsf{Sym}.\mathbf{K}$ . The result is either the plaintext byte sequence, or  $\bot$  indicating failure to decrypt.

**Note:** The "IETF" definition of AEAD\_CHACHA20\_POLY1305 from [RFC-7539] is used; this has a 32-bit block count and a 96-bit nonce, rather than a 64-bit block count and 64-bit nonce as in the original definition of ChaCha20.

## 5.4.4 Key Agreement and Derivation

## 5.4.4.1 Sprout Key Agreement

KA<sup>Sprout</sup> is a key agreement scheme as specified in §4.1.4 'Key Agreement' on p. 19.

It is instantiated as Curve25519 key agreement, described in [Bernstein2006], as follows.

Let  $KA^{Sprout}$ . Public and  $KA^{Sprout}$ . Shared Secret be the type of Curve 25519 public keys (i.e.  $\mathbb{BY}^{[32]}$ ), and let  $KA^{Sprout}$ . Private be the type of Curve 25519 secret keys.

Let  $Curve25519(\underline{n}, \underline{q})$  be the result of point multiplication of the Curve25519 public key represented by the byte sequence q by the Curve25519 secret key represented by the byte sequence q, as defined in [Bernstein2006, section 2].

Let KA<sup>Sprout</sup>. Base := 9 be the public byte sequence representing the Curve25519 base point.

Let  $\operatorname{clamp}_{\operatorname{Curve25519}}(\underline{x})$  take a 32-byte sequence  $\underline{x}$  as input and return a byte sequence representing a Curve25519 private key, with bits "clamped" as described in [Bernstein2006, section 3]: "clear bits 0,1,2 of the first byte, clear bit 7 of the last byte, and set bit 6 of the last byte." Here the bits of a byte are numbered such that bit b has numeric weight  $2^b$ .

```
\mathsf{Define}\;\mathsf{KA}^{\mathsf{Sprout}}.\mathsf{FormatPrivate}(x) := \mathsf{clamp}_{\mathsf{Curve25519}}(x).
```

Define  $KA^{Sprout}$ . Derive Public (n, q) := Curve 25519(n, q).

Define  $KA^{Sprout}$ . Agree(n, q) := Curve25519(n, q).

## 5.4.4.2 Sprout Key Derivation

KDF<sup>Sprout</sup> is a Key Derivation Function as specified in §4.1.5 'Key Derivation' on p. 19.

It is instantiated using BLAKE2b-256 as follows:

 $\mathsf{KDF}^\mathsf{Sprout}(i,\mathsf{h}_\mathsf{Sig},\mathsf{sharedSecret}_i,\mathsf{epk},\mathsf{pk}_\mathsf{enc}^\mathsf{new}) := \mathsf{BLAKE2b-256}(\mathsf{kdftag},\mathsf{kdfinput})$ 

where:



BLAKE2b-256(p, x) is defined in §5.4.1.2 'BLAKE2 Hash Function' on p. 51.

## 5.4.4.3 Sapling Key Agreement

KA<sup>Sapling</sup> is a *key agreement scheme* as specified in §4.1.4 'Key Agreement' on p. 19.

It is instantiated as Diffie-Hellman with cofactor multiplication on Jubjub as follows:

Let  $\mathbb{J}$ ,  $\mathbb{J}^{(r)}$ ,  $\mathbb{J}^{(r)*}$ , and the cofactor  $h_{\mathbb{J}}$  be as defined in §5.4.8.3 'Jubjub' on p. 66.

Define  $KA^{Sapling}$ . Public :=  $\mathbb{J}$ .

Define  $KA^{Sapling}$ . Public Prime Order :=  $\mathbb{J}^{(r)*}$ .

Define  $KA^{Sapling}$ . Shared Secret  $:= \mathbb{J}^{(r)}$ .

Define  $\mathsf{KA}^\mathsf{Sapling}.\mathsf{Private} := \mathbb{F}_{r_{\scriptscriptstyle{\mathbb{T}}}}.$ 

Define  $KA^{Sapling}$ . Derive Public (sk, B) := [sk] B.

Define  $KA^{Sapling}$ . Agree(sk, P) :=  $[h_{\mathbb{J}} \cdot sk] P$ .

## 5.4.4.4 Sapling Key Derivation

KDF<sup>Sapling</sup> is a *Key Derivation Function* as specified in §4.1.5 'Key Derivation' on p. 19.

It is instantiated using BLAKE2b-256 as follows:

```
KDF<sup>Sapling</sup>(sharedSecret, epk) := BLAKE2b-256("Zcash_SaplingKDF", kdfinput).
```

where:

```
\mathsf{kdfinput} := \boxed{ \mathsf{LEBS2OSP}_{256} \big( \mathsf{repr}_{\mathbb{J}} (\mathsf{sharedSecret}) \big) } \qquad \mathsf{LEBS2OSP}_{256} \big( \mathsf{repr}_{\mathbb{J}} (\mathsf{epk}) \big) }
```

BLAKE2b-256(p, x) is defined in §5.4.1.2 'BLAKE2 Hash Function' on p. 51.

# 5.4.5 JoinSplit Signature

JoinSplitSig is a signature scheme as specified in §4.1.6 'Signature' on p. 20.

It is instantiated as Ed25519 [BDLSY2012], with the additional requirements that:

- S MUST represent an integer less than the prime  $\ell = 2^{252} + 27742317777372353535851937790883648493$ ;
- R MUST represent a point on the Ed25519 curve of order at least  $\ell$ .

If these requirements are not met then the signature is considered invalid. Note that it is *not* required that the encoding of the y-coordinate in  $\underline{R}$  is less than  $2^{255}-19$ ; also the order of the point represented by  $\underline{R}$  is permitted to be greater than  $\ell$ .

Ed25519 is defined as using SHA-512 internally.

A valid Ed25519 public key is defined as a point of order  $\ell$  on the Ed25519 curve, in the encoding specified by [BDLSY2012]. Again, it is *not* required that the encoding of the *y*-coordinate of the public key is less than  $2^{255} - 19$ .

The encoding of a signature is:

| 956 bit D            | 256 bit C    |
|----------------------|--------------|
| $_{200}$ -Dit $_{R}$ | 250-Dit 5    |
| <del>-</del>         | <del>_</del> |

where R and S are as defined in [BDLSY2012]. The encoding of a public key is as defined in [BDLSY2012].

## **5.4.6** RedDSA and RedJubjub

RedDSA is a Schnorr-based *signature scheme*, optionally supporting key re-randomization as described in §4.1.6.1 'Signature with Re-Randomizable Keys' on p. 21. It also supports a Secret Key to Public Key Homomorphism as described in §4.1.6.2 'Signature with Private Key to Public Key Homomorphism' on p. 22. It is based on a scheme from [FKMSSS2016, section 3], with some ideas from EdDSA [BJLSY2015].

RedJubjub is a specialization of RedDSA to the *Jubjub curve* (§ 5.4.8.3 '*Jubjub*' on p. 66), using the BLAKE2b-512 hash function.

The spend authorization signature scheme defined in §5.4.6.1 'Spend Authorization Signature' on p. 61 is instantiated by RedJubjub. The binding signature scheme BindingSig defined in §5.4.6.2 'Binding Signature' on p. 61 is instantiated by RedJubjub without use of key re-randomization.

We first describe the scheme RedDSA over a general represented group. Its parameters are:

- a represented group  $\mathbb{G}$ , which also defines a subgroup  $\mathbb{G}^{(r)}$  of order  $r_{\mathbb{G}}$ , a cofactor  $h_{\mathbb{G}}$ , a group operation +, an additive identity  $\mathcal{O}_{\mathbb{G}}$ , a bit-length  $\ell_{\mathbb{G}}$ , a representation function  $\operatorname{repr}_{\mathbb{G}}$ , and an abstraction function  $\operatorname{abst}_{\mathbb{G}}$ , as specified in §4.1.8 'Represented Group' on p. 24;
- $\mathcal{P}_{\mathbb{G}}$ , a generator of  $\mathbb{G}^{(r)}$ ;
- a bit-length  $\ell_{\mathsf{H}} : \mathbb{N}$  such that  $2^{\ell_{\mathsf{H}} 128} \ge r_{\mathbb{G}}$  and  $\ell_{\mathsf{H}} \bmod 8 = 0$ ;
- a cryptographic hash function  $H : \mathbb{B}^{Y[\mathbb{N}]} \to \mathbb{B}^{Y[\ell_H/8]}$ .

Its associated types are defined as follows:

```
\mathsf{RedDSA}.\mathsf{Message} := \mathbb{BY}^{[\mathbb{N}]}
      \mathsf{RedDSA}.\mathsf{Signature} := \mathbb{BY}^{[\mathsf{ceiling}\left(\ell_{\mathbb{G}}/8\right) + \mathsf{ceiling}\left(\mathsf{bitlength}(r_{\mathbb{G}})/8\right)]}
      RedDSA.Public := \mathbb{G}
      RedDSA.Private := \mathbb{F}_{r_c}.
      \mathsf{RedDSA}.\mathsf{Random} := \mathbb{F}_{r_c}.
Define H^{\circledast}: \mathbb{B}^{\mathbb{Y}^{[\mathbb{N}]}} \to \mathbb{F}_{r_{\infty}} by:
      \mathsf{H}^{\circledast}(B) = \mathsf{LEOS2IP}_{\ell_{\mathsf{H}}}(\mathsf{H}(B)) \pmod{r_{\mathbb{G}}}
Define RedDSA.GenPrivate : () \xrightarrow{\mathbb{R}} \text{RedDSA.Private as:}
      Return sk \stackrel{\mathbb{R}}{\leftarrow} \mathbb{F}_{r_{C}}.
Define RedDSA.DerivePublic : RedDSA.Private \rightarrow RedDSA.Public by:
      RedDSA.DerivePublic(sk) := [sk] \mathcal{P}_{\mathbb{C}}.
Define RedDSA.GenRandom : () \xrightarrow{\mathbb{R}} RedDSA.Random as:
      Choose a byte sequence T uniformly at random on \mathbb{B}^{\mathbb{Y}^{[(\ell_{\mathsf{H}}+128)/8]}}.
      Return H^{\circledast}(T).
Define \mathcal{O}_{\mathsf{RedDSA.Random}} := 0 \pmod{r_{\mathbb{G}}}.
Define RedDSA.RandomizePrivate \stackrel{\circ}{\cdot} RedDSA.Random \times RedDSA.Private \rightarrow RedDSA.Private by:
      RedDSA.RandomizePrivate(\alpha, sk) := sk + \alpha \pmod{r_{\mathbb{G}}}.
```

 $\mathsf{Define}\ \mathsf{RedDSA}.\mathsf{RandomizePublic}\ \complement\ \mathsf{RedDSA}.\mathsf{Random}\ \times\ \mathsf{RedDSA}.\mathsf{Public}\ \to\ \mathsf{RedDSA}.\mathsf{Public}\ \mathsf{as} \colon$ 

RedDSA.RandomizePublic( $\alpha$ , vk) := vk +  $[\alpha] \mathcal{P}_{\mathbb{C}}$ .

```
Define RedDSA.Sign : (sk : RedDSA.Private) \times (M : RedDSA.Message) \xrightarrow{\mathbb{R}} RedDSA.Signature as: Choose a byte sequence T uniformly at random on \mathbb{B}^{q[(\ell_{\mathbb{H}}+128)/8]}. Let r=\mathbb{H}^{\circledast}(T\mid|M). Let R=[r]\mathcal{P}_{\mathbb{G}}. Let R=[r]\mathcal{P}_{\mathbb{G}}. Let R=[r]\mathcal{P}_{\mathbb{G}}. Let R=[r]\mathcal{P}_{\mathbb{G}}. Let R=[r]\mathcal{P}_{\mathbb{G}}. Let R=[r]\mathcal{P}_{\mathbb{G}} (repr_{\mathbb{G}}(R)). Let R=[r]\mathcal{P}_{\mathbb{G}} (repr_{\mathbb{G}}(R)). Let R=[r]\mathcal{P}_{\mathbb{G}} (repr_{\mathbb{G}}(R)) sk) mod R=[r]\mathcal{P}_{\mathbb{G}}. Let R=[r]\mathcal{P}_{\mathbb{G}} (reprR=[r]\mathcal{P}_{\mathbb{G}}) (I2LEBSPR=[r]\mathcal{P}_{\mathbb{G}}). Return R=[r]\mathcal{P}_{\mathbb{G}} (I2LEBSPR=[r]\mathcal{P}_{\mathbb{G}}) (I2LEBSPR=[r]\mathcal{P}_{\mathbb{G}}) bytes of R=[r]\mathcal{P}_{\mathbb{G}} be the first ceiling (R=[r]\mathcal{P}_{\mathbb{G}}) bytes of R=[r]\mathcal{P}_{\mathbb{G}} and let R=[r]\mathcal{P}_{\mathbb{G}} be the remaining ceiling (bitlength(R=[r]\mathcal{P}_{\mathbb{G}})) bytes. Let R=[r]\mathcal{P}_{\mathbb{G}} (LEOS2BSPR=[r]\mathcal{P}_{\mathbb{G}}), and let R=[r]\mathcal{P}_{\mathbb{G}} be the remaining ceiling (bitlength(R=[r]\mathcal{P}_{\mathbb{G}}). Let R=[r]\mathcal{P}_{\mathbb{G}} (reprR=[r]\mathcal{P}_{\mathbb{G}}). Let R=[r]\mathcal{P}_{\mathbb{G}} (reprR=[r]\mathcal{P}_{\mathbb{G}}). Return 1 if R=[r]\mathcal{P}_{\mathbb{G}} and R=[r]\mathcal{P}_{\mathbb{G}} and R=[r]\mathcal{P}_{\mathbb{G}} and R=[r]\mathcal{P}_{\mathbb{G}} and R=[r]\mathcal{P}_{\mathbb{G}} (reprR=[r]\mathcal{P}_{\mathbb{G}}) otherwise 0.
```

#### Notes:

- The verification algorithm *does not* check that R is a point of order at least  $r_{\mathbb{G}}$ . It *does* check that  $\underline{R}$  is the canonical representation (as output by  $\mathsf{repr}_{\mathbb{G}}$ ) of a point on the curve. This is different to Ed25519 as specified in §5.4.5 'JoinSplit Signature' on p. 58.
- Appendix §B.1 'RedDSA batch verification' on p. 131 describes an optimization that MAY be used to speed up verification of batches of RedDSA signatures.

The two abelian groups specified in §4.1.6.2 *'Signature with Private Key to Public Key Homomorphism'* on p. 22 are instantiated for RedDSA as follows:

```
\begin{split} & \cdot \ \mathcal{O}_{\boxplus} \coloneqq 0 \ (\mathrm{mod} \ r_{\mathbb{G}}) \\ & \cdot \ \mathsf{sk}_1 \boxplus \ \mathsf{sk}_2 \coloneqq \mathsf{sk}_1 + \mathsf{sk}_2 \ (\mathrm{mod} \ r_{\mathbb{G}}) \\ & \cdot \ \mathcal{O}_{\bigoplus} \coloneqq \mathcal{O}_{\mathbb{G}} \\ & \cdot \ \mathsf{vk}_1 \oplus \mathsf{vk}_2 \coloneqq \mathsf{vk}_1 + \mathsf{vk}_2. \end{split}
```

As required, RedDSA. DerivePublic is a group homomorphism:

```
\begin{aligned} \mathsf{RedDSA.DerivePublic}(\mathsf{sk}_1 \boxplus \mathsf{sk}_2) &= \left[ \mathsf{sk}_1 + \mathsf{sk}_2 \pmod{r_{\mathbb{G}}} \right] \mathcal{P}_{\mathbb{G}} \\ &= \left[ \mathsf{sk}_1 \right] \mathcal{P}_{\mathbb{G}} + \left[ \mathsf{sk}_2 \right] \mathcal{P}_{\mathbb{G}} \pmod{r_{\mathbb{G}}} \text{ has order } r_{\mathbb{G}}) \\ &= \mathsf{RedDSA.DerivePublic}(\mathsf{sk}_1) \oplus \mathsf{RedDSA.DerivePublic}(\mathsf{sk}_2). \end{aligned}
```

A RedDSA public key vk can be encoded as a bit sequence  $\operatorname{\mathsf{repr}}_{\mathbb{G}}(\mathsf{vk})$  of length  $\ell_{\mathbb{G}}$  bits (or as a corresponding byte sequence  $\operatorname{\mathsf{\underline{vk}}}$  by then applying LEBS2OSP $\ell_{\mathbb{G}}$ ).

The scheme RedJubjub specializes RedDSA with:

- $\mathbb{G} := \mathbb{J}$  as defined in §5.4.8.3 'Jubjub' on p. 66;
- $\ell_{H} := 512;$
- $\cdot$  H(x) := BLAKE2b-512("Zcash\_RedJubjubH", x) as defined in §5.4.1.2 'BLAKE2 Hash Function' on p. 51.

The generator  $\mathcal{P}_{\mathbb{G}}:\mathbb{G}^{(r)}$  is left as an unspecified parameter, which is different between BindingSig and SpendAuthSig.

### 5.4.6.1 Spend Authorization Signature

Let RedJubjub be as defined in §5.4.6 'RedDSA and RedJubjub' on p. 59.

Define  $\mathcal{G} := \mathsf{FindGroupHash}^{\mathbb{J}^{(r)*}}(\mathsf{"Zcash\_G\_"}, \mathsf{""}).$ 

SpendAuthSig is instantiated as RedJubjub with key re-randomization, and with generator  $\mathcal{P}_{\mathbb{G}} = \mathcal{G}$ .

See §4.13 'Spend Authorization Signature' on p. 38 for details on the use of this signature scheme.

**Security requirement:** SpendAuthSig must be a SURK-CMA secure *signature scheme with re-randomizable keys* as defined in §4.1.6.1 *'Signature with Re-Randomizable Keys'* on p. 21.

### 5.4.6.2 Binding Signature

Let RedJubjub be as defined in §5.4.6 'RedDSA and RedJubjub' on p. 59.

Let  $\mathcal{R}$  be the randomness base defined in §5.4.7.3 'Homomorphic Pedersen commitments' on p. 62.

BindingSig is instantiated as RedJubjub, without use of key re-randomization, and with generator  $\mathcal{P}_{\mathbb{G}} = \mathcal{R}$ .

See §4.12 'Balance and Binding Signature (Sapling)' on p. 36 for details on the use of this signature scheme.

**Security requirement:** BindingSig must be a SUF-CMA secure signature scheme with private key to public key homomorphism as defined in \$4.1.6.2 'Signature with Private Key to Public Key Homomorphism' on p. 22. A signature must prove knowledge of the discrete logarithm of the public key with respect to the base  $\mathcal{R}$ .

### 5.4.7 Commitment schemes

## 5.4.7.1 Sprout Note Commitments

The commitment scheme NoteCommit Sprout specified in §4.1.7 'Commitment' on p. 23 is instantiated using SHA-256 as follows:

NoteCommit<sup>Sprout</sup>.GenTrapdoor() generates the uniform distribution on NoteCommit<sup>Sprout</sup>.Trapdoor.

**Note:** The leading byte of the SHA-256 input is 0xB0.

#### Security requirements:

- The SHA-256 compression function must be collision-resistant.
- The SHA-256 compression function must be a PRF when keyed by the bits corresponding to the position of rcm in the second block of SHA-256 input, with input to the PRF in the remaining bits of the block and the chaining variable.

### 5.4.7.2 Windowed Pedersen commitments

§5.4.1.7 'Pedersen Hash Function' on p. 53 defines a Pedersen hash construction. We construct "windowed" Pedersen commitments by reusing that construction, and adding a randomized point on the Jubjub curve (see §5.4.8.3 'Jubjub' on p. 66):

```
\mathsf{WindowedPedersenCommit}_r(s) := \mathsf{PedersenHashToPoint}\big( \texttt{"Zcash\_PH"}, s \big) + [r] \, \mathsf{FindGroupHash}^{\mathbb{J}^{(r)*}} \big( \texttt{"Zcash\_PH"}, \texttt{"r"} \big)
```

See §A.3.5 'Windowed Pedersen Commitment' on p.128 for rationale and efficient circuit implementation of this function.

The commitment scheme NoteCommit<sup>Sapling</sup> specified in §4.1.7 'Commitment' on p. 23 is instantiated as follows using WindowedPedersenCommit:

```
\begin{aligned} & \mathsf{NoteCommit}^{\mathsf{Sapling}}_{\mathsf{rcm}}(\mathsf{g} \star_{\mathsf{d}}, \mathsf{pk} \star_{\mathsf{d}}, \mathsf{v}) := \mathsf{WindowedPedersenCommit}_{\mathsf{rcm}}\left([1]^6 \mid\mid \mathsf{12LEBSP}_{64}(\mathsf{v}) \mid\mid \mathsf{g} \star_{\mathsf{d}} \mid\mid \mathsf{pk} \star_{\mathsf{d}}\right) \\ & \mathsf{NoteCommit}^{\mathsf{Sapling}}.\mathsf{GenTrapdoor}() \; \mathsf{generates} \; \mathsf{the} \; \mathsf{uniform} \; \mathsf{distribution} \; \mathsf{on} \; \mathbb{F}_{r_1}. \end{aligned}
```

### Security requirements:

· WindowedPedersenCommit, and hence NoteCommit<sup>Sapling</sup>, must be computationally binding and at least computationally hiding *commitment schemes*.

(They are in fact unconditionally hiding commitment schemes.)

**Note:** The prefix  $[1]^6$  distinguishes the use of WindowedPedersenCommit in NoteCommit Sapling from the layer prefix used in MerkleCRH (see §5.4.1.3 'Merkle Tree Hash Function' on p. 51). The latter is a 6-bit little-endian encoding of an integer in  $\{0...$  MerkleDepth Sapling  $-1\}$ , and so cannot collide with  $[1]^6$  because MerkleDepth Sapling  $-1\}$ .

### 5.4.7.3 Homomorphic Pedersen commitments

The windowed Pedersen commitments defined in the preceding section are highly efficient, but they do not support the homomorphic property we need when instantiating ValueCommit.

For more details on the use of this property, see §4.12 'Balance and Binding Signature (Sapling)' on p. 36 and §3.6 'Spend Transfers, Output Transfers, and their Descriptions' on p. 15.

In order to support this property, we also define "homomorphic" Pedersen commitments as follows:

```
\mathsf{HomomorphicPedersenCommit}_{\mathsf{rcv}}(D, \mathsf{v}) \coloneqq [\mathsf{v}] \, \mathsf{FindGroupHash}^{\mathbb{J}^{(r)*}} \big(D, \mathsf{"v"}\big) + [\mathsf{rcv}] \, \mathsf{FindGroupHash}^{\mathbb{J}^{(r)*}} \big(D, \mathsf{"r"}\big) \\ \mathsf{ValueCommit.GenTrapdoor}() \, \mathsf{generates} \, \mathsf{the} \, \mathsf{uniform} \, \mathsf{distribution} \, \mathsf{on} \, \mathbb{F}_{r_{\mathbb{T}}}.
```

See §A.3.6 'Homomorphic Pedersen Commitment' on p. 128 for rationale and efficient circuit implementation of this function.

#### Define:

```
\begin{split} \mathcal{V} &:= \mathsf{FindGroupHash}^{\mathbb{J}^{(r)*}}\big(\text{"Zcash\_cv"}, \text{"v"}\big) \\ \mathcal{R} &:= \mathsf{FindGroupHash}^{\mathbb{J}^{(r)*}}\big(\text{"Zcash\_cv"}, \text{"r"}\big). \end{split}
```

The commitment scheme ValueCommit specified in §4.1.7 'Commitment' on p. 23 is instantiated as follows using HomomorphicPedersenCommit:

 $ValueCommit_{rcv}(v) := HomomorphicPedersenCommit_{rcv}(\text{"Zcash\_cv"}, v).$ 

which is equivalent to:

 $\mathsf{ValueCommit}_{\mathsf{rcv}}(\mathsf{v}) := \left[\mathsf{v}\right] \mathcal{V} + \left[\mathsf{rcv}\right] \mathcal{R}.$ 

### Security requirements:

- HomomorphicPedersenCommit must be a computationally binding and at least computationally hiding *commitment scheme*, for a given personalization input *D*.
- · ValueCommit must be a computationally binding and at least computationally hiding commitment scheme.

(They are in fact unconditionally hiding *commitment schemes*.)

## 5.4.8 Represented Groups and Pairings

#### 5.4.8.1 BN-254

The represented pairing BN-254 is defined in this section.

Let  $q_{\mathbb{G}} := 21888242871839275222246405745257275088696311157297823662689037894645226208583$ .

Let  $r_{\mathbb{G}} := 21888242871839275222246405745257275088548364400416034343698204186575808495617$ .

Let  $b_{\mathbb{G}} := 3$ .

 $(q_{\mathbb{G}} \text{ and } r_{\mathbb{G}} \text{ are prime.})$ 

Let  $\mathbb{G}_1^{(r)}$  be the group (of order  $r_{\mathbb{G}}$ ) of rational points on a Barreto-Naehrig ([BN2005]) curve  $E_{\mathbb{G}_1}$  over  $\mathbb{F}_{q_{\mathbb{G}}}$  with equation  $y^2 = x^3 + b_{\mathbb{G}}$ . This curve has embedding degree 12 with respect to  $r_{\mathbb{G}}$ .

Let  $\mathbb{G}_2^{(r)}$  be the subgroup of order  $r_{\mathbb{G}}$  in the sextic twist  $E_{\mathbb{G}_2}$  of  $E_{\mathbb{G}_1}$  over  $\mathbb{F}_{q_{\mathbb{G}}^2}$  with equation  $y^2 = x^3 + \frac{b_{\mathbb{G}}}{\xi}$ , where  $\xi : \mathbb{F}_{q_{\mathbb{G}}^2}$ .

We represent elements of  $\mathbb{F}_{q_{\mathbb{G}}^2}$  as polynomials  $a_1 \cdot t + a_0 : \mathbb{F}_{q_{\mathbb{G}}}[t]$ , modulo the irreducible polynomial  $t^2 + 1$ ; in this representation,  $\xi$  is given by t + 9.

Let  $\mathbb{G}_T^{(r)}$  be the subgroup of  $r_{\mathbb{G}}^{\, \mathrm{th}}$  roots of unity in  $\mathbb{F}_{q_{\mathbb{G}}^{\, 12}}^*$ , with multiplicative identity  $\mathbf{1}_{\mathbb{G}}$ .

Let  $\hat{e}_{\mathbb{G}}$  be the optimal ate pairing (see [Vercauter2009] and [AKLGL2010, section 2]) of type  $\mathbb{G}_1^{(r)} \times \mathbb{G}_2^{(r)} \to \mathbb{G}_T^{(r)}$ .

For  $i: \{1...2\}$ , let  $\mathcal{O}_{\mathbb{G}_i}$  be the point at infinity (which is the additive identity) in  $\mathbb{G}_i^{(r)}$ , and let  $\mathbb{G}_i^{(r)*} := \mathbb{G}_i^{(r)} \setminus \{\mathcal{O}_{\mathbb{G}_i}\}$ .

Let  $\mathcal{P}_{\mathbb{G}_1}$ :  $\mathbb{G}_1^{(r)*} := (1,2)$ .

$$\begin{split} \text{Let}\, \mathcal{P}_{\mathbb{G}_2} & \colon \mathbb{G}_2^{(r)*} := (11559732032986387107991004021392285783925812861821192530917403151452391805634 \cdot t + \\ & 10857046999023057135944570762232829481370756359578518086990519993285655852781, \\ & 4082367875863433681332203403145435568316851327593401208105741076214120093531 \cdot t + \\ & 8495653923123431417604973247489272438418190587263600148770280649306958101930). \end{split}$$

 $\mathcal{P}_{\mathbb{G}_1}$  and  $\mathcal{P}_{\mathbb{G}_2}$  are generators of  $\mathbb{G}_1^{(r)}$  and  $\mathbb{G}_2^{(r)}$  respectively.

Define I2BEBSP :  $(\ell : \mathbb{N}) \times \{0 ... 2^{\ell} - 1\} \to \mathbb{B}^{[\ell]}$  as in §5.2 *Integers, Bit Sequences, and Endianness'* on p. 48.

For a point  $P : \mathbb{G}_1^{(r)*} = (x_P, y_P)$ :

- The field elements  $x_P$  and  $y_P : \mathbb{F}_q$  are represented as integers x and  $y : \{0 ... q-1\}$ .
- · Let  $\tilde{y} = y \mod 2$ .
- $\cdot$  P is encoded as  $0 0 0 0 0 1 1 \text{bit } \tilde{y} 256 \text{bit I2BEBSP}_{256}(x)$

For a point  $P : \mathbb{G}_2^{(r)*} = (x_P, y_P)$ :

- Define FE2IP :  $\mathbb{F}_{q_{\mathbb{G}}}[t]/(t^2+1) \to \{0..q_{\mathbb{G}}^2-1\}$  such that FE2IP $(a_{w,1} \cdot t + a_{w,0}) = a_{w,1} \cdot q + a_{w,0}$ .
- · Let  $x = \text{FE2IP}(x_P)$ ,  $y = \text{FE2IP}(y_P)$ , and  $y' = \text{FE2IP}(-y_P)$ .
- Let  $\tilde{y} = \begin{cases} 1, & \text{if } y > y' \\ 0, & \text{otherwise.} \end{cases}$
- P is encoded as  $0 0 0 1 0 1 1 \text{bit } \tilde{y}$  512-bit I2BEBSP<sub>512</sub>(x)

#### Non-normative notes:

- · Only the  $r_{\mathbb{G}}$ -order subgroups  $\mathbb{G}_{2,T}^{(r)}$  are used in the protocol, not their containing groups  $\mathbb{G}_{2,T}$ . Points in  $\mathbb{G}_2^{(r)*}$  are *always* checked to be of order  $r_{\mathbb{G}}$  when decoding from external representation. (The group of rational points  $\mathbb{G}_1$  on  $E_{\mathbb{G}_1}/\mathbb{F}_{q_{\mathbb{G}}}$  is of order  $r_{\mathbb{G}}$  so no subgroup checks are needed in that case, and elements of  $\mathbb{G}_T^{(r)}$  are never represented externally.) The (r) superscripts on  $\mathbb{G}_{1,2,T}^{(r)}$  are used for consistency with notation elsewhere in this specification.
- The points at infinity  $\mathcal{O}_{\mathbb{G}_{1,2}}$  never occur in proofs and have no defined encodings in this protocol.
- · A rational point  $P \neq \mathcal{O}_{\mathbb{G}_2}$  on the curve  $E_{\mathbb{G}_2}$  can be verified to be of order  $r_{\mathbb{G}}$ , and therefore in  $\mathbb{G}_2^{(r)*}$ , by checking that  $r_{\mathbb{G}} \cdot P = \mathcal{O}_{\mathbb{G}_2}$ .
- The use of big-endian order by I2BEBSP is different from the encoding of most other integers in this protocol. The encodings for  $\mathbb{G}_{1,2}^{(r)*}$  are consistent with the definition of EC2OSP for compressed curve points in [IEEE2004, section 5.5.6.2]. The LSB compressed form (i.e. EC2OSP-XL) is used for points in  $\mathbb{G}_1^{(r)*}$ , and the SORT compressed form (i.e. EC2OSP-XS) for points in  $\mathbb{G}_2^{(r)*}$ .
- Testing y>y' for the compression of  $\mathbb{G}_2^{(r)*}$  points is equivalent to testing whether  $(a_{y,1},a_{y,0})>(a_{-y,1},a_{-y,0})$  in lexicographic order.
- Algorithms for decompressing points from the above encodings are given in [IEEE2000, Appendix A.12.8] for  $\mathbb{G}_1^{(r)*}$ , and [IEEE2004, Appendix A.12.11] for  $\mathbb{G}_2^{(r)*}$ .

When computing square roots in  $\mathbb{F}_{q_{\mathbb{G}}}$  or  $\mathbb{F}_{q_{\mathbb{G}}^{2}}$  in order to decompress a point encoding, the implementation **MUST NOT** assume that the square root exists, or that the encoding represents a point on the curve.

### 5.4.8.2 BLS12-381

The represented pairing BLS12-381 is defined in this section. Parameters are taken from [Bowe2017].

 $\text{Let } q_{\mathbb{S}} := 4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787.$ 

 $\text{Let } r_{\mathbb{S}} := 52435875175126190479447740508185965837690552500527637822603658699938581184513.$ 

Let  $u_{\mathbb{S}} := -15132376222941642752$ .

Let  $b_{\mathbb{S}} := 4$ .

 $(q_{\mathbb{S}} \text{ and } r_{\mathbb{S}} \text{ are prime.})$ 

Let  $\mathbb{S}_1^{(r)}$  be the subgroup of order  $r_{\mathbb{S}}$  of the group of rational points on a Barreto-Lynn–Scott ([BLS2002]) curve  $E_{\mathbb{S}_1}$  over  $\mathbb{F}_{q_{\mathbb{S}}}$  with equation  $y^2=x^3+b_{\mathbb{S}}$ . This curve has embedding degree 12 with respect to  $r_{\mathbb{S}}$ .

Let  $\mathbb{S}_2^{(r)}$  be the subgroup of order  $r_{\mathbb{S}}$  in the sextic twist  $E_{\mathbb{S}_2}$  of  $E_{\mathbb{S}_1}$  over  $\mathbb{F}_{q_{\mathbb{S}}^2}$  with equation  $y^2 = x^3 + 4(i+1)$ , where  $i : \mathbb{F}_{q_{\mathbb{S}}^2}$ .

We represent elements of  $\mathbb{F}_{q_{\mathbb{S}}}^2$  as polynomials  $a_1 \cdot t + a_0 : \mathbb{F}_{q_{\mathbb{S}}}[t]$ , modulo the irreducible polynomial  $t^2 + 1$ ; in this representation, i is given by t.

Let  $\mathbb{S}_T^{(r)}$  be the subgroup of  $r_{\mathbb{S}}^{\text{th}}$  roots of unity in  $\mathbb{F}_{q_{\mathbb{S}}^{-12}}^*$ , with multiplicative identity  $\mathbf{1}_{\mathbb{S}}$ .

Let  $\hat{e}_{\mathbb{S}}$  be the optimal ate pairing of type  $\mathbb{S}_1^{(r)} \times \mathbb{S}_2^{(r)} \to \mathbb{S}_T^{(r)}$ .

For  $i : \{1..2\}$ , let  $\mathcal{O}_{\mathbb{S}_i}$  be the point at infinity in  $\mathbb{S}_i^{(r)}$ , and let  $\mathbb{S}_i^{(r)*} := \mathbb{S}_i^{(r)} \setminus \{\mathcal{O}_{\mathbb{S}_i}\}$ .

Let  $\mathcal{P}_{\mathbb{S}_1} : \mathbb{S}_1^{(r)*} := (1, 2)$ .

$$\begin{split} \operatorname{Let} \mathcal{P}_{\mathbb{S}_2} : \mathbb{S}_2^{(r)*} := & (11559732032986387107991004021392285783925812861821192530917403151452391805634 \cdot t + \\ & 10857046999023057135944570762232829481370756359578518086990519993285655852781, \\ & 4082367875863433681332203403145435568316851327593401208105741076214120093531 \cdot t + \\ & 8495653923123431417604973247489272438418190587263600148770280649306958101930). \end{split}$$

 $\mathcal{P}_{\mathbb{S}_1}$  and  $\mathcal{P}_{\mathbb{S}_2}$  are generators of  $\mathbb{S}_1^{(r)}$  and  $\mathbb{S}_2^{(r)}$  respectively.

Define I2BEBSP :  $(\ell : \mathbb{N}) \times \{0...2^{\ell} - 1\} \to \mathbb{B}^{[\ell]}$  as in §5.2 *Integers, Bit Sequences, and Endianness'* on p. 48. For a point  $P : \mathbb{S}_1^{(r)*} = (x_P, y_P)$ :

- $\cdot \text{ The field elements } x_P \text{ and } y_P : \mathbb{F}_{\!q_{\mathbb{S}}} \text{ are represented as integers } x \text{ and } y : \{0 \ldots q_{\mathbb{S}} 1\}.$
- Let  $\tilde{y} = \begin{cases} 1, & \text{if } y > q_{\mathbb{S}} y \\ 0, & \text{otherwise.} \end{cases}$
- + P is encoded as  $1 \mid 0 \mid$  1-bit  $\tilde{y} \mid$  381-bit I2BEBSP<sub>381</sub>(x)

For a point  $P : \mathbb{S}_2^{(r)*} = (x_P, y_P)$ :

- $\cdot \text{ Define FE2IPP}: \mathbb{F}_{q_{\mathbb{S}}}[t]/(t^2+1) \rightarrow \{0 \mathinner{\ldotp\ldotp} q_{\mathbb{S}}-1\}^{[2]} \text{ such that FE2IPP}(a_{w,1} \cdot t + a_{w,0}) = [a_{w,1}, a_{w,0}].$
- · Let  $x = \text{FE2IPP}(x_P)$ ,  $y = \text{FE2IPP}(y_P)$ , and  $y' = \text{FE2IPP}(-y_P)$ .
- Let  $\tilde{y} = \begin{cases} 1, & \text{if } y > y' \text{ lexicographically} \\ 0, & \text{otherwise.} \end{cases}$
- $\cdot$  P is encoded as  $\begin{bmatrix} 1 & 0 \end{bmatrix}$  1-bit  $\tilde{y}$  381-bit I2BEBSP $_{381}(x_1)$  384-bit I2BEBSP $_{384}(x_2)$

### Non-normative notes:

- Only the  $r_{\mathbb{S}}$ -order subgroups  $\mathbb{S}_{1,2,T}^{(r)}$  are used in the protocol, not their containing groups  $\mathbb{S}_{1,2,T}$ . Points in  $\mathbb{S}_{1,2}^{(r)*}$  are always checked to be of order  $r_{\mathbb{S}}$  when decoding from external representation. (Elements of  $\mathbb{S}_{T}^{(r)}$  are never represented externally.) The (r) superscripts on  $\mathbb{S}_{1,2,T}^{(r)}$  are used for consistency with notation elsewhere in this specification.
- The points at infinity  $\mathcal{O}_{\mathbb{S}_{1,2}}$  never occur in proofs and have no defined encodings in this protocol.
- · In contrast to the corresponding BN-254 curve,  $E_{\mathbb{S}_1}$  over  $\mathbb{F}_{q_{\mathbb{S}}}$  is *not* of prime order.
- A rational point  $P \neq \mathcal{O}_{\mathbb{S}_i}$  on the curve  $E_{\mathbb{S}_i}$  for  $i \in \{1,2\}$  can be verified to be of order  $r_{\mathbb{S}}$ , and therefore in  $\mathbb{S}_i^{(r)*}$ , by checking that  $r_{\mathbb{S}} \cdot P = \mathcal{O}_{\mathbb{S}_i}$ .
- The encodings for  $\mathbb{S}_{1,2}^{(r)*}$  are specific to **Zcash**.
- Algorithms for decompressing points from the encodings of  $\mathbb{S}_{1,2}^{(r)*}$  are defined analogously to those for  $\mathbb{G}_{1,2}^{(r)*}$  in §5.4.8.1 'BN-254' on p. 63, taking into account that the SORT compressed form (not the LSB compressed form) is used for  $\mathbb{S}_1^{(r)*}$ .

When computing square roots in  $\mathbb{F}_{q_{\mathbb{S}}}$  or  $\mathbb{F}_{q_{\mathbb{S}}^2}$  in order to decompress a point encoding, the implementation **MUST NOT** assume that the square root exists, or that the encoding represents a point on the curve.

### 5.4.8.3 Jubjub

**Sapling** uses an elliptic curve designed to be efficiently implementable in *zk-SNARK* circuits, called "Jubjub" [Carroll1876]. The *represented group* Jubjub of points on this curve is defined in this section.

Let  $q_{\mathbb{J}} := r_{\mathbb{S}}$ , as defined in §5.4.8.2 *'BLS12-381'* on p. 64.

 $\text{Let } r_{\mathbb{T}} := 6554484396890773809930967563523245729705921265872317281365359162392183254199.$ 

 $(q_{\mathbb{J}} \text{ and } r_{\mathbb{J}} \text{ are prime.})$ 

Let  $h_{\mathbb{J}} := 8$ .

Let  $a_{\mathbb{T}} := -1$ .

Let  $d_{\mathbb{I}} := -10240/10241 \pmod{q_{\mathbb{I}}}$ .

Let  $\mathbb{J}$  be the group of points (u,v) on a twisted Edwards curve  $E_{\mathbb{J}}$  over  $\mathbb{F}_{q_{\mathbb{J}}}$  with equation  $a_{\mathbb{J}} \cdot u^2 + v^2 = 1 + d_{\mathbb{J}} \cdot u^2 \cdot v^2$ . The zero point with coordinates (0,1) is denoted  $\mathcal{O}_{\mathbb{J}}$ .  $\mathbb{J}$  has order  $h_{\mathbb{J}} \cdot r_{\mathbb{J}}$ .

Let  $\ell_{\mathbb{J}} := 256$ .

 $\text{Define I2LEBSP}: (\ell:\mathbb{N}) \times \{0..2^{\ell}-1\} \rightarrow \mathbb{B}^{[\ell]} \text{ as in §5.2 } \textit{Integers, Bit Sequences, and Endianness'} \text{ on p. 48}.$ 

Define  $\operatorname{repr}_{\mathbb{J}}: \mathbb{J} \to \mathbb{B}^{[\ell_{\mathbb{J}}]}$  such that  $\operatorname{repr}_{\mathbb{J}}(u,v) = \operatorname{I2LEBSP}_{256}\left(v + 2^{255} \cdot \tilde{u}\right)$ , where  $\tilde{u} = u \bmod 2$ .

 $\text{Let abst}_{\mathbb{J}}: \mathbb{B}^{[\ell_{\mathbb{J}}]} \to \mathbb{J} \cup \{\bot\} \text{ be the left inverse of } \operatorname{\mathsf{repr}}_{\mathbb{J}} \operatorname{\mathsf{such that if}} S \operatorname{\mathsf{is not in the range of }} \operatorname{\mathsf{repr}}_{\mathbb{J}}, \operatorname{\mathsf{then abst}}_{\mathbb{J}}(S) = \bot.$ 

Define  $\mathbb{J}^{(r)}$  as the order- $r_{\mathbb{J}}$  subgroup of  $\mathbb{J}$ . Note that this includes  $\mathcal{O}_{\mathbb{J}}$ . For the set of points of order  $r_{\mathbb{J}}$  (which excludes  $\mathcal{O}_{\mathbb{J}}$ ), we write  $\mathbb{J}^{(r)*}$ .

Define  $\mathbb{J}_{\star}^{(r)} := \{ \operatorname{repr}_{\mathbb{J}}(P) : \mathbb{B}^{[\ell_{\mathbb{J}}]} \mid P \in \mathbb{J}^{(r)} \}.$ 

### Non-normative notes:

- The encoding of a compressed twisted Edwards point used here is consistent with that used in EdDSA [BJLSY2015] for public keys and the R element of a signature.
- [BJLSY2015, "Encoding and parsing curve points"] gives algorithms for decompressing points from the encoding of J.

When computing square roots in  $\mathbb{F}_{q_{\mathbb{J}}}$  in order to decompress a point encoding, the implementation **MUST NOT** assume that the square root exists, or that the encoding represents a point on the curve.

This specification requires "strict" parsing as defined in [BJLSY2015, "Encoding and parsing integers"].

Note that algorithms elsewhere in this specification that use Jubjub may impose other conditions on points, for example that they have order at least  $r_{\mathbb{J}}$ .

### 5.4.8.4 Hash Extractor for Jubjub

```
Let \mathcal{U}((u,v)) = u and let \mathcal{V}((u,v)) = v.

Define \mathsf{Extract}_{\mathbb{J}^{(r)}} : \mathbb{J}^{(r)} \to \mathbb{B}^{[\ell_{\mathsf{MerkleSapling}}]} by \mathsf{Extract}_{\mathbb{J}^{(r)}}(P) := \mathsf{I2LEBSP}_{\ell_{\mathsf{MerkleSapling}}}(\mathcal{U}(P)).
```

**Facts:** The point  $(0,1) = \mathcal{O}_{\mathbb{J}}$ , and the point (0,-1) has order 2 in  $\mathbb{J}$ .  $\mathbb{J}^{(r)}$  is of odd-prime order.

```
Lemma. Let P = (u, v) \in \mathbb{J}^{(r)}. Then (u, -v) \notin \mathbb{J}^{(r)}.
```

*Proof.* If  $P = \mathcal{O}_{\mathbb{J}}$  then  $(u, -v) = (0, -1) \notin \mathbb{J}^{(r)}$ . Else, P is of odd-prime order. Note that  $v \neq 0$ . (If v = 0 then  $a \cdot u^2 = 1$ , and so applying the doubling formula gives [2]P = (0, -1), then  $[4]P = (0, 1) = \mathcal{O}_{\mathbb{J}}$ ; contradiction since then P would not be of odd-prime order.) Therefore,  $-v \neq v$ . Now suppose (u, -v) = Q is a point in  $\mathbb{J}^{(r)}$ . Then by applying the doubling formula we have [2]Q = -[2]P. But also [2](-P) = -[2]P. Therefore either Q = -P (then V(Q) = V(-P)); contradiction since  $-v \neq v$ ), or doubling is not injective on  $\mathbb{J}^{(r)}$  (contradiction since  $\mathbb{J}^{(r)}$  is of odd order [KvE2013]). □

### **Theorem 5.4.3.** U is injective on $\mathbb{J}^{(r)}$ .

*Proof.* By writing the curve equation as  $v^2 = (1 - a \cdot u^2)/(1 - d \cdot u^2)$ , and noting that the potentially exceptional case  $1 - d \cdot u^2 = 0$  does not occur for a complete twisted Edwards curve, we see that for a given u there can be at most two possible solutions for v, and that if there are two solutions they can be written as v and v. In that case by the Lemma, at most one of v0, and v1 and v2 and v3. Therefore, v3 is injective on points in v3.

Since I2LEBSP $_{\ell_{\mathsf{MerkleSapling}}}$  is injective, it follows that  $\mathsf{Extract}_{\mathbb{J}^{(r)}}$  is injective on  $\mathbb{J}^{(r)}$ .

## 5.4.8.5 Group Hash into Jubjub

Let GroupHash.Input :=  $\mathbb{B}^{\mathbb{Y}^{[8]}} \times \mathbb{B}^{\mathbb{Y}^{[N]}}$ , and let GroupHash.URSType :=  $\mathbb{B}^{\mathbb{Y}^{[64]}}$ .

(The input element with type  $\mathbb{B}^{\mathbb{Y}^{[8]}}$  is intended to act as a "personalization" parameter to distinguish uses of the group hash for different purposes.)

Let URS be the MPC randomness beacon defined in §5.9 'Randomness Beacon' on p. 75.

Let BLAKE2s-256 be as defined in §5.4.1.2 'BLAKE2 Hash Function' on p. 51.

Let LEOS2IP be as defined in §5.2 'Integers, Bit Sequences, and Endianness' on p. 48.

Let  $\mathbb{J}^{(r)}$ ,  $\mathbb{J}^{(r)*}$ , and abst<sub> $\mathbb{I}$ </sub> be as defined in §5.4.8.3 'Jubjub' on p. 66.

Let  $D: \mathbb{B}^{\mathbb{Y}^{[8]}}$  be an 8-byte domain separator, and let  $M: \mathbb{B}^{\mathbb{Y}^{[N]}}$  be the hash input.

The hash GroupHash  $\mathbb{J}^{(r)*}(D,M):\mathbb{J}^{(r)*}$  is calculated as follows:

```
\begin{split} & \text{let } \underline{H} = \mathsf{BLAKE2s\text{-}256}(D,\,\mathsf{URS}\,||\,\,M) \\ & \text{let } P = \mathsf{abst}_{\mathbb{J}}\big(\mathsf{LEOS2BSP}_{256}(\underline{H})\big) \\ & \text{if } P = \bot \text{ then return } \bot \\ & \text{let } Q = [h_{\mathbb{J}}]\,P \\ & \text{if } Q = \mathcal{O}_{\mathbb{J}} \text{ then return } \bot, \text{ else return } Q. \end{split}
```

#### Notes:

- The BLAKE2s-256 chaining variable after processing URS may be precomputed.
- The use of GroupHash  $_{\text{URS}}^{\mathbb{J}^{(r)*}}$  for DiversifyHash and to generate independent bases needs a random oracle (for inputs on which GroupHash  $_{\text{URS}}^{\mathbb{J}^{(r)*}}$  does not return  $\perp$ ); here we show that it is sufficient to employ a simpler random oracle instantiated by BLAKE2s-256 in the security analysis.

 $\underline{H}: \mathbb{BY}^{[32]} \mapsto_{\neq \perp} \mathsf{abst}_{\mathbb{J}} \big(\mathsf{LEOS2BSP}_{256}(\underline{H})\big) : \mathbb{J} \text{ is injective, and both it and its inverse are efficiently computable.}$   $P: \mathbb{J} \mapsto_{\neq \mathcal{O}_{\mathbb{J}}} [h_{\mathbb{J}}] P: \mathbb{J}^{(r)*} \text{ is exactly } h_{\mathbb{J}} \text{-to-1, and both it and its inverse relation are efficiently computable.}$  It follows that when  $\big(D: \mathbb{BY}^{[8]}, M: \mathbb{BY}^{[8]}\big) \mapsto_{\neq \perp} \mathsf{BLAKE2s-256}\big(D, \mathsf{URS} \mid\mid M\big) : \mathbb{BY}^{[32]} \text{ is modelled as a random oracle, } \big(D: \mathbb{BY}^{[8]}, M: \mathbb{BY}^{[\mathbb{N}]}\big) \mapsto_{\neq \perp} \mathsf{GroupHash}_{\mathsf{URS}}^{\mathbb{J}^{(r)*}} \big(D, M\big) : \mathbb{J}^{(r)*} \text{ also acts as a random oracle.}$ 

Define first :  $(\mathbb{B}^{\mathbb{Y}} \to T \cup \{\bot\}) \to T \cup \{\bot\}$  so that first(f) = f(i) where i is the least integer in  $\mathbb{B}^{\mathbb{Y}}$  such that  $f(i) \neq \bot$ , or  $\bot$  if no such i exists.

```
\mathsf{Define} \; \mathsf{FindGroupHash}^{\mathbb{J}^{(r)*}}\big(D,M\big) := \mathsf{first}(i:\mathbb{B}^{\underline{\mathsf{Y}}} \mapsto \mathsf{GroupHash}^{\mathbb{J}^{(r)*}}_{\mathsf{URS}}\big(D,M \mid\mid [i]\big):\mathbb{J}^{(r)*} \cup \{\bot\}).
```

**Note:** For random input, FindGroupHash returns  $\bot$  with probability approximately  $2^{-256}$ . In the **Zcash** protocol, most uses of FindGroupHash are for constants and do not return  $\bot$ ; the only use that could potentially return  $\bot$  is in the computation of a *default diversified payment address* in §4.2.2 '**Sapling** Key Components' on p. 27.

# 5.4.9 Zero-Knowledge Proving Systems

#### 5.4.9.1 PHGR13

Before **Sapling** activation, **Zcash** uses zk-SNARKs generated by a fork of libsnark [Zcash-libsnark] with the PHGR13  $proving\ system$  described in [BCTV2015], which is a refinement of the systems in [PHGR2013] and [BCGTV2013].

A PHGR13 proof consists of  $(\pi_A:\mathbb{G}_1^{(r)*},\pi_A':\mathbb{G}_1^{(r)*},\pi_B:\mathbb{G}_2^{(r)*},\pi_B':\mathbb{G}_1^{(r)*},\pi_C:\mathbb{G}_1^{(r)*},\pi_C:\mathbb{G}_1^{(r)*},\pi_C:\mathbb{G}_1^{(r)*},\pi_K:\mathbb{G}_1^{(r)*},\pi_K:\mathbb{G}_1^{(r)*})$ . It is computed as described in [BCTV2015, Appendix B], using the pairing parameters specified in §5.4.8.1 'BN-254' on p. 63.

**Note:** Many details of the *proving system* are beyond the scope of this protocol document. For example, the *quadratic constraint program* verifying the *JoinSplit statement*, or its translation to a *Quadratic Arithmetic Program* [BCTV2015, section 2.3] [WCBTV2015], are not specified in this document. In practice it will be necessary to use the specific proving and verification keys given in §5.7 '**Sprout** zk-SNARK Parameters' on p. 75 that were generated for the **Zcash** production *block chain*, together with a *proving system* implementation that is interoperable with the **Zcash** fork of *libsnark*, to ensure compatibility.

**Encoding of PHGR13 Proofs** A PHGR13 proof is encoded by concatenating the encodings of its elements; for the BN-254 pairing this is:

| 264-bit $\pi_A$ | 264-bit $\pi'_A$ | 520-bit $\pi_B$ | 264-bit $\pi'_B$ | 264-bit $\pi_C$ | 264-bit $\pi'_C$ | 264-bit $\pi_K$ | 264-bit $\pi_H$ |
|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|-----------------|
|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|-----------------|

The resulting proof size is 296 bytes.

In addition to the steps to verify a proof given in [BCTV2015, Appendix B], the verifier **MUST** check, for the encoding of each element, that:

- the lead byte is of the required form;
- the remaining bytes encode a big-endian representation of an integer in  $\{0...q_{\mathbb{S}}-1\}$  or (in the case of  $\pi_B$ )  $\{0...q_{\mathbb{S}}^2-1\}$ ;
- the encoding represents a point in  $\mathbb{G}_1^{(r)*}$  or (in the case of  $\pi_B$ )  $\mathbb{G}_2^{(r)*}$ , including checking that it is of order  $r_{\mathbb{G}}$  in the latter case.

#### 5.4.9.2 Groth16

After **Sapling** activation, **Zcash** uses zk-SNARKs with the *proving system* described in [Groth2016]. These are used in *transaction version* 4 and later (§7.1 'Encoding of Transactions' on p. 77) for proofs both in **Sprout** JoinSplit descriptions, and in **Sapling** Spend descriptions and Output descriptions. They are generated by the *bellman* library [Bowe-bellman].

A Groth16 proof consists of  $(\pi_A:\mathbb{S}_1^{(r)*},\,\pi_B:\mathbb{S}_2^{(r)*},\,\pi_C:\mathbb{S}_1^{(r)*})$ . It is computed as described in [Groth2016, section 3.2], using the pairing parameters specified in §5.4.8.2 'BLS12-381' on p. 64. The proof elements are in a different order to the presentation in [Groth2016].

**Note:** The *quadratic constraint programs* verifying the *Spend statement* and *Output statement* are described in Appendix A 'Circuit Design' on p. 116. However, many other details of the *proving system* are beyond the scope of this protocol document. For example, certain details of the translations of the *Spend statement* and *Output statement* to *Quadratic Arithmetic Programs* are not specified in this document. In practice it will be necessary to use the specific proving and verification keys generated for the **Zcash** production *block chain* (see §5.8 'Sapling zk-SNARK Parameters' on p. 75), and a *proving system* implementation that is interoperable with the *bellman* library used by **Zcash**, to ensure compatibility.

**Encoding of Groth16 Proofs** A Groth16 proof is encoded by concatenating the encodings of its elements; for the BLS12-381 pairing this is:

| 384-bit $\pi_A$ | 768-bit $\pi_B$ | 384-bit $\pi_{\!C}$ |
|-----------------|-----------------|---------------------|
|-----------------|-----------------|---------------------|

The resulting proof size is 192 bytes.

In addition to the steps to verify a proof given in [Groth2016], the verifier **MUST** check, for the encoding of each element, that:

- the leading bitfield is of the required form;
- the remaining bits encode a big-endian representation of an integer in  $\{0...q_S-1\}$  or (in the case of  $\pi_B$ ) two integers in that range;
- the encoding represents a point in  $\mathbb{S}_1^{(r)*}$  or (in the case of  $\pi_B$ )  $\mathbb{S}_2^{(r)*}$ , including checking that it is of order  $r_{\mathbb{S}}$  in each case.

# 5.5 Encodings of Note Plaintexts and Memo Fields

As explained in §3.2.1 'Note Plaintexts and Memo Fields' on p. 13, transmitted notes are stored on the block chain in encrypted form.

The *note plaintexts* in a *JoinSplit description* are encrypted to the respective *transmission keys*  $pk_{enc,1..N}^{new}$ . Each **Sprout** *note plaintext* (denoted np) consists of:

```
(v: \{0...2^{\ell_{\mathsf{Value}}}-1\}, \rho: \mathbb{B}^{[\ell_{\mathsf{PRFSprout}}]}, \mathsf{rcm}: \mathsf{NoteCommit}^{\mathsf{Sprout}}. \mathsf{Output}, \mathsf{memo}: \mathbb{B}^{\mathsf{V}^{[512]}})
```

[Sapling onward] The *note plaintext* in each *Output description* is encrypted to the *diversified transmission key* pk<sub>d</sub>. Each Sapling *note plaintext* (denoted np) consists of:

```
(\mathsf{d} : \mathbb{B}^{[\ell_{\mathsf{d}}]}, \mathsf{v} : \{0...2^{\ell_{\mathsf{value}}} - 1\}, \mathsf{rcm} : \mathsf{NoteCommit}^{\mathsf{Sapling}}.\mathsf{Output}, \mathsf{memo} : \mathbb{B}^{\mathbb{Y}^{[512]}})
```

memo is a 512-byte memo field associated with this note.

The usage of the *memo field* is by agreement between the sender and recipient of the *note*. The *memo field* **SHOULD** be encoded either as:

- · a UTF-8 human-readable string [Unicode], padded by appending zero bytes; or
- an arbitrary sequence of 512 bytes starting with a byte value of 0xF5 or greater, which is therefore not a valid UTF-8 string.

In the former case, wallet software is expected to strip any trailing zero bytes and then display the resulting UTF-8 string to the recipient user, where applicable. Incorrect UTF-8-encoded byte sequences **SHOULD** be displayed as replacement characters (U+FFFD).

In the latter case, the contents of the *memo field* **SHOULD NOT** be displayed. A start byte of 0xF5 is reserved for use by automated software by private agreement. A start byte of 0xF6 followed by 511 0x00 bytes means "no memo". A start byte of 0xF6 followed by anything else, or a start byte of 0xF7 or greater, are reserved for use in future **Zcash** protocol extensions.

Other fields are as defined in §3.2 'Notes' on p. 12.

The encoding of a **Sprout** *note plaintext* consists of:

| 8-bit 0x00 | 64-bit v | 256-bit ρ | 256-bit rcm | memo (512 bytes) |
|------------|----------|-----------|-------------|------------------|
|------------|----------|-----------|-------------|------------------|

- A byte, 0x00, indicating this version of the encoding of a **Sprout** *note plaintext*.
- · 8 bytes specifying v.
- 32 bytes specifying  $\rho$ .
- · 32 bytes specifying rcm.
- · 512 bytes specifying memo.

The encoding of a **Sapling** *note plaintext* consists of:

| 8-bit 0x01 | 88-bit d | 64-bit v | 256-bit rcm | memo (512 bytes) |
|------------|----------|----------|-------------|------------------|
|------------|----------|----------|-------------|------------------|

- A byte, 0x01, indicating this version of the encoding of a **Sapling** *note plaintext*.
- · 11 bytes specifying d.
- · 8 bytes specifying v.
- · 32 bytes specifying rcm.
- 512 bytes specifying memo.

# 5.6 Encodings of Addresses and Keys

This section describes how **Zcash** encodes *shielded payment addresses*, *incoming viewing keys*, and *spending keys*.

Addresses and keys can be encoded as a byte sequence; this is called the *raw encoding*. This byte sequence can then be further encoded using Base58Check. The Base58Check layer is the same as for upstream **Bitcoin** addresses [Bitcoin-Base58].

For **Sapling**-specific key and address formats, Bech32 [BIP-173] is used instead of Base58Check. All conformance requirements of BIP 173 apply except for the limit of 90 characters on an encoded Bech32 string (which does not hold for **Sapling** viewing keys, for example), and requirements specific to Bitcoin's Segwit addresses.

SHA-256 compression outputs are always represented as sequences of 32 bytes.

The language consisting of the following encoding possibilities is prefix-free.

## 5.6.1 Transparent Addresses

*Transparent addresses* are either P2SH (Pay to Script Hash) addresses [BIP-13] or P2PKH (Pay to Public Key Hash) addresses [Bitcoin-P2PKH].

The raw encoding of a P2SH address consists of:

|  | 8-bit 0x1C | 8-bit 0xBD | 160-bit script hash |
|--|------------|------------|---------------------|
|--|------------|------------|---------------------|

- Two bytes [0x1C, 0xBD], indicating this version of the raw encoding of a P2SH address on the production network. (Addresses on the test network use [0x1C, 0xBA] instead.)
- 20 bytes specifying a script hash [Bitcoin-P2SH].

The raw encoding of a P2PKH address consists of:

| 8-bit 0x1C | 8-bit 0xB8 | 160-bit public key hash |
|------------|------------|-------------------------|
|------------|------------|-------------------------|

- Two bytes [0x1C, 0xB8], indicating this version of the raw encoding of a P2PKH address on the production network. (Addresses on the test network use [0x1D, 0x25] instead.)
- 20 bytes specifying a public key hash, which is a RIPEMD-160 hash [RIPEMD160] of a SHA-256 hash [NIST2015] of a compressed ECDSA key encoding.

#### Notes:

- In Bitcoin a single byte is used for the version field identifying the address type. In Zcash two bytes are used. For addresses on the production network, this and the encoded length cause the first two characters of the Base58Check encoding to be fixed as "t3" for P2SH addresses, and as "t1" for P2PKH addresses. (This does not imply that a transparent Zcash address can be parsed identically to a Bitcoin address just by removing the "t".)
- · Zcash does not yet support Hierarchical Deterministic Wallet addresses [BIP-32].

## 5.6.2 Transparent Private Keys

These are encoded in the same way as in **Bitcoin** [Bitcoin-Base58], for both the production and test networks.

## 5.6.3 Sprout Shielded Payment Addresses

A **Sprout** shielded payment address consists of  $a_{pk} \circ \mathbb{B}^{[\ell_{PRFSprout}]}$  and  $pk_{enc} \circ KA^{Sprout}$ . Public.

a<sub>pk</sub> is a *SHA-256 compression* output. pk<sub>enc</sub> is a KA<sup>Sprout</sup>. Public key (see §5.4.4.1 '**Sprout** Key Agreement' on p. 57), for use with the encryption scheme defined in §4.16 'In-band secret distribution (**Sprout**)' on p. 43. These components are derived from a *spending key* as described in §4.2.1 '**Sprout** Key Components' on p. 27.

The raw encoding of a **Sprout** *shielded payment address* consists of:

| 8-bit 0x16 8-bit 0x9A | 256-bit a <sub>pk</sub> | 256-bit pk <sub>enc</sub> |
|-----------------------|-------------------------|---------------------------|
|-----------------------|-------------------------|---------------------------|

- Two bytes [0x16, 0x9A], indicating this version of the raw encoding of a **Sprout** shielded payment address on the production network. (Addresses on the test network use [0x16, 0xB6] instead.)
- · 32 bytes specifying a<sub>pk</sub>.
- 32 bytes specifying pk<sub>enc</sub>, using the normal encoding of a Curve25519 public key [Bernstein2006].

**Note:** For addresses on the production network, the lead bytes and encoded length cause the first two characters of the Base58Check encoding to be fixed as "zc". For the test network, the first two characters are fixed as "zt".

## 5.6.4 Sapling Shielded Payment Addresses

A **Sapling** shielded payment address consists of d :  $\mathbb{B}^{[\ell_d]}$  and  $pk_d$  : KA<sup>Sapling</sup>.PublicPrimeOrder.

pk<sub>d</sub> is an encoding of a KA<sup>Sapling</sup> public key of type KA<sup>Sapling</sup>. PublicPrimeOrder (see § 5.4.4.3 '**Sapling** Key Agreement' on p. 58), for use with the encryption scheme defined in § 4.17 'In-band secret distribution (**Sapling**)' on p. 44. d is a sequence of 11 bytes. These components are derived as described in § 4.2.2 '**Sapling** Key Components' on p. 27.

The raw encoding of a **Sapling** shielded payment address consists of:

| $LEBS2OSP_{88}(d) \qquad LEBS2OSP_{256}\big(repr_{\mathbb{J}}(pk_d)\big)$ |
|---------------------------------------------------------------------------|
|---------------------------------------------------------------------------|

- · 11 bytes specifying d.
- · 32 bytes specifying the compressed Edwards encoding of pkd (see §5.4.8.3 'Jubjub' on p. 66).

When decoding the representation of  $pk_d$ , the address is not valid if  $abst_{\mathbb{J}}$  returns  $\bot$  or if the resulting  $pk_d$  is not of prime order.

For addresses on the production network, the *Human-Readable Part* is "zs". For addresses on the test network, the *Human-Readable Part* is "ztestsapling".

# 5.6.5 Sprout Incoming Viewing Keys

An incoming viewing key consists of  $a_{pk} : \mathbb{B}^{[\ell_{PRFSprout}]}$  and  $sk_{enc} : KA^{Sprout}$ . Private.

a<sub>pk</sub> is a *SHA-256 compression* output. sk<sub>enc</sub> is a KA<sup>Sprout</sup>. Private key (see §5.4.4.1 '**Sprout** Key Agreement' on p. 57), for use with the encryption scheme defined in §4.16 'In-band secret distribution (**Sprout**)' on p. 43. These components are derived from a *spending key* as described in §4.2.1 '**Sprout** Key Components' on p. 27.

The raw encoding of an incoming viewing key consists of, in order:

| 8-bit 0xA8 8-bit 0xAB | 8-bit 0xD3 | 256-bit a <sub>pk</sub> | 256-bit sk <sub>enc</sub> |
|-----------------------|------------|-------------------------|---------------------------|
|-----------------------|------------|-------------------------|---------------------------|

- Three bytes [0xA8, 0xAB, 0xD3], indicating this version of the raw encoding of a **Zcash** *incoming viewing key* on the production network. (Addresses on the test network use [0xA8, 0xAC, 0x0C] instead.)
- · 32 bytes specifying a<sub>pk</sub>.
- · 32 bytes specifying sk<sub>enc</sub>, using the normal encoding of a Curve25519 private key [Bernstein2006].

 $sk_{enc}$  MUST be "clamped" using KA<sup>Sprout</sup>. FormatPrivate as specified in §4.2.1 '**Sprout** Key Components' on p. 27. That is, a decoded *incoming viewing key* MUST be considered invalid if  $sk_{enc} \neq KA^{Sprout}$ . FormatPrivate( $sk_{enc}$ ).

KA<sup>Sprout</sup>.FormatPrivate is defined in §5.4.4.1 'Sprout Key Agreement' on p. 57.

**Note:** For addresses on the production network, the lead bytes and encoded length cause the first four characters of the Base58Check encoding to be fixed as "ZiVK". For the test network, the first four characters are fixed as "ZiVK".

# 5.6.6 Sapling Incoming Viewing Keys

Let  $\ell_{ivk}$  be as defined in §5.3 'Constants' on p. 49.

A **Sapling** *incoming viewing key* consists of ivk :  $\{0...2^{\ell_{ivk}}-1\}$ .

ivk is a KA<sup>Sapling</sup>. Private key (restricted to  $\ell_{ivk}$  bits), derived as described in §4.2.2 '**Sapling** Key Components' on p. 27. It is used with the encryption scheme defined in §4.17 'In-band secret distribution (**Sapling**)' on p. 44.

The raw encoding of an incoming viewing key consists of:

· 32 bytes (little-endian) specifying ivk, padded with zeros in the most significant bits.

ivk **MUST** be in the range  $\{0...2^{\ell_{ivk}}-1\}$  as specified in §4.2.2 '**Sapling** Key Components' on p. 27. That is, a decoded incoming viewing key **MUST** be considered invalid if ivk is not in this range.

For incoming viewing keys on the production network, the *Human-Readable Part* is "zivks". For incoming viewing keys on the test network, the *Human-Readable Part* is "zivktestsapling".

## 5.6.7 Sapling Full Viewing Keys

A **Sapling** full viewing key consists of  $ak : \mathbb{J}^{(r)*}$ ,  $nk : \mathbb{J}^{(r)}$ , and  $ovk : \mathbb{B}^{\mathbb{Y}^{[\ell_{ovk}/8]}}$ .

ak and nk are points on the *Jubjub curve* (see §5.4.8.3 '*Jubjub*' on p. 66). They are derived as described in §4.2.2 '*Sapling Key Components*' on p. 27.

The raw encoding of a full viewing key consists of:

| $LEBS2OSP_{256}\big(repr_{\mathbb{J}}(ak)\big)$ | $LEBS2OSP_{256}\big(repr_{\mathbb{J}}(nk)\big)$ | 32-byte ovk |
|-------------------------------------------------|-------------------------------------------------|-------------|
|-------------------------------------------------|-------------------------------------------------|-------------|

- · 32 bytes specifying the compressed Edwards encoding of ak (see §5.4.8.3 'Jubjub' on p. 66).
- · 32 bytes specifying the compressed Edwards encoding of nk.
- · 32 bytes specifying the *outgoing viewing key* ovk.

When decoding this representation, the key is not valid if  $\mathsf{abst}_{\mathbb{J}}$  returns  $\bot$  for either  $\mathsf{ak}$  or  $\mathsf{nk}$ , or if  $\mathsf{ak} \notin \mathbb{J}^{(r)*}$ , or if  $\mathsf{nk} \notin \mathbb{J}^{(r)}$ .

For incoming viewing keys on the production network, the *Human-Readable Part* is "zviews". For incoming viewing keys on the test network, the *Human-Readable Part* is "zviewtestsapling".

# 5.6.8 Sprout Spending Keys

A **Sprout** spending key consists of  $a_{sk}$ , which is a sequence of 252 bits (see §4.2.1 '**Sprout** Key Components' on p. 27).

The raw encoding of a **Sprout** spending key consists of:

| 8-bit 0xAB | 8-bit 0x36 | $[0]^4$ | 252-bit a <sub>sk</sub> |
|------------|------------|---------|-------------------------|
|------------|------------|---------|-------------------------|

- Two bytes [0xAB, 0x36], indicating this version of the raw encoding of a **Zcash** spending key on the production network. (Addresses on the test network use [0xAC, 0x08] instead.)
- · 32 bytes: 4 zero padding bits and 252 bits specifying a<sub>sk</sub>.

The zero padding occupies the most significant 4 bits of the third byte.

#### Notes:

- If an implementation represents  $a_{sk}$  internally as a sequence of 32 bytes with the 4 bits of zero padding intact, it will be in the correct form for use as an input to PRF<sup>addr</sup>, PRF<sup>nf</sup>, and PRF<sup>pk</sup> without need for bit-shifting. Future key representations may make use of these padding bits.
- For addresses on the production network, the lead bytes and encoded length cause the first two characters of the Base58Check encoding to be fixed as "SK". For the test network, the first two characters are fixed as "ST".

# 5.6.9 Sapling Spending Keys

A Sapling spending key consists of sk :  $\mathbb{B}^{[\ell_{sk}]}$  (see §4.2.2 'Sapling Key Components' on p. 27).

The raw encoding of a **Sapling** spending key consists of:

 $\mathsf{LEBS2OSP}_{256}(\mathsf{sk})$ 

· 32 bytes specifying sk.

For spending keys on the production network, the Human-Readable Part is "secret-spending-key-main". For spending keys on the test network, the Human-Readable Part is "secret-spending-key-test".

# 5.7 Sprout zk-SNARK Parameters

For the **Zcash** production *block chain* and testnet, the SHA-256 hashes of the *proving key* and *verifying key* for the **Sprout** *JoinSplit circuit*, encoded in *libsnark* format, are:

8bc20a7f013b2b58970cddd2e7ea028975c88ae7ceb9259a5344a16bc2c0eef7 sprout-proving.key 4bd498dae0aacfd8e98dc306338d017d9c08dd0918ead18172bd0aec2fc5df82 sprout-verifying.key

These parameters were obtained by a multi-party computation described in [BGG-mpc] and [BGG2016]. They are used only before **Sapling** activation.

# 5.8 Sapling zk-SNARK Parameters

bellman [Bowe-bellman] encodes the proving key and verifying key for a zk-SNARK circuit in a single parameters file. The BLAKE2b-512 hashes of this file for the **Sapling** Spend circuit and Output circuit, and for the implementation of the **Sprout** JoinSplit circuit used after **Sapling** activation, are respectively:

8270785a1a0d0bc77196f000ee6d221c9c9894f55307bd9357c3f0105d31ca63
991ab91324160d8f53e2bbd3c2633a6eb8bdf5205d822e7f3f73edac51b2b70c sapling-spend.params
657e3d38dbb5cb5e7dd2970e8b03d69b4787dd907285b5a7f0790dcc8072f60b
f593b32cc2d1c030e00ff5ae64bf84c5c3beb84ddc841d48264b4a171744d028 sapling-output.params
e9b238411bd6c0ec4791e9d04245ec350c9c5744f5610dfcce4365d5ca49dfef
d5054e371842b3f88fa1b9d7e8e075249b3ebabd167fa8b0f3161292d36c180a sprout-groth16.params

These parameters were obtained by a multi-party computation described in TODO: .

## 5.9 Randomness Beacon

Let URS := "096b36a5804bfacef1691e173c366a47ff5ba84a44f26ddd7e8d9f79d5b42df0".

This value is used in the definition of GroupHash  $\mathbb{J}^{(r)*}$  in §5.4.8.5 'Group Hash into Jubjub' on p. 68, and in the multiparty computation to obtain the **Sapling** parameters given in §5.8 '**Sapling** zk-SNARK Parameters' on p. 75.

It is derived as described in [Bowe2018]:

- Take the hash of the **Bitcoin** *block* at height 514200 in RPC byte order [Bitcoin-Order], i.e. the big-endian 32-byte representation of 0x0000000000000000000034b33e842ac1c50456abe5fa92b60f6b3dfc5d247f7b58.
- Apply SHA-256  $2^{42}$  times.
- · Convert to a US-ASCII lowercase hexadecimal string.

**Note:** URS is a 64-byte US-ASCII string, i.e. the first byte is 0x30, not 0x09.

# 6 Network Upgrades

**Zcash** launched with a protocol revision that we call **Sprout**. A first network upgrade, called **Overwinter**, activated on the production **Zcash** network on 26 June 2018 at block height 347500 [Swihart2018]. At the time of writing, a further upgrade called **Sapling** is planned to activate on the production network in late October 2018. This section summarizes the strategy for upgrading from **Sprout** to **Overwinter**, and then to **Sapling** and future upgrades.

The upgrade mechanism is described in [ZIP-200]. The specifications of the **Overwinter** upgrade are described in this document, [ZIP-201], [ZIP-203], and [ZIP-143]. The specifications of the **Sapling** upgrade are described in this document and [ZIP-243].

Each network upgrade is introduced as a "bilateral consensus rule change". In this kind of upgrade,

- there is a *block height* at which the *consensus rule change* takes effect;
- blocks and transactions that are valid according to the post-upgrade rules are not valid before the upgrade block height;
- blocks and transactions that are valid according to the pre-upgrade rules are no longer valid at or after the upgrade block height.

Full support for each upgrade is indicated by a minimum version of the peer-to-peer protocol. At the planned upgrade *block height*, nodes that support a given upgrade will disconnect from (and will not reconnect to) nodes with a protocol version lower than this minimum. See [ZIP-201] for how this applies to the **Overwinter** upgrade.

This ensures that upgrade-supporting nodes transition cleanly from the old protocol to the new protocol. Nodes that do not support the upgrade will find themselves on a network that uses the old protocol and is fully partitioned from the upgrade-supporting network. This allows us to specify arbitrary protocol changes that take effect at a given *block height*.

Note, however, that a *block chain* reorganization across the upgrade *block height* is possible. In the case of such a reorganization, *blocks* at a height before the upgrade *block height* will still be created and validated according to the pre-upgrade rules, and upgrade-supporting nodes **MUST** allow for this.

# 7 Consensus Changes from Bitcoin

# 7.1 Encoding of Transactions

The **Zcash** *transaction* format is as follows:

| Version  | Bytes                   | Name                    | Data Type                              | Description                                                                                                                          |
|----------|-------------------------|-------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| ≥ 1      | 4                       | header                  | uint32                                 | Contains:  • fOverwintered flag (bit 31)  • version (bits 30 0) – transaction version.                                               |
| $\geq 3$ | 4                       | ${\tt nVersionGroupId}$ | uint32                                 | Version group ID (nonzero).                                                                                                          |
| ≥ 1      | Varies                  | tx_in_count             | compactSize uint                       | Number of <i>transparent</i> inputs in this <i>transaction</i> .                                                                     |
| $\geq 1$ | Varies                  | tx_in                   | tx_in                                  | Transparent inputs, encoded as in Bitcoin.                                                                                           |
| ≥ 1      | Varies                  | tx_out_count            | compactSize uint                       | Number of <i>transparent</i> outputs in this <i>transaction</i> .                                                                    |
| $\geq 1$ | Varies                  | tx_out                  | tx_out                                 | Transparent outputs, encoded as in Bitcoin.                                                                                          |
| ≥ 1      | 4                       | lock_time               | uint32                                 | A Unix epoch time (UTC) or <i>block height</i> , encoded as in <b>Bitcoin</b> .                                                      |
| $\geq 3$ | 4                       | nExpiryHeight           | uint32                                 | A <i>block height</i> in the range {1 499999999} after which the <i>transaction</i> will expire, or 0 to disable expiry ([ZIP-203]). |
| $\geq 4$ | 8                       | valueBalance            | int64                                  | The net value of <b>Sapling</b> <i>Spend transfers</i> minus <i>Output transfers</i> .                                               |
| $\geq 4$ | Varies                  | nShieldedSpend          | compactSize uint                       | The number of <i>Spend descriptions</i> in vShieldedSpend.                                                                           |
| $\geq 4$ | 384.<br>nShieldedSpend  | vShieldedSpend          | SpendDescription [nShieldedSpend]      | A sequence of <i>Spend descriptions</i> , each encoded as in §7.3 <i>Encoding of Spend Descriptions</i> ' on p. 81.                  |
| ≥ 4      | Varies                  | nShieldedOutput         | compactSize uint                       | The number of <i>Output descriptions</i> in vShieldedOutput.                                                                         |
| $\geq 4$ | 948.<br>nShieldedOutput | vShieldedOutput         | OutputDescription<br>[nShieldedOutput] | A sequence of <i>Output descriptions</i> , each encoded as in §7.4 <i>Encoding of Output Descriptions</i> ' on p. 81.                |
| $\geq 2$ | Varies                  | nJoinSplit              | compactSize uint                       | The number of <i>JoinSplit descriptions</i> in vJoinSplit.                                                                           |
| 23       | 1802·<br>nJoinSplit     | vJoinSplit              | JSDescriptionPHGR13<br>[nJoinSplit]    | A sequence of JoinSplit descriptions using PHGR13 proofs, each encoded as in §7.2 'Encoding of JoinSplit Descriptions' on p. 80.     |
| ≥ 4      | 1698.<br>nJoinSplit     | vJoinSplit              | JSDescriptionGroth16<br>[nJoinSplit]   | A sequence of JoinSplit descriptions using Groth16 proofs, each encoded as in §7.2 'Encoding of JoinSplit Descriptions' on p. 80.    |
| ≥ 2 †    | 32                      | joinSplitPubKey         | char[32]                               | An encoding of a JoinSplitSig public verification key.                                                                               |
| ≥ 2 †    | 64                      | joinSplitSig            | char[64]                               | A signature on a prefix of the <i>transaction</i> encoding, to be verified using joinSplitPubKey.                                    |
| ≥ 4 ‡    | 64                      | bindingSig              | char[64]                               | A signature on the SIGHASH transaction hash, to be verified as specified in §5.4.6.2 'Binding Signature' on p. 61.                   |

<sup>†</sup> The joinSplitPubKey and joinSplitSig fields are present if and only if version  $\geq 2$  and nJoinSplit > 0. The encoding of joinSplitPubKey and the data to be signed are specified in §4.10 'Non-malleability (**Sprout**)' on p. 35.

 $<sup>\</sup>ddagger$  The bindingSig field is present if and only if version  $\geq 4$  and nShieldedSpend + nShieldedOutput > 0.

## Consensus rules:

- The *transaction version number* **MUST** be greater than or equal to 1.
- [Pre-Overwinter] The fOverwintered flag MUST NOT be set.
- [Overwinter onward] The fOverwintered flag MUST be set.
- [Overwinter onward] The version group ID MUST be recognized.
- [Overwinter only, pre-Sapling] The transaction version number MUST be 3 and the version group ID MUST be 0x03C48270.
- [Sapling onward] The transaction version number MUST be 4 and the version group ID MUST be 0x892F2085.
- [Pre-Sapling] The encoded size of the transaction MUST be less than or equal to 100000 bytes.
- [Pre-Sapling] If version = 1 or nJoinSplit = 0, then tx\_in\_count MUST NOT be 0.
- [Sapling onward] At least one of tx\_in\_count, nShieldedSpend, and nJoinSplit MUST be nonzero.
- A *transaction* with one or more inputs from *coinbase transactions* **MUST** have no *transparent* outputs (i.e. tx\_out\_count **MUST** be 0). Note that inputs from *coinbase transactions* include *Founders' Reward* outputs.
- If version  $\geq 2$  and nJoinSplit > 0, then:
  - joinSplitPubKey MUST represent a valid Ed25519 public key encoding (§5.4.5 'JoinSplit Signature' on p. 58).
  - joinSplitSig MUST represent a valid signature under joinSplitPubKey of dataToBeSigned, as defined in §4.10 'Non-malleability (Sprout)' on p. 35.
- [Sapling onward] If version  $\geq 4$  and nShieldedSpend + nShieldedOutput > 0, then:
  - let bvk and SigHash be as defined in §4.12 'Balance and Binding Signature (Sapling)' on p. 36;
  - bindingSig MUST represent a valid signature under the *transaction binding verification key* bvk of SigHash i.e. BindingSig.Verify<sub>bvk</sub>(SigHash, bindingSig) = 1.
- [Sapling onward] If version  $\geq 4$  and nShieldedSpend + nShieldedOutput = 0, then valueBalance MUST be 0.
- A coinbase transaction MUST NOT have any JoinSplit descriptions, Spend descriptions, or Output descriptions.
- A transaction MUST NOT spend an output of a coinbase transaction (necessarily a transparent output) from a block less than 100 blocks prior to the spend. Note that outputs of coinbase transactions include Founders' Reward outputs.
- [Overwinter onward] nExpiryHeight MUST be less than or equal to 499999999.
- [Overwinter onward] If a *transaction* is not a *coinbase transaction* and its nExpiryHeight field is nonzero, then it MUST NOT be mined at a *block height* greater than its nExpiryHeight.
- [Sapling onward] valueBalance MUST be in the range {-MAX\_MONEY .. MAX\_MONEY}.
- · TODO: Other rules inherited from Bitcoin.

In addition, consensus rules associated with each *JoinSplit description* (§7.2 'Encoding of JoinSplit Descriptions' on p. 80), each Spend description (§7.3 'Encoding of Spend Descriptions' on p. 81), and each Output description (§7.4 'Encoding of Output Descriptions' on p. 81) MUST be followed.

#### Notes:

- Previous versions of this specification defined what is now the header field as a signed int32 field which was
  required to be positive. The consensus rule that the foverwintered flag MUST NOT be set before Overwinter
  has activated, has the same effect.
- The semantics of *transactions* with *transaction version number* not equal to 1, 2, 3, or 4 is not currently defined. Miners **MUST NOT** create *blocks* before the **Overwinter** *activation block height* containing *transactions* with version other than 1 or 2.

- The exclusion of *transactions* with *transaction version number greater than* 2 is not a consensus rule before **Overwinter** activation. Such *transactions* may exist in the *block chain* and **MUST** be treated identically to version 2 *transactions*.
- [Overwinter onward] Once Overwinter has activated, limits on the maximum *transaction version number* are consensus rules.
- Note that a future upgrade might use *any transaction version number* or *version group ID*. It is likely that an upgrade that changes the *transaction version number* or *version group ID* will also change the *transaction* format, and software that parses *transactions* **SHOULD** take this into account.
- [Overwinter onward] The purpose of *version group ID* is to allow unambiguous parsing of "loose" transactions, independent of the context of a block chain. Code that parses transactions is likely to be reused between block chain branches as defined in [ZIP-200], and in that case the forwintered and version fields alone may be insufficient to determine the format to be used for parsing.
- A transaction version number of 2 does not have the same meaning as in **Bitcoin**, where it is associated with support for OP\_CHECKSEQUENCEVERIFY as specified in [BIP-68]. **Zcash** was forked from **Bitcoin** v0.11.2 and does not currently support BIP 68.

The changes relative to **Bitcoin** version 1 *transactions* as described in [Bitcoin-Format] are:

- *Transaction version* 0 is not supported.
- A version 1 transaction is equivalent to a version 2 transaction with nJoinSplit = 0.
- · The nJoinSplit, vJoinSplit, joinSplitPubKey, and joinSplitSig fields have been added.
- In **Zcash** it is permitted for a *transaction* to have no *transparent* inputs provided that nJoinSplit > 0.
- A consensus rule limiting *transaction* size has been added. In **Bitcoin** there is a corresponding standard rule but no consensus rule.

[Pre-Overwinter] Software that creates *transactions* SHOULD use version 1 for *transactions* with no *JoinSplit descriptions*.

# 7.2 Encoding of JoinSplit Descriptions

An abstract JoinSplit description, as described in §3.5 'JoinSplit Transfers and Descriptions' on p. 15, is encoded in a transaction as an instance of a JoinSplitDescription type as follows:

| Bytes | Name           | Data Type                    | Description                                                                                                                                                                                                                          |
|-------|----------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8     | vpub_old       | uint64                       | A value v <sub>pub</sub> that the <i>JoinSplit transfer</i> removes from the <i>transparent value pool</i> .                                                                                                                         |
| 8     | vpub_new       | uint64                       | A value v <sub>pub</sub> that the <i>JoinSplit transfer</i> inserts into the <i>transparent value pool</i> .                                                                                                                         |
| 32    | anchor         | char[32]                     | A root rt of the <b>Sprout</b> note commitment tree at some block height in the past, or the root produced by a previous JoinSplit transfer in this transaction.                                                                     |
| 64    | nullifiers     | char[32][N <sup>old</sup> ]  | A sequence of <i>nullifiers</i> of the input <i>notes</i> $\inf_{1N^{\text{old}}}^{\text{old}}$ .                                                                                                                                    |
| 64    | commitments    | char[32][N <sup>new</sup> ]  | A sequence of <i>note commitments</i> for the output <i>notes</i> $cm_{1N^{new}}^{new}$ .                                                                                                                                            |
| 32    | ephemeralKey   | char[32]                     | A Curve25519 public key epk.                                                                                                                                                                                                         |
| 32    | randomSeed     | char[32]                     | A 256-bit seed that must be chosen independently at random for each <i>JoinSplit description</i> .                                                                                                                                   |
| 64    | vmacs          | char[32][N <sup>old</sup> ]  | A sequence of message authentication tags $h_{1N}^{\text{old}}$ binding $h_{\text{Sig}}$ to each $a_{\text{sk}}$ of the <i>JoinSplit description</i> , computed as described in §4.10 'Non-malleability ( <b>Sprout</b> )' on p. 35. |
| 296 † | zkproof        | char[296]                    | An encoding of the zero-knowledge proof $\pi_{\sf ZKJoinSplit}$ (see §5.4.9.1 $\it PHGR13$ ' on p. 68).                                                                                                                              |
| 192 ‡ | zkproof        | char[192]                    | An encoding of the zero-knowledge proof $\pi_{\sf ZKJoinSplit}$ (see §5.4.9.2 'Groth16' on p. 69).                                                                                                                                   |
| 1202  | encCiphertexts | char[601][N <sup>new</sup> ] | A sequence of ciphertext components for the encrypted output $notes$ , $C_{1N^{new}}^{\rm enc}$ .                                                                                                                                    |

<sup>†</sup> PHGR13 proofs are used when the *transaction* version is 2 or 3, i.e. before **Sapling** activation.

The ephemeralKey and encCiphertexts fields together form the *transmitted notes ciphertext*, which is computed as described in §4.16 'In-band secret distribution (**Sprout**)' on p. 43.

Consensus rules applying to a JoinSplit description are given in §4.3 'JoinSplit Descriptions' on p. 29.

 $<sup>\</sup>ddagger$  Groth16 proofs are used when the *transaction* version is  $\ge 4$ , i.e. after **Sapling** activation.

# 7.3 Encoding of Spend Descriptions

Let LEBS2OSP be as defined in §5.2 'Integers, Bit Sequences, and Endianness' on p. 48.

Let  $\operatorname{repr}_{\mathbb{J}}$  and  $q_{\mathbb{J}}$  be as defined in §5.4.8.3 'Jubjub' on p. 66.

An abstract *Spend description*, as described in §3.6 'Spend Transfers, Output Transfers, and their Descriptions' on p. 15, is encoded in a transaction as an instance of a SpendDescription type as follows:

| Bytes | Name         | Data Type | Description                                                                                                       |
|-------|--------------|-----------|-------------------------------------------------------------------------------------------------------------------|
| 32    | cv           | char[32]  | A <i>value commitment</i> to the value of the input <i>note</i> , LEBS2OSP $_{256}$ (repr $_{\mathbb{J}}$ (cv)).  |
| 32    | anchor       | char[32]  | A root of the <b>Sapling</b> note commitment tree at some block height in the past, LEBS2OSP <sub>256</sub> (rt). |
| 32    | nullifier    | char[32]  | The <i>nullifier</i> of the input <i>note</i> , LEBS2OSP <sub>256</sub> (nf).                                     |
| 32    | rk           | char[32]  | The randomized public key for spendAuthSig, LEBS2OSP $_{256}$ (repr $_{\mathbb{J}}$ (rk)).                        |
| 192   | zkproof      | char[192] | An encoding of the zero-knowledge proof $\pi_{\sf ZKSpend}$ (see §5.4.9.2 ' $Groth16$ ' on p. 69).                |
| 64    | spendAuthSig | char[64]  | A signature authorizing this spend.                                                                               |

**Consensus rule:** LEOS2IP $_{256}$ (anchor) **MUST** be less than  $q_{\mathbb{J}}$ .

Other consensus rules applying to a Spend description are given in §4.4 'Spend Descriptions' on p. 30.

# 7.4 Encoding of Output Descriptions

Let LEBS2OSP be as defined in §5.2 'Integers, Bit Sequences, and Endianness' on p. 48.

Let  $\operatorname{repr}_{\mathbb{J}}$  and  $q_{\mathbb{J}}$  be as in §5.4.8.3 ' $\operatorname{Jubjub}$ ' on p. 66, and  $\operatorname{Extract}_{\mathbb{J}^{(r)}}$  as in §5.4.8.5 ' $\operatorname{Group}$   $\operatorname{Hash}$  into  $\operatorname{Jubjub}$ ' on p. 68.

An abstract *Output description*, described in §3.6 'Spend Transfers, Output Transfers, and their Descriptions' on p. 15, is encoded in a transaction as an instance of an OutputDescription type as follows:

| Bytes | Name          | Data Type | Description                                                                                                                    |
|-------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------|
| 32    | CV            | char[32]  | A <i>value commitment</i> to the value of the output <i>note</i> , LEBS2OSP $_{256}$ (repr $_{\mathbb{J}}$ (cv)).              |
| 32    | cmu           | char[32]  | The $u$ -coordinate of the note commitment for the output note, LEBS2OSP $_{256}(cm_u)$ where $cm_u = Extract_{J^{(r)}}(cm)$ . |
| 32    | ephemeralKey  | char[32]  | An encoding of an ephemeral Jubjub public key, LEBS2OSP $_{256}$ (repr $_{\mathbb{J}}$ (epk)).                                 |
| 580   | encCiphertext | char[580] | A ciphertext component for the encrypted output <i>note</i> , C <sup>enc</sup> .                                               |
| 80    | outCiphertext | char[80]  | A ciphertext component for the encrypted output <i>note</i> , C <sup>out</sup> .                                               |
| 192   | zkproof       | char[192] | An encoding of the zero-knowledge proof $\pi_{\sf ZKOutput}$ (see §5.4.9.2 'Groth16' on p. 69).                                |

The ephemeralKey, encCiphertext, and outCiphertext fields together form the transmitted note ciphertext, which is computed as described in §4.17 'In-band secret distribution (Sapling)' on p. 44.

Consensus rule: LEOS2IP<sub>256</sub>(cmu) MUST be less than  $q_{\mathbb{J}}$ .

Other consensus rules applying to an Output description are given in §4.5 'Output Descriptions' on p. 31.

## 7.5 Block Header

The **Zcash** block header format is as follows:

| Bytes | Name                                   | Data Type        | Description                                                                                                                                                                                                                                                |
|-------|----------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4     | nVersion                               | int32            | The <i>block version number</i> indicates which set of <i>block</i> validation rules to follow. The current and only defined <i>block version number</i> for <b>Zcash</b> is 4.                                                                            |
| 32    | hashPrevBlock                          | char[32]         | A <i>SHA-256d</i> hash in internal byte order of the previous <i>block</i> 's <i>header</i> . This ensures no previous <i>block</i> can be changed without also changing this <i>block</i> 's <i>header</i> .                                              |
| 32    | hashMerkleRoot                         | char[32]         | A <i>SHA-256d</i> hash in internal byte order. The merkle root is derived from the hashes of all <i>transactions</i> included in this <i>block</i> , ensuring that none of those <i>transactions</i> can be modified without modifying the <i>header</i> . |
| 32    | hashReserved /<br>hashFinalSaplingRoot | char[32]         | [Pre-Sapling] A reserved field which should be ignored. [Sapling onward] The root LEBS2OSP <sub>256</sub> (rt) of the Sapling note commitment tree corresponding to the final Sapling treestate of this block.                                             |
| 4     | nTime                                  | uint32           | The <i>block time</i> is a Unix epoch time (UTC) when the miner started hashing the <i>header</i> (according to the miner).                                                                                                                                |
| 4     | nBits                                  | uint32           | An encoded version of the <i>target threshold</i> this <i>block</i> 's <i>header</i> hash must be less than or equal to, in the same nBits format used by <b>Bitcoin</b> . [Bitcoin-nBits]                                                                 |
| 32    | nNonce                                 | char[32]         | An arbitrary field that miners can change to modify the <i>header</i> hash in order to produce a hash less than or equal to the <i>target</i> threshold.                                                                                                   |
| 3     | solutionSize                           | compactSize uint | The size of an Equihash solution in bytes (always 1344).                                                                                                                                                                                                   |
| 1344  | solution                               | char[1344]       | The Equihash solution.                                                                                                                                                                                                                                     |

A *block* consists of a *block header* and a sequence of *transactions*. How transactions are encoded in a *block* is part of the Zcash peer-to-peer protocol but not part of the consensus protocol.

Let ThresholdBits be as defined in §7.6.3 'Difficulty adjustment' on p. 85, and let PoWMedianBlockSpan be the constant defined in §5.3 'Constants' on p. 49.

## Consensus rules:

- The *block version number* **MUST** be greater than or equal to 4.
- For a *block* at *block height* height, nBits **MUST** be equal to ThresholdBits(height).
- The block MUST pass the difficulty filter defined in \$7.6.2 'Difficulty filter' on p. 85.
- · solution MUST represent a valid Equihash solution as defined in §7.6.1 'Equihash' on p. 84.
- nTime MUST be strictly greater than the median time of the previous PoWMedianBlockSpan blocks.
- The size of a *block* **MUST** be less than or equal to 2000000 bytes.
- [Sapling onward] hashFinalSaplingRoot MUST be LEBS2OSP<sub>256</sub>(rt) where rt is the *root* of the Sapling *note* commitment tree for the final Sapling treestate of this block.
- · TODO: Other rules inherited from **Bitcoin**.

In addition, a *full validator* **MUST NOT** accept *blocks* with nTime more than two hours in the future according to its clock. This is not strictly a consensus rule because it is nondeterministic, and clock time varies between nodes. Also note that a *block* that is rejected by this rule at a given point in time may later be accepted.

#### Notes:

- The semantics of blocks with *block version number* not equal to 4 is not currently defined. Miners **MUST NOT** create such *blocks*, and **SHOULD NOT** mine other blocks that chain to them.
- The exclusion of *blocks* with *block version number greater than* 4 is not a consensus rule; such *blocks* may exist in the *block chain* and **MUST** be treated identically to version 4 *blocks* by *full validators*. Note that a future upgrade might use *block version number* either greater than or less than 4. It is likely that such an upgrade will change the *block* header and/or *transaction* format, and software that parses *blocks* **SHOULD** take this into account.
- The nVersion field is a signed integer. (It was specified as unsigned in a previous version of this specification.)

  A future upgrade might use negative values for this field, or otherwise change its interpretation.
- There is no relation between the values of the version field of a *transaction*, and the nVersion field of a *block* header.
- Like other serialized fields of type compactSize uint, the solutionSize field MUST be encoded with the minimum number of bytes (3 in this case), and other encodings MUST be rejected. This is necessary to avoid a potential attack in which a miner could test several distinct encodings of each Equihash solution against the difficulty filter, rather than only the single intended encoding.
- As in **Bitcoin**, the nTime field **MUST** represent a time *strictly greater than* the median of the timestamps of the past PoWMedianBlockSpan *blocks*. The Bitcoin Developer Reference [Bitcoin-Block] was previously in error on this point, but has now been corrected.
- There are no changes to the *block version number* or format for **Overwinter**.
- Although the *block version number* does not change for **Sapling**, the previously reserved (and ignored) field hashReserved has been repurposed for hashFinalSaplingRoot. There are no other format changes.

The changes relative to **Bitcoin** version 4 blocks as described in [Bitcoin-Block] are:

- *Block versions* less than 4 are not supported.
- The hashReserved (or hashFinalSaplingRoot), solutionSize, and solution fields have been added.
- The type of the nNonce field has changed from uint32 to char [32].
- The maximum *block* size has been doubled to 2000000 bytes.

## **Proof of Work**

Zcash uses Equihash [BK2016] as its Proof of Work. Motivations for changing the Proof of Work from SHA-256d used by Bitcoin are described in [WG2016].

A block satisfies the Proof of Work if and only if:

- · The solution field encodes a valid Equihash solution according to §7.6.1 'Equihash' on p. 84.
- · The block header satisfies the difficulty check according to \$7.6.2 'Difficulty filter' on p. 85.

#### 7.6.1 Equihash

An instance of the Equihash algorithm is parameterized by positive integers n and k, such that n is a multiple of k + 1. We assume  $k \geq 3$ .

The Equihash parameters for the production and test networks are n = 200, k = 9.

The Generalized Birthday Problem is defined as follows: given a sequence  $X_{1..N}$  of n-bit strings, find  $2^k$  distinct  $X_{i_j}$  such that  $\bigoplus_{i=1}^{2^k} X_{i_j} = 0$ .

In Equihash,  $N = 2^{\frac{n}{k+1}+1}$ , and the sequence  $X_{1..N}$  is derived from the *block header* and a nonce.

Let powheader := |32-bit nVersion 256-bit hashPrevBlock 256-bit hashMerkleRoot 256-bit hashReserved 32-bit nTime 32-bit nBits 256-bit nNonce

For  $i \in \{1...N\}$ , let  $X_i = \mathsf{EquihashGen}_{n,k}(\mathsf{powheader}, i)$ .

EquihashGen is instantiated in §5.4.1.9 'Equihash Generator' on p. 55.

Define I2BEBSP :  $(\ell : \mathbb{N}) \times \{0...2^{\ell}-1\} \to \mathbb{B}^{[\ell]}$  as in §5.2 'Integers, Bit Sequences, and Endianness' on p. 48.

A valid Equihash solution is then a sequence  $i: \{1...N\}^{2^k}$  that satisfies the following conditions:

Generalized Birthday condition  $\bigoplus_{i=1}^{2} X_{i_j} = 0$ .

**Algorithm Binding conditions** 

- $\text{For all } r \in \{1 \dots k-1\} \text{, for all } w \in \{0 \dots 2^{k-r}-1\} : \bigoplus_{j=1}^{2^r} X_{i_{w \cdot 2^r + j}} \text{ has } \frac{n \cdot r}{k+1} \text{ leading zeros; and }$   $\text{For all } r \in \{1 \dots k\} \text{, for all } w \in \{0 \dots 2^{k-r}-1\} : i_{w \cdot 2^r + 1 \dots w \cdot 2^r + 2^{r-1}} < i_{w \cdot 2^r + 2^{r-1} + 1 \dots w \cdot 2^r + 2^r} \text{ lexicographically. }$

## Notes:

- · This does not include a difficulty condition, because here we are defining validity of an Equihash solution independent of difficulty.
- · Previous versions of this specification incorrectly specified the range of r to be  $\{1..k-1\}$  for both parts of the algorithm binding condition. The implementation in zcashd was as intended.

An Equihash solution with n = 200 and k = 9 is encoded in the solution field of a block header as follows:

|  | $I2BEBSP_{21}(i_2-1)$ |  | $ 12BEBSP_{21}(i_{512}-1) $ |
|--|-----------------------|--|-----------------------------|
|--|-----------------------|--|-----------------------------|

Recall from §5.2 'Integers, Bit Sequences, and Endianness' on p. 48 that bits in the above diagram are ordered from most to least significant in each byte. For example, if the first 3 elements of i are  $[69, 42, 2^{21}]$ , then the corresponding bit array is:

| I2BEBSP <sub>21</sub> (68) |         | I2BEBSP <sub>21</sub> (41) |     |          | 1:       | $I2BEBSP_{21}(2^{21}-1)$ |                 |               |
|----------------------------|---------|----------------------------|-----|----------|----------|--------------------------|-----------------|---------------|
| 0000000000000001000100     |         | 00100                      | 0 0 | 00000000 | 00001010 | 0 1 1 1 1 1 1            | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 |
| 8-bit 0                    | 8-bit 2 | 8-bit 3                    | 32  | 8-bit 0  | 8-bit 10 | 8-bit 127                | 8-bit 255       |               |

and so the first 7 bytes of solution would be [0, 2, 32, 0, 10, 127, 255].

**Note:** I2BEBSP is big-endian, while integer field encodings in powheader and in the instantiation of EquihashGen are little-endian. The rationale for this is that little-endian serialization of *block headers* is consistent with **Bitcoin**, but little-endian ordering of bits in the solution encoding would require bit-reversal (as opposed to only shifting).

# 7.6.2 Difficulty filter

Let ToTarget be as defined in §7.6.4 'nBits conversion' on p. 86.

Difficulty is defined in terms of a *target threshold*, which is adjusted for each *block* according to the algorithm defined in §7.6.3 'Difficulty adjustment' on p. 85.

The difficulty filter is unchanged from **Bitcoin**, and is calculated using *SHA-256d* on the whole *block header* (including solutionSize and solution). The result is interpreted as a 256-bit integer represented in little-endian byte order, which **MUST** be less than or equal to the *target threshold* given by ToTarget(nBits).

# 7.6.3 Difficulty adjustment

**Zcash** uses a difficulty adjustment algorithm based on DigiShield v3/v4 [DigiByte-PoW], with simplifications and altered parameters, to adjust difficulty to target the desired 2.5-minute block time. Unlike **Bitcoin**, the difficulty adjustment occurs after every block.

The constants PoWLimit, PoWAveragingWindow, PoWMaxAdjustDown, PoWMaxAdjustUp, PoWDampingFactor, and PoWTargetSpacing are instantiated in §5.3 'Constants' on p. 49.

Let ToCompact and ToTarget be as defined in §7.6.4 'nBits conversion' on p. 86.

Let nTime(height) be the value of the nTime field in the header of the block at block height height.

Let nBits(height) be the value of the nBits field in the header of the block at block height height.

Block header fields are specified in §7.5 'Block Header' on p. 82.

Define:

$$\begin{split} & \operatorname{mean}(S) := \frac{\sum_{i=1}^{\operatorname{length}(S)} S_i}{\operatorname{length}(S)} \\ & \operatorname{median}(S) := \operatorname{sorted}(S)_{\operatorname{ceiling}(\operatorname{length}(S)/2)} \\ & \operatorname{bound} \underset{\operatorname{lower}}{\operatorname{upper}}(x) := \operatorname{max}(\operatorname{lower}, \operatorname{min}(\operatorname{upper}, x))) \\ & \operatorname{trunc}(x) := \begin{cases} \operatorname{floor}(x) \,, & \text{if } x \geq 0 \\ -\operatorname{floor}(-x) \,, & \text{otherwise} \end{cases} \\ & \operatorname{AveragingWindowTimespan} := \operatorname{PoWAveragingWindow} \cdot \operatorname{PoWTargetSpacing} \\ & \operatorname{MinActualTimespan} := \operatorname{floor}(\operatorname{AveragingWindowTimespan} \cdot (1 - \operatorname{PoWMaxAdjustUp})) \\ & \operatorname{MaxActualTimespan} := \operatorname{floor}(\operatorname{AveragingWindowTimespan} \cdot (1 + \operatorname{PoWMaxAdjustDown})) \\ & \operatorname{MedianTime}(\operatorname{height}) := \operatorname{median}(\lceil \operatorname{nTime}(i) \text{ for } i \text{ from } \operatorname{max}(0, \operatorname{height} - \operatorname{PoWMedianBlockSpan}) \text{ up to height} - 1 \rceil) \end{split}$$

Actual Time span (height) := Median Time (height) - Median Time (height - PoWA veraging Window)

$$Actual Timespan Damped (height) := Averaging Window Timespan + trunc \left(\frac{Actual Timespan (height) - Averaging Window Timespan}{PoW Damping Factor}\right) \\ + \frac{Actual Timespan}{PoW Damping Factor}$$

$$\mathsf{MeanTarget}(\mathsf{height}) := \begin{cases} \mathsf{PoWLimit}, & \text{if height} \leq \mathsf{PoWAveragingWindow} \\ \mathsf{mean}([\mathsf{ToTarget}(\mathsf{nBits}(i)) \; \text{for} \; i \; \text{from height} - \mathsf{PoWAveragingWindow} \; \text{up to height} - 1 \,]), \\ & \text{otherwise}. \end{cases}$$

The target threshold for a given block height height is then calculated as:

$$\mathsf{Threshold}(\mathsf{height}) \; := \; \begin{cases} \mathsf{PoWLimit}, & \text{if height} = 0 \\ \mathsf{min}(\mathsf{PoWLimit}, \mathsf{floor}\Big(\frac{\mathsf{MeanTarget}(\mathsf{height})}{\mathsf{AveragingWindowTimespan}}\Big) \cdot \mathsf{ActualTimespanBounded}(\mathsf{height})), \\ & \text{otherwise} \end{cases}$$

ThresholdBits(height) := ToCompact(Threshold(height)).

**Note:** The convention used for the height parameters to MedianTime, ActualTimespan, ActualTimespanDamped, ActualTimespanBounded, MeanTarget, Threshold, and ThresholdBits is that these functions use only information from *blocks preceding* the given *block height*.

## 7.6.4 nBits conversion

Deterministic conversions between a *target threshold* and a "compact" nBits value are not fully defined in the Bitcoin documentation [Bitcoin-nBits], and so we define them here:

$$\begin{split} &\operatorname{size}(x) \coloneqq \operatorname{ceiling}\left(\frac{\operatorname{bitlength}(x)}{8}\right) \\ &\operatorname{mantissa}(x) \coloneqq \operatorname{floor}\left(x \cdot 256^{3 - \operatorname{size}(x)}\right) \\ &\operatorname{ToCompact}(x) \coloneqq \begin{cases} \operatorname{mantissa}(x) + 2^{24} \cdot \operatorname{size}(x), & \text{if mantissa}(x) < 2^{23} \\ \operatorname{floor}\left(\frac{\operatorname{mantissa}(x)}{256}\right) + 2^{24} \cdot (\operatorname{size}(x) + 1), & \text{otherwise} \end{cases} \\ &\operatorname{ToTarget}(x) \coloneqq \begin{cases} 0, & \text{if } x \& 2^{23} = 2^{23} \\ (x \& (2^{23} - 1)) \cdot 256^{\operatorname{floor}\left(x/2^{24}\right) - 3}, & \text{otherwise}. \end{cases} \end{split}$$

## 7.6.5 Definition of Work

As explained in §3.3 'The Block Chain' on p. 14, a node chooses the "best" block chain visible to it by finding the chain of valid blocks with the greatest total work.

Let ToTarget be as defined in §7.6.4 'nBits conversion' on p. 86.

The work of a *block* with value nBits for the nBits field in its *block header* is defined as floor  $\left(\frac{2^{256}}{\text{ToTarget}(\text{nBits}) + 1}\right)$ .

# 7.7 Calculation of Block Subsidy and Founders' Reward

§3.9 'Block Subsidy and Founders' Reward' on p.17 defines the block subsidy, miner subsidy, and Founders' Reward. Their amounts in zatoshi are calculated from the block height using the formulae below. The constants SlowStartInterval, HalvingInterval, MaxBlockSubsidy, and FoundersFraction are instantiated in §5.3 'Constants' on p. 49.

```
\begin{aligned} & \mathsf{SlowStartShift} : \mathbb{N} := \frac{\mathsf{SlowStartInterval}}{2} \\ & \mathsf{SlowStartRate} : \mathbb{N} := \frac{\mathsf{MaxBlockSubsidy}}{\mathsf{SlowStartInterval}} \\ & \mathsf{Halving(height)} := \mathsf{floor}\left(\frac{\mathsf{height} - \mathsf{SlowStartShift}}{\mathsf{HalvingInterval}}\right) \\ & \mathsf{BlockSubsidy(height)} := \begin{cases} \mathsf{SlowStartRate} \cdot \mathsf{height}, & \text{if height} < \frac{\mathsf{SlowStartInterval}}{2} \\ \mathsf{SlowStartRate} \cdot (\mathsf{height} + 1), & \text{if } \frac{\mathsf{SlowStartInterval}}{2} \leq \mathsf{height} < \mathsf{SlowStartInterval} \\ \mathsf{floor}\left(\frac{\mathsf{MaxBlockSubsidy}}{2^{\mathsf{Halving(height)}}}\right), & \text{otherwise} \end{cases} \\ & \mathsf{FoundersReward(height)} := \begin{cases} \mathsf{BlockSubsidy(height)} \cdot \mathsf{FoundersFraction}, & \text{if height} < \mathsf{SlowStartShift} + \mathsf{HalvingInterval} \\ 0, & \text{otherwise} \end{cases} \\ & \mathsf{MinerSubsidy(height)} := \mathsf{BlockSubsidy(height)} - \mathsf{FoundersReward(height)}. \end{aligned}
```

# 7.8 Payment of Founders' Reward

The *Founders' Reward* is paid by a *transparent* output in the *coinbase transaction*, to one of NumFounderAddresses *transparent* addresses, depending on the *block height*.

For the production network, FounderAddressList 1... NumFounderAddresses is:

```
[ "t3Vz22vK5z2LcKEdg16Yv4FFneEL1zg9ojd", "t3cL9AucCajm3HXDhb5jBnJK2vapVoXsop3",
 t3fqvkzrrNaMcamkQMwAyHRjfDdM2xQvDTR", t3TgZ9ZT2CTSK44AnUPi6qeNaHa2eC7pUyF",
 "t3SpkcPQPfuRYHsP5vz3Pv86PgKo5m9KVmx", "t3Xt4oQMRPagwbpQqkgAViQgtST4VoSWR6S",
 "t3ayBkZ4w6kKXynwoHZFUSSgXRKtogTXNgb", "t3adJBQuaa21u7NxbR8YMzp3km3TbSZ4MGB",
 "t3K4aLYagSSBySdrfAGGeUd5H9z5Qvz88t2", "t3RYnsc5nhEvKiva3ZPhfRSk7eyh1CrA6Rk",
 "t3Ut4KUq2ZSMTPNE67pBU5LqYCi2q36KpXQ", "t3ZnCNAvgu6CSyHm1vWtrx3aiN98dSAGpnD", "t3fB9cB3eSYim64BS9xfwAHQUKLgQQroBDG", "t3cwZfKNNj2vXMAHBQeewm6pXhKFdhk18kD", "t3YcoujXfspWy7rbNUsGKxFEWZqNstGpeG4", "t3bLvCLigc6rbNrUTS5NwkgyVrZcZumTRa4",
 "t3VvHWa7r3oy67YtU4LZKGCWa2J6eGHvShi", "t3eF9X6X2dSo7MCvTjfZEzwWrVzquxRLNeY",
 "t3esCNwwmcyc8i9qQfyTbYhTqmYXZ9AwK3X", "t3M4jN7hYE2e27yLsuQPPjuVek81WV3VbBj",
 "t3gGWxdC67CYNoBbPjNvrrWLAWxPqZLxrVY", "t3LTWeoxeWPbmdkUD3NWBquk4WkazhFBmvU",
 "t3P5KKX97gXYFSaSjJPiruQEX84yF5z3Tjq", "t3f3T3nCWsEpzmD35VK62JgQfFig74dV8C9", "t3Rqonuzz7afkF7156ZA4vi4iimRSEn41hj", "t3fJZ5jYsyxDtvNrWBeoMbvJaQCj4JJgbgX", "t3Pnbg7XjP7FGPBUuz75H65aczphHgkpoJW", "t3WeKQDxCijL5X7rwFem1MTL9ZwVJkUFhpF",
 t3Y9FNi26J7UtAUC4moaETLbMo8KS1Be6ME", t3aNRLLsL2y8xcjPheZZwFy3Pcv7CsTwBec",
 "t3gQDEavk5VzAAHK8TrQu2BWDLxEiF1unBm", "t3Rbykhx1TUFrgXrmBYrAJe2STxRKFL7G9r",
 "t3aaW4aTdP7a8d1VTE1Bod2yhbeggHgMajR","t3YEiAa6uEjXwFL2v5ztU1fn3yKgzMQqNyo",
 "t3g1yUUwt2PbmDvMDevTCPWUcbDatL2iQGP", "t3dPWnep6YqGPuY1CecgbeZrY9iUwH8Yd4z",
 "t3QRZXHDPh2hwU46iQs2776kRuuWfwFp4dV", "t3enhACRxi1ZD7e8ePomVGKn7wp7N9fFJ3r", "t3PkLgT71TnF112nSwBToXsD77yNbx2gJJY", "t3LQtHUDoe7ZhhvddRv4vnaoNAhCr2f4oFN", "t3fNcdBUbycvbCtsD2n9q3LuxG7jVPvFB8L", "t3dKojUU2EMjs28nHV84TvkVEUDu1M1FaEx",
 t3aKH6NiWN1ofGd8c19rZiqgYpkJ3n679ME", t3MEXDF9Wsi63KwpPuQdD6by32Mw2bNTbEa",
 "t3WDhPfik343yNmPTqtkZAoQZeqA83K7Y3f", "t3PSn5TbMMAEw7Eu36DYctFezRzpX1hzf3M",
 "t3R3Y5vnBLrEn8L6wFjPjBLnxSUQsKnmFpv", "t3Pcm737EsVkGTbhsu2NekKtJeG92mvYyoN"]
```

For the test network, FounderAddressList1..NumFounderAddresses is:

```
[ "t2UNzUUx8mWBCRYPRezvA363EYXyEpHokyi", "t2N9PH9Wk9xjqYg9iin1Ua3aekJqfAtE543",
 t2NGQjYMQhFndDHguvUw4wZdNdsssA6K7x2", "t2ENg7hHVqqs9JwU5cgjvSbxnT2a9USNfhy",
 "t2BkYdVCHzvTJJUTx4yZB8qeegD8QsPx8bo", "t2J8q1xH1EuigJ52MfExyyjYtN3VgvshKDf",
 "t2Crq9mydTm37kZokC68HzT6yez3t2FBnFj", "t2EaMPUiQ1kthqcP5UEkF42CAFKJqXCkXC9",
 "t2F9dtQc63JDDyrhnfpzvVYTJcr57MkqA12", "t2LPirmnfYSZc481GgZBa6xUGcoovfytBnC",
 "t26xfxoSw2UV9Pe5o3C8V4YybQD4SESfxtp", "t2D3k4fNdErd66YxtvXEdft9xuLoKD7CcVo", "t2DWYBkxKNivdmsMiivNJzutaQGqmoRjRnL", "t2C3kFF9iQRxfc4B9zgbWo4dQLLqzqjpuGQ",
 "t2MnT5tzu9HSKcppRyUNwoTp8MUueuSGNaB", "t2AREsWdoW1F8EQYsScsjkgqobmgrkKeUkK",
 "t2Vf4wKcJ3ZFtLj4jezUUKkwYR92BLHn5UT", "t2K3fdViH6R5tRuXLphKyoYXyZhyWGghDNY",
 "t2VEn3KiKyHSGyzd3nDw6ESWtaCQHwuv9WC", "t2F8XouqdNMq6zzEvxQXHV1TjwZRHwRg8gC",
 "t2BS7Mrbaef3fA4xrmkvDisFVXVrRBnZ6Qj", "t2FuSwoLCdBVPwdZuYoHrEzxAb9qy4qjbnL"
 "t2SX3U8NtrT6gz5Db1AtQCSGjrpptr8JC6h", "t2V51gZNSoJ5kRL74bf9YTtbZuv8Fcqx2FH", "t2FyTsLjjdm4jeVwir4xzj7FAkUidbr1b4R", "t2EYbGLekmpqHyn8UBF6kqpahrYm7D6N1Le",
 "t2NQTrStZHtJECNFT3dUBLYA9AErxPCmkka", "t2GSWZZJzoesYxfPTWXkFn5UaxjiYxGBU2a",
 "t2RpffkzyLRevGM3w9aWdqMX6bd8uuAK3vn", "t2JzjoQqnuXtTGSN7k7yk5keURBGvYofh1d",
 "t2AEefc72ieTnsXKmgK2bZNckiwvZe3oPNL", "t2NNs3ZGZFsNj2wvmVd8BSwSfvETgiLrD8J",
 "t2ECCQPVcxUCSSQopdNquguEPE14HsVfcUn", "t2JabDUkG8TaqVKYfqDJ3rqkVdHKp6hwXvG", "t2FGzW5Zdc8Cy98ZKmRygsVGi6oKcmYir9n", "t2DUD8a21FtEFn42oVLp5NGbogY13uyjy9t", "t2UjVSd3zheHPgAkuX8WQW2CiC9xHQ8EvWp", "t2TBUAhELyHUn8i6SXYsXz5Lmy7kDzA1uT5",
 "t2Tz3uCyhP6eizUWDc3bGH7XUC9GQsEyQNc", "t2NysJSZtLwMLWEJ6MH3BsxRh6h27mNcsSy",
 "t2KXJVVyyrjVxxSeazbY9ksGyft4qsXUNm9", "t2J9YYtH31cveiLZzjaE4AcuwVho6qjTNzp",
 "t2QgvW4sP9zaGpPMH1GRzy7cpydmuRfB4AZ", "t2NDTJP9MosKpyFPHJmfjc5pGCvAU58XGa4",
 t29pHDBWq7qN4EjwSEHg8wEqYe9pkmVrtRP", t2Ez9KM8VJLuArcxuEkNRAkhNvidKkzXcjJ",
 t2D5y7J5fpXajLbGrMBQkFg2mFN8fo3n8cX","t2UV2wr1PTaUiybpkV3FdSdGxUJeZdZztyt"]
```

**Note:** For the test network only, the addresses from index 4 onward have been changed from what was implemented at launch. This reflects an upgrade on the test network, starting from *block height* 53127. [Zcash-Issue2113]

Each address representation in FounderAddressList denotes a transparent P2SH multisig address.

Let SlowStartShift be defined as in the previous section.

## Define:

```
\begin{aligned} & Founder Address Change Interval := ceiling \left( \frac{Slow Start Shift + Halving Interval}{Num Founder Addresses} \right) \\ & Founder Address Index (height) := 1 + floor \left( \frac{height}{Founder Address Change Interval} \right) \end{aligned}
```

Let RedeemScriptHash(height) be the standard redeem script hash, as defined in [Bitcoin-Multisig], for the P2SH multisig address with Base58Check representation given by FounderAddressList FounderAddressIndex(height).

Consensus rule: A coinbase transaction for block height height height  $\in \{1 ... \text{SlowStartShift} + \text{HalvingInterval} - 1\}$  MUST include at least one output that pays exactly FoundersReward(height) zatoshi with a standard P2SH script of the form OP\_HASH160 RedeemScriptHash(height) OP\_EQUAL as its scriptPubKey.

#### Notes:

- · No Founders' Reward is required to be paid for height  $\geq$  SlowStartShift + HalvingInterval (i.e. after the first halving), or for height = 0 (i.e. the genesis block).
- The Founders' Reward addresses are not treated specially in any other way, and there can be other outputs to them, in coinbase transactions or otherwise. In particular, it is valid for a coinbase transaction with height  $\in \{1... \text{SlowStartShift} + \text{HalvingInterval} 1\}$  to have other outputs, possibly to the same address, that do not meet the criterion in the above consensus rule, as long as at least one output meets it.

# 7.9 Changes to the Script System

The OP\_CODESEPARATOR opcode has been disabled. This opcode also no longer affects the calculation of *SIGHASH* transaction hashes.

# 7.10 Bitcoin Improvement Proposals

In general, Bitcoin Improvement Proposals (BIPs) do not apply to Zcash unless otherwise specified in this section.

All of the BIPs referenced below should be interpreted by replacing "BTC", or "bitcoin" used as a currency unit, with "ZEC"; and "satoshi" with "zatoshi".

The following BIPs apply, otherwise unchanged, to Zcash: [BIP-11], [BIP-14], [BIP-31], [BIP-35], [BIP-37], [BIP-61].

The following BIPs apply starting from the **Zcash** *genesis block*, i.e. any activation rules or exceptions for particular *blocks* in the **Bitcoin** *block chain* are to be ignored: [BIP-16], [BIP-30], [BIP-65], [BIP-66].

[BIP-34] applies to all blocks other than the **Zcash** *genesis block* (for which the "height in coinbase" was inadvertently omitted).

[BIP-13] applies with the changes to address version bytes described in §5.6.1 'Transparent Addresses' on p. 71.

[BIP-111] applies from network protocol version 170004 onward; that is:

- references to protocol version 70002 are to be replaced by 170003;
- references to protocol version 70011 are to be replaced by 170004;
- the reference to protocol version 70000 is to be ignored (**Zcash** nodes have supported Bloom-filtered connections since launch).

# 8 Differences from the Zerocash paper

## 8.1 Transaction Structure

**Zerocash** introduces two new operations, which are described in the paper as new transaction types, in addition to the original transaction type of the cryptocurrency on which it is based (e.g. **Bitcoin**).

In **Zcash**, there is only the original **Bitcoin** transaction type, which is extended to contain a sequence of zero or more **Zcash**-specific operations.

This allows for the possibility of chaining transfers of *shielded* value in a single **Zcash** *transaction*, e.g. to spend a *shielded note* that has just been created. (In **Zcash**, we refer to value stored in UTXOs as *transparent*, and value stored in *JoinSplit transfer* output *notes* as *shielded*.) This was not possible in the **Zerocash** design without using multiple transactions. It also allows *transparent* and *shielded* transfers to happen atomically – possibly under the control of nontrivial script conditions, at some cost in distinguishability.

Computation of SIGHASH transaction hashes, as described in §4.9 'SIGHASH Transaction Hashing' on p. 35, was changed to clean up handling of an error case for SIGHASH\_SINGLE, to remove the special treatment of OP\_CODESEPARATOR, and to include Zcash-specific fields in the hash [ZIP-76].

## 8.2 Memo Fields

**Zcash** adds a *memo field* sent from the creator of a *JoinSplit description* to the recipient of each output *note*. This feature is described in more detail in §5.5 'Encodings of Note Plaintexts and Memo Fields' on p. 70.

## 8.3 Unification of Mints and Pours

In the original **Zerocash** protocol, there were two kinds of transaction relating to *shielded notes*:

- a "Mint" transaction takes value from *transparent* UTXOs as input and produces a new *shielded note* as output.
- $\cdot$  a "Pour" transaction takes up to N<sup>old</sup> shielded notes as input, and produces up to N<sup>new</sup> shielded notes and a transparent UTXO as output.

Only "Pour" transactions included a zk-SNARK proof.

[Pre-Sapling] In Zcash, the sequence of operations added to a *transaction* (see §8.1 *'Transaction Structure'* on p. 89) consists only of *JoinSplit transfers*. A *JoinSplit transfer* is a Pour operation generalized to take a *transparent* UTXO as input, allowing *JoinSplit transfers* to subsume the functionality of Mints. An advantage of this is that a Zcash *transaction* that takes input from an UTXO can produce up to N<sup>new</sup> output *notes*, improving the indistinguishability properties of the protocol. A related change conceals the input arity of the *JoinSplit transfer*: an unused (zero-value) input is indistinguishable from an input that takes value from a *note*.

This unification also simplifies the fix to the Faerie Gold attack described below, since no special case is needed for Mints.

[Sapling onward] In Sapling, there are still no "Mint" transactions. Instead of JoinSplit transfers, there are Spend transfers and Output transfers. These make use of Pedersen value commitments to represent the shielded values that are transferred. Because these commitments are additively homomorphic, it is possible to check that all Spend transfers and Output transfers balance; see §4.12 'Balance and Binding Signature (Sapling)' on p. 36 for detail. This reduces the granularity of the circuit, allowing a substantial performance improvement (orthogonal to other Sapling circuit improvements) when the numbers of shielded inputs and outputs are significantly different. This comes at the cost of revealing the exact number of shielded inputs and outputs, but dummy (zero-valued) outputs are still possible.

## 8.4 Faerie Gold attack and fix

When a *shielded note* is created in **Zerocash**, the creator is supposed to choose a new  $\rho$  value at random. The *nullifier* of the *note* is derived from its *spending key* ( $a_{sk}$ ) and  $\rho$ . The *note commitment* is derived from the recipient address component  $a_{pk}$ , the value v, and the commitment trapdoor rcm, as well as  $\rho$ . However nothing prevents creating multiple *notes* with different v and rcm (hence different *note commitments*) but the same  $\rho$ .

An adversary can use this to mislead a *note* recipient, by sending two *notes* both of which are verified as valid by Receive (as defined in [BCGGMTV2014, Figure 2]), but only one of which can be spent.

We call this a "Faerie Gold" attack — referring to various Celtic legends in which faeries pay mortals in what appears to be gold, but which soon after reveals itself to be leaves, gorse blossoms, gingerbread cakes, or other less valuable things [LG2004].

This attack does not violate the security definitions given in [BCGGMTV2014]. The issue could be framed as a problem either with the definition of Completeness, or the definition of Balance:

- The Completeness property asserts that a validly received *note* can be spent provided that its *nullifier* does not appear on the ledger. This does not take into account the possibility that distinct *notes*, which are validly received, could have the same *nullifier*. That is, the security definition depends on a protocol detail -*nullifiers* that is not part of the intended abstract security property, and that could be implemented incorrectly.
- The Balance property only asserts that an adversary cannot obtain *more* funds than they have minted or received via payments. It does not prevent an adversary from causing others' funds to decrease. In a Faerie Gold attack, an adversary can cause spending of a *note* to reduce (to zero) the effective value of another *note* for which the adversary does not know the *spending key*, which violates an intuitive conception of global balance.

These problems with the security definitions need to be repaired, but doing so is outside the scope of this specification. Here we only describe how **Zcash** addresses the immediate attack.

It would be possible to address the attack by requiring that a recipient remember all of the  $\rho$  values for all *notes* they have ever received, and reject duplicates (as proposed in [GGM2016]). However, this requirement would interfere with the intended **Zcash** feature that a holder of a *spending key* can recover access to (and be sure that they are able to spend) all of their funds, even if they have forgotten everything but the *spending key*.

[Sprout] Instead, Zcash enforces that an adversary must choose distinct values for each  $\rho$ , by making use of the fact that all of the *nullifiers* in *JoinSplit descriptions* that appear in a *valid block chain* must be distinct. This is true regardless of whether the *nullifiers* corresponded to real or dummy notes (see §4.7.1 'Dummy Notes (Sprout)' on p. 33). The *nullifiers* are used as input to hSigCRH to derive a public value h<sub>Sig</sub> which uniquely identifies the transaction, as described in §4.3 'JoinSplit Descriptions' on p. 29. (h<sub>Sig</sub> was already used in Zerocash in a way that requires it to be unique in order to maintain indistinguishability of *JoinSplit descriptions*; adding the *nullifiers* to the input of the hash used to calculate it has the effect of making this uniqueness property robust even if the *transaction* creator is an adversary.)

**[Sprout]** The  $\rho$  value for each output *note* is then derived from a random private seed  $\varphi$  and  $h_{Sig}$  using PRF $_{\varphi}^{\rho}$ . The correct construction of  $\rho$  for each output *note* is enforced by §4.15.1 *'Uniqueness of*  $\rho_i^{new}$ , on p. 40 in the *JoinSplit statement*.

[Sprout] Now even if the creator of a *JoinSplit description* does not choose  $\varphi$  randomly, uniqueness of *nullifiers* and collision resistance of both hSigCRH and PRF $^{\rho}$  will ensure that the derived  $\rho$  values are unique, at least for any two *JoinSplit descriptions* that get into a *valid block chain*. This is sufficient to prevent the Faerie Gold attack.

A variation on the attack attempts to cause the *nullifier* of a sent *note* to be repeated, without repeating  $\rho$ . However, since the *nullifier* is computed as  $\mathsf{PRF}^{\mathsf{nf}}_{\mathsf{a}_{\mathsf{sk}}}(\rho)$  (or  $\mathsf{PRF}^{\mathsf{nfSapling}}_{\mathsf{nk}}(\rho\star)$  for **Sapling**), this is only possible if the adversary finds a collision across both inputs on  $\mathsf{PRF}^{\mathsf{nf}}$  (or  $\mathsf{PRF}^{\mathsf{nfSapling}}$ ), which is assumed to be infeasible — see §4.1.2 *'Pseudo Random Functions'* on p.18.

[Sprout] Crucially, "nullifier integrity" is enforced whether or not the enforceMerklePath<sub>i</sub> flag is set for an input note (§4.15.1 'Nullifier integrity' on p. 40). If this were not the case then an adversary could perform the attack by creating a zero-valued note with a repeated nullifier, since the nullifier would not depend on the value.

[Sprout] Nullifier integrity also prevents a "roadblock attack" in which the adversary sees a victim's transaction, and is able to publish another transaction that is mined first and blocks the victim's transaction. This attack would be possible if the public value(s) used to enforce uniqueness of  $\rho$  could be chosen arbitrarily by the transaction creator: the victim's transaction, rather than the adversary's, would be considered to be repeating these values. In the chosen solution that uses nullifiers for these public values, they are enforced to be dependent on spending keys controlled by the original transaction creator (whether or not each input note is a dummy), and so a roadblock attack cannot be performed by another party who does not know these keys.

[Sapling onward] In Sapling, uniqueness of  $\rho$  is ensured by making it dependent on the position of the *note commitment* in the Sapling note commitment tree. Specifically,  $\rho = cm + [pos] \mathcal{J}$ , where  $\mathcal{J}$  is a generator independent of the generators used in NoteCommit<sup>Sapling</sup>. Therefore,  $\rho$  commits uniquely to the *note* and its position, and this commitment is collision-resistant by the same argument used to prove collision resistance of *Pedersen hashes*. Note that it is possible for two distinct Sapling positioned notes (having different  $\rho$  values and *nullifiers*, but different *note positions*) to have the same *note commitment*, but this causes no security problem. Roadblock attacks are not possible because a given *note position* does not repeat for outputs of different *transactions* in the same *block chain*.

## 8.5 Internal hash collision attack and fix

The **Zerocash** security proof requires that the composition of  $COMM_{rcm}$  and  $COMM_s$  is a computationally binding commitment to its inputs  $a_{pk}$ , v, and  $\rho$ . However, the instantiation of  $COMM_{rcm}$  and  $COMM_s$  in section 5.1 of the paper did not meet the definition of a binding commitment at a 128-bit security level. Specifically, the internal hash of  $a_{pk}$  and  $\rho$  is truncated to 128 bits (motivated by providing statistical hiding security). This allows an attacker, with

a work factor on the order of  $2^{64}$ , to find distinct pairs  $(a_{pk}, \rho)$  and  $(a_{pk}', \rho')$  with colliding outputs of the truncated hash, and therefore the same *note commitment*. This would have allowed such an attacker to break the Balance property by double-spending *notes*, potentially creating arbitrary amounts of currency for themself [HW2016].

Zcash uses a simpler construction with a single hash evaluation for the commitment: SHA-256 for Sprout, and PedersenHash for Sapling. The motivation for the nested construction in Zerocash was to allow Mint transactions to be publically verified without requiring a zero-knowledge proof ([BCGGMTV2014, section 1.3, under step 3]). Since Zcash combines "Mint" and "Pour" transactions into generalized JoinSplit transfers (for Sprout), or Spend transfers and Output transfers (for Sapling), and each transfer always uses a zero-knowledge proof, Zcash does not require the nesting. A side benefit is that this reduces the cost of computing the note commitments: for Sprout it reduces the number of SHA256Compress evaluations needed to compute each note commitment from three to two, saving a total of four SHA256Compress evaluations in the JoinSplit statement.

[Sprout] Note: Sprout note commitments are not statistically hiding, so for Sprout notes, Zcash does not support the "everlasting anonymity" property described in [BCGGMTV2014, section 8.1], even when used as described in that section. While it is possible to define a statistically hiding, computationally binding commitment scheme for this use at a 128-bit security level, the overhead of doing so within the JoinSplit statement was not considered to justify the benefits.

[Sapling onward] In Sapling, *Pedersen commitments* are used instead of SHA256Compress. These commitments are statistically hiding, and so "everlasting anonymity" is supported for Sapling notes under the same conditions as in Zerocash (by the protocol, not necessarily by zcashd). Note that *diversified payment addresses* can be linked if the discrete logarithm problem on the *Jubjub curve* can be broken.

# 8.6 Changes to PRF inputs and truncation

The format of inputs to the PRFs instantiated in §5.4.2 'Pseudo Random Functions' on p. 55 has changed relative to **Zerocash**. There is also a requirement for another PRF, PRF $^{\rho}$ , which must be domain-separated from the others.

In the **Zerocash** protocol,  $\rho_i^{\text{old}}$  is truncated from 256 to 254 bits in the input to PRF<sup>sn</sup> (which corresponds to PRF<sup>nf</sup> in **Zcash**). Also, h<sub>Sig</sub> is truncated from 256 to 253 bits in the input to PRF<sup>pk</sup>. These truncations are not taken into account in the security proofs.

Both truncations affect the validity of the proof sketch for Lemma D.2 in the proof of Ledger Indistinguishability in [BCGGMTV2014, Appendix D].

In more detail:

- In the argument relating  $\mathbf{H}$  and  $\mathfrak{D}_2$ , it is stated that in  $\mathfrak{D}_2$ , "for each  $i \in \{1,2\}$ ,  $\mathsf{sn}_i := \mathsf{PRF}^\mathsf{sn}_{\mathsf{a}_\mathsf{sk}}(\rho)$  for a random (and not previously used)  $\rho$ ". It is also argued that "the calls to  $\mathsf{PRF}^\mathsf{sn}_{\mathsf{a}_\mathsf{sk}}$  are each by definition unique". The latter assertion depends on the fact that  $\rho$  is "not previously used". However, the argument is incorrect because the truncated input to  $\mathsf{PRF}^\mathsf{sn}_{\mathsf{a}_\mathsf{sk}}$ , i.e.  $[\rho]_{254}$ , may repeat even if  $\rho$  does not.
- In the same argument, it is stated that "with overwhelming probability,  $h_{Sig}$  is unique". In fact what is required to be unique is the truncated input to PRF<sup>pk</sup>, i.e.  $[h_{Sig}]_{253} = [CRH(pk_{sig})]_{253}$ . In practice this value will be unique under a plausible assumption on CRH provided that  $pk_{sig}$  is chosen randomly, but no formal argument for this is presented.

Note that  $\rho$  is truncated in the input to PRF<sup>sn</sup> but not in the input to COMM<sub>rcm</sub>, which further complicates the analysis.

As further evidence that it is essential for the proofs to explicitly take any such truncations into account, consider a slightly modified protocol in which  $\rho$  is truncated in the input to COMM<sub>rcm</sub> but not in the input to PRF<sup>sn</sup>. In that case, it would be possible to violate balance by creating two *notes* for which  $\rho$  differs only in the truncated bits. These *notes* would have the same *note commitment* but different *nullifiers*, so it would be possible to spend the same value twice.

[Sprout] For resistance to Faerie Gold attacks as described in §8.4 'Faerie Gold attack and fix' on p. 90, Zcash depends on collision resistance of hSigCRH and PRF $^{\rho}$  (instantiated using BLAKE2b-256 and SHA256Compress respectively). Collision resistance of a truncated hash does not follow from collision resistance of the original hash, even if the truncation is only by one bit. This motivated avoiding truncation along any path from the inputs to the computation of h<sub>Sig</sub> to the uses of  $\rho$ .

[Sprout] Since the PRFs are instantiated using SHA256Compress which has an input block size of 512 bits (of which 256 bits are used for the PRF input and 4 bits are used for domain separation), it was necessary to reduce the size of the PRF key to 252 bits. The key is set to  $a_{sk}$  in the case of PRF<sup>addr</sup>, PRF<sup>nf</sup>, and PRF<sup>pk</sup>, and to  $\phi$  (which does not exist in **Zerocash**) for PRF<sup> $\rho$ </sup>, and so those values have been reduced to 252 bits. This is preferable to requiring reasoning about truncation, and 252 bits is quite sufficient for security of these cryptovalues.

Sapling uses *Pedersen hashes* and BLAKE2s where **Sprout** used SHA256Compress. *Pedersen hashes* can be efficiently instantiated for arbitrary input lengths. BLAKE2s has an input block size of 512 bits, and uses a finalization flag rather than padding of the last input block; it also supports domain separation via a personalization parameter distinct from the input. Therefore, there is no need for truncation in the inputs to any of these hashes. Note however that the *output* of CRH<sup>ivk</sup> is truncated, requiring a security assumption on BLAKE2s truncated to 251 bits (see §5.4.1.5 'CRH<sup>ivk</sup> *Hash Function*' on p. 52).

## 8.7 In-band secret distribution

**Zerocash** specified ECIES (referencing Certicom's SEC 1 standard) as the encryption scheme used for the in-band secret distribution. This has been changed to a key agreement scheme based on Curve25519 (for **Sprout**) or Jubjub (for **Sapling**) and the authenticated encryption algorithm AEAD\_CHACHA20\_POLY1305. This scheme is still loosely based on ECIES, and on the crypto\_box\_seal scheme defined in libsodium [libsodium-Seal].

The motivations for this change were as follows:

- The Zerocash paper did not specify the curve to be used. We believe that Curve25519 has significant side-channel resistance, performance, implementation complexity, and robustness advantages over most other available curve choices, as explained in [Bernstein2006]. For Sapling, the *Jubjub curve* was designed according to a similar design process following the "Safe curves" criteria [BL-SafeCurves] [Hopwood2018]. This retains Curve25519's advantages while keeping *shielded payment address* sizes short, because the same public key material supports both encryption and spend authentication.
- ECIES permits many options, which were not specified. There are at least -counting conservatively- 576 possible combinations of options and algorithms over the four standards (ANSI X9.63, IEEE Std 1363a-2004, ISO/IEC 18033-2, and SEC 1) that define ECIES variants [MAEÁ2010].
- Although the Zerocash paper states that ECIES satisfies key privacy (as defined in [BBDP2001]), it is not clear that this holds for all curve parameters and key distributions. For example, if a group of non-prime order is used, the distribution of ciphertexts could be distinguishable depending on the order of the points representing the ephemeral and recipient public keys. Public key validity is also a concern. Curve25519 (and Jubjub) key agreement is defined in a way that avoids these concerns due to the curve structure and the "clamping" of private keys (or explicit cofactor multiplication and point validation for Sapling).
- Unlike the DHAES/DHIES proposal on which it is based [ABR1999], ECIES does not require a representation of the sender's ephemeral public key to be included in the input to the KDF, which may impair the security properties of the scheme. (The Std 1363a-2004 version of ECIES [IEEE2004] has a "DHAES mode" that allows this, but the representation of the key input is underspecified, leading to incompatible implementations.) The scheme we use for **Sprout** has both the ephemeral and recipient public key encodings -which are unambiguous for Curve25519- and also h<sub>Sig</sub> and a nonce as described below, as input to the KDF. For **Sapling**, it is only possible to include the ephemeral public key encoding, but this is sufficient to retain the original security properties of DHAES. Note that being able to break the Elliptic Curve Diffie-Hellman Problem on Curve25519 or Jubjub (without breaking AEAD\_CHACHA20\_POLY1305 as an authenticated encryption scheme or BLAKE2b-256 as a KDF) would not help to decrypt the *transmitted notes ciphertext* unless pk<sub>enc</sub> is known or guessed.

- [Sprout] The KDF also takes a public seed h<sub>Sig</sub> as input. This can be modeled as using a different "randomness extractor" for each *JoinSplit transfer*, which limits degradation of security with the number of *JoinSplit transfers*. This facilitates security analysis as explained in [DGKM2011] see section 7 of that paper for a security proof that can be applied to this construction under the assumption that single-block BLAKE2b-256 is a "weak PRF". Note that h<sub>Sig</sub> is authenticated, by the *zk-SNARK proof*, as having been chosen with knowledge of a<sup>old</sup><sub>sk,1...N<sup>old</sup></sub>, so an adversary cannot modify it in a ciphertext from someone else's transaction for use in a chosen-ciphertext attack without detection. (In Sapling, there is no equivalent to h<sub>Sig</sub>, but the *binding signature* and *spend authorization signatures* prevent such modifications.)
- [Sprout] The scheme used by Sprout includes an optimization that reuses the same ephemeral key (with different nonces) for the two ciphertexts encrypted in each *JoinSplit description*.

The security proofs of [ABR1999] can be adapted straightforwardly to the resulting scheme. Although DHAES as defined in that paper does not pass the recipient public key or a public seed to the *hash function H*, this does not impair the proof because we can consider H to be the specialization of our KDF to a given recipient key and seed. (Passing the recipient public key to the KDF could in principle compromise key privacy, but not confidentiality of encryption.) [Sprout] It is necessary to adapt the "HDH independence" assumptions and the proof slightly to take into account that the ephemeral key is reused for two encryptions.

Note that the 256-bit key for AEAD\_CHACHA20\_POLY1305 maintains a high concrete security level even under attacks using parallel hardware [Bernstein2005] in the multi-user setting [Zaverucha2012]. This is especially necessary because the privacy of **Zcash** transactions may need to be maintained far into the future, and upgrading the encryption algorithm would not prevent a future adversary from attempting to decrypt ciphertexts encrypted before the upgrade. Other cryptovalues that could be attacked to break the privacy of transactions are also sufficiently long to resist parallel brute force in the multi-user setting: for **Sprout**,  $a_{sk}$  is 252 bits, and  $sk_{enc}$  is no shorter than  $a_{sk}$ .

# 8.8 Omission in Zerocash security proof

The abstract **Zerocash** protocol requires PRF<sup>addr</sup> only to be a PRF; it is not specified to be collision-resistant. This reveals a flaw in the proof of the Balance property.

Suppose that an adversary finds a collision on PRF<sup>addr</sup> such that  $a_{sk}^1$  and  $a_{sk}^2$  are distinct *spending keys* for the same  $a_{pk}$ . Because the *note commitment* is to  $a_{pk}$ , but the *nullifier* is computed from  $a_{sk}$  (and  $\rho$ ), the adversary is able to double-spend the note, once with each  $a_{sk}$ . This is not detected because each spend reveals a different *nullifier*. The *JoinSplit statements* are still valid because they can only check that the  $a_{sk}$  in the witness is *some* preimage of the  $a_{pk}$  used in the *note commitment*.

The error is in the proof of Balance in [BCGGMTV2014, Appendix D.3]. For the " $\mathcal{A}$  violates Condition I" case, the proof says:

"(i) If  $cm_1^{old} = cm_2^{old}$ , then the fact that  $sn_2^{old} \neq sn_2^{old}$  implies that the witness a contains two distinct openings of  $cm_1^{old}$  (the first opening contains  $(a_{sk,1}^{old}, \rho_1^{old})$ ), while the second opening contains  $(a_{sk,2}^{old}, \rho_2^{old})$ ). This violates the binding property of the commitment scheme COMM."

In fact the openings do not contain  $a_{sk,i}^{old}$ ; they contain  $a_{pk,i}^{old}$ . (In **Sprout** cm<sub>i</sub><sup>old</sup> opens directly to  $(a_{pk,i}^{old}, v_i^{old}, \rho_i^{old})$ , and in **Zerocash** it opens to  $(v_i^{old}, COMM_s(a_{pk,i}^{old}, \rho_i^{old}))$ .)

A similar error occurs in the argument for the " $\mathcal{A}$  violates Condition II" case.

The flaw is not exploitable for the actual instantiations of PRF<sup>addr</sup> in **Zerocash** and **Sprout**, which *are* collision-resistant assuming that SHA256Compress is.

The proof can be straightforwardly repaired. The intuition is that we can rely on collision resistance of PRF<sup>addr</sup> (on both its arguments) to argue that distinctness of  $a_{sk,1}^{old}$  and  $a_{sk,2}^{old}$ , together with constraint 1(b) of the *JoinSplit statement* (see §4.15.1 'Spend authority' on p. 40), implies distinctness of  $a_{pk,1}^{old}$  and  $a_{pk,2}^{old}$ , therefore distinct openings of the *note commitment* when Condition I or II is violated.

## 8.9 Miscellaneous

- The paper defines a *note* as  $((a_{pk}, pk_{enc}), v, \rho, rcm, s, cm)$ , whereas this specification defines a **Sprout** *note* as  $(a_{pk}, v, \rho, rcm)$ . The instantiation of  $COMM_s$  in section 5.1 of the paper did not actually use s, and neither does the new instantiation of  $NoteCommit^{Sprout}$  in **Sprout**.  $pk_{enc}$  is also not needed as part of a *note*: it is not an input to  $NoteCommit^{Sprout}$  nor is it constrained by the **Zerocash** POUR *statement* or the **Zcash** *JoinSplit statement*. cm can be computed from the other fields. (The definition of *notes* for **Sapling** is different again.)
- The length of proof encodings given in the paper is 288 bytes. [Sprout] This differs from the 296 bytes specified in §5.4.9.1 PHGR13' on p. 68, because both the x-coordinate and compressed y-coordinate of each point need to be represented. Although it is possible to encode a proof in 288 bytes by making use of the fact that elements of  $\mathbb{F}_q$  can be represented in 254 bits, we prefer to use the standard formats for points defined in [IEEE2004]. The fork of libsnark used by libsnark uses this standard encoding rather than the less efficient (uncompressed) one used by upstream libsnark. In libsnark a customized encoding is used for libsnark points in libsnark for libsnark in libsnark and libsnark in libsnar
- The range of monetary values differs. In **Zcash** this range is  $\{0..\mathsf{MAX\_MONEY}\}$ , while in **Zerocash** it is  $\{0..2^{\ell_{\mathsf{value}}}-1\}$ . (The *JoinSplit statement* still only directly enforces that the sum of amounts in a given *JoinSplit transfer* is in the latter range; this enforcement is technically redundant given that the Balance property holds.)

# 9 Acknowledgements

The inventors of **Zerocash** are Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars Virza. The designers of the **Zcash** protocol are the **Zerocash** inventors and also Daira Hopwood, Sean Bowe, Jack Grigg, Simon Liu, Taylor Hornby, Nathan Wilcox, Zooko Wilcox, Jay Graber, Ariel Gabizon, and George Tankersley. The Equihash proof-of-work algorithm was designed by Alex Biryukov and Dmitry Khovratovich.

The authors would like to thank everyone with whom they have discussed the **Zerocash** and **Zcash** protocol designs; in addition to the preceding, this includes Mike Perry, Isis Lovecruft, Leif Ryge, Andrew Miller, Samantha Hulsey, jl777, Ben Blaxill, Alex Balducci, Jake Tarren, Solar Designer, Ling Ren, Alison Stevenson, John Tromp, Paige Peterson, Maureen Walsh, Jack Gavigan, Filippo Valsorda, Zaki Manian, Tracy Hu, Brian Warner, Mary Maller, Michael Dixon, Andrew Poelstra, and no doubt others. We would also like to thank the designers and developers of **Bitcoin**.

**Zcash** has benefited from security audits performed by NCC Group, Coinspect, Least Authority, Mary Maller, and Kudelski Security.

The Faerie Gold attack was found by Zooko Wilcox; subsequent analysis of variations on the attack was performed by Daira Hopwood and Sean Bowe. The internal hash collision attack was found by Taylor Hornby. The error in the **Zerocash** proof of Balance relating to collision resistance of PRF<sup>addr</sup> was found by Daira Hopwood. The errors in the proof of Ledger Indistinguishability mentioned in §8.6 'Changes to PRF inputs and truncation' on p. 92 were also found by Daira Hopwood.

The design of **Sapling** is primarily due to Matthew Green, Ian Miers, Daira Hopwood, Sean Bowe, and Jack Grigg. A potential attack linking *diversified payment addresses*, avoided in the adopted design, was found by Brian Warner.

Numerous people have contributed to the science of zero-knowledge proving systems, but we would particularly like to acknowledge the work of Shafi Goldwasser, Silvio Micali, Oded Goldreich, Charles Rackoff, Rosario Gennaro, Bryan Parno, Jon Howell, Craig Gentry, Mariana Raykova, Jens Groth, Rafail Ostrovsky, and Amit Sahai.

Many of the ideas used in **Zcash**—including the use of zero-knowledge proofs to resolve the tension between privacy and auditability, Merkle trees over note commitments (using Pedersen hashes as in **Sapling**), and the use of "serial numbers" or *nullifiers* to detect or prevent double-spends— were first applied to privacy-preserving digital currencies by Tomas Sander and Amnon Ta–Shma. To a large extent **Zcash** is a refinement of their "Auditable, Anonymous Electronic Cash" proposal in [ST1999].

Finally, we would like to thank the Internet Archive for their scan of Peter Newell's illustration of the Jubjub bird, from [Carroll1902].

# 10 Change History

#### 2018.0-beta-29

- · No changes to **Sprout**.
- Finish §A.3.2.2 'Range check' on p. 119.
- Change §A.3.7 'BLAKE2s hashes' on p. 128 to correct the constraint count and to describe batched equality checks performed by the sapling-crypto implementation.

#### 2018.0-beta-28

- · No changes to Sprout.
- · Finish §A.3.7 'BLAKE2s hashes' on p. 128.
- · Minor corrections to §A.3.3.8 'Variable-base affine-Edwards scalar multiplication' on p. 125.

## 2018.0-beta-27

- · Notational changes:
  - Use a superscript <sup>(r)</sup> to mark the subgroup order, instead of a subscript.
  - Use  $\mathbb{G}^{(r)*}$  for the set of  $r_{\mathbb{G}}$ -order points in  $\mathbb{G}$ .
  - Mark the subgroup order in pairing groups, e.g. use  $\mathbb{G}_1^{(r)}$  instead of  $\mathbb{G}_1$ .
  - Make the bit-representation indicator ★ an affix instead of a superscript.
- · Clarify that when validating a Groth16 proof, it is necessary to perform a subgroup check for  $\pi_A$  and  $\pi_C$  as well as for  $\pi_B$ .
- Correct the description of Groth16 batch verification to explicitly take account of how verification depends on *primary inputs*.
- · Add Charles Rackoff, Rafail Ostrovsky, and Amit Sahai to the acknowledgements section for their work on zero-knowledge proofs.

#### 2018.0-beta-26

- · No changes to **Sprout**.
- · Add §B.2 'Groth16 batch verification' on p. 131.

- · No changes to **Sprout**.
- · Add the hashes of parameter files for **Sapling**.
- · Add cross references for parameters and functions used in RedDSA batch verification.
- Makefile changes: name the PDF file for the **Sprout** version of the specification as **sprout.pdf**, and make **protocol.pdf** link to the **Sapling** version.

- · No changes to **Sprout**.
- Add a missing consensus rule for version 4 *transactions*: if there are no **Sapling** spends or outputs, then valueBalance **MUST** be 0.

## 2018.0-beta-23

- · No changes to **Sprout**.
- Update RedDSA verification to use cofactor multiplication. This is necessary in order for the output of batch verification to match that of unbatched verification in all cases.
- · Add §B.1 'RedDSA batch verification' on p. 131.

#### 2018.0-beta-22

- · No changes to **Sprout**.
- · Update §6 'Network Upgrades' on p. 76 to take account that Overwinter has activated.
- The recommendation for *transactions* without *JoinSplit descriptions* to be version 1 applies only before **Overwinter**, not before **Sapling**.
- · Complete the proof of Theorem A.3.5 on p. 126.
- · Add a note about redundancy in the nonsmall-order checking of rk.
- · Clarify the use of cv<sup>new</sup> and cm<sup>new</sup>, and the selection of *outgoing viewing key*, in sending Sapling notes.
- Delete the description of optimizations for the affine-Edwards nonsmall-order check, since the **Sapling** circuit does not use them. Also clarify that some other optimizations are not used.

- Remove the consensus rule "If nJoinSplit > 0, the *transaction* MUST NOT use *SIGHASH types* other than SIGHASH\_ALL.", which was never implemented.
- · Add section on signature hashing.
- · Briefly describe the changes to computation of SIGHASH transaction hashes in Sprout.
- · Clarify that interstitial *treestates* form a tree for each *transaction* containing *JoinSplit descriptions*.
- Correct the description of P2PKH addresses in §5.6.1 *'Transparent Addresses'* on p. 71 they use a hash of a compressed, not an uncompressed ECDSA key representation.
- · Clarify the wording of the caveat<sup>3</sup> about the claimed security of shielded *transactions*.
- · Correct the definition of set difference ( $S \setminus T$ ).
- · Add a note concerning malleability of zero-knowledge proofs.
- · Clarify attribution of the **Zcash** protocol design.
- · Acknowledge Alex Biryukov and Dmitry Khovratovich as the designers of Equihash.
- · Acknowledge Shafi Goldwasser, Silvio Micali, Oded Goldreich, Rosario Gennaro, Bryan Parno, Jon Howell, Craig Gentry, Mariana Raykova, and Jens Groth for their work on zero-knowledge proving systems.
- · Acknowledge Tomas Sander and Amnon Ta-Shma for [ST1999].
- · Acknowledge Kudelski Security's audit.
- · Use the more precise subgroup types  $\mathbb{G}^{(r)}$  and  $\mathbb{J}^{(r)}$  in preference to  $\mathbb{G}$  and  $\mathbb{J}$  where applicable.

- Change the types of *auxiliary inputs* to the *Spend statement* and *Output statement*, to be more faithful to the implementation.
- · Rename the cm field of an Output description to cmu, reflecting the fact that it is a Jubjub curve u-coordinate.
- Add explicit consensus rules that the anchor field of a *Spend description* and the cmu field of an *Output description* must be canonical encodings.
- Enforce that esk in outCiphertext is a canonical encoding.
- Add consensus rules that cv in a *Spend description*, and cv and epk in an *Output description*, are not of small order. Exclude 0 from the range of esk when encrypting **Sapling** notes.
- Add a consensus rule that valueBalance is in the range {-MAX\_MONEY .. MAX\_MONEY}.
- Enforce stronger constraints on the types of key components pk<sub>d</sub>, ak, and nk.
- Correct the conformance rule for fOverwintered (it must not be set before Overwinter has activated, not before Sapling has activated).
- · Correct the argument that v\* is in range in §4.12 'Balance and Binding Signature (**Sapling**)' on p. 36.
- Correct an error in the algorithm for RedDSA. Verify: the public key vk is given directly to this algorithm and should not be computed from the unknown private key sk.
- $\cdot$  Correct or improve the types of GroupHash  $\mathbb{J}^{(r)*}$ , FindGroupHash  $\mathbb{J}^{(r)*}$ , Extract  $\mathbb{J}^{(r)*}$ , PRF  $\mathbb{J}^{(r)*}$ , and CRH  $\mathbb{J}^{(r)*}$ .
- · Instantiate PRF<sup>ock</sup> using BLAKE2b-256.
- Change the syntax of a commitment scheme to add COMM.GenTrapdoor. This is necessary because the intended distribution of commitment trapdoors may not be uniform on all values that are acceptable trapdoor inputs.
- · Add notes on the purpose of *outgoing viewing keys*.
- · Correct the encoding of a *full viewing key* (ovk was missing).
- Ensure that **Sprout** functions and values are given **Sprout**-specific types where appropriate.
- · Improve cross-referencing.
- · Clarify the use of PHGR13 vs Groth16 proofs in *JoinSplit statements*.
- · Clarify that the  $\sqrt{a}$  notation refers to the positive square root. (This matters for the conversion in §A.3.3.3 'Edwards  $\leftrightarrow$  Montgomery conversion' on p. 122.)
- Model the group hash as a random oracle. This appears to be unavoidable in order to allow proving unlinkability of DiversifyHash. Explain how this relates to the Discrete Logarithm Independence assumption used previously, and justify this modelling by showing that it follows from treating BLAKE2s-256 as a random oracle in the instantiation of GroupHash J (\*\*)\*
- Rename CRS (Common Random String) to URS (*Uniform Random String*), to match the terminology adopted at the first zkproof workshop held in Boston, Massachusetts on May 10–11, 2018.
- Generalize PRF<sup>expand</sup> to accept an arbitrary-length input. (This specification does not use that generalization, but [ZIP-32] does.)
- · Change the notation for a multiplication constraint in Appendix A 'Circuit Design' on p. 116 to avoid potential confusion with cartesian product.
- · Clarify the wording of the abstract.
- · Correct statements about which algorithms are instantiated by BLAKE2s and BLAKE2b.
- · Add a note explaining which conformance requirements of [BIP-173] (defining Bech32) apply.
- Add the Jubjub bird image to the title page. This image has been edited from a scan of Peter Newell's original illustration (as it appeared in [Carroll1902]) to remove the background and Bandersnatch, and to restore the bird's clipped right wing.

• Change the light yellow background to white (indicating that this **Overwinter** and **Sapling** specification is no longer a draft).

#### 2018.0-beta-20

- · Add Michael Dixon and Andrew Poelstra to acknowledgements.
- Minor improvements to cross-references.
- · Correct the order of arguments to RedDSA.RandomizePrivate and RedDSA.RandomizePublic.
- · Correct a reference to RedDSA.RandomizePrivate that was intended to be RedDSA.RandomizePublic.
- Fix the description of the balancing value in §4.12 'Balance and Binding Signature (Sapling)' on p. 36.
- · Correct a type error in §5.4.8.5 'Group Hash into Jubjub' on p. 68.
- · Correct a type error in RedDSA.Sign in §5.4.6 'RedDSA and RedJubjub' on p. 59.
- $\cdot$  Ensure  $\mathcal G$  is defined in §5.4.6.1 'Spend Authorization Signature' on p. 61.
- · Make the public key prefix part of the input to the hash function in RedDSA, not part of the message.
- · Correct the statement about FindGroupHash $^{\mathbb{J}^{(r)*}}$  never returning  $\bot$ .
- · Correct an error in the computation of generators for *Pedersen hashes*.
- Change the order in which NoteCommit<sup>Sapling</sup> commits to its inputs, to match the sapling-crypto implementation.
- Fail **Sapling** key generation if ivk = 0. (This has negligible probability.)
- Change the notation H\* to H® in \$5.4.6 'RedDSA and RedJubjub' on p. 59, to avoid confusion with the \* convention for representations of group elements.
- $\cdot$  cmu encodes only the u-coordinate of the note commitment, not the full curve point.
- · rk is checked to be not of small order outside the *Spend statement*, not in the *Spend statement*.
- · Change terminology describing constraint systems.

## 2018.0-beta-19

- No changes to Sprout.
- · Minor clarifications.

- No changes to Sprout.
- · Clarify the security argument for balance in Sapling.
- Correct a subtle problem with the type of the value input to ValueCommit: although it is only directly used to commit to values in  $\{0..2^{\ell_{\text{value}}}-1\}$ , the security argument depends on a sum of commitments being binding on  $\left\{-\frac{r_{\mathbb{J}}-1}{2}...\frac{r_{\mathbb{J}}-1}{2}\right\}$ .
- Fix the loss of tightness in the use of PRF<sup>nfSapling</sup> by specifying the keyspace more precisely.
- · Correct type ambiguities for  $\rho$ .
- Specify the representation of i in group  $\mathbb{G}_2$  of BLS12-381.

- · No changes to Sprout.
- · Correct an error in the definition of DefaultDiversifier.

## 2018.0-beta-16

- · Explicitly note that outputs from coinbase transactions include Founders' Reward outputs.
- The point represented by  $\underline{R}$  in an Ed25519 signature is checked to not be of small order; this is not the same as checking that it is of prime order  $\ell$ .
- · Specify support for [BIP-111] (the NODE\_BLOOM service bit) in network protocol version 170004.
- · Give references [Vercauter2009] and [AKLGL2010] for the optimal ate pairing.
- Give references for BLS [BLS2002] and BN [BN2005] curves.
- · Define KA<sup>Sprout</sup>. DerivePublic for Curve25519.
- Caveat the claim about *note traceability set* in §1.2 'High-level Overview' on p. 7 and link to [Peterson2017] and [Quesnelle2017].
- Do not require a generator as part of the specification of a *represented group*; instead, define it in the *represented pairing* or scheme using the group.
- Refactor the abstract definition of a signature scheme to allow derivation of verifying keys independent of key pair generation.
- · Correct the explanation in §1.2 'High-level Overview' on p.7 to apply to Sapling.
- · Add the definition of a private key to public key homomorphism for *signature schemes*.
- Remove the output index as an input to KDF<sup>Sapling</sup>.
- · Allow dummy Sapling input notes.
- · Specify RedDSA and RedJubjub.
- · Specify binding signatures and spend authorization signatures.
- · Specify the randomness beacon.
- · Add *output ciphertexts* and ock.
- · Define DefaultDiversifier.
- · Change the *Spend circuit* and *Output circuit* specifications to remove unintended differences from sapling-crypto.
- Use  $h_{\mathbb{I}}$  to refer to the *Jubjub curve* cofactor, rather than 8.
- Correct an error in the y-coordinate formula for addition in §A.3.3.4 'Affine-Montgomery arithmetic' on p.122 (the constraints were correct).
- · Add acknowledgements for Brian Warner, Mary Maller, and the Least Authority audit.
- · Makefile improvements.

- Clarify the bit ordering of SHA-256.
- · Drop \_t from the names of representation types.
- · Remove functions from the **Sprout** specification that it does not use.
- · Updates to transaction format and consensus rules for Overwinter and Sapling.
- · Add specification of the *Output statement*.

- · Change MerkleDepth<sup>Sapling</sup> from 29 to 32.
- Updates to **Sapling** construction, changing how the *nullifier* is computed and separating it from the *randomized spend verifying key* (rk).
- · Clarify conversions between bit and byte sequences for sk,  $\mathsf{repr}_{\mathbb{J}}(\mathsf{ak})$ , and  $\mathsf{repr}_{\mathbb{J}}(\mathsf{nk})$ .
- · Change the Makefile to avoid multiple reloads in PDF readers while rebuilding the PDF.
- Spacing and pagination improvements.

- · Only cosmetic changes to **Sprout**.
- Simplify FindGroupHash  $\mathbb{J}^{(r)*}$  to use a single-byte index.
- · Changes to diversification for Pedersen hashes and Pedersen commitments.
- · Improve security definitions for signatures.

#### 2018.0-beta-13

- · Only cosmetic changes to **Sprout**.
- · Change how (ask, nsk) are derived from the spending key sk to ensure they are on the full range of  $\mathbb{F}_{r_{\tau}}$ .
- · Change PRF<sup>nr</sup> to produce output computationally indistinguishable from uniform on  $\mathbb{F}_{r_1}$ .
- Change Uncommitted Sapling to be a u-coordinate for which there is no point on the curve.
- · Appendix A updates:
  - categorize components into larger sections
  - fill in the [de]compression and validation algorithm
  - more precisely state the assumptions for inputs and outputs
  - delete not-all-one component which is no longer needed
  - factor out xor into its own component
  - specify [un]packing more precisely; separate it from boolean constraints
  - optimize checking for non-small order
  - notation in variable-base multiplication algorithm.

- · No changes to **Sprout**.
- · Add references to **Overwinter** ZIPs and update the section on **Overwinter/Sapling** transitions.
- · Add a section on re-randomizable signatures.
- · Add definition of PRF<sup>nr</sup>.
- · Work-in-progress on **Sapling** *statements*.
- · Rename "raw" to "homomorphic" Pedersen commitments.
- · Add packing modulo the field size and range checks to Appendix A.
- · Update the algorithm for variable-base scalar multiplication to what is implemented by sapling-crypto.

- · No changes to **Sprout**.
- · Add sections on Spend descriptions and Output descriptions.
- · Swap order of cv and rt in a Spend description for consistency.
- · Fix off-by-one error in the range of ivk.

#### 2018.0-beta-10

- Split the descriptions of SHA-256 and SHA256Compress, and of BLAKE2, into their own sections. Specify SHA256Compress more precisely.
- Add Tracy Hu to acknowledgements (for the idea of explicitly encoding the root of the **Sapling** *note commitment tree* in *block headers*).
- · Move bit/byte/integer conversion primitives into §5.2 'Integers, Bit Sequences, and Endianness' on p. 48.
- Refer to Overwinter and Sapling just as "upgrades" in the abstract, not as the next "minor version" and "major version".
- · PRF<sup>nr</sup> must be collision-resistant.
- · Correct an error in the *Pedersen hash* specification.
- Use a named variable, c, for chunks per segment in the *Pedersen hash* specification, and change its value from 61 to 63. Add a proof justifying this value of c.
- · Specify *Pedersen commitments*.
- · Notation changes.
- · Generalize the distinct-x criterion (Theorem A.3.4 on p. 123) to allow negative indices.

#### 2018.0-beta-9

- Specify the coinbase maturity rule, and the rule that *coinbase transactions* cannot contain *JoinSplit descriptions*, *Spend descriptions*, or *Output descriptions*.
- Delay lifting the 100000-byte transaction size limit from Overwinter to Sapling.
- Improve presentation of the proof of injectivity for  $\mathsf{Extract}_{\pi^{(r)}}$ .
- Specify GroupHash<sup>J<sup>(r)\*</sup></sup>
- · Specify Pedersen hashes.

- No changes to Sprout.
- Add instantiation of CRH<sup>ivk</sup>.
- · Add instantiation of a hash extractor for Jubjub.
- $\cdot\,$  Make the background lighter and the Sapling green darker, for contrast.

- · Specify the 100000-byte limit on transaction size. (The implementation in zcashd was as intended.)
- Specify that 0xF6 followed by 511 zero bytes encodes an empty *memo field*.
- · Reference security definitions for *Pseudo Random Functions* and *Pseudo Random Generators*.
- Rename clamp to bound and ActualTimespanClamped to ActualTimespanBounded in the difficulty adjustment algorithm, to avoid a name collision with Curve25519 scalar "clamping".
- · Change uses of the term *full node* to *full validator*. A *full node* by definition participates in the peer-to-peer network, whereas a *full validator* just needs a copy of the *block chain* from somewhere. The latter is what was meant
- · Add an explanation of how **Sapling** prevents Faerie Gold and roadblock attacks.
- · Sapling work in progress.

### 2018.0-beta-6

- · No changes to Sprout.
- Sapling work in progress, mainly on Appendix A 'Circuit Design' on p. 116.

## 2018.0-beta-5

- Specify more precisely the requirements on Ed25519 public keys and signatures.
- · Sapling work in progress.

## 2018.0-beta-4

- · No changes to Sprout.
- Update key components diagram for Sapling.

## 2018.0-beta-3

- Explain how the chosen fix to Faerie Gold avoids a potential "roadblock" attack.
- Update some explanations of changes from Zerocash for Sapling.
- · Add a description of the *Jubjub curve*.
- · Add an acknowledgement to George Tankersley.
- · Add an appendix on the design of the **Sapling** circuits at the *quadratic constraint program* level.

## 2017.0-beta-2.9

- · Refer to sk<sub>enc</sub> as a *receiving key* rather than as a viewing key.
- · Updates for incoming viewing key support.
- · Refer to Network Upgrade 0 as Overwinter.

## 2017.0-beta-2.8

- · Correct the non-normative note describing how to check the order of  $\pi_B$ .
- · Initial version of draft **Sapling** protocol specification.

### 2017.0-beta-2.7

- Fix an off-by-one error in the specification of the Equihash algorithm binding condition. (The implementation in zcashd was as intended.)
- Correct the types and consensus rules for *transaction version numbers* and *block version numbers*. (Again, the implementation in zcashd was as intended.)
- Clarify the computation of  $h_i$  in a *JoinSplit statement*.

#### 2017.0-beta-2.6

• Be more precise when talking about curve points and pairing groups.

#### 2017.0-beta-2.5

- · Clarify the consensus rule preventing double-spends.
- · Clarify what a note commitment opens to in §8.8 'Omission in **Zerocash** security proof' on p. 94.
- · Correct the order of arguments to COMM in §5.4.7.1 'Sprout Note Commitments' on p. 61.
- · Correct a statement about indistinguishability of *JoinSplit descriptions*.
- · Change the *Founders' Reward* addresses, for the test network only, to reflect the hard-fork upgrade described in [Zcash-Issue2113].

#### 2017.0-beta-2.4

- Explain a variation on the Faerie Gold attack and why it is prevented.
- Generalize the description of the InternalH attack to include finding collisions on  $(a_{pk}, \rho)$  rather than just on  $\rho$ .
- · Rename enforce<sub>i</sub> to enforceMerklePath<sub>i</sub>.

## 2017.0-beta-2.3

- Specify the security requirements on the *SHA-256 compression* function in order for the scheme in §5.4.7.1 '**Sprout** Note Commitments' on p. 61 to be a secure commitment.
- Specify  $\mathbb{G}_2$  more precisely.
- Explain the use of interstitial *treestates* in chained *JoinSplit transfers*.

### 2017.0-beta-2.2

- · Give definitions of computational binding and computational hiding for commitment schemes.
- · Give a definition of statistical zero knowledge.
- Reference the white paper on MPC parameter generation [BGG2016].

## 2017.0-beta-2.1

- $\ell_{\mathsf{Merkle}}$  is a bit length, not a byte length.
- · Specify the maximum block size.

## 2017.0-beta-2

- · Add abstract and keywords.
- Fix a typo in the definition of *nullifier* integrity.
- Make the description of *block chains* more consistent with upstream **Bitcoin** documentation (referring to "best" chains rather than using the concept of a *block chain view*).
- · Define how nodes select a best chain.

#### 2016.0-beta-1.13

- · Specify the difficulty adjustment algorithm.
- · Clarify some definitions of fields in a block header.
- · Define PRF<sup>addr</sup> in §4.2.1 '**Sprout** Key Components' on p. 27.

## 2016.0-beta-1.12

- · Update the hashes of proving and verifying keys for the final Sprout parameters.
- Add cross references from shielded payment address and spending key encoding sections to where the key components are specified.
- · Add acknowledgements for Filippo Valsorda and Zaki Manian.

## 2016.0-beta-1.11

- Specify a check on the order of  $\pi_B$  in a zero-knowledge proof .
- · Note that due to an oversight, the **Zcash** *genesis block* does not follow [BIP-34].

## 2016.0-beta-1.10

- Update reference to the Equihash paper [BK2016]. (The newer version has no algorithmic changes, but the section discussing potential ASIC implementations is substantially expanded.)
- · Clarify the discussion of proof size in "Differences from the **Zerocash** paper".

## 2016.0-beta-1.9

- · Add Founders' Reward addresses for the production network.
- · Change "protected" terminology to "shielded".

#### 2016.0-beta-1.8

- Revise the lead bytes for *transparent P2SH* and P2PKH addresses, and reencode the testnet *Founders' Reward* addresses.
- · Add a section on which BIPs apply to Zcash.
- · Specify that OP\_CODESEPARATOR has been disabled, and no longer affects SIGHASH transaction hashes.
- Change the representation type of vpub\_old and vpub\_new to uint64. (This is not a consensus change because the type of void and vpub was already specified to be {0.. MAX\_MONEY}; it just better reflects the implementation.)
- · Correct the representation type of the *block* nVersion field to uint32.

### 2016.0-beta-1.7

• Clarify the consensus rule for payment of the *Founders' Reward*, in response to an issue raised by the NCC audit.

## 2016.0-beta-1.6

- Fix an error in the definition of the sortedness condition for Equihash: it is the sequences of indices that are sorted, not the sequences of hashes.
- · Correct the number of bytes in the encoding of solutionSize.
- · Update the section on encoding of transparent addresses. (The precise prefixes are not decided yet.)
- · Clarify why BLAKE2b-ℓ is different from truncated BLAKE2b-512.
- · Clarify a note about SU-CMA security for signatures.
- · Add a note about PRF<sup>nf</sup> corresponding to PRF<sup>sn</sup> in **Zerocash**.
- · Add a paragraph about key length in §8.7 'In-band secret distribution' on p. 93.
- · Add acknowledgements for John Tromp, Paige Peterson, Maureen Walsh, Jay Graber, and Jack Gavigan.

## 2016.0-beta-1.5

- · Update the Founders' Reward address list.
- · Add some clarifications based on Eli Ben-Sasson's review.

#### 2016.0-beta-1.4

- · Specify the *block subsidy*, *miner subsidy*, and the *Founders' Reward*.
- · Specify coinbase transaction outputs to Founders' Reward addresses.
- · Improve notation (for example "·" for multiplication and " $T^{[\ell]}$ " for sequence types) to avoid ambiguity.

## 2016.0-beta-1.3

- · Correct the omission of solutionSize from the block header format.
- Document that compactSize uint encodings must be canonical.
- · Add a note about conformance language in the introduction.
- · Add acknowledgements for Solar Designer, Ling Ren and Alison Stevenson, and for the NCC Group and Coinspect security audits.

## 2016.0-beta-1.2

- · Remove GeneralCRH in favour of specifying hSigCRH and EquihashGen directly in terms of BLAKE2b- $\ell$ .
- · Correct the security requirement for EquihashGen.

### 2016.0-beta-1.1

- Add a specification of abstract signatures.
- · Clarify what is signed in the "Sending Notes" section.
- · Specify ZK parameter generation as a randomized algorithm, rather than as a distribution of parameters.

- · Major reorganization to separate the abstract cryptographic protocol from the algorithm instantiations.
- · Add type declarations.
- · Add a "High-level Overview" section.
- Add a section specifying the *zero-knowledge proving system* and the encoding of proofs. Change the encoding of points in proofs to follow IEEE Std 1363[a].
- · Add a section on consensus changes from **Bitcoin**, and the specification of Equihash.
- · Complete the "Differences from the **Zerocash** paper" section.
- · Correct the Merkle tree depth to 29.
- · Change the length of memo fields to 512 bytes.
- · Switch the JoinSplit signature scheme to Ed25519, with consequent changes to the computation of hSig.
- Fix the lead bytes in *shielded payment address* and *spending key* encodings to match the implemented protocol.
- Add a consensus rule about the ranges of  $v_{pub}^{old}$  and  $v_{pub}^{new}$ .
- · Clarify cryptographic security requirements and added definitions relating to the in-band secret distribution.
- Add various citations: the "Fixing Vulnerabilities in the Zcash Protocol" and "Why Equihash?" blog posts, several crypto papers for security definitions, the **Bitcoin** whitepaper, the **CryptoNote** whitepaper, and several references to **Bitcoin** documentation.
- · Reference the extended version of the **Zerocash** paper rather than the Oakland proceedings version.
- Add *JoinSplit transfers* to the Concepts section.
- · Add a section on Coinbase Transactions.
- · Add acknowledgements for Jack Grigg, Simon Liu, Ariel Gabizon, jl777, Ben Blaxill, Alex Balducci, and Jake Tarren.
- Fix a Makefile compatibility problem with the escaping behaviour of echo.
- · Switch to biber for the bibliography generation, and add backreferences.
- · Make the date format in references more consistent.
- · Add visited dates to all URLs in references.
- Terminology changes.

## 2016.0-alpha-3.1

· Change main font to Quattrocento.

## 2016.0-alpha-3

· Change version numbering convention (no other changes).

## 2.0-alpha-3

- Allow anchoring to any previous output *treestate* in the same *transaction*, rather than just the immediately preceding output *treestate*.
- · Add change history.

## 2.0-alpha-2

- · Change from truncated BLAKE2b-512 to BLAKE2b-256.
- · Clarify endianness, and that uses of BLAKE2b are unkeyed.
- · Minor correction to what SIGHASH types cover.
- · Add "as intended for the **Zcash** release of summer 2016" to title page.
- · Require PRF<sup>addr</sup> to be collision-resistant (see §8.8 'Omission in **Zerocash** security proof on p. 94).
- · Add specification of path computation for the *incremental Merkle tree*.
- Add a note in §4.15.1 'Merkle path validity' on p. 40 about how this condition corresponds to conditions in the Zerocash paper.
- · Changes to terminology around keys.

## 2.0-alpha-1

· First version intended for public review.

## 11 References

| [ABR1999]   | Michel Abdalla, Mihir Bellare, and Phillip Rogaway. <i>DHAES: An Encryption Scheme Based on the Diffie-Hellman Problem</i> . Cryptology ePrint Archive: Report 1999/007. Received March 17, 1999. September 1998. URL: https://eprint.iacr.org/1999/007 (visited on 2016-08-21) († p19, 93, 94).                                                    |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [AGRRT2017] | Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. <i>MiMC: Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity.</i> Cryptology ePrint Archive: Report 2016/492. Received May 21, 2016. January 5, 2017. URL: https://eprint.iacr.org/2016/492 (visited on 2018-01-12) († p130). |
| [AKLGL2010] | Diego Aranha, Koray Karabina, Patrick Longa, Catherine Gebotys, and Julio López. <i>Faster Explicit Formulas for Computing Pairings over Ordinary Curves</i> . Cryptology ePrint Archive: Report 2010/526. Last revised September 12, 2011. URL: https://eprint.iacr.org/2010/526 (visited on 2018-04-03) († p63, 100).                             |
| [ANWW2013]  | Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O'Hearn, and Christian Winnerlein. <i>BLAKE2: simpler, smaller, fast as MD5.</i> January 29, 2013. URL: https://blake2.net/#sp(visited on 2016-08-14) (↑ p51, 128).                                                                                                                              |

[BBDP2001] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-Privacy in Public-

Key Encryption. September 2001. URL: https://cseweb.ucsd.edu/~mihir/papers/anonenc.

html (visited on 2016-08-14). Full version. († p20, 93).

[BBJLP2008] Daniel Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters. *Twisted Edwards* 

Curves. Cryptology ePrint Archive: Report 2008/013. Received January 8, 2008. March 13, 2008.

URL: https://eprint.iacr.org/2008/013 (visited on 2018-01-12) († p123).

[BCGGMTV2014] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,

and Madars Virza. Zerocash: Decentralized Anonymous Payments from Bitcoin (extended version). URL: http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf (visited on 2016-08-06). A condensed version appeared in Proceedings of the IEEE Symposium on Security and Privacy (Oakland) 2014, pages 459-474; IEEE, 2014. (↑ p7, 8, 10, 18, 36, 40, 44, 90,

92, 94).

[BCGTV2013] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for

C: Verifying Program Executions Succinctly and in Zero Knowledge. Cryptology ePrint Archive: Report 2013/507. Last revised October 7, 2013. URL: https://eprint.iacr.org/2013/507 (visited on 2016-08-31). An earlier version appeared in Proceedings of the 33rd Annual Inter-

national Cryptology Conference, CRYPTO 2013, pages 90–108; IACR, 2013. († p68).

[BCP1988] Jurgen Bos, David Chaum, and George Purdy. "A Voting Scheme". Unpublished. Presented at the rump session of CRYPTO '88 (Santa Barbara, California, USA, August 21–25, 1988); does not

appear in the proceedings. († p53).

[BCTV2014] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. "Scalable Zero Knowledge

via Cycles of Elliptic Curves (extended version)". In: *Advances in Cryptology - CRYPTO 2014*. Vol. 8617. Lecture Notes in Computer Science. Springer, 2014, pages 276–294. URL: https://www.cs.tau.ac.il/~tromer/papers/scalablezk-20140803.pdf (visited on 2016-09-01)

(† p26).

[BCTV2015] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. *Succinct Non-Interactive* 

Zero Knowledge for a von Neumann Architecture. Cryptology ePrint Archive: Report 2013/879. Last revised May 19, 2015. URL: https://eprint.iacr.org/2013/879 (visited on 2016-08-21)

(† p68, 69, 116).

[BDEHR2011] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and Markus Rückert. On

the Security of the Winternitz One-Time Signature Scheme (full version). Cryptology ePrint Archive: Report 2011/191. Received April 13, 2011. URL: https://eprint.iacr.org/2011/191

(visited on 2016-09-05) ( $\uparrow$  p 20).

[BDJR2000] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A Concrete Security Treatment of

Symmetric Encryption: Analysis of the DES Modes of Operation. September 2000. URL: https://cseweb.ucsd.edu/~mihir/papers/sym-enc.html (visited on 2018-02-07). An extended abstract appeared in Proceedings of the 38th Annual Symposium on Foundations of Computer Science (Miami Beach, Florida, USA, October 20-22, 1997), pages 394-403; IEEE Computer So-

ciety Press, 1997; ISBN 0-8186-8197-7. († p18).

[BDLSY2012] Daniel Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. "High-speed high-security signatures". In: *Journal of Cryptographic Engineering* 2 (September 26, 2011), pages 77–

89. URL: http://cr.yp.to/papers.html#ed25519 (visited on 2016-08-14). Document ID:

a1a62a2f76d23f65d622484ddd09caf8. († p58, 131).

[Bernstein2001] Daniel Bernstein. *Pippenger's exponentiation algorithm*. December 18, 2001. URL: https://cr. yp.to/papers.html#pippenger (visited on 2018-07-27). Draft. To be incorporated into the

author's High-speed cryptography book. Error pointed out by Sam Hocevar: the example in

Figure 4 needs 2 and is thus of length 18. († p131, 132).

- [Bernstein2005] Daniel Bernstein. "Understanding brute force". In: ECRYPT STVL Workshop on Symmetric Key Encryption, eSTREAM report 2005/036. April 25, 2005. URL: https://cr.yp.to/papers.html#bruteforce (visited on 2016-09-24). Document ID: 73e92f5b71793b498288efe81fe55dee. († p94).
- [Bernstein2006] Daniel Bernstein. "Curve25519: new Diffie-Hellman speed records". In: Public Key Cryptography
   PKC 2006. Proceedings of the 9th International Conference on Theory and Practice in PublicKey Cryptography (New York, NY, USA, April 24–26, 2006). Springer-Verlag, February 9, 2006.
  URL: http://cr.yp.to/papers.html#curve25519 (visited on 2016-08-14). Document ID:
  4230efdfa673480fc079449d90f322c0. (↑ p19, 57, 72, 73, 93).
- [BGG-mpc] Sean Bowe, Ariel Gabizon, and Matthew Green. *GitHub repository 'zcash/mpc': zk-SNARK pa-rameter multi-party computation protocol.* URL: https://github.com/zcash/mpc (visited on 2017-01-06) (↑ p75).
- [BGG1995] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. "Incremental Cryptography: The Case of Hashing and Signing". In: Advances in Cryptology CRYPTO '94. Proceedings of the 14th Annual International Cryptology Conference (Santa Barbara, California, USA, August 21–25, 1994). Ed. by Yvo Desmedt. Vol. 839. Lecture Notes in Computer Science. Springer, October 20, 1995, pages 216–233. ISBN: 978–3–540–48658–9. DOI: 10.1007/3–540–48658–5\_22. URL: https://cseweb.ucsd.edu/~mihir/papers/inc1.pdf (visited on 2018–02–09) (↑ p53, 54, 126).
- [BGG2016] Sean Bowe, Ariel Gabizon, and Matthew Green. A multi-party protocol for constructing the public parameters of the Pinocchio zk-SNARK. November 24, 2016. URL: https://github.com/zcash/mpc/blob/master/whitepaper.pdf (visited on 2017-02-11) († p75, 104).
- [BIP-11] Gavin Andresen. *M-of-N Standard Transactions*. Bitcoin Improvement Proposal 11. Created October 18, 2011. URL: https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki (visited on 2016-10-02) (↑ p89).
- [BIP-13] Gavin Andresen. Address Format for pay-to-script-hash. Bitcoin Improvement Proposal 13. Created October 18, 2011. URL: https://github.com/bitcoin/bips/blob/master/bip-0013.mediawiki (visited on 2016-09-24) (↑p71, 89).
- [BIP-14] Amir Taaki and Patrick Strateman. *Protocol Version and User Agent*. Bitcoin Improvement Proposal 14. Created November 10, 2011. URL: https://github.com/bitcoin/bips/blob/master/bip-0014.mediawiki (visited on 2016-10-02) (↑ p 89).
- [BIP-16] Gavin Andresen. Pay to Script Hash. Bitcoin Improvement Proposal 16. Created January 3, 2012. URL: https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki (visited on 2016-10-02) (↑ p89).
- [BIP-30] Pieter Wuille. *Duplicate transactions*. Bitcoin Improvement Proposal 30. Created February 22, 2012. URL: https://github.com/bitcoin/bips/blob/master/bip-0030.mediawiki (visited on 2016-10-02) (\partial p89).
- [BIP-31] Mike Hearn. Pong message. Bitcoin Improvement Proposal 31. Created April 11, 2012. URL: https://github.com/bitcoin/bips/blob/master/bip-0031.mediawiki (visited on 2016-10-02) (↑p89).
- [BIP-32] Pieter Wuille. *Hierarchical Deterministic Wallets*. Bitcoin Improvement Proposal 32. Created February 11, 2012. Last updated January 15, 2014. URL: https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki (visited on 2016-09-24) (\phi p72).
- [BIP-34] Gavin Andresen. *Block v2, Height in Coinbase*. Bitcoin Improvement Proposal 34. Created July 6, 2012. URL: https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki (visited on 2016-10-02) (\partial p89, 105).
- [BIP-35] Jeff Garzik. mempool message. Bitcoin Improvement Proposal 35. Created August 16, 2012. URL: https://github.com/bitcoin/bips/blob/master/bip-0035.mediawiki (visited on 2016-10-02) (\phi p89).

[BIP-37] Mike Hearn and Matt Corallo. Connection Bloom filtering. Bitcoin Improvement Proposal 37. Created October 24, 2012. URL: https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki (visited on 2016-10-02) († p89). [BIP-61] Gavin Andresen. Reject P2P message. Bitcoin Improvement Proposal 61. Created June 18, 2014. URL: https://github.com/bitcoin/bips/blob/master/bip-0061.mediawiki (visited on 2016-10-02) (↑ p89). [BIP-62] Pieter Wuille. Dealing with malleability. Bitcoin Improvement Proposal 62. Withdrawn November 17, 2015. URL: https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki (visited on 2016-09-05) ( $\uparrow$  p 21). [BIP-65] Peter Todd. OP\_CHECKLOCKTIMEVERIFY. Bitcoin Improvement Proposal 65. Created October 10, 2014. URL: https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki (visited on 2016-10-02) († p89). [BIP-66] Pieter Wuille. Strict DER signatures. Bitcoin Improvement Proposal 66. Created January 10, 2015. URL: https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki (visited on 2016-10-02) (↑ p89). [BIP-68] Mark Friedenbach, BtcDrak, Nicolas Dorier, and kinoshitajona. Relative lock-time using consensus-enforced sequence numbers. Bitcoin Improvement Proposal 68. Last revised November 21, 2015. URL: https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki (visited on 2016-09-02) (↑ p79). [BIP-111] Matt Corallo and Peter Todd. NODE BLOOM service bit. Bitcoin Improvement Proposal 111. Created August 20, 2015. URL: https://github.com/bitcoin/bips/blob/master/bip-0111. mediawiki (visited on 2018-04-02) († p89, 100). [BIP-173] Pieter Wuille and Greg Maxwell. Base32 address format for native v0-16 witness outputs. Bitcoin Improvement Proposal 173. Last revised September 24, 2017. URL: https://github.com/ bitcoin/bips/blob/master/bip-0173.mediawiki (visited on 2018-01-22) († p71, 98). [Bitcoin-Base58] Base58Check encoding — Bitcoin Wiki. URL: https://en.bitcoin.it/wiki/Base58Check\_ encoding (visited on 2016-01-26) († p71, 72). [Bitcoin-Block] Block Headers - Bitcoin Developer Reference. URL: https://bitcoin.org/en/developerreference#block-headers (visited on 2017-04-25) (\( \tau \) p83). [Bitcoin-CoinJoin] CoinJoin - Bitcoin Wiki. URL: https://en.bitcoin.it/wiki/CoinJoin (visited on 2016-08-17) († p9). [Bitcoin-Format] Raw Transaction Format - Bitcoin Developer Reference. URL: https://bitcoin.org/en/ developer-reference#raw-transaction-format (visited on 2016-03-15) († p79). [Bitcoin-Multisig] P2SH multisig (definition) — Bitcoin Developer Guide. URL: https://bitcoin.org/en/ developer-guide#term-p2sh-multisig (visited on 2016-08-19) (\( \rho \) p88). [Bitcoin-nBits] Target nBits - Bitcoin Developer Reference. URL: https://bitcoin.org/en/developerreference#target-nbits (visited on 2016-08-13) (\( \tau \) p82, 86). [Bitcoin-Order] Hash Byte Order - Bitcoin Developer Reference. URL: https://bitcoin.org/en/developerreference#hash-byte-order (visited on 2018-02-09) († p75). [Bitcoin-P2PKH] P2PKH (definition) - Bitcoin Developer Guide. URL: https://bitcoin.org/en/developerguide#term-p2pkh (visited on 2016-08-24) ( $\uparrow$  p71). [Bitcoin-P2SH] P2SH (definition) - Bitcoin Developer Guide. URL: https://bitcoin.org/en/developerguide#term-p2sh (visited on 2016-08-24) ( $\uparrow$  p71). [Bitcoin-Protocol] Protocol documentation — Bitcoin Wiki. URL: https://en.bitcoin.it/wiki/Protocol\_ documentation (visited on 2016-10-02) († p8). [Bitcoin-SigHash] Signature Types - Bitcoin Developer Guide. URL: https://bitcoin.org/en/developerguide#signature-hash-types (visited on 2018-06-10) (↑ p35).

[BJLSY2015] Daniel Bernstein, Simon Josefsson, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. EdDSA for

more curves. Technical Report. July 4, 2015. URL: https://cr.yp.to/papers.html#eddsa

(visited on 2018-01-22) (↑ p59, 67).

[BK2016] Alex Biryukov and Dmitry Khovratovich. Equihash: Asymmetric Proof-of-Work Based on the

Generalized Birthday Problem (full version). Cryptology ePrint Archive: Report 2015/946. Last revised October 27, 2016. URL: https://eprint.iacr.org/2015/946 (visited on 2016-10-30)

(† p10, 84, 105).

[BL-SafeCurves] Daniel Bernstein and Tanja Lange. SafeCurves: choosing safe curves for elliptic-curve cryptog-

raphy. URL: https://safecurves.cr.yp.to (visited on 2018-01-29) (↑ p93, 114).

[BL2017] Daniel Bernstein and Tanja Lange. Montgomery curves and the Montgomery ladder. Cryptology

ePrint Archive: Report 2017/293. Received March 30, 2017. URL: https://eprint.iacr.org/

2017/293 (visited on 2017-11-26) († p116, 122, 123).

[BLS2002] Paulo Barreto, Ben Lynn, and Michael Scott. Constructing Elliptic Curves with Prescribed Em-

bedding Degrees. Cryptology ePrint Archive: Report 2002/088. Last revised February 22, 2005.

URL: https://eprint.iacr.org/2002/088 (visited on 2018-04-20) (\( \phi \) p65, 100).

[BN2005] Paulo Barreto and Michael Naehrig. *Pairing-Friendly Elliptic Curves of Prime Order*. Cryptology

ePrint Archive: Report 2005/133. Last revised February 28, 2006. URL: https://eprint.iacr.

org/2005/133 (visited on 2018-04-20) († p63, 100).

[BN2007] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Relations among no-

tions and analysis of the generic composition paradigm. Cryptology ePrint Archive: Report 2000/025. Last revised July 14, 2007. URL: https://eprint.iacr.org/2000/025 (visited on

2016-09-02) († p19).

[Bowe-bellman] Sean Bowe. bellman: zk-SNARK library. URL: https://github.com/ebfull/bellman (visited

on 2018-04-03) († p69, 75).

[Bowe2017] Sean Bowe. ebfull/pairing source code, BLS12-381 – README.md as of commit e726600. URL:

https://github.com/ebfull/pairing/tree/e72660056e00c93d6b054dfb08ff34a1c67cb799/

src/bls12\_381 (visited on 2017-07-16) (↑ p64).

[Bowe2018] Sean Bowe. Random Beacon. March 22, 2018. URL: https://github.com/ZcashFoundation/

powersoftau-attestations/tree/master/0088 (visited on 2018-04-08) (\phi p75).

[Carroll1876] Lewis Carroll. *The Hunting of the Snark*. With illustrations by Henry Holiday. MacMillan and Co.

London. March 29, 1876. URL: https://www.gutenberg.org/files/29888/29888-h/29888-

h.htm (visited on 2018-05-23) († p66).

[Carroll1902] Lewis Carroll. Through the Looking-Glass, and What Alice Found There (1902 edition). Illus-

trated by Peter Newell and Robert Murray Wright. Harper and Brothers Publishers. New York. October 1902. URL: https://archive.org/details/throughlookinggl00carr4 (visited on

2018-06-20) († p96, 98).

[CDvdG1987] David Chaum, Ivan Damgård, and Jeroen van de Graaf. "Multiparty computations ensuring

privacy of each party's input and correctness of the result". In: Advances in Cryptology - CRYPTO '87. Proceedings of the 14th Annual International Cryptology Conference (Santa Barbara, California, USA, August 16–20, 1987). Ed. by Carl Pomerance. Vol. 293. Lecture Notes in Computer Science. Springer, January 1988, pages 87–119. ISBN: 978-3-540-48184-3. DOI: 10.1007/3-540-48184-2\_7. URL: https://www.researchgate.net/profile/Jeroen\_Van\_de\_Graaf/publication/242379939\_Multiparty\_computations\_ensuring\_secrecy\_of\_each\_

party%27s\_input\_and\_correctness\_of\_the\_output (visited on 2018-03-01) (\(\gamma\) p53).

[CvHP1991]

David Chaum, Eugène van Heijst, and Birgit Pfitzmann. Cryptographically Strong Undeniable Signatures, Unconditionally Secure for the Signer. February 1991. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.8570 (visited on 2018-02-17). An extended abstract appeared in Advances in Cryptology - CRYPTO '91: Proceedings of the 11th Annual International Cryptology Conference (Santa Barbara, California, USA, August 11-15, 1991); Ed. by Joan Feigenbaum; Vol. 576, Lecture Notes in Computer Science, pages 470-484; Springer, 1992; ISBN 978-3-540-55188-1. († p53, 126).

[deRooij1995]

Peter de Rooij. "Efficient exponentiation using precomputation and vector addition chains". In: Advances in Cryptology - EUROCRYPT '94. Proceedings, Workshop on the Theory and Application of Cryptographic Techniques (Perugia, Italy, May 9–12, 1994). Ed. by Alfredo De Santis. Vol. 950. Lecture Notes in Computer Science. Springer, pages 389–399. ISBN: 978-3-540-60176-0. DOI: 10.1007/BFb0053453. URL: https://link.springer.com/chapter/10.1007/BFb0053453 (visited on 2018-07-27) (↑ p131, 132).

[DGKM2011]

Dana Dachman-Soled, Rosario Gennaro, Hugo Krawczyk, and Tal Malkin. *Computational Extractors and Pseudorandomness*. Cryptology ePrint Archive: Report 2011/708. December 28, 2011. URL: https://eprint.iacr.org/2011/708 (visited on 2016-09-02) († p94).

[DigiByte-PoW]

DigiByte Core Developers. DigiSpeed 4.0.0 source code, functions GetNextWorkRequiredV3/4 in src/main.cpp as of commit 178e134. URL: https://github.com/digibyte/digibyte/blob/178e1348a67d9624db328062397fde0de03fe388/src/main.cpp#L1587 (visited on 2017-01-20) (\phi p85).

[DS2016]

David Derler and Daniel Slamanig. *Key-Homomorphic Signatures and Applications to Multiparty Signatures and Non-Interactive Zero-Knowledge*. Cryptology ePrint Archive: Report 2016/792. Last revised February 6, 2017. URL: https://eprint.iacr.org/2016/792 (visited on 2018-04-09) († p22).

[DSDCOPS2001]

Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Guiseppe Persiano, and Amit Sahai. "Robust Non-Interactive Zero Knowledge". In: *Advances in Cryptology - CRYPTO 2001. Proceedings of the 21st Annual International Cryptology Conference (Santa Barbara, California, USA, August 19–23, 2001).* Ed. by Joe Kilian. Vol. 2139. Lecture Notes in Computer Science. Springer, 2001, pages 566–598. ISBN: 978-3-540-42456-7. DOI: 10.1007/3-540-44647-8\_33. URL: https://www.iacr.org/archive/crypto2001/21390566.pdf (visited on 2018-05-28) († p26, 35).

[EWD-831]

Edsger W. Dijkstra. Why numbering should start at zero. Manuscript. August 11, 1982. URL: https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html (visited on 2016-08-09) (\phi p10).

[FKMSSS2016]

Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Dominique Schröder, and Mark Simkin. *Efficient Unlinkable Sanitizable Signatures from Signatures with Re-Randomizable Keys.* Cryptology ePrint Archive: Report 2012/159. Last revised February 11, 2016. URL: https://eprint.iacr.org/2015/395 (visited on 2018-03-03). An extended abstract appeared in *Public Key Cryptography – PKC 2016: 19th IACR International Conference on Practice and Theory in Public-Key Cryptography (Taipei, Taiwan, March 6–9, 2016), Proceedings, Part 1;* Ed. by Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang; Vol. 9614, Lecture Notes in Computer Science, pages 301–330; Springer, 2016; ISBN 978-3-662-49384-7. († p21, 22, 59).

[GGM2016]

Christina Garman, Matthew Green, and Ian Miers. *Accountable Privacy for Decentralized Anonymous Payments*. Cryptology ePrint Archive: Report 2016/061. Last revised January 24, 2016. URL: https://eprint.iacr.org/2016/061 (visited on 2016-09-02) (↑ p91).

[Groth2016]

Jens Groth. On the Size of Pairing-based Non-interactive Arguments. Cryptology ePrint Archive: Report 2016/260. Last revised May 31, 2016. URL: https://eprint.iacr.org/2016/260 (visited on 2017-08-03) († p69, 70, 132).

[Hopwood2018] Daira Hopwood. GitHub repository 'daira/jubjub': Supporting evidence for security of the Jub-

jub curve to be used in Zcash. URL: https://github.com/daira/jubjub(visited on 2018-02-18). Based on code written for SafeCurves [BL-SafeCurves] by Daniel Bernstein and Tanja Lange.

(† p93).

[HW2016] Taylor Hornby and Zooko Wilcox. Fixing Vulnerabilities in the Zcash Protocol. Zcash blog.

April 26, 2016. URL: https://blog.z.cash/fixing-zcash-vulns/(visited on 2018-04-15).

Updated December 26, 2017. († p92).

[IEEE2000] IEEE Computer Society. IEEE Std 1363-2000: Standard Specifications for Public-Key Cryptog-

raphy. IEEE, August 29, 2000. DOI: 10.1109/IEEESTD.2000.92292. URL: http://ieeexplore.

ieee.org/servlet/opac?punumber=7168 (visited on 2016-08-03) (\phi p64).

[IEEE2004] IEEE Computer Society. IEEE Std 1363a-2004: Standard Specifications for Public-Key Cryp-

tography - Amendment 1: Additional Techniques. IEEE, September 2, 2004. DOI: 10.1109 /
IEEESTD.2004.94612. URL: http://ieeexplore.ieee.org/servlet/opac?punumber=9276

(visited on 2016-08-03) († p64, 93, 95).

[Jedusor2016] Tom Elvis Jedusor. Mimblewimble. July 19, 2016. URL: http://diyhpl.us/~bryan/papers2/

bitcoin/mimblewimble.txt (visited on 2018-04-03) ( $\uparrow$  p38).

[KvE2013] Kaalel and Hagen von Eitzen. *If a group G has odd order, then the square function is injective* 

(answer). Mathematics Stack Exchange. URL: https://math.stackexchange.com/a/522277/

185422 (visited on 2018-02-08). Version: 2013-10-11. (↑ p67).

[KYMM2018] George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn. *An Empirical Analysis* 

of Anonymity in Zcash. Preprint, to be presented at the 27th Usenix Security Syposium (Baltimore, Maryland, USA, August 15–17, 2018). May 8, 2018. URL: https://smeiklej.com/files/

usenix18.pdf (visited on 2018-06-05) ( $\uparrow$  p9).

[LG2004] Eddie Lenihan and Carolyn Eve Green. *Meeting the Other Crowd: The Fairy Stories of Hidden* 

Ireland. TarcherPerigee, February 2004, pages 109-110. ISBN: 1-58542-206-1 (↑ p90).

[libsodium-Seal] Sealed boxes — libsodium. URL: https://download.libsodium.org/doc/public-key\_

cryptography/sealed\_boxes.html (visited on 2016-02-01) (\( \rho p93 \)).

[LM2017] Philip Lafrance and Alfred Menezes. On the security of the WOTS-PRF signature scheme. Cryp-

tology ePrint Archive: Report 2017/938. Last revised February 5, 2018. URL: https://eprint.

iacr.org/2017/938 (visited on 2018-04-16) ( $\uparrow$  p20).

[MAEÁ2010] V. Gayoso Martínez, F. Hernández Alvarez, L. Hernández Encinas, and C. Sánchez Ávila. "A Com-

parison of the Standardized Versions of ECIES". In: *Proceedings of Sixth International Conference on Information Assurance and Security (Atlanta, Georgia, USA, August 23–25, 2010).* IEEE, 2010, pages 1–4. ISBN: 978-1-4244-7407-3. DOI: 10.1109/ISIAS.2010.5604194. URL: https://digital.csic.es/bitstream/10261/32674/1/Gayoso\_A%20Comparison%20of%

20the%20Standardized%20Versions%20of%20ECIES.pdf (visited on 2016-08-14) ( $\uparrow$  p93).

[Nakamoto2008] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. October 31, 2008. URL:

https://bitcoin.org/en/bitcoin-paper (visited on 2016-08-14) (\( \rho 7 ).

[NIST2015] NIST. FIPS 180-4: Secure Hash Standard (SHS). August 2015. DOI: 10.6028/NIST.FIPS.180-

4. URL: https://csrc.nist.gov/publications/detail/fips/180/4/final (visited on

2018-02-14) († p50, 71).

[Peterson2017] Paige Peterson. Transaction Linkability. Zcash blog. January 25, 2017. URL: https://blog.z.

cash/transaction-linkability/(visited on 2018-04-15) (↑ p9, 100).

[PHGR2013] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. *Pinocchio: Nearly Practical Verifi* 

able Computation. Cryptology ePrint Archive: Report 2013/279. Last revised May 13, 2013. URL:

https://eprint.iacr.org/2013/279 (visited on 2016-08-31) (\( \phi 68 \)).

[Quesnelle2017] Jeffrey Quesnelle. On the linkability of Zcash transactions. arXiv:1712.01210 [cs.CR]. December 4,

2017. URL: https://arxiv.org/abs/1712.01210 (visited on 2018-04-15) († p9, 100).

[RFC-2119] Scott Bradner. Request for Comments 7693: Key words for use in RFCs to Indicate Requirement Levels. Internet Engineering Task Force (IETF). March 1997. URL: https://tools.ietf.org/ html/rfc2119 (visited on 2016-09-14) ( $\uparrow$  p7). [RFC-7539] Yoav Nir and Adam Langley. Request for Comments 7539: ChaCha20 and Poly1305 for IETF Protocols. Internet Research Task Force (IRTF). May 2015. URL: https://tools.ietf.org/ html/rfc7539 (visited on 2016-09-02). As modified by verified errata at https://www.rfceditor.org/errata search.php?rfc=7539 (visited on 2016-09-02). († p57). [RIPEMD160] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160, a strengthened version of RIPEMD. URL: http://homes.esat.kuleuven.be/~bosselae/ripemd160.html (visited on 2016-09-24) (↑ p71). [ST1999] Tomas Sander and Amnon Ta-Shma. "Auditable, Anonymous Electronic Cash". In: Advances in Cryptology - CRYPTO '99. Proceedings of the 19th Annual International Cryptology Conference (Santa Barbara, California, USA, August 15-19, 1999). Ed. by Michael Wiener. Vol. 1666. Lecture Notes in Computer Science. Springer, 1999, pages 555-572. ISBN: 978-3-540-66347-8. DOI: 10. 1007/3-540-48405-1\_35. URL: https://link.springer.com/content/pdf/10.1007/3-540-48405-1\_35.pdf (visited on 2018-06-05) (↑ p95, 97). [Swihart2018] Josh Swihart. Overwinter Activated Successfully. Zcash blog. June 26, 2018. URL: https://blog. z.cash/overwinter-activated-successfully/(visited on 2018-07-18) († p76). [Unicode] The Unicode Consortium. The Unicode Standard. The Unicode Consortium, 2016. URL: http: //www.unicode.org/versions/latest/(visited on 2016-08-31) (\p70). [vanSaberh2014] Nicolas van Saberhagen. CryptoNote v 2.0. Date disputed. URL: https://cryptonote.org/ whitepaper.pdf (visited on 2016-08-17) (\( \tau \) p9). [Vercauter2009] Frederik Vercauteren. Optimal pairings. Cryptology ePrint Archive: Report 2008/096. Last revised March 7, 2008. URL: https://eprint.iacr.org/2008/096 (visited on 2018-04-06). A version of this paper appeared in IEEE Transactions of Information Theory, Vol. 56, pages 455-461; IEEE, 2009. (↑ p63, 100). [WCBTV2015] Zooko Wilcox, Alessandro Chiesa, Eli Ben-Sasson, Eran Tromer, and Madars Virza. A Bug in libsnark. Least Authority blog. May 16, 2015. URL: https://leastauthority.com/blog/a\_bug\_ in\_libsnark/ (visited on 2018-05-22) (\(\gamma\) p69, 116). [WG2016] Zooko Wilcox and Jack Grigg. Why Equihash? Zcash blog. April 15, 2016. URL: https://blog. z.cash/why-equihash/ (visited on 2018-04-15). Updated December 14, 2017. († p84). [Zaverucha2012] Gregory M. Zaverucha. Hybrid Encryption in the Multi-User Setting. Cryptology ePrint Archive: Report 2012/159. Received March 20, 2012. URL: https://eprint.iacr.org/2012/159 (visited on 2016-09-24) († p94). [Zcash-Issue2113] Simon Liu. GitHub repository 'zcash/zcash': Issue 2113. URL: https://github.com/zcash/ zcash/issues/2113 (visited on 2017-02-20) († p88, 104). [Zcash-libsnark] libsnark: C++ library for zkSNARK proofs (Zcash fork). URL: https://github.com/zcash/ zcash/tree/master/src/snark (visited on 2018-02-04) ( $\uparrow$  p68). [ZIP-32] Jack Grigg and Daira Hopwood. Shielded Hierarchical Deterministic Wallets. Zcash Improvement Proposal 32 (in progress). († p32, 45, 98). [ZIP-76] Jack Grigg and Daira Hopwood. Transaction Signature Verification before Overwinter. Zcash Improvement Proposal 76 (in progress). (↑ p35, 89). [ZIP-143] Jack Grigg and Daira Hopwood. Transaction Signature Verification for Overwinter. Zcash Improvement Proposal 143. Created December 27, 2017. URL: https://github.com/zcash/zips/

> Jack Grigg. Network Upgrade Mechanism. Zcash Improvement Proposal 200. Created January 8, 2018. URL: https://github.com/zcash/zips/blob/master/zip-0200.rst (visited on

2018-03-01) († p76, 79).

[ZIP-200]

blob/master/zip-0143.rst (visited on 2018-03-01) († p35, 51, 76).

| [ZIP-201] | Simon Liu. Network Peer Management for Overwinter. Zcash Improvement Proposal 201. Created January 15, 2018. URL: https://github.com/zcash/zips/blob/master/zip-0201.rst (visited on 2018-03-01) (↑ p76).                                                  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [ZIP-202] | Simon Liu. Version 3 Transaction Format for Overwinter. Zcash Improvement Proposal 202. Created January 10, 2018. URL: https://github.com/zcash/zips/blob/master/zip-0202.rst (visited on 2018-03-01) (↑ p76).                                             |
| [ZIP-203] | Jay Graber. <i>Transaction Expiry</i> . Zcash Improvement Proposal 203. Created January 9, 2018. URL: https://github.com/zcash/zips/blob/master/zip-0203.rst (visited on 2018-03-01) (↑ p76, 77).                                                          |
| [ZIP-243] | Jack Grigg and Daira Hopwood. <i>Transaction Signature Verification for Sapling</i> . Zcash Improvement Proposal 243. Created April 10, 2018. URL: https://github.com/zcash/zips/blob/master/zip-0243.rst (visited on 2018-04-15) († p35, 37, 39, 51, 76). |

# **Appendices**

## A Circuit Design

## A.1 Quadratic Constraint Programs

**Sapling** defines two circuits, Spend and Output, each implementing an abstract *statement* described in §4.15.2 'Spend Statement (Sapling)' on p. 41 and §4.15.3 'Output Statement (Sapling)' on p. 42 respectively. It also adds a Groth16 circuit for the *JoinSplit statement* described in §4.15.1 'JoinSplit Statement (Sprout)' on p. 40.

At the next lower level, each circuit is defined in terms of a *quadratic constraint program* (specifying a *Rank 1 Constraint System*), as detailed in this section. In the PHGR13 or Groth16 proving systems, this program is translated to a *Quadratic Arithmetic Program* [BCTV2015, section 2.3] [WCBTV2015]. The circuit descriptions given here are necessary to compute witness elements for each circuit, as well as the proving and verification keys.

Let  $\mathbb{F}_{r_s}$  be the finite field over which Jubjub is defined, as given in §5.4.8.3 'Jubjub' on p. 66.

A *quadratic constraint program* consists of a set of constraints over variables in  $\mathbb{F}_{r_s}$ , each of the form:

$$(A) \times (B) = (C)$$

where (A), (B), and (C) are linear combinations of variables and constants in  $\mathbb{F}_{r_n}$ .

Here X and  $\cdot$  both represent multiplication in the field  $\mathbb{F}_{r_S}$ , but we use X for multiplications corresponding to gates of the circuit, and  $\cdot$  for multiplications by constants in the terms of a *linear combination*. X should not be confused with X which is defined as cartesian product in §2 'Notation' on p. 9.

# A.2 Elliptic curve background

The circuit makes use of a twisted Edwards curve, Jubjub, and also a Montgomery curve that is birationally equivalent to Jubjub. From here on we omit "twisted" when referring to the Edwards Jubjub curve or coordinates. Following the notation in [BL2017] we use (u, v) for affine coordinates on the Edwards curve, and (x, y) for affine coordinates on the Montgomery curve.

A point P is normally represented by two  $\mathbb{F}_{r_{\mathbb{S}}}$  variables, which we name as  $(P^u, P^v)$  for an affine Edwards point, for instance.

The Montgomery curve has parameters  $A_{\mathbb{M}} = 40962$  and  $B_{\mathbb{M}} = 1$ . We use an affine representation of this curve with the formula:

$$B_{\mathbb{M}} \cdot y^2 = x^3 + A_{\mathbb{M}} \cdot x^2 + x$$

Usually, elliptic curve arithmetic over prime fields is implemented using some form of projective coordinates, in order to reduce the number of expensive inversions required. In the circuit, it turns out that a division can be implemented at the same cost as a multiplication, i.e. one constraint. Therefore it is beneficial to use affine coordinates for both curves.

We define the following types representing affine Edwards and Montgomery coordinates respectively:

$$\begin{split} \text{AffineEdwardsJubjub} &:= (u \circ \mathbb{F}_{r_{\mathbb{S}}}) \times (v \circ \mathbb{F}_{r_{\mathbb{S}}}) : a_{\mathbb{J}} \cdot u^2 + v^2 = 1 + d_{\mathbb{J}} \cdot u^2 \cdot v^2 \\ \text{AffineMontJubjub} &:= (x \circ \mathbb{F}_{r_{\mathbb{S}}}) \times (y \circ \mathbb{F}_{r_{\mathbb{S}}}) : B_{\mathbb{M}} \cdot y^2 = x^3 + A_{\mathbb{M}} \cdot x^2 + x \end{split}$$

We also define a type representing compressed, not necessarily valid, Edwards coordinates:

CompressedEdwardsJubjub :=  $(\tilde{u} : \mathbb{B}) \times (v : \mathbb{F}_{r_{\mathbb{S}}})$ 

See §5.4.8.3 'Jubjub' on p. 66 for how this type is represented as a byte sequence in external encodings.

We use affine Montgomery arithmetic in parts of the circuit because it is more efficient, in terms of the number of constraints, than affine Edwards arithmetic.

An important consideration when using Montgomery arithmetic is that the addition formula is not complete, that is, there are cases where it produces the wrong answer. We must ensure that these cases do not arise.

We will need the theorem below about y-coordinates of points on Montgomery curves.

Fact:  $A_{\mathbb{M}}^2 - 4$  is a nonsquare in  $\mathbb{F}_{r_{\mathbb{I}}}$ .

**Theorem A.2.1.** Let P = (x, y) be a point other than (0, 0) on a Montgomery curve over  $\mathbb{F}_r$  with parameter A, such that  $A^2 - 4$  is a nonsquare in  $\mathbb{F}_r$ . Then  $y \neq 0$ .

*Proof.* Substituting y=0 into the Montgomery curve equation gives  $0=x^3+A\cdot x^2+x=x\cdot (x^2+A\cdot x+1)$ . So either x=0 or  $x^2+A\cdot x+1=0$ . Since  $P\neq (0,0)$ , the case x=0 is excluded. In the other case, complete the square for  $x^2+A\cdot x+1=0$  to give the equivalent  $(2\cdot x+A)^2=A^2-4$ . The left-hand side is a square, so if the right-hand side is a nonsquare, then there are no solutions for x.

## A.3 Circuit Components

Each of the following sections describes how to implement a particular component of the circuit, and counts the number of constraints required. Some components make use of others; the order of presentation is "bottom-up".

It is important for security to ensure that variables intended to be of boolean type are boolean-constrained; and for efficiency that they are boolean-constrained only once. We explicitly state for the boolean inputs and outputs of each component whether they are boolean-constrained by the component, or are assumed to have been boolean-constrained separately.

Affine coordinates for elliptic curve points are assumed to represent points on the relevant curve, unless otherwise specified.

In this section, variables have type  $\mathbb{F}_{r_s}$  unless otherwise specified. In contrast to most of this document, we use zero-based indexing in order to more closely match the implementation.

## A.3.1 Operations on individual bits

#### A.3.1.1 Boolean constraints

A boolean constraint  $b \in \mathbb{B}$  can be implemented as:

$$(1-b) \times (b) = (0)$$

#### A.3.1.2 Conditional equality

The constraint "either a = 0 or b = c" can be implemented as:

$$(a) \times (b-c) = (0)$$

#### A.3.1.3 Selection constraints

A selection constraint (b?x:y) = z, where  $b:\mathbb{B}$  has been boolean-constrained, can be implemented as:

$$(b) \times (y-x) = (y-z)$$

#### A.3.1.4 Nonzero constraints

Since only nonzero elements of  $\mathbb{F}_{r_{\mathbb{S}}}$  have a multiplicative inverse, the assertion  $a \neq 0$  can be implemented by witnessing the inverse,  $a_{\mathsf{inv}} = a^{-1} \pmod{r_{\mathbb{S}}}$ :

$$(a_{inv}) \times (a) = (1)$$

**Non-normative note:** A global optimization allows to use a single inverse computation outside the circuit for any number of nonzero constraints. Suppose that we have n variables (or linear combinations) that are supposed to be nonzero:  $a_{0...n-1}$ . Multiply these together (using n-1 constraints) to give  $a^* = \prod_{i=0}^{n-1} a_i$ ; then, constrain  $a^*$  to be nonzero. This works because the product  $a^*$  is nonzero if and only if all of  $a_{0...n-1}$  are nonzero. However, the **Sapling** circuit does not use this optimization.

#### A.3.1.5 Exclusive-or constraints

An exclusive-or operation  $a \oplus b = c$ , where  $a, b : \mathbb{B}$  are already boolean-constrained, can be implemented in one constraint as:

$$(2 \cdot a) \times (b) = (a + b - c)$$

This automatically boolean-constrains c. Its correctness can be seen by checking the truth table of (a, b).

## A.3.2 Operations on multiple bits

### A.3.2.1 [Un]packing modulo $r_{\mathbb{S}}$

Let  $n: \mathbb{N}^+$  be a constant. The operation of converting a field element,  $a: \mathbb{F}_{r_{\mathbb{S}}}$ , to a sequence of boolean variables  $b_{0...n-1}: \mathbb{B}^{[n]}$  such that  $a = \sum_{i=0}^{n-1} b_i \cdot 2^i \pmod{r_{\mathbb{S}}}$ , is called "unpacking". The inverse operation is called "packing".

In the *quadratic constraint program* these are the same operation (but see the note about canonical representation below). We assume that the variables  $b_{0...n-1}$  are boolean-constrained separately.

We have 
$$a \bmod r_{\mathbb{S}} = \left(\sum_{i=0}^{n-1} b_i \cdot 2^i\right) \bmod r_{\mathbb{S}} = \left(\sum_{i=0}^{n-1} b_i \cdot (2^i \bmod r_{\mathbb{S}})\right) \bmod r_{\mathbb{S}}.$$

This can be implemented in one constraint:

$$\left(\sum_{i=0}^{n-1} b_i \cdot (2^i \bmod r_{\mathbb{S}})\right) \times (1) = (a)$$

#### Notes:

- The bit length n is not limited by the field element size.
- Since the constraint has only a trivial multiplication, it is possible to eliminate it by merging it into the boolean constraint of one of the output bits, expressing that bit as a linear combination of the others and a. However, this optimization requires substitutions that would interfere with the modularity of the circuit implementation (for a saving of only one constraint per unpacking operation), and so we do not use it for the **Sapling** circuit.
- In the case n=255, for  $a<2^{255}-r_{\mathbb{S}}$  there are two possible representations of  $a:\mathbb{F}_{r_{\mathbb{S}}}$  as a sequence of 255 bits, corresponding to I2LEBSP $_{255}(a)$  and I2LEBSP $_{255}(a+r_{\mathbb{S}})$ . This is a potential hazard, but it may or may not be necessary to force use of the canonical representation I2LEBSP $_{255}(a)$ , depending on the context in which the [un]packing operation is used. We therefore do not consider this to be part of the [un]packing operation itself.

#### A.3.2.2 Range check

Let  $n: \mathbb{N}^+$  be a constant, and let  $a = \sum_{i=0}^{n-1} a_i \cdot 2^i : \mathbb{N}$ . Suppose we want to constrain  $a \leq c$  for some *constant*  $c = \sum_{i=0}^{n-1} c_i \cdot 2^i : \mathbb{N}$ .

Without loss of generality we can assume that  $c_{n-1} = 1$ , because if it were not then we would decrease n accordingly.

Note that since a and c are provided in binary representation, their bit length n is not limited by the field element size. We *do not* assume that the bits  $a_{0...n-1}$  are already boolean-constrained.

Define  $\Pi_m = \prod_{i=m}^{n-1} (c_i = 0 \lor a_i = 1)$  for  $m \in \{0 ... n-1\}$ . Notice that for any m < n-1 such that  $c_m = 0$ , we have  $\Pi_m = \Pi_{m+1}$ , and so it is only necessary to allocate separate variables for the  $\Pi_m$  such that m < n-1 and  $c_m = 1$ . Furthermore if  $c_{n-2 ...0}$  has t > 0 trailing 1 bits, then we do not need to allocate variables for  $\Pi_{0 ... t-1}$  because those variables will not be used below.

More explicitly:

Let 
$$\Pi_{n-1} = a_{n-1}$$
.

For i from n-2 down to t,

- if  $c_i = 0$ , then let  $\Pi_i = \Pi_{i+1}$ ;
- if  $c_i$  = 1, then constrain  $\left(\Pi_{i+1}\right) \times \left(a_i\right) = \left(\Pi_i\right)$ .

Then we constrain the  $a_i$  as follows:

For i from n-1 down to 0.

- if  $c_i = 0$ , constrain  $(1 \Pi_{i+1} a_i) \times (a_i) = (0)$ ;
- · if  $c_i$  = 1, boolean-constrain  $a_i$  as in §A.3.1.1 'Boolean constraints' on p. 118.

Note that the constraints corresponding to zero bits of c are in place of boolean constraints on bits of  $a_i$ .

This costs n + k constraints, where k is the number of non-trailing 1 bits in  $c_{n-2...0}$ .

**Theorem A.3.1.** Assume  $c_{0...n-1}:\mathbb{B}^{[n]}$  and  $c_{n-1}=1$ . Define  $A_m:=\sum_{i=m}^{n-1}a_i\cdot 2^i$  and  $C_m:=\sum_{i=m}^{n-1}c_i\cdot 2^i$ . For any  $m\in\{0...n-1\}$ ,  $A_m\leq C_m$  iff the restriction of the above constraint system to  $i\in\{m..n-1\}$  is satisfied. Furthermore the system at least boolean-constrains  $a_{0...n-1}$ .

*Proof.* For  $i \in \{0 ... n-1\}$  such that  $c_i = 1$ , the corresponding  $a_i$  are unconditionally boolean-constrained. This implies that the system constrains  $\Pi_i \in \mathbb{B}$  for all  $i \in \{0 ... n-1\}$ . For  $i \in \{0 ... n-1\}$  such that  $c_i = 0$ , the constraint  $\left(1 - \Pi_{i+1} - a_i\right) \times \left(a_i\right) = \left(0\right)$  constrains  $a_i$  to be 0 if  $\Pi_{i+1} = 1$ , otherwise it constrains  $a_i \in \mathbb{B}$ . So all of  $a_{0 ... n-1}$  are at least boolean-constrained.

To prove the rest of the theorem we proceed by induction on decreasing m, i.e. taking successively longer prefixes of the big-endian binary representations of a and c.

Base case m = n - 1: since  $c_{n-1} = 1$ , the constraint system has just one boolean constraint on  $a_{n-1}$ , which fulfils the theorem since  $A_{n-1} \le C_{n-1}$  is always satisfied.

Inductive case m < n - 1:

- If  $A_{m+1} > C_{m+1}$ , then by the inductive hypothesis the constraint system must fail, which fulfils the theorem regardless of the value of  $a_m$ .
- · If  $A_{m+1} \leq C_{m+1}$ , then by the inductive hypothesis the constraint system restricted to  $i \in \{m+1..n-1\}$  succeeds. We have  $\Pi_{m+1} = \prod_{i=m+1}^{n-1} (c_i = 0 \vee a_i = 1) = \prod_{i=m+1}^{n-1} (a_i \geq c_i)$ .
  - If  $A_{m+1}=C_{m+1}$ , then  $a_i=c_i$  for all  $i\in\{m+1..n-1\}$  and so  $\Pi_{m+1}=1$ . Also  $A_m\leq C_m$  iff  $a_m\leq c_m$ . When  $c_m=1$ , only a boolean constraint is added for  $a_m$  which fulfils the theorem. When  $c_m=0$ ,  $a_m$  is constrained to be 0 which fulfils the theorem.
  - If  $A_{m+1} < C_{m+1}$ , then it cannot be the case that  $a_i \ge c_i$  for all  $i \in \{m+1..n-1\}$ , so  $\Pi_{m+1} = 0$ . This implies that the constraint on  $a_m$  is always equivalent to a boolean constraint, which fulfils the theorem because  $A_m \le C_m$  must be true regardless of the value of  $a_m$ .

This covers all cases.

Correctness of the full constraint system follows by taking m = 0 in the above theorem.

The algorithm in §A.3.3.2 'Edwards [de]compression and validation' on p. 121 uses range checks with  $c = r_{\mathbb{S}} - 1$  to validate compressed Edwards points. In that case n = 255 and k = 132, so the cost of each such range check is 387 constraints.

Non-normative note: It is possible to optimize the computation of  $\Pi_{t \dots n-2}$  further. Notice that  $\Pi_m$  is only used when m is the index of the last bit of a run of 1 bits in c. So for each run of N 1 bits, it is sufficient to compute an N-ary AND:  $R = \prod_{i=0}^{N-1} X_i$ . This can be computed in 3 constraints for any  $N < r_{\mathbb{S}}$ ; boolean-constrain the output R, and then add constraints

$$\left(N - \sum\nolimits_{i=0}^{N-1} X_i\right) \times (\text{inv}) = \left(1 - R\right) \text{ to enforce that } \sum\nolimits_{i=0}^{N-1} X_i \neq N \text{ when } R = 0;$$
 
$$\left(N - \sum\nolimits_{i=0}^{N-1} X_i\right) \times \left(R\right) = \left(0\right) \qquad \text{to enforce that } \sum\nolimits_{i=0}^{N-1} X_i = N \text{ when } R = 1.$$

where inv is witnessed as  $\left(N - \sum_{i=0}^{N-1} X_i\right)^{-1}$  if R = 0 or is unconstrained otherwise.

In fact the last constraint is not needed in this context because it is sufficient to compute an upper bound on each  $\Pi_m$  (i.e. it does not benefit a malicious prover to witness R=1 when the result of the AND should be 0). So the cost of computing  $\Pi$  variables for an arbitrarily long run of 1 bits can be reduced to 2 constraints. For example, for  $c=r_{\mathbb{S}}-1$  the overall cost would be reduced to 255+68=323 constraints.

These optimizations are not used in Sapling.

## A.3.3 Elliptic curve operations

#### A.3.3.1 Checking that affine Edwards coordinates are on the curve

To check that (u, v) is a point on the Edwards curve, use:

$$(u) \times (u) = (uu)$$

$$(v) \times (v) = (vv)$$

$$(d_{\mathbb{J}} \cdot uu) \times (vv) = (a_{\mathbb{J}} \cdot uu + vv - 1)$$

## A.3.3.2 Edwards [de]compression and validation

Define DecompressValidate : CompressedEdwardsJubjub → AffineEdwardsJubjub as follows:

DecompressValidate( $\tilde{u}, v$ ):

// Prover supplies the u-coordinate.

Let  $u: \mathbb{F}_{r_{\varsigma}}$ .

// §A.3.3.1 'Checking that affine Edwards coordinates are on the curve' on p.121.

Check that (u, v) is a point on the Edwards curve.

// A.3.2.1 '[Un]packing modulo  $r_S$ ' on p. 119.

Unpack 
$$u$$
 to  $\sum_{i=0}^{254} u_i \cdot 2^i$ , equating  $\tilde{u}$  with  $u_0$ .

// §A.3.2.2 'Range check' on p. 119.

Check that 
$$\sum_{i=0}^{254} u_i \cdot 2^i \leq r_{\mathbb{S}} - 1$$
.

Return (u, v).

This costs 3 constraints for the curve equation check, 1 constraint for the unpacking, and 387 constraints for the range check (as computed in §A.3.2.2  $Range\ check$ ' on p. 119) for a total of 391 constraints. The cost of the range check includes boolean-constraining  $u_{0...254}$ .

The same quadratic constraint program is used for compression and decompression.

**Note:** The point-on-curve check could be omitted if (u, v) were already known to be on the curve. However, the **Sapling** circuit never omits it **TODO**: CHECK; this provides a redundant consistency check on the elliptic curve arithmetic in some cases.

### A.3.3.3 Edwards ↔ Montgomery conversion

Define EdwardsToMont : AffineEdwardsJubjub  $\rightarrow$  AffineMontJubjub as follows:

$$\mathsf{EdwardsToMont}(u,v) = \left(\frac{1+v}{1-v}, \sqrt{-40964} \cdot \frac{1+v}{(1-v) \cdot u}\right) \qquad \qquad [1-v \neq 0 \ \text{and} \ u \neq 0]$$

 $Define\ MontToEdwards: Affine\ MontJubjub \rightarrow Affine\ Edwards\ Jubjub\ as\ follows:$ 

MontToEdwards
$$(x, y) = \left(\sqrt{-40964} \cdot \frac{x}{y}, \frac{x-1}{x+1}\right)$$
  $[x+1 \neq 0 \text{ and } y \neq 0]$ 

Either of these conversions can be implemented by the same quadratic constraint program:

$$(y) \times (u) = (\sqrt{-40964} \cdot x)$$
$$(x+1) \times (v) = (x-1)$$

The above conversions should only be used if the input is guaranteed to be a point on the relevant curve. If that is the case, the theorems below enumerate all exceptional inputs that may violate the side-conditions.

**Theorem A.3.2.** Let (u, v) be an affine point on a complete twisted Edwards curve. Then the only points with  $u \neq 0$  or  $v \neq 0$  are  $(0, 1) = \mathcal{O}_{\mathbb{J}}$ ; (0, -1) of order 2; and  $(\pm 1/\sqrt{a_{\mathbb{J}}}, 0)$  of order 4.

*Proof.* Straightforward from the curve equation. (The fact that the points  $(\pm 1/\sqrt{a_{\mathbb{J}}}, 0)$  are of order 4 can be inferred by applying the doubling formula.)

**Theorem A.3.3.** Let (x, y) be an affine point on a Montgomery curve over  $\mathbb{F}_r$  with parameter A such that  $A^2 - 4$  is a nonsquare in  $\mathbb{F}_r$ , that is birationally equivalent to a complete twisted Edwards curve. Then  $x + 1 \neq 0$ , and the only point (x, y) with y = 0 is (0, 0) of order 2.

*Proof.* That the only point with y = 0 is (0,0) is proven by Theorem A.2.1 on p. 117.

If x+1=0, then subtituting x=-1 into the Montgomery curve equation gives  $B_{\mathbb{M}} \cdot y^2 = x^3 + A_{\mathbb{M}} \cdot x^2 + x = A_{\mathbb{M}} - 2$ . So in that case  $y^2 = (A_{\mathbb{M}} - 2)/B_{\mathbb{M}}$ . The right-hand-side is equal to the parameter d of a particular complete twisted Edwards curve birationally equivalent to the Montgomery curve (see [BL2017, section 4.3.5]). For all complete twisted Edwards curves, d is nonsquare, so this equation has no solutions for y, hence  $x+1\neq 0$ .

(The complete twisted Edwards curve referred to in the proof is an isomorphic y-coordinate rescaling of the Jubjub curve.)

#### A.3.3.4 Affine-Montgomery arithmetic

The incomplete affine-Montgomery addition formulae given in [BL2017, section 4.3.2] are:

$$\begin{split} x_3 &= B_{\mathbb{M}} \cdot \lambda^2 - A_{\mathbb{M}} - x_1 - x_2 \\ y_3 &= (x_1 - x_3) \cdot \lambda - y_1 \\ \text{where } \lambda &= \begin{cases} \frac{3 \cdot x_1^2 + 2 \cdot A_{\mathbb{M}} \cdot x_1 + 1}{2 \cdot B_{\mathbb{M}} \cdot y_1}, & \text{if } x_1 = x_2 \\ \frac{y_2 - y_1}{x_2 - x_1}, & \text{otherwise.} \end{cases} \end{split}$$

The following theorem helps to determine when these incomplete addition formulae can be safely used:

**Theorem A.3.4.** Let Q be a point of odd-prime order s on a Montgomery curve  $E_{A_{\mathbb{M}},B_{\mathbb{M}}}/\mathbb{F}_{r_{\mathbb{S}}}$ . Let  $k_{1...2}$  be integers in  $\left\{-\frac{s-1}{2}...\frac{s-1}{2}\right\}\setminus\{0\}$ . Let  $P_i=[k_i]Q=(x_i,y_i)$  for  $i\in\{1...2\}$ , with  $k_1\neq\pm k_2$ . Then the non-unified addition constraints

$$(x_2 - x_1) \times (\lambda) = (y_2 - y_1)$$
  

$$(B_{\mathbb{M}} \cdot \lambda) \times (\lambda) = (A_{\mathbb{M}} + x_1 + x_2 + x_3)$$
  

$$(x_1 - x_3) \times (\lambda) = (y_3 + y_1)$$

implement the affine-Montgomery addition  $P_1$  +  $P_2$  =  $(x_3, y_3)$  for all such  $P_{1...2}$ .

*Proof.* The given constraints are equivalent to the Montgomery addition formulae under the side condition  $x_1 \neq x_2$ . (Note that neither  $P_i$  can be the zero point since  $k_{1...2} \neq 0 \pmod{s}$ .) Assume for a contradiction that  $x_1 = x_2$ . For any  $P_1 = [k_1] Q$ , there can be only one other point  $-P_1$  with the same x-coordinate. (This follows from the fact that the curve equation determines  $\pm y$  as a function of x.) But  $-P_1 = [-1] [k_1] Q = [-k_1] Q$ . Since  $k : \{-\frac{s-1}{2} ... \frac{s-1}{2}\} \mapsto [k] Q : \mathbb{J}$  is injective and  $k_{1...2}$  are in  $\{-\frac{s-1}{2} ... \frac{s-1}{2}\}$ , then  $k_2 = \pm k_1$  (contradiction).

The conditions of this theorem are called the *distinct-x criterion*.

In particular, if  $k_{1...2}$  are integers in  $\{1...\frac{s-1}{2}\}$  then it is sufficient to require  $k_1 \neq k_2$ , since that implies  $k_1 \neq \pm k_2$ .

Affine-Montgomery doubling can be implemented as:

$$(x) \times (x) = (xx)$$

$$(2 \cdot B_{\mathbb{M}} \cdot y) \times (\lambda) = (3 \cdot xx + 2 \cdot A_{\mathbb{M}} \cdot x + 1)$$

$$(B_{\mathbb{M}} \cdot \lambda) \times (\lambda) = (A_{\mathbb{M}} + 2 \cdot x + x_3)$$

$$(x - x_3) \times (\lambda) = (y_3 + y)$$

This doubling formula is valid when  $y \neq 0$ , which is the case when (x, y) is not the point (0, 0) (the only point of order 2), as proven in Theorem A.2.1 on p.117.

#### A.3.3.5 Affine-Edwards arithmetic

Formulae for affine-Edwards addition are given in [BBJLP2008, section 6]. With a change of variable names to match our convention, the formulae for  $(u_1, v_1) + (u_2, v_2) = (u_3, v_3)$  are:

$$\begin{split} u_3 &= \frac{u_1 \cdot v_2 + v_1 \cdot u_2}{1 + d_{\mathbb{J}} \cdot u_1 \cdot u_2 \cdot v_1 \cdot v_2} \\ v_3 &= \frac{v_1 \cdot v_2 - a_{\mathbb{J}} \cdot u_1 \cdot u_2}{1 - d_{\mathbb{J}} \cdot u_1 \cdot u_2 \cdot v_1 \cdot v_2} \end{split}$$

We use an optimized implementation found by Daira Hopwood making use of an observation by Bernstein and Lange in [BL2017, last paragraph of section 4.5.2]:

$$(u_{1} + v_{1}) \times (v_{2} - a_{J} \cdot u_{2}) = (T)$$

$$(u_{1}) \times (v_{2}) = (A)$$

$$(v_{1}) \times (u_{2}) = (B)$$

$$(d_{J} \cdot A) \times (B) = (C)$$

$$(1 + C) \times (u_{3}) = (A + B)$$

$$(1 - C) \times (v_{3}) = (T - A + a_{J} \cdot B)$$

The correctness of this implementation can be seen by expanding  $T - A + a_{\mathbb{I}} \cdot B$ :

$$\begin{split} T - A + a_{\mathbb{J}} \cdot B &= (u_1 + v_1) \cdot (v_2 - a_{\mathbb{J}} \cdot u_2) - u_1 \cdot v_2 + a_{\mathbb{J}} \cdot v_1 \cdot u_2 \\ &= v_1 \cdot v_2 - a_{\mathbb{J}} \cdot u_1 \cdot u_2 + u_1 \cdot v_2 - a_{\mathbb{J}} \cdot v_1 \cdot u_2 - u_1 \cdot v_2 + a_{\mathbb{J}} \cdot v_1 \cdot u_2 \\ &= v_1 \cdot v_2 - a_{\mathbb{J}} \cdot u_1 \cdot u_2 \end{split}$$

The above addition formulae are "unified", that is, they can also be used for doubling. Affine-Edwards doubling [2]  $(u, v) = (u_3, v_3)$  can also be implemented slightly more efficiently as:

$$\begin{aligned} & \left(u+v\right) \, \times \, \left(v-a_{\mathbb{J}} \cdot u\right) \, = \, \left(T\right) \\ & \left(u\right) \, \times \, \left(v\right) \, = \, \left(A\right) \\ & \left(d_{\mathbb{J}} \cdot A\right) \, \times \, \left(A\right) \, = \, \left(C\right) \\ & \left(1+C\right) \, \times \, \left(u_{3}\right) \, = \, \left(2 \cdot A\right) \\ & \left(1-C\right) \, \times \, \left(v_{3}\right) \, = \, \left(T+\left(a_{\mathbb{J}}-1\right) \cdot A\right) \end{aligned}$$

This implementation is obtained by specializing the addition formulae to  $(u, v) = (u_1, v_1) = (u_2, v_2)$  and observing that  $u \cdot v = A = B$ .

#### A.3.3.6 Affine-Edwards nonsmall-order check

In order to avoid small-subgroup attacks, we check that certain points used in the circuit are not of small order. In practice the **Sapling** circuit uses this in combination with a check that the coordinates are on the curve (§A.3.3.1 'Checking that affine Edwards coordinates are on the curve' on p. 121), so we combine the two operations.

The *Jubjub curve* has a large prime-order subgroup with a cofactor of 8. To check for a point P of order 8 or less, we double twice (as in A.3.3.5 'Affine-Edwards arithmetic' on p. 123) and check that the resulting u-coordinate is not 0 (as in A.3.1.4 'Nonzero constraints' on p. 118).

On a twisted Edwards curve, only the zero point  $\mathcal{O}_{\mathbb{J}}$ , and the unique point of order 2 at (0,-1) have zero u-coordinate. So this u-coordinate check rejects both  $\mathcal{O}_{\mathbb{J}}$  and the point of order 2, and no other points.

The total cost, including the curve check, is  $3 + 2 \cdot 5 + 1 = 14$  constraints.

**Note:** This *does not* ensure that the point is in the prime-order subgroup.

**Non-normative note:** It is possible to reduce the cost to 8 constraints by merging the first doubling with the curve point check, and then optimizing the second doubling based on the fact that we only need to check whether the resulting u-coordinate is zero. However, the **Sapling** circuit does not use these optimizations.

#### A.3.3.7 Fixed-base affine-Edwards scalar multiplication

If the base point B is fixed for a given scalar multiplication [k] B, we can fully precompute window tables for each window position.

It is most efficient to use 3-bit fixed windows. Since the length of  $r_{\mathbb{J}}$  is 252 bits, we need 84 windows.

Express 
$$k$$
 in base 8, i.e.  $k = \sum_{i=0}^{83} k_i \cdot 8^i$ .

Then 
$$[k] B = \sum_{i=0}^{83} w_{(B,\,i,\,k_i)}$$
, where  $w_{(B,\,i,\,k_i)} = [k_i \!\cdot\! 8^i] \, B.$ 

We precompute all of  $w_{(B, i, s)}$  for  $i \in \{0...83\}, s \in \{0...7\}$ .

To look up a given window entry  $w_{(B,i,s)} = (u_s, v_s)$ , where  $s = 4 \cdot s_2 + 2 \cdot s_1 + s_0$ , we use:

$$(s_{1}) \times (s_{0}) = (s_{\&})$$

$$(s_{2}) \times (-u_{0} \cdot s_{\&} + u_{0} \cdot s_{1} + u_{0} \cdot s_{0} - u_{0} + u_{1} \cdot s_{\&} - u_{1} \cdot s_{0} + u_{2} \cdot s_{\&} - u_{2} \cdot s_{1} - u_{3} \cdot s_{\&}$$

$$+ u_{4} \cdot s_{\&} - u_{4} \cdot s_{1} - u_{4} \cdot s_{0} + u_{4} - u_{5} \cdot s_{\&} + u_{5} \cdot s_{0} - u_{6} \cdot s_{\&} + u_{6} \cdot s_{1} + u_{7} \cdot s_{\&}) =$$

$$(u_{s} - u_{0} \cdot s_{\&} + u_{0} \cdot s_{1} + u_{0} \cdot s_{0} - u_{0} + u_{1} \cdot s_{\&} - u_{1} \cdot s_{0} + u_{2} \cdot s_{\&} - u_{2} \cdot s_{1} - u_{3} \cdot s_{\&})$$

$$(s_{2}) \times (-v_{0} \cdot s_{\&} + v_{0} \cdot s_{1} + v_{0} \cdot s_{0} - v_{0} + v_{1} \cdot s_{\&} - v_{1} \cdot s_{0} + v_{2} \cdot s_{\&} - v_{2} \cdot s_{1} - v_{3} \cdot s_{\&}$$

$$+ v_{4} \cdot s_{e} - v_{4} \cdot s_{1} - v_{4} \cdot s_{0} + v_{4} - v_{5} \cdot s_{\&} + v_{5} \cdot s_{0} - v_{6} \cdot s_{\&} + v_{6} \cdot s_{1} + v_{7} \cdot s_{\&}) =$$

$$(v_{s} - v_{0} \cdot s_{\&} + v_{0} \cdot s_{1} + v_{0} \cdot s_{0} - v_{0} + v_{1} \cdot s_{\&} - v_{1} \cdot s_{0} + v_{2} \cdot s_{\&} - v_{2} \cdot s_{1} - v_{3} \cdot s_{\&})$$

This costs 3 constraints for each of 84 window lookups, plus 6 constraints for each of 83 Edwards additions (as in §A.3.3.5 'Affine-Edwards arithmetic' on p. 123), for a total of 750 constraints.

**Non-normative note:** It would be more efficient to use arithmetic on the Montgomery curve, as in §A.3.3.9 *'Pedersen hash'* on p. 126. However since there are only three instances of fixed-base scalar multiplication in the *Spend circuit* and two in the *Output circuit* 5, the additional complexity was not considered justified for **Sapling**.

### A.3.3.8 Variable-base affine-Edwards scalar multiplication

When the base point *B* is not fixed, the method in the preceding section cannot be used. Instead we use a naïve double-and-add method.

```
Given k = \sum_{i=0}^{250} k_i \cdot 2^i, we calculate R = [k] B using: 

// Base_i = [2^i] B
let Base_0 = B
let \operatorname{Acc}_0^u = k_0 ? \operatorname{Base}_0^u : 0
let \operatorname{Acc}_0^v = k_0 ? \operatorname{Base}_0^v : 1
for i from 1 up to 250:
let \operatorname{Base}_i = [2] \operatorname{Base}_{i-1}
// select \operatorname{Base}_i or \mathcal{O}_{\mathbb{J}} depending on the bit k_i
let \operatorname{Addend}_i^u = k_i ? \operatorname{Base}_i^u : 0
let \operatorname{Addend}_i^v = k_i ? \operatorname{Base}_i^v : 1
let \operatorname{Acc}_i = \operatorname{Acc}_{i-1} + \operatorname{Addend}_i
let R = \operatorname{Acc}_{250}.
```

This costs 5 constraints for each of 250 Edwards doublings, 6 constraints for each of 250 Edwards additions, and 2 constraints for each of 251 point selections, for a total of 3252 constraints.

**Non-normative note:** It would be more efficient to use 2-bit fixed windows, and/or to use arithmetic on the Montgomery curve in a similar way to §A.3.3.9 '*Pedersen hash*' on p.126. However since there are only two instances of variable-base scalar multiplication in the *Spend circuit* and one in the *Output circuit*, the additional complexity was not considered justified for **Sapling**.

<sup>&</sup>lt;sup>5</sup> A Pedersen commitment uses fixed-base scalar multiplication as a subcomponent.

#### A.3.3.9 Pedersen hash

The specification of the *Pedersen hashes* used in **Sapling** is given in §5.4.1.7 '*Pedersen Hash Function*' on p. 53. It is based on the scheme from [CvHP1991, section 5.2] –for which a tighter security reduction to the Discrete Logarithm Problem was given in [BGG1995] – but tailored to allow several optimizations in the circuit implementation.

Pedersen hashes are the single most commonly used primitive in the **Sapling** circuits. MerkleDepth Pedersen hash instances are used in the Spend circuit to check a Merkle path to the note commitment of the note being spent. We also reuse the Pedersen hash implementation to construct the commitment scheme NoteCommit Sapling.

This motivates considerable attention to optimizing this circuit implementation of this primitive, even at the cost of complexity.

First, we use a windowed scalar multiplication algorithm with signed digits. Each 3-bit message chunk corresponds to a window; the chunk is encoded as an integer from the set Digits =  $\{-4..4\} \setminus \{0\}$ . This allows a more efficient lookup of the window entry for each chunk than if the set  $\{1..8\}$  had been used, because a point can be conditionally negated using only a single constraint.

Next, we optimize the cost of point addition by allowing as many additions as possible to be performed on the Montgomery curve. An incomplete Montgomery addition costs 3 constraints, in comparison with an Edwards addition which costs 6 constraints.

However, we cannot do all additions on the Montgomery curve because the Montgomery addition is incomplete. In order to be able to prove that exceptional cases do not occur, we need to ensure that the *distinct-x criterion* from §A.3.3.4 'Affine-Montgomery arithmetic' on p. 122 is met. This requires splitting the input into segments (each using an independent generator), calculating an intermediate result for each segment, and then converting to the Edwards curve and summing the intermediate results using Edwards addition. Abstracting away the changes of curve, this calculation can be written as:

$$\mathsf{PedersenHashToPoint}(D,M) = \sum_{j=1}^N \left[ \langle M_j \rangle \right] \mathcal{I}_j^D$$

where  $\langle {\bf \cdot} \rangle$  and  ${\mathcal I}_j^D$  are defined as in §5.4.1.7 'Pedersen Hash Function' on p. 53.

We have to prove that:

- · the Montgomery-to-Edwards conversions can be implemented without exceptional cases;
- the distinct-x criterion is met for all Montgomery additions within a segment.

The proof of Theorem 5.4.1 on p. 54 showed that all indices of addition inputs are in the range  $\left\{-\frac{r_{\mathbb{J}}-1}{2}\dots\frac{r_{\mathbb{J}}-1}{2}\right\}\setminus\{0\}$ .

Because the  $\mathcal{I}_{j}^{D}$  (which are outputs of GroupHash $^{\mathbb{J}^{(r)*}}$ ) are all of prime order, and  $\langle M_{j} \rangle \neq 0 \pmod{r_{\mathbb{J}}}$ , it is guaranteed that all of the terms  $[\langle M_{j} \rangle] \mathcal{I}_{j}^{D}$  to be converted to Edwards form are of prime order. From Theorem A.3.3 on p. 122, we can infer that the conversions will not encounter exceptional cases.

We also need to show that the indices of addition inputs are all distinct disregarding sign.

**Theorem A.3.5.** For all disjoint nonempty subsets S and S' of  $\{1...c\}$ , all  $m \in \mathbb{B}^{[3][c]}$ , and all  $\Theta \in \{-1,1\}$ :

$$\sum_{j \in S} \mathsf{enc}(m_j) \cdot 2^{4 \cdot (j-1)} \neq \Theta \cdot \sum_{j' \in S'} \mathsf{enc}(m_{j'}) \cdot 2^{4 \cdot (j'-1)}.$$

*Proof.* Suppose for a contradiction that S, S', m,  $\Theta$  is a counterexample. Taking the multiplication by  $\Theta$  on the right hand side inside the summation, we have:

$$\sum_{j \in S} \mathsf{enc}(m_j) \cdot 2^{4 \cdot (j-1)} = \sum_{j' \in S'} \Theta \cdot \mathsf{enc}(m_{j'}) \cdot 2^{4 \cdot (j'-1)}.$$

Define  $\operatorname{enc}' : \{-1,1\} \times \mathbb{B}^{[3]} \to \{0...8\} \setminus \{4\} \text{ as } \operatorname{enc}'_{\theta}(m_i) := 4 + \theta \cdot \operatorname{enc}(m_i).$ 

Let  $\Delta = 4 \cdot \sum_{i=1}^{c} 2^{4 \cdot (i-1)}$  as in the proof of Theorem 5.4.1 on p. 54. By adding  $\Delta$  to both sides, we get

$$\sum_{j \in S} \mathsf{enc}_1'(m_j) \cdot 2^{4 \cdot (j-1)} + \sum_{j \in \{1 \dots c\} \backslash S} 4 \cdot 2^{4 \cdot (j-1)} = \sum_{j' \in S'} \mathsf{enc}_{\Theta}'(m_{j'}) \cdot 2^{4 \cdot (j'-1)} + \sum_{j' \in \{1 \dots c\} \backslash S'} 4 \cdot 2^{4 \cdot (j'-1)}$$

where all of the  $\operatorname{enc}_1'(m_j)$  and  $\operatorname{enc}_{\Theta}'(m_{j'})$  are in  $\{0...8\} \setminus \{4\}$ .

Each term on the left and on the right affects the single hex digit indexed by j and j' respectively. Since S and S' are disjoint subsets of  $\{1 ... c\}$  and S is nonempty,  $S \cap (\{1 ... c\} \setminus S')$  is nonempty. Therefore the left hand side has at least one hex digit not equal to 4 such that the corresponding right hand side digit is 4; contradiction.

This implies that the terms in the Montgomery addition –as well as any intermediate results formed from adding a distinct subset of terms– have distinct indices disregarding sign, hence distinct x-coordinates by Theorem A.3.4 on p. 123. (We make no assumption about the order of additions.)

#### TODO: Describe the lookup subcircuit.

When these hashes are used in the circuit, the first 6 bits of the input are fixed. For example, in the Merkle tree hashes they represent the layer number. This would allow a precomputation for the first two windows, but that optimization is not done in **Sapling**.

The cost of a Pedersen hash over  $\ell$  bits (where  $\ell$  includes the fixed bits) is ... constraints. In particular, for the Merkle tree hashes  $\ell = 516$ , so the cost is ... constraints.

### A.3.3.10 Mixing Pedersen hash

A mixing *Pedersen hash* is used to compute  $\rho$  from cm and pos in §4.14 'Note Commitments and Nullifiers' on p. 39. It takes as input a *Pedersen commitment P*, and hashes it with another input x.

Let  $\mathcal{J}$  be as defined in §5.4.1.8 'Mixing Pedersen Hash Function' on p. 54.

We define MixingPedersenHash :  $\{0 ... r_{\mathbb{I}} - 1\} \times \mathbb{J} \to \mathbb{J}$  by:

 $\mathsf{MixingPedersenHash}(P, x) := P + [x] \, \mathcal{J}.$ 

This costs TODO: ... for the scalar multiplication, and 6 constraints for the Edwards addition, for a total of TODO: ... constraints.

## A.3.4 Merkle path check

Checking a Merkle authentication path, as described in §4.8 'Merkle path validity' on p. 34, requires to:

- boolean-constrain the path bit specifying whether the previous node is a left or right child;
- · conditionally swap the previous-layer and sibling hashes (as  $\mathbb{F}_r$  elements) depending on the path bit;
- unpack the previous-layer and sibling hashes to 255-bit sequences;
- · compute the Merkle hash.

The unpacking need not be canonical in the sense discussed in §A.3.2.1 '[Un]packing modulo  $r_{\rm S}$ ' on p. 119; that is, it is **not** necessary to ensure that the previous-layer or sibling bit-sequence inputs represent integers in the range  $\{0...r_{\rm S}-1\}$ . Since the root of the Merkle tree is calculated outside the circuit using the canonical representations, and since the *Pedersen hashes* are collision-resistant on arbitrary bit-sequence inputs, an attempt by an adversarial prover to use a non-canonical input would result in the wrong root being calculated, and the overall path check would fail.

Note that the leaf node input of the authentication path is given as a bit sequence, not as a field element.

For each layer, the cost is  $1 + 2 \cdot 255$  boolean constraints, 2 constraints for the conditional swap (implemented as two selection constraints), and todo... for the Merkle hash, for a total of TODO: ... constraints.

**Non-normative note:** The conditional swap  $(a_0, a_1) \mapsto (c_0, c_1)$  could be implemented in only one constraint by substituting  $c_1 = a_0 + a_1 - c_0$  into the uses of  $c_1$ . The **Sapling** circuit does not use this optimization.

#### A.3.5 Windowed Pedersen Commitment

We construct windowed Pedersen commitments by reusing the Pedersen hash implementation, and adding a randomized point:

 $\mathsf{WindowedPedersenCommit}_r(s) = \mathsf{PedersenHashToPoint}\big( \texttt{"Zcash\_PH"}, s \big) + [r] \, \mathsf{FindGroupHash}^{\mathbb{J}^{(r)*}}\big( \texttt{"Zcash\_PH"}, \texttt{"r"} \big) + [r] \, \mathsf{FindGroupHash}^{\mathbb{J}^{(r)*}}\big( \mathsf{"Zcash\_PH"}, \mathsf{"r"} \big) + [r] \, \mathsf{FindGroupHash}^{\mathbb{J}^{(r)*}}\big( \mathsf{"Zcash\_PH$ 

This can be implemented in:

- $\cdot \dots \cdot \ell + \dots$  constraints for the Pedersen hash on  $\ell = \text{length}(s)$  bits (again assuming that the first 6 bits are fixed);
- · 750 constraints for the fixed-base scalar multiplication;
- · 6 constraints for the final Edwards addition

for a total of ...  $\cdot \ell + 756$  constraints.

## A.3.6 Homomorphic Pedersen Commitment

The windowed Pedersen commitments defined in the preceding section are highly efficient, but they do not support the homomorphic property we need when instantiating ValueCommit.

In order to support this property, we also define homomorphic Pedersen commitments as follows:

$$\mathsf{HomomorphicPedersenCommit}_{\mathsf{rcv}}(D, \mathsf{v}) = [\mathsf{v}] \, \mathsf{FindGroupHash}^{\mathbb{J}^{(r)*}} \big(D, \text{``v''}\big) + [\mathsf{rcv}] \, \mathsf{FindGroupHash}^{\mathbb{J}^{(r)*}} \big(D, \text{``r''}\big)$$

In the case that we need for ValueCommit, v has 64 bits <sup>6</sup>. This can be straightforwardly implemented in ... constraints.

## A.3.7 BLAKE2s hashes

BLAKE2s is defined in [ANWW2013]. Its main subcomponent is a "G function", defined as follows:

$$G: \{0..9\} \times \{0..2^{32} - 1\}^{[4]} \to \{0..2^{32} - 1\}^{[4]}$$

$$G(a, b, c, d, x, y) = (a'', b'', c'', d'') \text{ where}$$

$$a' = (a + b + x) \mod 2^{32}$$

$$d' = (d \oplus a') \gg 16$$

$$c' = (c + d') \mod 2^{32}$$

$$b' = (b \oplus c') \gg 12$$

$$a'' = (a' + b' + y) \mod 2^{32}$$

$$d'' = (d' \oplus a'') \gg 8$$

$$c'' = (c' + d'') \mod 2^{32}$$

$$b'' = (b' \oplus c'') \gg 7$$

<sup>&</sup>lt;sup>6</sup> It would be sufficient to use 51 bits, which accomodates the range {0..MAX\_MONEY}, but the Sapling circuit uses 64.

The following table is used to determine which message words the x and y arguments to G are selected from:

```
\begin{split} &\sigma_0 = [ \ 0, \ 1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7, \ 8, \ 9, \ 10, \ 11, \ 12, \ 13, \ 14, \ 15 \, ] \\ &\sigma_1 = [ \ 14, \ 10, \ 4, \ 8, \ 9, \ 15, \ 13, \ 6, \ 1, \ 12, \ 0, \ 2, \ 11, \ 7, \ 5, \ 3 \, ] \\ &\sigma_2 = [ \ 11, \ 8, \ 12, \ 0, \ 5, \ 2, \ 15, \ 13, \ 10, \ 14, \ 3, \ 6, \ 7, \ 1, \ 9, \ 4 \, ] \\ &\sigma_3 = [ \ 7, \ 9, \ 3, \ 1, \ 13, \ 12, \ 11, \ 14, \ 2, \ 6, \ 5, \ 10, \ 4, \ 0, \ 15, \ 8 \, ] \\ &\sigma_4 = [ \ 9, \ 0, \ 5, \ 7, \ 2, \ 4, \ 10, \ 15, \ 14, \ 1, \ 11, \ 12, \ 6, \ 8, \ 3, \ 13 \, ] \\ &\sigma_5 = [ \ 2, \ 12, \ 6, \ 10, \ 0, \ 11, \ 8, \ 3, \ 4, \ 13, \ 7, \ 5, \ 15, \ 14, \ 1, \ 9 \, ] \\ &\sigma_6 = [ \ 12, \ 5, \ 1, \ 15, \ 14, \ 13, \ 4, \ 10, \ 0, \ 7, \ 6, \ 3, \ 9, \ 2, \ 8, \ 11 \, ] \\ &\sigma_7 = [ \ 13, \ 11, \ 7, \ 14, \ 12, \ 1, \ 3, \ 9, \ 5, \ 0, \ 15, \ 4, \ 8, \ 6, \ 2, \ 10 \, ] \\ &\sigma_8 = [ \ 6, \ 15, \ 14, \ 9, \ 11, \ 3, \ 0, \ 8, \ 12, \ 2, \ 13, \ 7, \ 1, \ 4, \ 10, \ 5 \, ] \\ &\sigma_9 = [ \ 10, \ 2, \ 8, \ 4, \ 7, \ 6, \ 1, \ 5, \ 15, \ 11, \ 9, \ 14, \ 3, \ 12, \ 13, \ 0 \, ] \end{aligned}
```

The Initialization Vector is defined as:

```
 \begin{tabular}{l} {\sf IV:} & \{0 \dots 2^{32}-1\}^{[8]} := [\ \tt 0x6A09E667,\ \tt 0xBB67AE85,\ \tt 0x3C6EF372,\ \tt 0xA54FF53A \\ & \tt 0x510E527F,\ \tt 0x9B05688C,\ \tt 0x1F83D9AB,\ \tt 0x5BE0CD19\ ] \\ \end{tabular}
```

The full hash function applied to an 8-byte personalization string and a single 64-byte block, in sequential mode with 32-byte output, can be expressed as follows.

```
Define BLAKE2s-256 : (p : \mathbb{B}^{\mathbb{Y}^{[8]}}) \times (x : \mathbb{B}^{\mathbb{Y}^{[64]}}) \to \mathbb{B}^{\mathbb{Y}^{[32]}} as:
      let PB : \mathbb{B}^{\mathbb{Y}^{[32]}} = [32, 0, 1, 1] || [0 \times 00]^{20} || p
      let [t_0, t_1, f_0, f_1]: \{0...2^{32} - 1\}^{[4]} = [0, 0, 0, 0 \times FFFFFFFF, 0]
      let h:\{0\mathinner{\ldotp\ldotp} 2^{32}-1\}^{[8]} = [ \mathsf{LEOS2IP}_{32}(\mathsf{PB}_{4\cdot i\mathinner{\ldotp\ldotp} 4\cdot i+3})\oplus \mathsf{IV}_i for i from 0 up to 7 ]
      \mathsf{let}\ v: \{0 \dots 2^{32} - 1\}^{[16]} = h\ ||\ \lceil\, \mathsf{IV}_0, \mathsf{IV}_1, \mathsf{IV}_2, \mathsf{IV}_3, t_0 \oplus \mathsf{IV}_4, t_1 \oplus \mathsf{IV}_5, f_0 \oplus \mathsf{IV}_6, f_1 \oplus \mathsf{IV}_7\,]
      let m: \{0...2^{32}-1\}^{[16]} = [LEOS2IP_{32}(x_{4\cdot i...4\cdot i+3})] for i from 0 up to 15 ]
      for r from 0 up to 9:
            set (v_0, v_4, v_8, v_{12}) := G(v_0, v_4, v_8, v_{12}, m_{\sigma_{r,0}}, m_{\sigma_{r,1}})
            set (v_1, v_5, v_9, v_{13}) := G(v_1, v_5, v_9, v_{13}, m_{\sigma_{r,2}}, m_{\sigma_{r,3}})
            set (v_2, v_6, v_{10}, v_{14}) := G(v_2, v_6, v_{10}, v_{14}, m_{\sigma_{r,4}}, m_{\sigma_{r,5}})
            set (v_3, v_7, v_{11}, v_{15}) := G(v_3, v_7, v_{11}, v_{15}, m_{\sigma_{r,6}}, m_{\sigma_{r,7}})
            set (v_0, v_5, v_{10}, v_{15}) := G(v_0, v_5, v_{10}, v_{15}, m_{\sigma_{n,s}}, m_{\sigma_{n,s}})
            set (v_1, v_6, v_{11}, v_{12}) := G(v_1, v_6, v_{11}, v_{12}, m_{\sigma_{r,10}}, m_{\sigma_{r,11}})
            set (v_2, v_7, v_8, v_{13}) := G(v_2, v_7, v_8, v_{13}, m_{\sigma_{r,12}}, m_{\sigma_{r,13}})
            set (v_3, v_4, v_9, v_{14}) := G(v_3, v_4, v_9, v_{14}, m_{\sigma_{r,14}}, m_{\sigma_{r,15}})
      return LEBS2OSP<sub>256</sub> (concat<sub>\mathbb{R}</sub> ([ I2LEBSP<sub>32</sub> (h_i \oplus v_i \oplus v_{i+8}) for i from 0 up to 7 ]))
```

In practice the message and output will be expressed as bit sequences. In the **Sapling** circuit, the personalization string will be constant for each use.

Each 32-bit exclusive-or is implemented in 32 constraints, one for each bit position  $a \oplus b = c$  as in §A.3.1.5 *'Exclusive-or constraints'* on p. 118.

Additions not involving a message word, i.e.  $(a+b) \mod 2^{32} = c$ , are implemented using 33 constraints and a 33-bit equality check: constrain 33 boolean variables  $c_{0...32}$ , and then check  $\sum_{i=0}^{i=31} (a_i + b_i) \cdot 2^i = \sum_{i=0}^{i=32} c_i \cdot 2^i$ .

Additions involving a message word, i.e.  $(a+b+m) \mod 2^{32} = c$ , are implemented using 34 constraints and a 34-bit equality check: constrain 34 boolean variables  $c_{0\ldots 33}$ , and then check  $\sum_{i=0}^{i=31} (a_i+b_i+m_i) \cdot 2^i = \sum_{i=0}^{i=33} c_i \cdot 2^i$ .

For each addition, only  $c_{0...31}$  are used subsequently.

The equality checks are batched; as many sets of 33 or 34 boolean variables as will fit in a  $\mathbb{F}_{r_{\mathbb{S}}}$  field element are equated together using one constraint. This allows 7 such checks per constraint.

Each G evaluation requires 262 constraints:

- $4 \cdot 32 = 128$  constraints for  $\oplus$  operations;
- $\cdot 2 \cdot 33 = 66$  constraints for 32-bit additions not involving message words (excluding equality checks);
- $\cdot 2 \cdot 34 = 68$  constraints for 32-bit additions involving message words (excluding equality checks).

The overall cost is 21262 constraints:

- $10 \cdot 8 \cdot 262 = 20960$  constraints for 80 G evaluations, excluding equality checks;
- ceiling  $\left(\frac{10 \cdot 8 \cdot 4}{7}\right)$  = 46 constraints for equality checks;
- $8 \cdot 32 = 256$  constraints for final  $v_i \oplus v_{i+8}$  operations (the  $h_i$  words are constants so no additional constraints are required to exclusive-or with them).

This cost includes boolean-constraining the hash output bits (done implicitly by the final  $\oplus$  operations), but not the message bits.

#### Non-normative notes:

- The equality checks could be eliminated entirely by substituting each check into a boolean constraint for  $c_0$ , for instance, but this optimization is not done in **Sapling**.
- It should be clear that BLAKE2s is very expensive in the circuit compared to elliptic curve operations. This is primarily because it is inefficient to use  $\mathbb{F}_{r_{\mathbb{S}}}$  elements to represent single bits. However Pedersen hashes do not have the necessary cryptographic properties for the two cases where the *Spend circuit* uses BLAKE2s. While it might be possible to use variants of functions with low circuit cost such as MiMC [AGRRT2017], it was felt that they had not yet received sufficient cryptanalytic attention to confidently use them for **Sapling**.

## A.4 The SaplingSpend circuit

A.5 The SaplingOutput circuit

•••

## **B** Batching Optimizations

#### B.1 RedDSA batch verification

The reference verification algorithm for RedDSA signatures is defined in §5.4.6 'RedDSA and RedJubjub' on p. 59.

Let the RedDSA parameters  $\mathbb{G}$  (defining a subgroup  $\mathbb{G}^{(r)}$  of order  $r_{\mathbb{G}}$ , a cofactor  $h_{\mathbb{G}}$ , a group operation +, an additive identity  $\mathcal{O}_{\mathbb{G}}$ , a bit-length  $\ell_{\mathbb{G}}$ , a representation function  $\operatorname{repr}_{\mathbb{G}}$ , and an abstraction function  $\operatorname{abst}_{\mathbb{G}}$ );  $\mathcal{P}_{\mathbb{G}}:\mathbb{G}$ ;  $\ell_{\mathsf{H}}:\mathbb{N}$ ;  $\mathsf{H}:\mathbb{B}^{\mathsf{y}[\mathbb{N}]}\to\mathbb{B}^{\mathsf{y}[\ell_{\mathsf{H}}/8]}$ ; and the derived hash function  $\mathsf{H}^{\otimes}:\mathbb{B}^{\mathsf{y}[\mathbb{N}]}\to\mathbb{F}_{r_{\mathbb{G}}}$  be as defined in that section.

Implementations **MAY** alternatively use the optimized procedure described in this section to perform faster verification of a batch of signatures, i.e. to determine whether all signatures in a batch are valid. Its input is a sequence of N "batch entries", each of which is a (public key, message, signature) triple.

Let LEOS2BSP, LEOS2IP, and LEBS2OSP be as defined in §5.2 'Integers, Bit Sequences, and Endianness' on p. 48.

Define RedDSA.BatchEntry := RedDSA.Public  $\times$  RedDSA.Message  $\times$  RedDSA.Signature.

Define RedDSA.BatchVerify :  $(entry_{0...N-1}: RedDSA.BatchEntry^{[N]}) \rightarrow \mathbb{B}$  as:

```
For each j \in \{0 ... N-1\}: Let (\mathsf{vk}_j, M_j, \sigma_j) = \mathsf{entry}_j. Let \underline{R}_j be the first ceiling (\ell_{\mathbb{G}}/8) bytes of \sigma_j, and let \underline{S}_j be the remaining ceiling (bitlength(r_{\mathbb{G}})/8) bytes. Let R_j = \mathsf{abst}_{\mathbb{G}} (\mathsf{LEOS2BSP}_{\ell_{\mathbb{G}}}(\underline{R}_j)), and let S_j = \mathsf{LEOS2IP}_{\mathsf{bitlength}(r_{\mathbb{G}})}(\underline{S}_j). Let \underline{\mathsf{vk}_j} = \mathsf{LEBS2OSP}_{\ell_{\mathbb{G}}} (\mathsf{repr}_{\mathbb{G}}(\mathsf{vk}_j)). Let c_j = \mathsf{H}^{\circledast}(\underline{R}_j \mid\mid \underline{\mathsf{vk}_j} \mid\mid M_j). Choose random z_j \colon \mathbb{F}_{r_{\mathbb{G}}}^* \stackrel{\mathcal{R}}{\leftarrow} \{1 ... 2^{128} - 1\}.
```

Return 1 if

```
\begin{split} &\cdot \text{ for all } j \in \{0 \dots N-1\}, \, R_j \neq \bot \text{ and } S_j < r_{\mathbb{G}}; \text{ and} \\ &\cdot \left[h_{\mathbb{G}}\right] \left(\left[\sum\nolimits_{j=0}^{N-1} (z_j \cdot S_j) \pmod{r_{\mathbb{G}}}\right] \mathcal{P}_{\mathbb{G}} + \sum\nolimits_{j=0}^{N-1} \left(\left[z_j\right] R_j + \left[z_j \cdot c_j \pmod{r_{\mathbb{G}}}\right] \mathsf{vk}_j\right)\right) = \mathcal{O}_{\mathbb{G}}, \end{split}
```

otherwise 0.

The  $z_i$  values **MUST** be chosen independently of the batch entries.

The performance benefit of this approach arises partly from replacing the per-signature scalar multiplication of the base  $\mathcal{P}_{\mathbb{G}}$  with one such multiplication per batch, and partly from using an efficient algorithm for multiscalar multiplication such as Pippinger's method [Bernstein2001] or the Bos–Coster method [deRooij1995], as explained in [BDLSY2012, section 5].

**Note:** Spend authorization signatures (§5.4.6.1 'Spend Authorization Signature' on p. 61) and binding signatures (§5.4.6.2 'Binding Signature' on p. 61) use different bases  $\mathcal{P}_{\mathbb{G}}$ . It is straightforward to adapt the above procedure to handle multiple bases; there will be one  $\left[\sum_{j}(z_{j}\cdot S_{j})\pmod{r_{\mathbb{G}}}\right]\mathcal{P}$  term for each base  $\mathcal{P}$ . The benefit of this relative to using separate batches is that the multiscalar multiplication can be extended across a larger batch.

#### **B.2** Groth16 batch verification

The reference verification algorithm for Groth16 proofs is defined in §5.4.9.2 'Groth16' on p. 69.

Let 
$$q_{\mathbb{S}}$$
,  $r_{\mathbb{S}}$ ,  $\mathbb{S}_{1,2,T}^{(r)}$ ,  $\mathbb{S}_{1,2,T}^{(r)*}$ ,  $\mathcal{P}_{\mathbb{S}_{1,2,T}}$ ,  $\mathbf{1}_{\mathbb{S}}$ , and  $\hat{e}_{\mathbb{S}}$  be as defined in §5.4.8.2 *BLS12-381*' on p. 64.

Define  $\mathrm{MillerLoop}_{\mathbb{S}}: \mathbb{S}_1^{(r)} \times \mathbb{S}_2^{(r)} \to \mathbb{S}_T^{(r)}$  and  $\mathrm{FinalExp}_{\mathbb{S}}: \mathbb{S}_T^{(r)} \to \mathbb{S}_T^{(r)}$  to be the Miller loop and final exponentiation respectively of the  $\hat{e}_{\mathbb{S}}$  pairing computation, so that:

$$\hat{e}_{\mathbb{S}}(P,Q) = \mathsf{FinalExp}_{\mathbb{S}}(\mathsf{MillerLoop}_{\mathbb{S}}(P,Q))$$

where  $FinalExp_{\mathbb{S}}(R) = R^t$  for some fixed t.

Define Groth16<sub>S</sub>.Proof :=  $\mathbb{S}_1^{(r)*} \times \mathbb{S}_2^{(r)*} \times \mathbb{S}_1^{(r)*}$ .

A Groth16 $_{\mathbb{S}}$  proof consists of a tuple  $(\pi_A, \pi_B, \pi_C)$ : Groth16 $_{\mathbb{S}}$ .Proof.

Verification of a single  $\mathsf{Groth16}_{\mathbb{S}}$  proof against an instance encoded as  $a_{0\ldots\ell}:\mathbb{F}_{r_{\mathbb{S}}}^{[\ell+1]}$  requires checking the equation

$$\hat{e}_{\mathbb{S}}(\pi_A, \pi_B) = \hat{e}_{\mathbb{S}}(\pi_C, \Delta) \cdot \hat{e}_{\mathbb{S}}\left(\sum\nolimits_{i=0}^{\ell} [a_i] \Psi_i, \Gamma\right) \cdot Y$$

where  $\Delta = [\delta] \mathcal{P}_{\mathbb{S}_2}$ ,  $\Gamma = [\gamma] \mathcal{P}_{\mathbb{S}_2}$ ,  $Y = [\alpha \cdot \beta] \mathcal{P}_{\mathbb{S}_T}$ , and  $\Psi_i = \left[\frac{\beta \cdot u_i(x) + \alpha \cdot v_i(x) + w_i(x)}{\gamma}\right] \mathcal{P}_{\mathbb{S}_1}$  for  $i \in \{0 \dots \ell\}$  are elements of the verification key, as described (with slightly different notation) in [Groth2016, section 3.2].

This can be written as:

$$\hat{e}_{\mathbb{S}}(\pi_A, -\pi_B) \cdot \hat{e}_{\mathbb{S}}(\pi_C, \Delta) \cdot \hat{e}_{\mathbb{S}}\left(\sum_{i=0}^{\ell} [a_i] \Psi_i, \Gamma\right) \cdot Y = \mathbf{1}_{\mathbb{S}}.$$

Raising to the power of random  $z \neq 0$  gives:

$$\hat{e}_{\mathbb{S}}\big([z]\,\pi_{\!A},-\pi_{\!B}\big)\cdot\hat{e}_{\mathbb{S}}\big([z]\,\pi_{\!C},\Delta\big)\cdot\hat{e}_{\mathbb{S}}\Big(\sum\nolimits_{i=0}^{\ell}[z\cdot a_i]\,\Psi_i,\Gamma\Big)\cdot Y^z=\mathbf{1}_{\mathbb{S}}.$$

This justifies the following optimized procedure for performing faster verification of a batch of  $Groth16_{\mathbb{S}}$  proofs. Implementations **MAY** use this procedure to determine whether all proofs in a batch are valid.

 $\mathsf{Define}\;\mathsf{Groth16}_{\mathbb{S}}.\mathsf{BatchEntry} := \mathsf{Groth16}_{\mathbb{S}}.\mathsf{Proof} \times \mathsf{Groth16}_{\mathbb{S}}.\mathsf{PrimaryInput}.$ 

 $\mathsf{Define}\;\mathsf{Groth16}_{\mathbb{S}}.\mathsf{BatchVerify}\;\colon(\mathsf{entry}_{0\;..\;N-1}\;\colon\mathsf{Groth16}_{\mathbb{S}}.\mathsf{BatchEntry}^{[N]})\to\mathbb{B}\;\mathsf{as}:$ 

For each 
$$j \in \{0 ... N - 1\}$$
:

Let 
$$((\pi_{j,A}, \pi_{j,B}, \pi_{j,C}), a_{j,0..\ell}) = \text{entry}_{j}$$
.

Choose random  $z_i : \mathbb{F}_{r_c}^* \stackrel{\mathbb{R}}{\leftarrow} \{1 ... 2^{128} - 1\}.$ 

$$\mathsf{Let}\,\mathsf{Accum}_{AB} = \prod\nolimits_{j=0}^{N-1} \mathsf{MillerLoop}_{\mathbb{S}}\big([z_j]\,\pi_{j,A}, -\pi_{j,B}\big).$$

Let 
$$\mathsf{Accum}_{\Delta} = \sum_{j=0}^{N-1} [z_j] \, \pi_{j,C}.$$

$$\text{Let Accum}_{\Gamma,i} \ = \sum\nolimits_{j=0}^{N-1} (z_j \cdot a_{j,i}) \ (\text{mod } r_{\mathbb{S}}) \text{ for } i \in \{0 \mathinner{\ldotp\ldotp} \ell\}.$$

Let 
$$\mathsf{Accum}_Y = \sum_{j=0}^{N-1} z_j \pmod{r_{\mathbb{S}}}$$
.

Return 1 if

$$\mathsf{FinalExp}_{\mathbb{S}}\bigg(\mathsf{Accum}_{AB} \cdot \mathsf{MillerLoop}_{\mathbb{S}}\big(\mathsf{Accum}_{\Delta}, \Delta\big) \cdot \mathsf{MillerLoop}_{\mathbb{S}}\bigg(\sum\nolimits_{i=0}^{\ell} [\mathsf{Accum}_{\Gamma,i}] \, \Psi_i, \Gamma\bigg)\bigg) \cdot Y^{\mathsf{Accum}_Y} = \mathbf{1}_{\mathbb{S}},$$
 otherwise  $0$ .

The  $z_i$  values **MUST** be chosen independently of the batch entries.

The performance benefit of this approach arises from computing two of the three Miller loops, and the final exponentation, per batch instead of per proof. For the multiplications by  $z_j$ , an efficient algorithm for multiscalar multiplication such as Pippinger's method [Bernstein2001] or the Bos-Coster method [deRooij1995] may be used.

**Note:** Spend proofs (of the *statement* in §4.15.2 '*Spend Statement* (*Sapling*)' on p. 41) and output proofs (of the *statement* in §4.15.3 '*Output Statement* (*Sapling*)' on p. 42) use different verification keys, with different parameters  $\Delta$ ,  $\Gamma$ , Y, and  $\Psi_{0...\ell}$ . It is straightforward to adapt the above procedure to handle multiple verification keys; the accumulator variables  $\mathsf{Accum}_{\Delta}$ ,  $\mathsf{Accum}_{\Gamma,i}$ , and  $\mathsf{Accum}_{Y}$  are duplicated, with one term in the verification equation for each variable, while  $\mathsf{Accum}_{AB}$  is shared.

Neglecting multiplications in  $\mathbb{S}_T^{(r)}$  and  $\mathbb{F}_{r_s}$ , and other trivial operations, the cost of batched verification is therefore

- for each proof: the cost of decoding the proof representation to the form  $\mathsf{Groth16}_{\mathbb{S}}.\mathsf{Proof},$  which requires three point decompressions and three subgroup checks (two for  $\mathbb{S}_1^{(r)*}$  and one for  $\mathbb{S}_2^{(r)*}$ );
- for each successfully decoded proof: a Miller loop; and a 128-bit scalar multiplication by  $z_i$ ;
- for each verification key: two Miller loops; an exponentiation in  $\mathbb{S}_T^{(r)}$ ; a multiscalar multiplication with N 128-bit terms to compute Accum $_{\Delta}$ ; and a multiscalar multiplication with  $\ell+1$  255-bit terms to compute  $\sum_{i=0}^{\ell} [\mathsf{Accum}_{\Gamma,i}] \Psi_i$ ;
- · one final exponentiation.