
Zcash Protocol Speci�cation
Version 2016.0-alpha-3.1

as intended for the Zcash release of summer 2016

Daira Hopwood
Sean Bowe — Taylor Hornby — Nathan Wilcox

May 20, 2016

Contents

1 Introduction 3

2 Caution 3

3 Conventions 3

3.1 Integers, Bit Sequences, and Endianness . 3

3.2 Cryptographic Functions . 3

4 Concepts 4

4.1 Payment Addresses and Keys . 4

4.2 Notes . 6

4.2.1 Note Commitments . 6

4.2.2 Nulli�ers . 6

4.2.3 Note Plaintexts and Memo Fields . 6

4.3 Note Commitment Tree . 7

4.4 Nulli�er Set . 8

4.5 The Blockchain . 8

5 JoinSplit Operations and Descriptions 8

5.1 Computation of hSig . 10

5.2 Merkle root validity . 10

5.3 Non-malleability . 10

5.4 Balance . 11

5.5 Note Commitments and Nulli�ers . 11

5.6 JoinSplit Circuit and Proofs . 11

1

6 In-band secret distribution 12

6.1 Encryption . 12

6.2 Decryption by a Recipient . 13

6.3 Commentary . 13

7 Encoding Addresses and Keys 13

7.1 Transparent Payment Addresses . 14

7.2 Transparent Private Keys . 14

7.3 Protected Payment Addresses . 14

7.4 Spending Keys . 14

8 Differences from the Zerocash paper 15

8.1 Transaction Structure . 15

8.2 Uni�cation of Mints and Pours . 15

8.3 Memo Fields . 15

8.4 Faerie Gold attack and �x . 15

8.5 Internal hash collision attack and �x . 16

8.6 Changes to PRF inputs and truncation . 17

8.7 In-band secret distribution . 17

8.8 Omission in Zerocash security proof . 17

8.9 Miscellaneous . 17

9 Acknowledgements 17

10 Change history 17

11 References 18

2

1 Introduction

Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash [2] with some adjust-
ments to terminology, functionality and performance. It bridges the existing transparent payment scheme used
by Bitcoin with a confidential payment scheme protected by zero-knowledge succinct non-interactive arguments
of knowledge (zk-SNARKs).

Changes from the original Zerocash are highlighted in magenta.

2 Caution

Zcash security depends on consensus. Should your program diverge from consensus, its security is weakened or
destroyed. The cause of the divergence doesn’t matter: it could be a bug in your program, it could be an error in this
documentation which you implemented as described, or it could be you do everything right but other software on
the network behaves unexpectedly. The speci�c cause will not matter to the users of your software whose wealth
is lost.

Having said that, a speci�cation of intended behaviour is essential for security analysis, understanding of the pro-
tocol, and maintenance of Zcash Core and related software. If you �nd any mistake in this speci�cation, please
contact <security@z.cash>. While the production Zcash network has yet to be launched, please feel free to do
so in public even if you believe the mistake may indicate a security weakness.

3 Conventions

3.1 Integers, Bit Sequences, and Endianness

All integers in Zcash-specific encodings are unsigned, have a �xed bit length, and are encoded in little-endian
byte order. The AEAD CHACHA20 POLY1305 encryption scheme [11] used in §6 ‘In-band secret distribution’ on
p. 12 uses length �elds encoded as little-endian. Also, Curve25519 public and private keys are de�ned as byte
sequences, which are converted from integers using little-endian encoding.

The notation 0x followed by a string of boldface hexadecimal digits represents the corresponding integer con-
verted from hexadecimal.

The notation “...” represents the given string represented as a sequence of bytes in US-ASCII. For example, “abc”
represents the byte sequence [0x61,0x62,0x63].

In bit layout diagrams, each box of the diagram represents a sequence of bits. The bit length is given explicitly in
each box, except for the case of a single bit, or for the notation [0]n which represents the sequence of n zero bits.

The entire diagram represents the sequence of bytes formed by �rst concatenating these bit sequences, and then
treating each subsequence of 8 bits as a byte with the bits ordered from most significant to least significant.
Thus the most significant bit in each byte is toward the left of a diagram. Where bit �elds are used, the text will
clarify their position in each case.

The notation 1..N, used as a subscript, means the sequence of values with indices 1 through N inclusive. For
example, anew

pk,1..Nnew means the sequence [anew
pk,1, anew

pk,2, ... anew
pk,Nnew].

The symbol ⊥ is used to indicate unavailable information or a failed decryption.

3.2 Cryptographic Functions

CRH is a collision-resistant hash function. In Zcash, the SHA-256 compression function is used which takes a 512-
bit block and produces a 256-bit hash. This is different from the SHA-256 function, which hashes arbitrary-length
sequences. [12]

3

PRFx is a pseudo-random function seeded by x. Four independent PRFx are needed in our scheme: PRFaddr
x ,

PRFnf
x , PRFpk

x , and PRFρx.

It is required that PRFnf
x , PRFaddr

x , and PRFρx be collision-resistant across all x— i.e. it should not be feasible to �nd
(x, y) , (x′, y′) such that PRFnf

x (y) = PRFnf
x′ (y

′), and similarly for PRFaddr and PRFρ.

In Zcash, the SHA-256 compression function is used to construct all of these functions.

PRFaddr
x (t) := CRH

(
1 1 0 0 252-bit x 8-bit t [0]248

)
nf = PRFnf

ask (ρ) := CRH
(

1 1 1 0 252-bit ask 256-bit ρ
)

hi = PRFpk
ask (i, hSig) := CRH

(
0 i-1 0 0 252-bit ask 256-bit hSig

)
ρ

new
i = PRFρϕ(i, hSig) := CRH

(
0 i-1 1 0 252-bit ϕ 256-bit hSig

)

Note: The �rst four bits –i.e. the most signi�cant four bits of the �rst byte– are used to distinguish different uses
of CRH, ensuring that the functions are independent. In addition to the inputs shown here, the bits 1011 in this
position are used to distinguish uses of the full SHA-256 hash function — see §4.2.1 ‘Note Commitments’ on p. 6.
(The speci�c bit patterns chosen here are motivated by the possibility of future extensions that either increase Nold

and/or Nnew to 3, or that add an additional bit to ask to encode a new key type, or that require an additional PRF.)

BLAKE2b-256 (that is, BLAKE2b with an output digest length of 32 bytes) is also used to construct a Key Deriva-
tion Function and as a hash function for the computation of hSig. The notation BLAKE2b-256(p, x) represents the
application of unkeyed BLAKE2b-256 to a 16-byte personalization string p and input x, as de�ned in [1]. Note that
BLAKE2b-256 is not the same as BLAKE2b truncated to 256 bits.

4 Concepts

4.1 Payment Addresses and Keys

A key tuple (ask, skenc, addrpk) is generated by users who wish to receive payments under this scheme. The viewing
key skenc and the payment address addrpk = (apk, pkenc) are derived from the spending key ask.

The following diagram depicts the relations between key components. Arrows point from a component to any
other component(s) that can be derived from it.

4

The composition of payment addresses , viewing keys , and spending keys is a cryptographic protocol detail that
should not normally be exposed to users. However, user-visible operations should be provided to obtain a pay-
ment address or viewing key from a spending key.

ask is 252 bits. apk, skenc, and pkenc, are each 256 bits.

apk, skenc and pkenc are derived as follows:

apk := PRFaddr
ask (0)

skenc := clampCurve25519(PRFaddr
ask (1))

pkenc := Curve25519(skenc, 9)

where

• Curve25519(n, q) performs point multiplication of the Curve25519 public key represented by the byte se-
quence q by the Curve25519 secret key represented by the byte sequence n, as de�ned in section 2 of [3];

• 9 is the public byte sequence representing the Curve25519 base point;

• clampCurve25519(x) takes a 32-byte sequence x as input and returns a byte sequence representing a Curve25519
private key, with bits “clamped” as described in section 3 of [3]: “clear bits 0, 1, 2 of the �rst byte, clear bit 7 of
the last byte, and set bit 6 of the last byte.” Here the bits of a byte are numbered such that bit b has numeric
weight 2b.

Users can accept payment from multiple parties with a single payment address addrpk and the fact that these
payments are destined to the same payee is not revealed on the blockchain, even to the paying parties. However
if two parties collude to compare a payment address they can trivially determine they are the same. In the case
that a payee wishes to prevent this they should create a distinct payment address for each payer.

Note: It is conventional in cryptography to refer to the key used to encrypt a message in an asymmetric encryption
scheme as the “public key”. However, the Curve25519 public key used as the transmission key component of an
address (pkenc) need not be publically distributed; it has the same distribution as the payment address itself. As
mentioned above, limiting the distribution of the payment address is important for some use cases. This also helps
to reduce reliance of the overall protocol on the security of Curve25519, since an adversary would have to know
pkenc in order to exploit a hypothetical Curve25519 weakness.

5

4.2 Notes

A note (denoted n) is a tuple (apk, v, ρ, r) which represents that a value v is spendable by the recipient who holds
the spending key ask corresponding to apk, as described in the previous section.

• apk is a 32-byte paying key of the recipient.

• v is a 64-bit unsigned integer representing the value of the note in zatoshi (1 ZEC = 108 zatoshi).

• ρ is a 32-byte PRFnf
ask preimage.

• r is a 32-byte COMM trapdoor.

r is randomly generated by the sender. ρ is generated from a random seed ϕ using PRFρϕ. Only a commitment to
these values is disclosed publicly, which allows the tokens r and ρ to blind the value and recipient except to those
who possess these tokens.

4.2.1 Note Commitments

The underlying v and apk are blinded with ρ and r using the collision-resistant hash function SHA256. The resulting
hash cm = NoteCommitment(n).

cm := SHA256
(

1 0 1 1 0 0 0 0 256-bit apk 64-bit v 256-bit ρ 256-bit r
)

Note: The leading byte of the SHA256 input is 0xB0.

4.2.2 Nulli�ers

A nulli�er (denoted nf) is derived from the ρ component of a note as PRFnf
ask (ρ). A note is spent by proving knowl-

edge of ρ and ask in zero knowledge while disclosing its nulli�er nf , allowing nf to be used to prevent double-
spending.

4.2.3 Note Plaintexts and Memo Fields

Transmitted notes are stored on the blockchain in encrypted form, together with a note commitment cm.

The note plaintexts in a JoinSplit description are encrypted to the respective transmission keys pknew
enc,1..Nnew , and

the result forms part of a transmitted notes ciphertext (see §6 ‘In-band secret distribution’ on p. 12 for further
details).

Each note plaintext (denoted np) consists of (v, ρ, r,memo).

The �rst three of these �elds are as de�ned earlier. memo is a 128-byte memo �eld associated with this note .

The usage of the memo �eld is by agreement between the sender and recipient of the note . The memo �eld
SHOULD be encoded either as:

• a UTF-8 human-readable string [6], padded with zero bytes; or

• an arbitrary sequence of 128 bytes starting with a byte value of 0xF5 or greater, which is therefore not a valid
UTF-8 string.

In the former case, wallet software is expected to strip any trailing zero bytes and then display the resulting UTF-8
string to the recipient user, where applicable. Incorrect UTF-8-encoded byte sequences should be displayed as
replacement characters (U+FFFD).

In the latter case, the contents of the memo �eld SHOULD NOT be displayed. A start byte of 0xF5 is reserved
for use by automated software by private agreement. A start byte of 0xF6 or greater is reserved for use in future

6

Zcash protocol extensions.

The encoding of a note plaintext consists of, in order:

8-bit 0x00 64-bit v 256-bit ρ 256-bit r memo (128 bytes)

• A byte, 0x00, indicating this version of the encoding of a note plaintext .

• 8 bytes specifying v.

• 32 bytes specifying ρ.

• 32 bytes specifying r.

• 128 bytes specifying memo.

4.3 Note Commitment Tree

cm1

?

rt

cm2 cm3 cm4 cm5 ?

The note commitment tree is an incremental Merkle tree of depth d used to store note commitments that JoinSplit
operations produce. Just as the unspent transaction output set (UTXO) used in Bitcoin, it is used to express the
existence of value and the capability to spend it. However, unlike the UTXO, it is not the job of this tree to protect
against double-spending, as it is append-only.

Blocks in the blockchain are associated (by all nodes) with the root of this tree after all of its constituent JoinSplit
descriptions ’ note commitments have been entered into the tree associated with the previous block.

Each node in the incremental Merkle tree is associated with a 32-byte hash. The layer numbered h, counting from
layer 0 at the root , has 2h nodes with indices 0 to 2h − 1 inclusive. Let Mh

i be the hash associated with the node at
index i in layer h.

Parent nodes are computed from their children as follows. For 0 ≤ h < d and 0 ≤ i < 2h,

Mh
i := CRH

(
256-bit Mh+1

2i 256-bit Mh+1
2i+1

)
.

When a note commitment is added to the tree, it occupies the leaf Md
i for the next available i. As-yet unused

leaves are encoded as the sequence of 32 zero bytes.

A path from leaf Md
i in the incremental Merkle tree is the sequence

[Mh
sibling(h,i) for h from d down to 1],

where

sibling(h, i) = floor
(

i
2d−h

)
⊕ 1

7

and ⊕ denotes bitwise exclusive or. Given such a path, it is possible to verify that leaf Md
i is in a tree with a given

root rt = M0
0.

4.4 Nulli�er Set

Transactions insert nulli�ers into a nulli�er set which is maintained alongside the UTXO by all nodes.

Eli: a tx is just a string, so it doesn’t insert anything. Rather, nodes process tx’s and the “good” ones lead to the addition
of nullifiers to the nullifier set.

Transactions that attempt to insert a nulli�er into this set that already exists within it are invalid as they are at-
tempting to double-spend.

Eli: After defining transaction, one should define what a legal tx is (this definition depends on a particular blockchain
[view]) and only then can one talk about “attempts” of transactions, and insertions of nullifiers into the nullifier set.

4.5 The Blockchain

At a given point in time, the blockchain view of each full node consists of a sequence of one or more valid blocks .
Each block consists of a sequence of one or more transactions . In a given node’s blockchain view, treestates are
chained in an obvious way:

• The input treestate of the �rst block is the empty treestate .

• The input treestate of the �rst transaction of a block is the �nal treestate of the immediately preceding block .

• The input treestate of each subsequent transaction in a block is the output treestate of the immediately
preceding transaction.

• The �nal treestate of a block is the output treestate of its last transaction.

An anchor is a Merkle tree root of a treestate , and uniquely identi�es that treestate given the assumed security
properties of the Merkle tree’s hash function.

Each transaction is associated with a sequence of JoinSplit descriptions . TODO: They also have a transparent value
flow that interacts with the JoinSplit description’s vold

pub and vnew
pub . Inputs and outputs are associated with a value.

The total value of the outputs must not exceed the total value of the inputs.

The anchor of each JoinSplit description in a transaction must refer to either some earlier block ’s �nal treestate ,
or to the output treestate of any prior JoinSplit description in the same transaction.

These conditions act as constraints on the blocks that a full node will accept into its blockchain view.

We rely on Bitcoin-style consensus for full nodes to eventually converge on their views of valid blocks , and there-
fore of the sequence of treestates in those blocks .

Value pool Transaction inputs insert value into a value pool , and transaction outputs remove value from this
pool. The remaining value in the pool is available to miners as a fee.

5 JoinSplit Operations and Descriptions

A JoinSplit description is data included in a transaction that describes a JoinSplit operation, i.e. a con�dential value
transfer. This kind of value transfer is the primary Zcash-speci�c operation performed by transactions ; it uses, but
should not be confused with, the JoinSplit circuit used for the zk-SNARK proof and veri�cation.

A JoinSplit operation spends Nold notes nold
1..Nold and transparent input vold

pub, and creates Nnew notes nnew
1..Nnew and

transparent output vnew
pub .

8

Consensus rule: Either vold
pub or vnew

pub MUST be zero.

Zcash transactions have the following additional �elds:

Bytes Name Data Type Description

Varies nJoinSplit compactSize uint The number of JoinSplit de-
scriptions in vJoinSplit.

1026× nJoinSplit vJoinSplit JoinSplitDescription
[nJoinSplit]

The sequence of JoinSplit de-
scriptions in this transaction.

33 † joinSplitPubKey char[33] An encoding of an ECDSA pub-
lic veri�cation key, using the
secp256k1 curve and parame-
ters de�ned in [13] and [5].

64 † joinSplitSig char[64] A signature on a pre�x of the
transaction encoding, to be ver-
i�ed using joinSplitPubKey.

† The joinSplitPubKey and joinSplitSig �elds are present if and only if nJoinSplit > 0.

The encoding of joinSplitPubKey and the data to be signed are speci�ed in more detail in §5.3 ‘Non-malleability’
on p. 10.

Each JoinSplitDescription consists of:

Bytes Name Data Type Description

8 vpub old int64 t Avalue vold
pub that the JoinSplit operation removes from

the value pool.

8 vpub new int64 t A value vnew
pub that the JoinSplit operation inserts into

the value pool.

32 anchor char[32] A merkle root rt of the note commitment tree at some
block height in the past, or the merkle root produced
by a previous JoinSplit operation in this transaction.
Sean: We need to be more specific here.

64 nullifiers char[32][Nold] A sequence of nulli�ers of the input notes nfold
1..Nold .

64 commitments char[32][Nnew]. A sequence of note commitments for the output
notes cmnew

1..Nnew .

32 ephemeralKey char[32] A Curve25519 public key epk.

434 encCiphertexts char[217][Nnew] A sequence of ciphertext components for the en-
crypted output notes , Cenc

1..Nnew .

32 randomSeed char[32] A 256-bit seed that must be chosen independently at
random for each JoinSplit description.

64 vmacs char[32][Nold] A sequence of message authentication tags h1..Nold

that bind hSig to each ask of the JoinSplit description.

288 zkproof char[288] An encoding, as determined by the libsnark library
[9], of the zero-knowledge proof πJoinSplit.

The ephemeralKey and encCiphertexts �elds together form the transmitted notes ciphertext .

TODO: Describe case where there are fewer than Nold real input notes.

9

5.1 Computation of hSig

Given a JoinSplit description containing the �elds randomSeed and nullifiers = nfold
1..Nold , and embedded in a

transaction containing the �eld joinSplitPubKey, we compute hSig for that JoinSplit description as follows:

pubKeyHash := BLAKE2b-256(“ZcashECDSAPubKey”, joinSplitPubKey)

hSigInput := 256-bit randomSeed 256-bit nfold
1 ... 256-bit nfold

Nold 256-bit pubKeyHash

hSig := BLAKE2b-256(“ZcashComputehSig”, hSigInput)

5.2 Merkle root validity

A JoinSplit description is valid if rt is a note commitment tree root found in either the blockchain or a merkle root
produced by inserting the note commitments of a previous JoinSplit description in the transaction to the note
commitment tree identi�ed by that previous JoinSplit description’s anchor.

5.3 Non-malleability

Bitcoin de�nes several SIGHASH types that cover various parts of a transaction. In Zcash, all of these SIGHASH
types are extended to cover the Zcash-speci�c �elds nJoinSplit, vJoinSplit, and (if present) joinSplitPubKey.
They do not cover the �eld joinSplitSig.

Consensus rule: If nJoinSplit > 0, the transaction MUST NOT use SIGHASH types other than SIGHASH ALL.

Let dataToBeSigned be the hash of the transaction using the SIGHASH ALL SIGHASH type . Note that this excludes
all of the scriptSig �elds in the non-Zcash-speci�c parts of the transaction.

In order to ensure that a JoinSplit description is cryptographically bound to the transparent inputs and outputs cor-
responding to vnew

pub and vold
pub, and to the other JoinSplit descriptions in the same transaction, an ephemeral ECDSA

key pair is generated for each transaction, and the dataToBeSigned is signed with the private signing key of this key
pair. The corresponding public veri�cation key is included in the transaction encoding as joinSplitPubKey.

If nJoinSplit is zero, the joinSplitPubKey and joinSplitSig �elds are omitted. Otherwise, a transaction has a
correct JoinSplit signature if:

• joinSplitSig can be veri�ed as an encoding of a signature on dataToBeSigned, using the ECDSA public key
encoded as joinSplitPubKey; and

• joinSplitSig has an s value in the lower half of the possible range (i.e. s must fall into the range from
0x1 to 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0
inclusive).

If s is not in the given range, the signature is treated as invalid.

The encoding of a signature is:

256-bit r 256-bit s

where r and s are as de�ned in [13].

The encoding of a public key is as de�ned in section E.2.3.2 of [14] for a compressed elliptic curve point with x-
coordinate xP and compressed y-coordinate ỹP :

0 0 0 0 0 0 1 1-bit ỹP 256-bit xP

10

Note that only compressed public keys are valid.

The condition enforced by the JoinSplit circuit speci�ed in §5.6 ‘Non-malleability’ on p. 12 ensures that a holder
of all of aold

sk,1..Nold for each JoinSplit description has authorized the use of the private signing key corresponding to
joinSplitPubKey to sign this transaction.

5.4 Balance

A JoinSplit operation can be seen, from the perspective of the transaction, as an input and an output simultane-
ously. vold

pub takes value from the value pool and vnew
pub adds value to the value pool. As a result, vold

pub is treated like an
output value, whereas vnew

pub is treated like an input value.

Note that unlike original Zerocash [2], Zcash does not have a distinction between Mint and Pour operations. The
addition of vold

pub to a JoinSplit description subsumes the functionality of both Mint and Pour. Also, JoinSplit de-
scriptions are indistinguishable regardless of the number of real input notes .

As stated in §5 ‘JoinSplit Operations and Descriptions’ on p. 8, either vold
pub or vnew

pub MUST be zero. No generality

is lost because, if a transaction in which both vold
pub and vnew

pub were nonzero were allowed, it could be replaced by

an equivalent one in which min(vold
pub, vnew

pub) is subtracted from both of these values. This restriction helps to avoid
unnecessary distinctions between transactions according to client implementation.

5.5 Note Commitments and Nulli�ers

A transaction that contains one or more JoinSplit descriptions , when entered into the blockchain, appends to the
note commitment tree with all constituent note commitments . All of the constituent nulli�ers are also entered
into the nulli�er set of the blockchain viewand mempool . A transaction is not valid if it attempts to add a nulli�er
to the nulli�er set that already exists in the set.

5.6 JoinSplit Circuit and Proofs

In Zcash, Nold and Nnew are both 2.

A valid instance of πJoinSplit assures that given a primary input :

(rt, nfold
1..Nold , cmnew

1..Nnew , vold
pub, vnew

pub , hSig, h1..Nold),

there exists a witness of auxiliary input :

(path1..Nold ,nold
1..Nold , aold

sk,1..Nold ,nnew
1..Nnew ,ϕ)

where:

for each i ∈ {1..Nold}: nold
i = (aold

pk,i, vold
i , ρold

i , rold
i);

for each i ∈ {1..Nnew}: nnew
i = (anew

pk,i, vnew
i , ρnew

i , rnew
i)

such that the following conditions hold:

Merkle path validity for each i ∈ {1..Nold} | vold
i , 0: pathi must be a valid path of depth d, as de�ned in § 4.3

‘Note Commitment Tree’ on p. 7, from NoteCommitment(nold
i) to note commitment tree root rt.

Note: Merkle path validity covers both conditions 1. (a) and 1. (d) of the NP statement given in section 4.2 of [2].

Balance vold
pub +

Nold∑
i=1

vold
i = vnew

pub +
Nnew∑
i=1

vnew
i .

11

Nulli�erintegrity for each i ∈ {1..Nnew}: nfold
i = PRFnf

aold
sk,i

(ρold
i).

Spend authority for each i ∈ {1..Nold}: aold
pk,i = PRFaddr

aold
sk,i

(0).

Non-malleability for each i ∈ {1..Nold}: hi = PRFpk
aold

sk,i

(i, hSig).

Uniqueness of ρnew
i for each i ∈ {1..Nnew}: ρnew

i = PRFρϕ(i, hSig).

Commitment integrity for each i ∈ {1..Nnew}: cmnew
i = NoteCommitment(nnew

i).

6 In-band secret distribution

In order to transmit the secret v, ρ, and r (necessary for the recipient to later spend) and also a memo �eld to the
recipient without requiring an out-of-band communication channel, the transmission key pkenc is used to encrypt
these secrets. The recipient’s possession of the associated key tuple (ask, skenc, addrpk) is used to reconstruct the
original note and memo �eld .

All of the resulting ciphertexts are combined to form a transmitted notes ciphertext .

6.1 Encryption

Let SymEncryptK(P) be authenticated encryption using AEAD CHACHA20 POLY1305 [11] encryption of plaintext P,
with empty “associated data”, all-zero nonce [0]96, and 256-bit key K.

Similarly, let SymDecryptK(C) be AEAD CHACHA20 POLY1305 decryption of ciphertext C, with empty “associated
data”, all-zero nonce [0]96, and 256-bit key K. The result is either the plaintext byte sequence, or⊥ indicating failure
to decrypt.

Let pknew
enc,1..Nnew be the Curve25519 public keys for the intended recipient addresses of each new note , and let

np1..Nnew be the note plaintexts . Let hSig be the value computed in §5.1 ‘Computation of hSig’ on p. 10.

De�ne:

KDF(i, hSig, dhsecreti, epk, pknew
enc,i) := BLAKE2b-256(kdftag, kdfinput)

where:

kdftag := 64-bit “ZcashKDF” 8-bit i−1 [0]56

kdfinput := 256-bit hSig 256-bit dhsecreti 256-bit epk 256-bit pknew
enc,i .

Then to encrypt:

• Generate a new Curve25519 (public, private) key pair (epk, esk).

• For i ∈ {1..Nnew},
– Let Penc

i be the raw encoding of npi.

– Let dhsecreti := Curve25519(esk, pknew
enc,i).

– Let Kenc
i := KDF(i, hSig, dhsecreti, epk, pknew

enc,i).

– Let Cenc
i := SymEncryptKenc

i
(Penc

i).

The resulting transmitted notes ciphertext is (epk,Cenc
1..Nnew).

12

6.2 Decryption by a Recipient

Let addrpk = (apk, pkenc) be the recipient’s payment address , and let skenc be the recipient’s viewing key. Let hSig be
the value computed in §5.1 ‘Computation of hSig’ on p. 10. Let cmnew

1..Nnew be the note commitments of each output
coin. Then for each i ∈ {1..Nnew}, the recipient will attempt to decrypt that ciphertext component as follows:

• Let dhsecreti := Curve25519(skenc, epk).

• Let Kenc
i := KDF(i, hSig, dhsecreti, epk, pknew

enc,i).

• Return DecryptNote(Kenc
i ,Cenc

i , cmnew
i , apk).

DecryptNote(Kenc
i ,Cenc

i , cmnew
i , apk) is de�ned as follows:

• Let Penc
i := SymDecryptKenc

i
(Cenc

i).

• If Penc
i = ⊥, return ⊥.

• Extract npi = (vnew
i , ρnew

i , rnew
i ,memoi) from Penc

i .

• If NoteCommitment((apk, vnew
i , ρnew

i , rnew
i)) , cmnew

i , return ⊥, else return npi.

Note that this corresponds to step 3 (b) i. and ii. (�rst bullet point) of the Receive algorithm shown in Figure 2 of [2].

To test whether a note is unspent in a particular blockchain view also requires the spending key ask; the coin is
unspent if and only if nf = PRFnf

ask (ρ) is not in the nulli�er set for that blockchain view.

Note that a note can change from being unspent to spent on a given blockchain view, as transactions are added
to that view. Also, blockchain reorganisations can cause the transaction in which a note was output to no longer
be on the consensus blockchain.

6.3 Commentary

The public key encryption used in this part of the protocol is based loosely on other encryption schemes based
on Dif�e-Hellman over an elliptic curve, such as ECIES or the crypto box seal algorithm de�ned in libsodium [10].
Note that:

• The same ephemeral key is used for all encryptions to the recipient keys in a given JoinSplit description.

• In addition to the Dif�e-Hellman secret, the KDF takes as input the seed hSig, the public keys of both parties,
and the index i.

• The nonce parameter to AEAD CHACHA20 POLY1305 is not used.

• The “IETF” de�nition of AEAD CHACHA20 POLY1305 from [11] is used; this uses a 32-bit block count and a
96-bit nonce, rather than a 64-bit block count and 64-bit nonce as in the original de�nition of ChaCha20.

7 Encoding Addresses and Keys

This section describes how Zcash encodes payment addresses , viewing keys , and spending keys .

Addresses and keys can be encoded as a byte sequence; this is called the raw encoding . This byte sequence can
then be further encoded using Base58Check. The Base58Check layer is the same as for upstream Bitcoin addresses
[4].

SHA-256 compression outputs are always represented as sequences of 32 bytes.

The language consisting of the following encoding possibilities is pre�x-free.

13

7.1 Transparent Payment Addresses

These are encoded in the same way as in Bitcoin [4].

7.2 Transparent Private Keys

These are encoded in the same way as in Bitcoin [4].

7.3 Protected Payment Addresses

A payment address consists of apk and pkenc. apk is a SHA-256 compression output. pkenc is a Curve25519 public
key, for use with the encryption scheme de�ned in §6 ‘In-band secret distribution’ on p. 12.

The raw encoding of a payment address consists of:

8-bit 0x92 256-bit apk 256-bit pkenc

• A byte, 0x92, indicating this version of the raw encoding of a Zcash payment address .

• 256 bits specifying apk.

• 256 bits specifying pkenc, using the normal encoding of a Curve25519 public key [3].

Daira: check that this lead byte is distinct from other Bitcoin stuff, and produces ‘z’ as the Base58Check leading character.

Nathan: what about the network version byte?

7.4 Spending Keys

A spending key consists of ask, which is a sequence of 252 bits.

The raw encoding of a spending key consists of, in order:

8-bit 0x?? [0]4 252-bit ask

• A byte 0x?? indicating this version of the raw encoding of a Zcash spending key.

• 4 zero padding bits.

• 252 bits specifying ask.

The zero padding occupies the most signi�cant 4 bits of the second byte.

Note: If an implementation represents ask internally as a sequence of 32 bytes with the 4 bits of zero padding
intact, it will be in the correct form for use as an input to PRFaddr, PRFnf , and PRFpk without need for bit-shifting.
Future key representations may make use of these padding bits.

Daira: check that this lead byte is distinct from other Bitcoin stuff, and produces a suitable Base58Check leading char-
acter.

Nathan: what about the network version byte?

14

8 Differences from the Zerocash paper

8.1 Transaction Structure

Zerocash introduces two new operations, which are described in the paper as new transaction types, in addition
to the original transaction type of the cryptocurrency on which it is based (e.g. Bitcoin).

In Zcash, there is only the original Bitcoin transaction type, which is extended to contain a sequence of zero or
more Zcash-speci�c operations.

This allows for the possibility of chaining transfers of protected value in a single Zcash transaction, e.g. to spend a
protected note that has just been created. (In Zcash, we refer to value stored in UTXOs as “transparent”, and value
stored in JoinSplit operation output notes as “protected”.) This was not possible in the Zerocash design without
using multiple transactions. It also allows transparent and protected transfers to happen atomically — possibly
under the control of nontrivial script conditions, at some cost in distinguishability.

TODO: Describe changes to signing.

8.2 Uni�cation of Mints and Pours

In the original Zerocash protocol, there were two kinds of transaction relating to protected notes :

• a “Mint” transaction takes value from transparent UTXOs as input and produces a new protected note as
output.

• a “Pour” transaction takes up to Nold protected notes as input, and produces up to Nnew protected notes and
a transparent UTXO as output.

Only “Pour” transactions included a zk-SNARK proof.

In Zcash, the sequence of operations added to a transaction (described in §8.1 ‘Transaction Structure’ on p. 15)
consists only of JoinSplit operations . A JoinSplit operation is a Pour operation generalized to take a transparent
UTXO as input, allowing JoinSplit operations to subsume the functionality of Mints. An advantage of this is that
a Zcash transaction that takes input from an UTXO can produce up to Nnew output notes , improving the indis-
tinguishability properties of the protocol. A related change conceals the input arity of the JoinSplit operation: an
unused (zero-value) input is indistinguishable from an input that takes value from a note .

This uni�cation also simpli�es the �x to the Faerie Gold attack described below, since no special case is needed
for Mints.

8.3 Memo Fields

Zcash adds a memo �eld sent from the creator of a JoinSplit description to the recipient of each output note . This
feature is described in more detail in §4.2.3 ‘Note Plaintexts and Memo Fields’ on p. 6.

8.4 Faerie Gold attack and �x

When a protected note is created in Zerocash, the creator is supposed to choose a new ρ value at random. The
nulli�er of the note is derived from its spending key (ask) and ρ. The note commitment is derived from the recipient
address component apk, the value v, and the commitment trapdoor r, as well as ρ. However nothing prevents
creating multiple notes with different v and r (hence different note commitments) but the same ρ.

An adversary can use this to mislead a note recipient, by sending two notes both of which are veri�ed as valid by
Receive (as de�ned in Figure 2 of [2]), but only one of which can be spent.

We call this a “Faerie Gold” attack — referring to various Celtic legends in which faeries pay mortals in what appears
to be gold, but which soon after reveals itself to be leaves, gorse blossoms, gingerbread cakes, or other less valuable

15

things [8].

This attack does not violate the security de�nitions given in [2]. The issue could be framed as a problem either
with the de�nition of Completeness, or the de�nition of Balance:

• The Completeness property asserts that a validly received note can be spent provided that its nulli�er does
not appear on the ledger. This does not take into account the possibility that distinct notes , which are
validly received, could have the same nulli�er. That is, the security de�nition depends on a protocol de-
tail –nulli�ers– that is not part of the intended abstract security property, and that could be implemented
incorrectly.

• The Balance property only asserts that an adversary cannot obtain more funds than they have minted or
received via payments. It does not prevent an adversary from causing others’ funds to decrease. In a Faerie
Gold attack, an adversary can cause spending of a note to reduce (to zero) the effective value of another
note for which the attacker does not know the spending key, which violates an intuitive conception of global
balance.

These problems with the security de�nitions need to be repaired, but doing so is outside the scope of this speci-
�cation. Here we only describe how Zcash addresses the immediate attack.

It would be possible to address the attack by requiring that a recipient remember all of the ρ values for all notes
they have ever received, and reject duplicates (as proposed in [7]). However, this requirement would interfere with
the intended Zcash feature that a holder of a spending key can recover access to (and be sure that they are able to
spend) all of their funds, even if they have forgotten everything but the spending key.

Instead, Zcash enforces that an adversary must choose distinct values for each ρ, by making use of the fact that all
of the nulli�ers in JoinSplit descriptions that appear in a valid blockchain view must be distinct. The nulli�ers are
used as input to BLAKE2b-256 to derive a public value hSig which uniquely identi�es the transaction, as described
in § 5.1 ‘Computation of hSig’ on p. 10. (hSig was already used in Zerocash in a way that requires it to be unique
in order to maintain indistinguishability of JoinSplit descriptions ; adding the nulli�ers to the input of the hash
used to calculate it has the effect of making this uniqueness property robust even if the transaction creator is an
adversary.)

The ρ value for each output note is then derived from a random private seed ϕ and hSig using PRFρϕ. The correct
construction of ρ for each output note is enforced by the circuit (see §5.6 ‘Uniqueness of ρnew

i ’ on p. 12).

Now even if the creator of a JoinSplit description does not choose ϕ randomly, uniqueness of nulli�ers and col-
lision resistance of both BLAKE2b-256 and PRFρ will ensure that the derived ρ values are unique, at least for any
two JoinSplit descriptions that get into a valid blockchain view. This is suf�cient to prevent the Faerie Gold attack.

8.5 Internal hash collision attack and �x

The Zerocash security proof requires that the composition of COMMr and COMMs is a computationally binding
commitment to its inputs apk, v, and ρ. However, the instantiation of COMMr and COMMs in section 5.1 of the paper
did not meet the de�nition of a binding commitment at a 128-bit security level. Speci�cally, the internal hash of
apk and ρ is truncated to 128 bits (motivated by providing statistical hiding security). This allows an attacker, with
a work factor on the order of 264, to �nd distinct values of ρ with colliding outputs of the truncated hash, and
therefore the same note commitment . This would have allowed such an attacker to break the balance property
by double-spending notes , potentially creating arbitrary amounts of currency for themself.

Zcash uses a simpler construction with a single SHA256 evaluation for the commitment. The motivation for the
nested construction in Zerocash was to allow Mint transactions to be publically veri�ed without requiring a ZK
proof (as described under step 3 in section 1.3 of [2]). Since Zcash combines “Mint” and “Pour” transactions into a
generalized JoinSplit operation which always uses a ZK proof, it does not require the nesting. A side bene�t is that
this reduces the number of SHA256Compress evaluations needed to compute each note commitment from three
to two, saving a total of four SHA256Compress evaluations in the JoinSplit circuit .

Note that Zcash note commitments are not statistically hiding, and so Zcash does not support the “everlasting
anonymity” property described in section 8.1 of the Zerocash paper [2], even when used as described in that sec-

16

tion. While it is possible to de�ne a statistically hiding, computationally binding commitment scheme for this use
at a 128-bit security level, the overhead of doing so within the circuit was not considered to justify the bene�ts.

8.6 Changes to PRF inputs and truncation

TODO:

8.7 In-band secret distribution

TODO:

8.8 Omission in Zerocash security proof

TODO: see [15]

8.9 Miscellaneous

• The paper de�nes a note as a tuple (apk, v, ρ, r, s, cm), whereas this speci�cation de�nes it as (apk, v, ρ, r). This
is just a clari�cation, because the instantiation of COMMs in section 5.1 of the paper did not use s (and neither
does the new instantiation of NoteCommitment). cm can be computed from the other �elds.

9 Acknowledgements

The inventors of Zerocash are Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza.

The authors would like to thank everyone with whom they have discussed the Zerocash protocol design; in addi-
tion to the inventors, this includes Mike Perry, Isis Lovecruft, Leif Ryge, Andrew Miller, Zooko Wilcox, Samantha
Hulsey, and no doubt others.

The Faerie Gold attack was found by Zooko Wilcox. The internal hash collision attack was found by Taylor Hornby.
The omission in the Zerocash security proof relating to collision-resistance of PRFaddr was found by Daira Hop-
wood.

10 Change history

2016.0-alpha-3

• Change version numbering convention (no other changes).

2.0-alpha-3

• Allow anchoring to any previous output treestate in the same transaction, rather than just the immediately
preceding output treestate .

• Add change history.

2.0-alpha-2

• Change from truncated BLAKE2b to BLAKE2b-256 .

• Clarify endianness, and that uses of BLAKE2b-256 are unkeyed.

17

• Minor correction to what SIGHASH types cover.

• Add “as intended for the Zcash release of summer 2016” to title page.

• Require PRFaddr to be collision-resistant. [15]

• Add speci�cation of path computation for the incremental Merkle tree .

• Add a note in §5.6 ‘Merkle path validity’ on p. 11 about how this condition corresponds to conditions in the
Zerocash paper.

• Changes to terminology around keys.

2.0-alpha-1

• First version intended for public review.

11 References

[1] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian Winnerlein. BLAKE2: simpler,
smaller, fast as MD5. https://blake2.net/#sp, January 29 2013.

[2] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized Anonymous Payments from Bitcoin. In Proceedings of the IEEE Symposium
on Security and Privacy (Oakland) 2014, pages 459–474. IEEE, 2014.

[3] Daniel Bernstein. Curve25519: new Dif�e-Hellman speed records. In Public Key Cryptography - PKC 2006.
Proceedings of the 9th International Conference on Theory and Practice in Public-Key Cryptography, New
York, NY, USA, April 24-26. Springer-Verlag, 2006. Document ID: 4230efdfa673480fc079449d90f322c0. Date:
2006-02-09. http://cr.yp.to/papers.html#curve25519.

[4] Base58Check encoding – Bitcoin Wiki. https://en.bitcoin.it/wiki/Base58Check_encoding. Accessed:
2016-01-26.

[5] Secp256k1 – Bitcoin Wiki. https://en.bitcoin.it/wiki/Secp256k1. Accessed: 2016-03-14.

[6] The Unicode Consortium. The Unicode Standard. The Unicode Consortium, 2015. http://www.unicode.org/
versions/latest/.

[7] Christina Garman, Matthew Green, and Ian Miers. Accountable Privacy for Decentralized Anonymous
Payments. Cryptology ePrint Archive: Report 2016/061. https://eprint.iacr.org/2016/061. Last revised
24 Jan 2016.

[8] Eddie Lenihan and Carolyn Eve Green. Meeting the Other Crowd: The Fairy Stories of Hidden Ireland. 2004.
Pages 109–110. ISBN: 1-58542-206-1.

[9] libsnark: C++ library for zkSNARK proofs. https://github.com/scipr-lab/libsnark. Accessed: 2016-03-15.

[10] Sealed boxes — libsodium. https://download.libsodium.org/doc/public-key_cryptography/sealed_
boxes.html. Accessed: 2016-02-01.

[11] Yoav Nir and Adam Langley. Request for Comments 7539: ChaCha20 and Poly1305 for IETF Protocols. Internet
Research Task Force (IRTF). https://tools.ietf.org/html/rfc7539. As modi�ed by veri�ed errata at https:
//www.rfc-editor.org/errata_search.php?rfc=7539.

[12] NIST. FIPS 180-4: Secure Hash Standard (SHS). http://csrc.nist.gov/publications/PubsFIPS.html#
180-4, August 2015. DOI: 10.6028/NIST.FIPS.180-4.

[13] Certicom Research. Standards for Ef�cient Cryptography 2 (SEC 2). http://www.secg.org/sec2-v2.pdf, Jan-
uary 27 2010. Version 2.0.

18

https://blake2.net/#sp
http://cr.yp.to/papers.html#curve25519
https://en.bitcoin.it/wiki/Base58Check_encoding
https://en.bitcoin.it/wiki/Secp256k1
http://www.unicode.org/versions/latest/
http://www.unicode.org/versions/latest/
https://eprint.iacr.org/2016/061
https://github.com/scipr-lab/libsnark
https://download.libsodium.org/doc/public-key_cryptography/sealed_boxes.html
https://download.libsodium.org/doc/public-key_cryptography/sealed_boxes.html
https://tools.ietf.org/html/rfc7539
https://www.rfc-editor.org/errata_search.php?rfc=7539
https://www.rfc-editor.org/errata_search.php?rfc=7539
http://csrc.nist.gov/publications/PubsFIPS.html#180-4
http://csrc.nist.gov/publications/PubsFIPS.html#180-4
http://www.secg.org/sec2-v2.pdf

[14] IEEE Computer Society. IEEE Std 1363-2000: Standard Speci�cations for Public-Key Cryptography. IEEE,
August 29 2000. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=891000&url=http%3A%2F%
2Fieeexplore.ieee.org%2Fiel5%2F7168%2F19282%2F00891000. Accessed 2016-03-15.

[15] Zcash Github ticket #836: (Not exploitable) �aw in the proof of Balance when PRF ˆ addr is not collision-
resistant. https://github.com/zcash/zcash/issues/836. Accessed: 2016-05-06.

19

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=891000&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F7168%2F19282%2F00891000
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=891000&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F7168%2F19282%2F00891000
https://github.com/zcash/zcash/issues/836

	1 Introduction
	2 Caution
	3 Conventions
	3.1 Integers, Bit Sequences, and Endianness
	3.2 Cryptographic Functions

	4 Concepts
	4.1 Payment Addresses and Keys
	4.2 Notes
	4.2.1 Note Commitments
	4.2.2 Nullifiers
	4.2.3 Note Plaintexts and Memo Fields

	4.3 Note Commitment Tree
	4.4 Nullifier Set
	4.5 The Blockchain

	5 JoinSplit Operations and Descriptions
	5.1 Computation of hSig
	5.2 Merkle root validity
	5.3 Non-malleability
	5.4 Balance
	5.5 Note Commitments and Nullifiers
	5.6 JoinSplit Circuit and Proofs

	6 In-band secret distribution
	6.1 Encryption
	6.2 Decryption by a Recipient
	6.3 Commentary

	7 Encoding Addresses and Keys
	7.1 Transparent Payment Addresses
	7.2 Transparent Private Keys
	7.3 Protected Payment Addresses
	7.4 Spending Keys

	8 Differences from the Zerocash paper
	8.1 Transaction Structure
	8.2 Unification of Mints and Pours
	8.3 Memo Fields
	8.4 Faerie Gold attack and fix
	8.5 Internal hash collision attack and fix
	8.6 Changes to PRF inputs and truncation
	8.7 In-band secret distribution
	8.8 Omission in Zerocash security proof
	8.9 Miscellaneous

	9 Acknowledgements
	10 Change history
	11 References

