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Abstract. Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash, with
security fixes and improvements to performance and functionality. It bridges the existing transparent
payment scheme used by Bitcoin with a shielded payment scheme secured by zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKSs). It attempted to address the problem of mining
centralization by use of the Equihash memory-hard proof-of-work algorithm.

This draft specification defines the Zcash consensus protocol at launch; after each of the upgrades
codenamed Overwinter, Sapling, Blossom, Heartwood, and Canopy; and proposed changes for NUS5.
It is a work in progress. Protocol differences from Zerocash and Bitcoin are also explained.
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1 Introduction

Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash [BCGGMTV2014], with
security fixes and improvements to performance and functionality. It bridges the existing transparent payment
scheme used by Bitcoin [Nakamoto2008] with a shielded payment scheme secured by zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKS).

In this document, technical terms for concepts that play an important réle in Zcash are written in slanted text,
which links to an index entry. Italics are used for emphasis and for references between sections of the document.
The symbol § precedes section numbers in cross-references.

The key words MUST, MUST NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this docu-
ment are to be interpreted as described in [RFC-2119] when they appear in ALL CAPS. These words may also appear
in this document in lower case as plain English words, absent their normative meanings.

The most significant changes from the original Zerocash are explained in § 8 ‘Differences from the Zerocash paper’
on p.137.

Changes specific to the Overwinter upgrade are highlighted in blue.

Changes specific to the Sapling upgrade following Overwinter are highlighted in green.

Changes specific to the Blossom upgrade following Sapling are highlighted in red.

Changes specific to the Heartwood upgrade following Blossom are highlighted in orange.

Changes specific to the Canopy upgrade following Heartwood are highlighted in purple.

Changes specific to the NUS5 proposal following Canopy are highlighted in slate blue.

All of these are also changes from Zerocash. The name Sprout is used for the Zcash protocol prior to Sapling (both
before and after Overwinter), and in particular its shielded protocol.

This specification is structured as follows:
- Notation — definitions of notation used throughout the document;
- Concepts — the principal abstractions needed to understand the protocol;
- Abstract Protocol — a high-level description of the protocol in terms of ideal cryptographic components;
- Concrete Protocol — how the functions and encodings of the abstract protocol are instantiated;
- Network Upgrades — the strategy for upgrading the Zcash protocol.

- Consensus Changes from Bitcoin — how Zcash differs from Bitcoin at the consensus layer, including the
Proof of Work;

- Differences from the Zerocash protocol — a summary of changes from the protocol in [BCGGMTV2014].
- Appendix: Circuit Design — details of how the Sapling circuits are defined as quadratic constraint programs.

- Appendix: Batching Optimizations — improvements to the efficiency of validating multiple signatures and
verifying multiple proofs.

1.1 Caution

Zcash security depends on consensus. Should a program interacting with the Zcash network diverge from con-
sensus, its security will be weakened or destroyed. The cause of the divergence doesn't matter: it could be a bug
in your program, it could be an error in this documentation which you implemented as described, or it could be
that you do everything right but other software on the network behaves unexpectedly. The specific cause will not
matter to the users of your software whose wealth is lost.

Having said that, a specification of intended behaviour is essential for security analysis, understanding of the
protocol, and maintenance of Zcash and related software. If you find any mistake in this specification, please file
an issue at https://github.com/zcash/zips/issues or contact <security@z.cash>.
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1.2 High-level Overview

The following overview is intended to give a concise summary of the ideas behind the protocol, for an audience
already familiar with block chain-based cryptocurrencies such as Bitcoin. It is imprecise in some aspects and is not
part of the normative protocol specification. This overview applies to Sprout, Sapling, and Orchard, differences in
the cryptographic constructions used notwithstanding.

Value in Zcash is either transparent or shielded. Transfers of transparent value work essentially as in Bitcoin and
have the same privacy properties. Shielded value is carried by notes?, which specify an amount and (indirectly) a
shielded payment address, which is a destination to which notes can be sent. As in Bitcoin, this is associated with a
private key that can be used to spend notes sent to the address; in Zcash this is called a spending key.

To each note there is cryptographically associated a note commitment. Once the transaction creating a note has
been mined, the note is associated with a fixed note position in a tree of note commitments, and with a nullifier?
unique to that note. Computing the nullifier requires the associated private spending key (or the nullifier deriving
key for Sapling or Orchard notes). It is infeasible to correlate the note commitment or note position with the
corresponding nullifier without knowledge of at least this key. An unspent valid note, at a given point on the block
chain, is one for which the note commitment has been publically revealed on the block chain prior to that point,
but the nullifier has not.

A transaction can contain transparent inputs, outputs, and scripts, which all work as in Bitcoin [Bitcoin-Protocol]. It
also can include JoinSplit descriptions, Spend descriptions, Output descriptions and Action descriptions. Together
these describe shielded transfers which take in shielded input notes, and/or produce shielded output notes. (For
Sprout, each joinSplit description handles up to two shielded inputs and up to two shielded outputs. For Sapling,
each shielded input or shielded output has its own description. For Orchard, each Action description handles up
to one shielded input and up to one shielded output.) It is also possible for value to be transferred between the
transparent and shielded domains.

The nullifiers of the input notes are revealed (preventing them from being spent again) and the commitments of the
output notes are revealed (allowing them to be spent in future). A transaction also includes computationally sound
zk-SNARK proofs and signatures, which prove that all of the following hold except with insignificant probability:

For each shielded input,

- [Sapling onward] there is a revealed value commitment to the same value as the input note;i
- if the value is nonzero, some revealed note commitment exists for this note;
- the prover knew the proof authorizing key of the note;

- the nullifier and note commitment are computed correctly.
and for each shielded output,

. [Sapling onward] there is a revealed value commitment to the same value as the output note;”
- the note commitment is computed correctly;

- it is infeasible to cause the nullifier of the output note to collide with the nullifier of any other note.

For Sprout, the JoinSplit statement also includes an explicit balance check. For Sapling and Orchard, the value
commitments corresponding to the inputs and outputs are checked to balance (together with any net transparent
input or output) outside the zk-SNARK.

In addition, various measures (differing between Sprout and Sapling or Orchard) are used to ensure that the
transaction cannot be modified by a party not authorized to do so.

2 In Zerocash [BCGGMTV2014], notes were called “coins”, and nullifiers were called “serial numbers”.

® For Orchard, each Action reveals a single value commitment to the net value spent by the Action, rather than one value commitment for
the input note and one for the output note.
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Outside the zk-SNARK, it is checked that the nullifiers for the input notes had not already been revealed (i.e. they
had not already been spent).

A shielded payment address includes a transmission key for a “key-private” asymmetric encryption scheme.
Key-private means that ciphertexts do not reveal information about which key they were encrypted to, except to a
holder of the corresponding private key, which in this context is called the receiving key. This facility is used to
communicate encrypted output notes on the block chain to their intended recipient, who can use the receiving
key to scan the block chain for notes addressed to them and then decrypt those notes.

In Sapling and Orchard, for each spending key there is a full viewing key that allows recognizing both incoming
and outgoing notes without having spend authority. This is implemented by an additional ciphertext in each Output
description or Action description.

The basis of the privacy properties of Zcash is that when a note is spent, the spender only proves that some
commitment for it had been revealed, without revealing which one. This implies that a spent note cannot be linked
to the transaction in which it was created. That is, from an adversary’s point of view the set of possibilities for a
given note input to a transaction —its note traceability set— includes all previous notes that the adversary does
not control or know to have been spent.i This contrasts with other proposals for private payment systems, such
as CoinJoin [Bitcoin-CoinJoin] or CryptoNote [vanSaberh2014], that are based on mixing of a limited number of
transactions and that therefore have smaller note traceability sets.

The nullifiers are necessary to prevent double-spending: each note on the block chain only has one valid nullifier,
and so attempting to spend a note twice would reveal the nullifier twice, which would cause the second transaction
to be rejected.

2 Notation

B means the type of bit values, i.e. {0, 1}. BY means the type of byte values, i.e. {0..255}.

N means the type of nonnegative integers. NT means the type of positive integers. Z means the type of integers.
Q means the type of rationals.

x ¢ T is used to specify that « has type T'. A cartesian product type is denoted by S x T, and a function type by
S — T. An argument to a function can determine other argument or result types.

The type of a randomized algorithm is denoted by S & T. The domain of a randomized algorithm may be (),
indicating that it requires no arguments. Given f : S & T and s : S, sampling a variable x : T from the output of f
applied to s is denoted by 2 & f(s).

Initial arguments to a function or randomized algorithm may be written as subscripts, e.g. if z : X,y : Y, and
f X xY — Z, then an invocation of f(z,y) can also be written f,(y).

{z : T| p,} means the subset of  from T for which p,, (a boolean expression depending on z) holds.
T C U indicates that 7' is an inclusive subset or subtype of U.

S UT means the set union of S and 7.

S NT means the set intersection of Sand T, i.e. {x : S|z € T}.

S\ T means the set difference obtained by removing elements in T’ from S, i.e. {x : S|z ¢ T}.

x: T+ e, : U means the function of type T' — U mapping formal parameter z to e, (an expression depending
on z). The types T"and U are always explicit.

r:Trgye, :Umeansz : T — e, : UUV restricted to the domain {z : T'| e, ¢ V'} and range U.

* We make this claim only for fully shielded transactions. It does not exclude the possibility that an adversary may use data present in
the cleartext of a transaction such as the number of inputs and outputs, or metadata-based heuristics such as timing, to make proba-
bilistic inferences about transaction linkage. For consequences of this in the case of partially shielded transactions, see [Peterson2017],
[Quesnelle2017], and [KYMM2018].
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9P(T) means the powerset of T.

1 is a distinguished value used to indicate unavailable information, a failed decryption or validity check, or an
exceptional case.

T, where T'is a type and / is an integer, means the type of sequences of length ¢ with elements in T'. For example,
B means the set of sequences of ¢ bits, and BY" means the set of sequences of k bytes.

B means the type of byte sequences of arbitrary length.
length(S) means the length of (number of elements in) S.
truncate, (S) means the sequence formed from the first k£ elements of S.

0x followed by a string of monospace hexadecimal digits means the corresponding integer converted from hexadec-
imal. [0x00]° means the sequence of / zero bytes.

“

..” means the given string represented as a sequence of bytes in US-ASCII. For example, “abc” represents the
byte sequence [0x61, 0x62, 0x63 ].

[0]° means the sequence of ¢ zero bits. [1]* means the sequence of £ one bits.

a..b, used as a subscript, means the sequence of values with indices a through b inclusive. For example, aj" yrev

means the sequence [api'1, apk.a, - ane ). (For consistency with the notation in [BCGGMTV2014] and in [BK2016],

this specification uses 1-based indexing and inclusive ranges, notwithstanding the compelling arguments to the
contrary made in [EWD-831].)

{a..b} means the set or type of integers from a through b inclusive.

[ f(z) for x from a up to b | means the sequence formed by evaluating f on each integer from a to b inclusive, in
ascending order. Similarly, [ f(x) for « from a down to b ] means the sequence formed by evaluating f on each
integer from a to b inclusive, in descending order.

a || b means the concatenation of sequences a then b.

concaty(S) means the sequence of bits obtained by concatenating the elements of S as bit sequences.
sorted(S) means the sequence formed by sorting the elements of S.

F,, means the finite field with n elements, and F;, means its group under multiplication (which excludes 0).

Where there is a need to make the distinction, we denote the unique representative of a : I, in the range {0..n — 1}
(or the unique representative of a : IF;, in the range {1..n — 1}) as @ mod n. Conversely, we denote the element of I,
corresponding to an integer k : Z as k (mod n). We also use the latter notation in the context of an equality k = &’
(mod n) as shorthand for k mod n = k" mod n, and similarly k # &’ (mod n) as shorthand for £ mod n # k&’ mod n.
(When referring to constants such as 0 and 1 it is usually not necessary to make the distinction between field
elements and their representatives, since the meaning is normally clear from context.)

[, [2] means the ring of polynomials over z with coefficients in F,,.

a + b means the sum of a and b. This may refer to addition of integers, rationals, finite field elements, or group
elements (see §4.1.9 ‘Represented Group’ on p.30) according to context.

—a means the value of the appropriate integer, rational, finite field, or group type such that (—a) + a = 0 (or when a
is an element of a group G, (—a) + a = Og), and a — b means a + (—b).

a - b means the product of multiplying a and b. This may refer to multiplication of integers, rationals, or finite field
elements according to context (this notation is not used for group elements).

a/b, also written % means the value of the appropriate integer, rational, or finite field type such that (a/b) - b = a.

amod ¢, fora : Nand ¢ : N*, means the remainder on dividing a by ¢. (This usage does not conflict with the notation
above for the unique representative of a field element.)
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a & b means the bitwise-exclusive-or of a and b, and a & b means the bitwise-and of a and b. These are defined
on integers (which include bits and bytes), or elementwise on equal-length sequences of integers, according to
context.

N N N
Z a; means the sum of a; . H a; means the product of a;_ . @ a; means the bitwise exclusive-or of a;_y.

i=1 i=1 =1

0 0 0
When N = 0 these yield the appropriate neutral element, i.e. Zizlai =0, Hi:lai =1,and ®i:1ai = 0 or the
all-zero bit sequence of length given by the type of a.

Va' where a : FF,. means the positive square root of a in I, i.e. in the range {0.. %1 }. Itis only used in cases where
the square root must exist.

Va' where a : [F,. means an arbitrary square root of a in [, or L if no such square root exists.
b?x:ymeansz whenb=1,orywhenb=0.
a’, for a an integer or finite field element and b : Z, means the result of raising a to the exponent b, i.e.

[T aifo>0

b .
H, -, otherwise.
la

i=

The [k] P notation for scalar multiplication in a group is defined in §4.1.9 ‘Represented Group’ on p. 30.

The convention of affixing * to a variable name is used for variables that denote bit-sequence representations of
group elements.

The binary relations <, <, =, >, and > have their conventional meanings on integers and rationals, and are defined
lexicographically on sequences of integers.

floor(z) means the largest integer < x. ceiling () means the smallest integer > .
bitlength(z), for 2 : N, means the smallest integer ¢ such that 2 > z.
The following integer constants will be instantiated in § 5.3 ‘Constants’ on p.70:

MerkleDepth®P", MerkISeDepthsapli"g, l\/IeSrkIeDepthorChard, eﬁs,,"e'fr_“,;, eﬁ;;ﬁ% e‘?ﬂgﬁgdo , 1;1': 1\(1);v f' Cnsig Lome™,

t t ) )Or r
gPRFexpandv EPRanSapIingr ercpéou ’ ESeed' gaskv E(pprou ’ gskv gd' édkv eivip Iﬂg’ ovk:’ Kscaaﬁal:]gv ("scaclaf ’ (bgsce . ’ MAX—MONEYv
BlossomActivationHeight, CanopyActivationHeight, ZIP212GracePeriod, SlowStartInterval, PreBlossomHalvingInterval,
MaxBlockSubsidy, NumFounderAddresses, PoWLimit, PoWAveragingWindow, PoWMedianBlockSpan,

PoWDampingFactor, PreBlossomPoW TargetSpacing, and PostBlossomPoW TargetSpacing.

The rational constants FoundersFraction, PoWMaxAdjustDown, and PoWMaxAdjustUp, and the bit sequence constants
Sprout Sapling

Uncommitted P : Blfweiel Uncommitted®® ™ ¢ Blvee] and Uncommitted®™™ - P will also be defined in that
section.

We use the abbreviation “ctEdwards” to refer to complete twisted Edwards elliptic curves and coordinates (see
§5.4.9.3 Jubjub’ on p.98).
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3 Concepts

3.1 Payment Addresses and Keys

Users who wish to receive shielded payments in the Zcash protocol must have a shielded payment address, which
is generated from a spending key.

The following diagram depicts the relations between key components in Sprout and Sapling and Orchard. Arrows
point from a component to any other component(s) that can be derived from it. Double lines indicate that the same
component is used in multiple abstractions.

Sprout Sapling Orchard
Shielded payment address Shielded payment address Shielded payment address
— — —

. Transmission . . Transmission . o Transmission
Paying key Apk PKenc Diversifier { d—— pKgq Diversifier ( d ————> pKgq

key key key
index
Incoming Receiving Incoming f Incoming : Outgoing
viewing key { Bk SKenc key viewing key JE viewing key ivk viewing key

Full Outgoing
viewing key { ak nk ovk viewing key

Proof author- Cak nsk)

izing key

@ Expanded { ask nsk | ovk
spending key

Spending key

Full
viewing key

sk

Spending key Spending key

[Sprout] The receiving key ske,., incoming viewing key ivk = (ay, skenc), and shielded payment address addr,, =
(apk; Pkenc) are derived from the spending key ag, as described in §4.2.1 ‘Sprout Key Components’ on p. 33.

[Sapling onward] An expanded spending key is composed of a Spend authorizing key ask, a nullifier private key nsk,
and an outgoing viewing key ovk. From these components we can derive an proof authorizing key (ak, nsk), a full
viewing key (ak, nk, ovk), an incoming viewing key ivk, and a set of diversified payment addresses addry = (d, pky),
as described in §4.2.2 ‘Sapling Key Components’ on p. 34.

The consensus protocol does not depend on how an expanded spending key is constructed. Two methods of doing
so are defined:
1. Generate a spending key sk at random and derive the expanded spending key (ask, nsk, ovk) from it, as shown
in the diagram above and described in §4.2.2 ‘Sapling Key Components’ on p. 34.

2. Obtain an extended spending key as specified in [ZIP-32]; this includes a superset of the components of an
expanded spending key. This method is used in the context of a Hierarchical Deterministic Wallet.

[NU5 onward] An Orchard spending key sk is used to derive a Spend authorizing key ask, and a full viewing key
(ak, nk, rivk). From the full viewing key we can also derive an incoming viewing key (composed of a diversifier
key dk and a K AOrehard private key ivk), an outgoing viewing key ovk, and a set of diversified payment addresses
addry = (d, pky), as described in §4.2.3 ‘Orchard Key Components’ on p. 36.

Non-normative note: In zcashd, all Sapling and Orchard keys and addresses are derived according to [ZIP-32].

The composition of shielded payment addresses, incoming viewing keys, full viewing keys, and spending keys is
a cryptographic protocol detail that should not normally be exposed to users. However, user-visible operations
should be provided to obtain a shielded payment address, incoming viewing key, or full viewing key from a
spending key or extended spending key.
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Users can accept payment from multiple parties with a single shielded payment address and the fact that these
payments are destined to the same payee is not revealed on the block chain, even to the paying parties. However if
two parties collude to compare a shielded payment address they can trivially determine they are the same. In the
case that a payee wishes to prevent this they should create a distinct shielded payment address for each payer.

[Sapling onward] Sapling and Orchard provide a mechanism to allow the efficient creation of diversified payment
addresses with the same spending authority. A group of such addresses shares the same full viewing key and
incoming viewing key, and so creating as many unlinkable addresses as needed does not increase the cost of
scanning the block chain for relevant transactions.

Note: It is conventional in cryptography to call the key used to encrypt a message in an asymmetric encryption
scheme a “public key” However, the public key used as the transmission key component of an address (pkepe O pky)
need not be publically distributed; it has the same distribution as the shielded payment address itself. As mentioned
above, limiting the distribution of the shielded payment address is important for some use cases. This also helps
to reduce reliance of the overall protocol on the security of the cryptosystem used for note encryption (see §4.18
‘In-band secret distribution (Sprout) on p.62 and §4.19 ‘In-band secret distribution (Sapling and Orchard)’ on
p. 63), since an adversary would have to know pk.,. or some pky in order to exploit a hypothetical weakness in that
cryptosystem.

3.2 Notes

A note (denoted n) can be a Sprout note or a Sapling note or an Orchard note. In each case it represents that
a value v is spendable by the recipient who holds the spending key corresponding to a given shielded payment
address.

Let MAX_MONEY, 8?,‘,’{;“, CpREnfsapling: La- and £, be as defined in §5.3 ‘Constants’ on p.70.
Let NoteCommit>™°"* be as defined in §5.4.8.1 ‘Sprout Note Commitments’ on p.91.

Let NoteCommit>*"™"€ be as defined in § 5.4.8.2 ‘Windowed Pedersen commitments’ on p.92.
Let KA>*'"€ be as defined in §5.4.5.3 ‘Sapling Key Agreement’ on p. 86.

Let DiversifyHash>*™ be as defined in § 5.4.1.6 ‘DiversifyHash>**""€ and DiversifyHash® "™ Hash Functions’ onp.75.

Let NoteCommit®™™ be as defined in § 5.4.8.4 ‘Sinsemilla commitments’ on p.94.

Let KA®™"™ be as defined in §5.4.5.5 ‘Orchard Key Agreement’ on p. 86.

Let DiversifyHash®™"*“be as defined in § 5.4.1.6 ‘DiversifyHash®>**""¢ and DiversifyHash®""*® Hash Functions’ on p.75.
Let PRF"O " he a5 defined in §5.4.2 ‘Pseudo Random Functions’ on p. 83.

Let gp be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.101.

A Sprout note is a tuple (ay, v, p, rcm), where:

Sprout:

© Apk Blre | is the paying key of the recipient’s shielded payment address;
- v:{0..MAX_MONEY} is an integer representing the value of the note in zatoshi (1 ZEC = 10® zatoshi);

Sprou
Cp: B[Epg; ‘] anSprout
Ask

is used as input to PR to derive the nullifier of the note;

. t
. rcm : NoteCommit P

p. 28.

.Trapdoor is a random commitment trapdoor as defined in §4.1.8 ‘Commitment’ on

Let Note®™°"* be the type of a Sprout note, i.e.

Sprout

Sprout:
Note>™t .= BI%= | x {0.. MAX_MONEY} x BI%* | x NoteCommit>°" Trapdoor.
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A Sapling note is a tuple (d, pky, v, rcm), where:
- d : B is the diversifier of the recipient’s shielded payment address;

- pky : KAS*P™"€ pyblicPrimeSubgroup is the diversified transmission key of the recipient’s shielded payment
address;

- v: {0..MAX_MONEY} is an integer representing the value of the note in zatoshi;

- rem ¢ NoteCommit>*P"€ Trapdoor is a random commitment trapdoor as defined in §4.1.8 ‘Commitment’ on
p. 28.

Let Note®>*"8 be the type of a Sapling note, i.e.
Note>P"e .— Bla) 5 KASP'ME PyplicPrimeSubgroup x {0.. MAX_MONEY} x NoteCommit>*"""¢ Trapdoor.

An Orchard note is a tuple (d, pky, v, p, P, rcm), where:
- d : B! is the diversifier of the recipient’s shielded payment address;

- pkq : KA?™ pyplic is the diversified transmission key of the recipient’s shielded payment address;

- v: {0..2%w_1} is an integer representing the value of the note in zatoshi;

fOrchard

- p: F,, is used as input to PRFy, as part of deriving the nullifier of the note;

- ¢ [, is additional randomness used in deriving the nullifier;

. rcm 2 NoteCommit©rehard

p- 28.

.Trapdoor is a random commitment trapdoor as defined in §4.1.8 ‘Commitment’ on

Let Note®" be the type of an Orchard note, i.e.

Note®rehard .— plll x KAC™"d pyblic x {0..2%me_1} x F,, x T, x NoteCommit° ™™ Trapdoor.

Creation of new notes is described in §4.7 ‘Sending Notes’ on p.41. When notes are sent, only a commitment (see
§4.1.8 ‘Commitment’ on p.28) to the above values is disclosed publically, and added to a data structure called the
note commitment tree. This allows the value and recipient to be kept private, while the commitment is used by the
zk-SNARK proof when the note is spent, to check that it exists on the block chain.

A Sprout note commitment on a note n = (apk, v, P, rcm) is computed as

NoteCommitmentP"(n) = NoteCommitrscpnT“t(apk, v, p),

where NoteCommit®""*is instantiated in §5.4.8.1 ‘Sprout Note Commitments’ on p. 91.

A Sapling note commitment on a note n = (d, pkq, v, rcm) is computed as

g4 = DiversifyHash>*""&(d)

1, ifg, =1L
Sapling

Sapling(n) L

NoteCommitment = )
NoteCommit

(repry(gq), repry(pky),v), otherwise.

where NoteCommit>**"€ is instantiated in §5.4.8.2 ‘Windowed Pedersen commitments’ on p. 92.

Notice that the above definition of a Sapling note does not have a p field. There is in fact a p value associated with
each Sapling note, but this can only be computed once its position in the note commitment tree is known (see § 3.4
“Transactions and Treestates’ on p.16 and § 3.8 ‘Note Commitment Trees’ on p.19). We refer to the combination
of a note and its note position pos, as a positioned note.

For a positioned note, we can compute the value p as described in §4.16 ‘Note Commitments and Nullifiers’ on
p- 55.
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An Orchard note commitment on a note n = (d, pky, v, p, P, rcm) is computed as

g4 := DiversifyHash®""(d)

NoteCommitment®™(n) := NoteCommitare"(reprp(g4), reprs(pky ), v, 0, )
where NoteCommit®* " is instantiated in §5.4.8.4 ‘Sinsemilla commitments’ on p.94.
Orchard

If NoteCommit returns L (which happens with insignificant probability), the note is invalid and should be
recreated with a different rseed.

Unlike in Sapling, the definition of an Orchard note includes the p field; the note’s position in the note commitment
tree does not need to be known in order to compute this value.

The nullifier of a note is denoted nf.
A nullifier for a Sprout note is derived from the p value and the recipient’s spending key ag.
A nullifier for a Sapling note is derived from the p value and the recipient’s nullifier deriving key nk.

A nullifier for an Orchard note is derived from the p and { values, the recipient’s nullifier deriving key nk, and the
note commitment.

The nullifier computation uses a Pseudo Random Function (see §4.1.2 ‘Pseudo Random Functions’ on p.22), as
described in §4.16 ‘Note Commitments and Nullifiers’ on p. 55.

A note is spent by proving knowledge of (p, ay) or (p, ak, nsk) or (p, ak, nk) in zero knowledge while publically
disclosing the note’s nullifier nf, allowing nf to be used to prevent double-spending. For Sapling and Orchard, a
spend authorization signature is also required, in order to demonstrate knowledge of ask.

3.2.1 Note Plaintexts and Memo Fields

Transmitted notes are stored on the block chain in encrypted form, together with a representation of the note
commitment cm.

The note plaintexts in each JoinSplit description are encrypted to the respective transmission keys pkgne | yrew.

Each Sprout note plaintext (denoted np) consists of

Sprout.

(leadByte : BY, v : {0..2%4—1}, p : B | rcm : NoteCommit>™°“* Trapdoor, memo : BY[°12).
[Sapling onward] The note plaintext in each Output description or Action description is encrypted to the diversified
payment address (d, pky).

Each Sapling or Orchard note plaintext (denoted np) consists of

(leadByte : BY, d : Bl v : {0..2%w—1}, rseed : BY®Y memo : BY(!Y)

The fields d and v are as defined in § 3.2 ‘Notes’ on p.13.
The field rseed is described in §4.7.2 ‘Sending Notes (Sapling)’ on p.42.

memo represents a 512-byte memo field associated with this note. The usage of the memo field is by agreement
between the sender and recipient of the note.

Encodings are given in § 5.5 ‘Encodings of Note Plaintexts and Memo Fields’ on p.108. The result of encryption
forms part of a transmitted note(s) ciphertext. For further details, see §4.18 Tn-band secret distribution (Sprout)
on p. 62 and §4.19 In-band secret distribution (Sapling and Orchard)’ on p. 63.
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3.3 The Block Chain

At a given point in time, each full validator is aware of a set of candidate blocks. These form a tree rooted at the
genesis block, where each node in the tree refers to its parent via the hashPrevBlock block header field (see § 7.6
‘Block Header Encoding and Consensus’ on p.127).

A path from the root toward the leaves of the tree consisting of a sequence of one or more valid blocks consistent
with consensus rules, is called a valid block chain.

Each block in a block chain has a block height. The block height of the genesis block is 0, and the block height of each
subsequent block in the block chain increments by 1. Implementations MUST support block heights up to and in-
cluding 23! —1. As of NUS5, there is a consensus rule that all coinbase transactions (see § 3.1 ‘Coinbase Transactions’
on p.20) MUST have the nExpiryHeight field set to the block height, and this limits the maximum block height to
2% _ 1, absent future consensus changes.

In order to choose the best valid block chain in its view of the overall block tree, a node sums the work, as defined
in §7.7.5 Definition of Work’ on p.132, of all blocks in each valid block chain, and considers the valid block chain
with greatest total work to be best. To break ties between leaf blocks, a node will prefer the block that it received
first.

The consensus protocol is designed to ensure that for any given block height, the vast majority of nodes should
eventually agree on their best valid block chain up to that height.

3.4 Transactions and Treestates

Each block contains one or more fransactions.

Each transaction has a transaction ID. Transaction IDs are used to refer to transactions in tx_out fields, in leaf
nodes of a block’s transaction tree rooted at hashMerkleRoot, and in other parts of the ecosystem; for example
they are shown in block chain explorers and can be used in higher-level protocols. Version 5 transactions also
have a wtxid, which is used instead of the transaction ID when gossiping transactions in the peer-to-peer protocol
[Z1P-239]. The computation of transaction IDs and wixids is described in § 7.1.1 “Transaction Identifiers’ on p.120.
For more detail on the distinction between these two identifiers and when to use each of them, see [ZIP-239] and
[ZIP-244].

Transparent inputs to a transaction insert value into a transparent transaction value pool associated with the
transaction, and transparent outputs remove value from this pool. As in Bitcoin, the remaining value in the
transparent transaction value pool of a non-coinbase transaction is available to miners as a fee. The remaining
value in the transparent transaction value pool of a coinbase transaction is destroyed.

Consensus rule: The remaining value in the transparent transaction value pool MUST be nonnegative.
To each transaction there are associated initial treestates for Sprout and for Sapling and for Orchard. Each treestate

consists of:

- a note commitment tree (§ 3.8 ‘Note Commitment Trees’ on p.19);

- a nullifier set (§3.9 ‘Nullifier Sets’ on p.19).

Validation state associated with transparent inputs and outputs, such as the UTXO (Unspent Transaction Output)
set, is not described in this document; it is used in essentially the same way as in Bitcoin.

An anchor is a Merkle tree root of a note commitment tree (either the Sprout tree or the Sapling tree or the Orchard
tree). It uniquely identifies a note commitment tree state given the assumed security properties of the Merkle tree’s
hash function. Since the nullifier set is always updated together with the note commitment tree, this also identifies
a particular state of the associated nullifier set.
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In a given block chain, for each of Sprout and Sapling and Orchard, treestates are chained as follows:
- The input treestate of the first block is the empty treestate.
- The input treestate of the first transaction of a block is the final treestate of the immediately preceding block.

- The input treestate of each subsequent transaction in a block is the output treestate of the immediately
preceding transaction.

- The final treestate of a block is the output treestate of its last transaction.

JoinSplit descriptions also have interstitial input and output treestates for Sprout, explained in the following section.
There is no equivalent of interstitial treestates for Sapling or for Orchard.

3.5 JoinSplit Transfers and Descriptions

A JoinSplit description is data included in a transaction that describes a JoinSplit transfer, i.e. a shielded value
transfer. In Sprout, this kind of value transfer was the primary Zcash-specific operation performed by transactions.

old new

A JoinSplit transfer spends N°“ notes n‘i'_‘_’No\d and transparent input va., and creates N™" notes n}®y and trans-
parent output vpop. It is associated with a JoinSplit statement instance (§4.17.1 ‘JoinSplit Statement (Sprout)’ on

p.57), for which it provides a zk-SNARK proof .
Each transaction has a sequence of JoinSplit descriptions.

The total vl value adds to, and the total v3s, value subtracts from the transparent transaction value pool of the
containing fransaction.

The anchor of each JoinSplit description in a transaction refers to a Sprout treestate.

For each of the N° shielded inputs, a nullifier is revealed. This allows detection of double-spends as described in
§3.9 ‘Nullifier Sets’ on p.19.

For each JoinSplit description in a transaction, an interstitial output treestate is constructed which adds the note
commitments and nullifiers specified in that JoinSplit description to the input treestate referred to by its anchor.
This interstitial output treestate is available for use as the anchor of subsequent joinSplit descriptions in the same
transaction. In general, therefore, the set of interstitial treestates associated with a transaction forms a tree in which
the parent of each node is determined by its anchor.

Interstitial treestates are necessary because when a transaction is constructed, it is not known where it will
eventually appear in a mined block. Therefore the anchors that it uses must be independent of its eventual position.

Consensus rules:
- The input and output values of each joinSplit transfer MUST balance exactly.

- For the first JoinSplit description of a transaction, the anchor MUST be the output Sprout treestate of a
previous block.

- The anchor of each JoinSplit description in a transaction MUST refer to either some earlier block’s final
Sprout treestate, or to the interstitial output treestate of any prior JoinSplit description in the same transaction.

3.6 Spend Transfers, Output Transfers, and their Descriptions

JoinSplit transfers are not used for Sapling notes. Instead, there is a separate Spend transfer for each shielded
input, and a separate Output transter for each shielded output.

Spend descriptions and Output descriptions are data included in a transaction that describe Spend transfers and
Output transfers, respectively.

A Spend transfer spends a note n®°. Its Spend description includes a Pedersen value commitment to the value of

the note. It is associated with an instance of a Spend statement (§4.17.2 ‘Spend Statement (Sapling)’ on p. 58) for
which it provides a zk-SNARK proof .
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new

An Output transfer creates a note n""". Similarly, its Output description includes a Pedersen value commitment to
the note value. It is associated with an instance of an Output statement (§4.17.3 ‘Output Statement (Sapling)’ on
p. 59) for which it provides a zk-SNARK proof .

Each transaction has a sequence of Spend descriptions and a sequence of Output descriptions.

To ensure balance, we use a homomorphic property of Pedersen commitments that allows them to be added
and subtracted, as elliptic curve points (§5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’
on p. 93). The result of adding two Pedersen value commitments, committing to values v; and v, is a new Pedersen
value commitment that commits to v; + v,. Subtraction works similarly.

Therefore, balance can be enforced by adding all of the value commitments for shielded inputs, subtracting all of
the value commitments for shielded outputs, and proving by use of a Sapling binding signature (as described in
§4.13 ‘Balance and Binding Signature (Sapling)’ on p.49) that the result commits to a value consistent with the
net transparent value change. This approach allows all of the zk-SNARK statements to be independent of each
other, potentially increasing opportunities for precomputation.

A Spend description specifies an anchor, which refers to the output Sapling treestate of a previous block. It also
reveals a nullifier, which allows detection of double-spends as described in § 3.9 ‘Nullifier Sets’ on p.19.

Non-normative note: Interstitial treestates are not necessary for Sapling, because a Spend transfer in a given
transaction cannot spend any of the shielded outputs of the same transaction. This is not an onerous restriction
because, unlike Sprout where each JoinSplit transfer must balance individually, in Sapling it is only necessary for
the whole transaction to balance.

Consensus rules:

balanceSapling

- The Spend transfers and Action transfers of a transaction MUST be consistent with its v value as

specified in §4.13 ‘Balance and Binding Signature (Sapling)’ on p. 49.

- The anchor of each Spend description MUST refer to some earlier block’s final Sapling treestate. The anchor
is encoded separately in each Spend description for v4 transactions, or encoded once and shared between all
Spend descriptions in a v5 transaction.

3.7 Action Transfers and their Descriptions

Orchard introduces Action transfers, each of which can optionally perform a spend, and optionally perform an
output.

Action descriptions are data included in a transaction that describe Action transfers.

; Id , PR
An Action transfer spends a note n°°, and creates a note n"*". Its Action description includes a Pedersen value

commitment to the net value, i.e. the value of the spent note minus the value of the created note. It is associated
with an instance of an Action statement (§4.17.4 ‘Action Statement (Orchard)’ on p.60) for which it provides a
zk-SNARK proof .

Each version 5 transaction has a sequence of Action descriptions. Version 4 transactions cannot contain Action
descriptions.

As in Sapling, we use the homomorphic property of Pedersen commitments to enforce balance: we add all of the
value commitments and prove by use of an Orchard binding signature that the result commits to a value consistent
with the net transparent value change (as described in § 4.14 ‘Balance and Binding Signature (Orchard)’ on p.52).
This approach allows all of the zk-SNARK statements to be independent of each other, potentially increasing
opportunities for precomputation.

The fields of an Action description are essentially a merger of the fields of a Spend description and an Output
description, but with only a single value commitment. Also, the zk-SNARK proof is encoded outside the Action
description, in order to more easily take advantage of space and performance optimizations in the Halo 2 proof
system (§5.4.10.3 ‘Halo 2’ on p.108) that apply when multiple proofs are aggregated. An Action description does not
include an anchor, because that is encoded once in the anchorOrchard field of the transaction.
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Non-normative note:  As with Sapling, interstitial treestates are not necessary for Orchard, because an Action
transfer in a given transaction cannot spend any of the shielded outputs of the same transaction.

Consensus rules:

. The Action transfers of a transaction MUST be consistent with its yP2!anceOrehard

‘Balance and Binding Signature (Orchard)’ on p.52.

value as specified in §4.14

- The anchorOrchard field of the transaction, whenever it exists (i.e. when there are any Action descriptions),
MUST refer to some earlier block’s final Orchard treestate.

3.8 Note Commitment Trees

Let /3Pt MerkleDepth®™®" (32PI"E MerkleDepth®®"8 /0" and MerkleDepth® " “be as defined in §5.3 ‘Constants’
on p.70.

rt
/\
K
cm, cm, cm, cmy cmy ?

A note commitment tree is an incremental Merkle tree of fixed depth used to store note commitments that JoinSplit
transfers or Spend transfers or Action transters produce. Just as the unspent transaction output set (UTXO set)
used in Bitcoin, it is used to express the existence of value and the capability to spend it. However, unlike the UTXO
set, it is not the job of this tree to protect against double-spending, as it is append-only.

A root of a note commitment tree is associated with each treestate (§ 3.4 “Transactions and Treestates’ on p.16).

: , : : . . /Sprout __/Sapli Orchard 1.
Each node in the incremental Merkle tree is associated with a hash value of size {yp. . or (o '8 or /W' bits. The

layer numbered h, counting from layer 0 at the root, has 2" nodes with indices 0 to 2" — 1 inclusive. The hash
value associated with the node at index i in layer h is denoted M.

The index of a note’'s commitment at the leafmost layer (MerkIeDepthSprOUt or MerkleDepthSapling or MerkIeDepthorChard)
is called its note position.

Consensus rules:

- A block MUST NOT add Sprout note commitments that would result in the Sprout note commitment tree

MerkleDepth """

exceeding its capacity of 2 leaf nodes.

- [Sapling onward] A block MUST NOT add Sapling note commitments that would result in the Sapling note
MerkleDepthsap“"g

commitment tree exceeding its capacity of 2 leaf nodes.
- [NU5 onward] A block MUST NOT add Orchard note commitments that would result in the Orchard note
Orchard
commitment tree exceeding its capacity of 2M¢™PP™ " Jaaf nodes.

3.9 Nullifier Sets

Each full validator maintains a nullifier set logically associated with each treestate. As valid transactions containing
JoinSplit transfers or Spend transfers or Action transters are processed, the nullifiers revealed in JoinSplit descrip-
tions and Spend descriptions and Action descriptions are inserted into the nullifier set associated with the new
treestate. Nullifiers are enforced to be unique within a valid block chain, in order to prevent double-spends.
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Consensus rule: A nullifier MUST NOT repeat either within a transaction, or across transactions in a valid block
chain. Sprout and Sapling and Orchard nullifiers are considered disjoint, even if they have the same bit pattern.

3.10 Block Subsidy, Funding Streams, and Founders’ Reward

Like Bitcoin, Zcash creates currency when blocks are mined. The value created on mining a block is called the
block subsidy.

[Pre-Canopy] The block subsidy is composed of a miner subsidy and a Founders’Reward.

[Canopy onward] The block subsidy is composed of a miner subsidy and a series of funding streams.

As in Bitcoin, the miner of a block also receives transaction fees.

The calculations of the block subsidy, miner subsidy, Founders’Reward, and funding streams depend on the block
height, as defined in § 3.3 The Block Chain’ on p.16.

The calculations are described in § 7.8 ‘Calculation of Block Subsidy, Funding Streams, and Founders’ Reward’
on p.132.

3.11 Coinbase Transactions
The first (and only the first) fransaction in a block is a coinbase transaction, which collects and spends any miner
subsidy and transaction fees paid by transactions included in this block.

[Pre-Canopy] As described in § 7.9 ‘Payment of Founders’ Reward’ on p.133, the coinbase transaction MUST also
pay the Founders’Reward.

[Canopy onward] As described in § 710 ‘Payment of Funding Streams’ on p.135, the coinbase transaction MUST
also pay the funding streams.

3.12 Mainnet and Testnet

The production Zcash network, which supports the ZEC token, is called Mainnet. Governance of its protocol is
by agreement between the Electric Coin Company and the Zcash Foundation [ECCZF2019]. Subject to errors and
omissions, each version of this document intends to describe some version (or planned version) of that agreed
protocol.

All block hashes given in this section are in RPC byte order (that is, byte-reversed relative to the normal order for a
SHA-256 hash).

Mainnet genesis block: 00040fe8ec8471911baaldb1266ea15dd06b4a8abc453883c000b031973dce08
Mainnet Canopy activation block: 00000000002038016£976744c369dce7419fca30e7171dfac703afbe5f7ad1d4

There is also a public test network called Testnet. It supports a TAZ token which is intended to have no monetary
value. By convention, Testnet activates network upgrades (as described in § 6 ‘Network Upgrades’ on p.117) before
Mainnet, in order to allow for errors or ambiguities in their specification and implementation to be discovered.
The Testnet block chain is subject to being rolled back to a prior block at any time.

Testnet genesis block: 05a60a92d99d85997cce3b87616c089f6124d7342af37106edc76126334a2c38

Testnet Canopy activation block: 01a4d7c6aada30c87762c1bf33ff£5df7266b1fd7616bfdb5227fab9bd79e7a2
We call the smallest units of currency (on either network) zatoshi.

On Mainnet, 1 ZEC = 10° zatoshi. On Testnet, 1 TAZ = 10° zatoshi.

Other networks using variants of the Zcash protocol may exist, but are not described by this specification.
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4 Abstract Protocol

‘We all know that the only mental tool by means of which a very finite piece of reasoning
can cover a myriad cases is called “abstraction”; as a result the effective exploitation of
[their] powers of abstraction must be regarded as one of the most vital activities of a
competent programmer. In this connection it might be worth-while to point out that the
purpose of abstracting is not to be vague, but to create a new semantic level in which
one can be absolutely precise.”
— Edsger Dijkstra, “The Humble Programmer” [EWD-340]

Abstraction is an incredibly important idea in the design of any complex system. Without abstraction, we would
not be able to design anything as ambitious as a computer, or a cryptographic protocol. Were we to attempt it, the
computer would be hopelessly unreliable or the protocol would be insecure, if they could be completed at all.

The aim of abstraction is primarily to limit how much a human working on a piece of a system has to keep in mind
at one time, in order to apprehend the connections of that piece to the remainder. The work could be to extend or
maintain the system, to understand its security or other properties, or to explain it to others.

In this specification, we make use wherever possible of abstractions that have been developed by the cryptography
community to model cryptographic primitives: Pseudo Random Functions, commitment schemes, signature
schemes, etc. Each abstract primitive has associated syntax (its interface as used by the rest of the system) and
security properties, as documented in this part. Their instantiations are documented in part § 5 ‘Concrete Protocol’
on p.70.

In some cases this syntax or these security requirements have been extended to meet the needs of the Zcash
protocol. For example, some of the PRFs used in Zcash need to be collision-resistant, which is not part of the usual
security requirement for a PRF; some signature schemes need to support additional functionality and security
properties; and so on. Also, security requirements are sometimes intentionally stronger than what is known to be
needed, because the stronger property is simpler or less error-prone to work with, and/or because it has been
studied in the cryptographic literature in more depth.

We explicitly do not claim, however, that all of these instantiations satisfying their documented syntax and security
requirements would be sufficient for security or correctness of the overall Zcash protocol, or that it is always
necessary. The claim is only that it helps to understand the protocol; that is, that analysis or extension is simplified by
making use of the abstraction. In other words, a good way to understand the use of that primitive in the protocol
is to model it as an instance of the given abstraction. And furthermore, if the instantiated primitive does not in fact
satisfy the requirements of the abstraction, then this is an error that should be corrected -whether or not it leads to
a vulnerability- since that would compromise the facility to understand its use in terms of the abstraction.

In this respect the abstractions play a similar réle to that of a type system (which we also use): they add a form of
redundancy to the specification that helps to express the intent.

Each property is a claim that may be incorrect (or that may be insufficiently precisely stated to determine whether
it is correct). An example of an incorrect security claim occurs in the Zerocash protocol: the instantiation of
the note commitment scheme used in Zerocash failed to be binding at the intended security level (see §8.5
‘Internal hash collision attack and fix’ on p.140).

Another hazard that we should be aware of is that abstractions can be “leaky”: an instantiation may impose
conditions on its correct or secure use that are not captured by the abstraction’s interface and semantics. Ideally,
the abstraction would be changed to explicitly document these conditions, or the protocol changed to rely only on
the original abstraction.

An abstraction can also be incomplete (not quite the same thing as being leaky): it intentionally -usually for
simplicity- does not model an aspect of behaviour that is important to security or correctness. An example would
be resistance to side-channel attacks; this specification says little about side-channel defence, among many other
implementation concerns.
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4.1 Abstract Cryptographic Schemes
4.11 Hash Functions

Let MerkleDepth>™, /2P%% MerkleDepth>""", (328 MerkleDepth O™, gorhard g5epling g pe o\, 6502 £, 6., and N
be as defined in § 5.3 ‘Constants’ on p.70.

Let J, J®, I r;, and ¢; be as defined in §5.4.9.3 ‘Jubjub’ on p. 98.
Let P* be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.10L
The following hash functions are used in §4.9 ‘Merkle Path Validity’ on p.46:

Sprout Sprout Sprout
MerkleCRHSP ;{0 MerkleDepth™*"t — 1} x Blfeniel x pllviencel _ plvac

Sapling Savling Sap\ing]

MerkleCRH*"""8 = £0 . MerkleDepth>®P"& — 11 x Blfwere] 5 pltwene] _y plloence
MerkleCRHO™ " = {0 .. MerkleDepth®™™™ — 1} x P, x P, —P,.

MerkleCRH>P""is collision-resistant except on its first argument. MerkleCRH>**" and MerkleCRHY“"*“ are collision-
resistant on all their arguments.

These functions are instantiated in §5.4.1.3 ‘Merkle Tree Hash Function’ on p.73.

Sprout old
hSigCRH : Blfswal x Blfere 1INTT o JoinSplitSig.Public — Bl%sel is a collision-resistant hash function used in §4.3

‘JoinSplit Descriptions’ on p.37. It is instantiated in §5.4.14 ‘hs;; Hash Function’ on p.74.

EquihashGen : (n ¢ NT) x Nt x BY™ x N* — BI" is another hash function, used in §7.71 ‘Equihash’ on p-129 to
generate input to the Equihash solver. The first two arguments, representing the Equihash parameters n and k, are
written subscripted. It is instantiated in § 5.4.1.11 ‘Equihash Generator’ on p. 82.

CRHY : B! x Bl&) {0.. ol " 1} is a collision-resistant hash function used in §4.2.2 ‘Sapling Key Components’
on p. 34 to derive an incoming viewing key for a Sapling shielded payment address. It is also used in the Spend
statement (§4.17.2 ‘Spend Statement (Sapling)’ on p.58) to confirm use of the correct keys for the note being spent.
It is instantiated in §5.4.15 ‘CRH"* Hash Function’ on p.74.

MixingPedersenHash : J x {0..7; — 1} — J is a hash function used in §4.16 ‘Note Commitments and Nullifiers’ on
p. 55 to derive the unique p value for a Sapling note. It is also used in the Spend statement to confirm use of the
correct p value as an input to nullifier derivation. It is instantiated in § 5.4.1.8 ‘Mixing Pedersen Hash Function’ on
p-78.

DiversifyHash>®™& : Bl _ 1®)* {1} and DiversifyHash®<"™ : Bl _, P* are hash functions instantiated in § 5.4.1.6
‘DiversifyHash>*™"8 and DiversifyHash®"™ Hash Functions’ on p.75, satisfying the Unlinkability security property
described in that section. They are used to derive a diversified base from a diversifier, which is specified in §4.2.2
‘Sapling Key Components’ on p.34 and in §4.2.3 ‘Orchard Key Components’ on p. 36.

4.1.2 Pseudo Random Functions

PRF, denotes a Pseudo Random Function keyed by z.

Let £, . lhsig. éff;{,?”t, éf’ppm”t, Lok Louk: LpRFexpand: LPREnfSapling: N°? and N"™" be as defined in § 5.3 ‘Constants’ on p. 70.
Let Sym be as defined in §5.4.3 ‘Symmetric Encryption’ on p. 84.

Let ¢; and J%) be as defined in §5.4.9.3 ‘Jubjub’ on p.98.

Let ¢p and ¢p be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.101.
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For Sprout, four independent PRF, are needed:

Sprout

PRF ¢ Blaul By — Blfre
PRFPC @ Bl x {1.N%9} x Blbsel , "
PRE® BT x {1.N™"} x Blbsdl  ploR
PREMSPout . pl,] o pllre _ BloR"

These are used in §4.17.1 “JoinSplit Statement (Sprout) on p.57; PRF**"" is also used to derive a shielded payment
address from a spending key in §4.2.1 ‘Sprout Key Components’ on p. 33.

For Sapling, three additional PRF_, are needed:

pPRE&xPand . pléad « YN - By [fPRrecpand /8]
PREockSapling By[fovk/s] « By[er/S] ~ By[er/S] ~ By[fr/g] — Sym.K
PRanSaP“ng . JS(T) « B[eﬂ N BYwPRanSapnng/S]

For Orchard, we need PRF®P*" and also:

PRFockOrchard . IB%Y[[WK/?S] % BYV‘P/g] % BYVF'/S] % EY[[];,/S] N SymK
PRanOrchard - F % Fq: . Fq‘b

ap
PRF®®*" is used in the following places:
- §4.2.2 Sapling Key Components’ on p. 34, with inputs [0], [1], [2], and [3,7 : BY];

- [NU5 onward] in §4.2.3 ‘Orchard Key Components’ on p. 36, with inputs [6], [7], [8], and [0x82] (the last of
these is also specified in [ZIP-32]);

- in the processes of sending (§4.7.2 ‘Sending Notes (Sapling)’ on p.42 and §4.7.3 ‘Sending Notes (Orchard)’
on p.43) and of receiving (§4.19 Tn-band secret distribution (Sapling and Orchard)’ on p.63) notes, with
inputs [4] and [5], and for Orchard [¢] || p with ¢ € {4, 5,9};

- in [ZIP-32], with inputs [0], [1], [2] (intentionally matching §4.2.2 on p. 34), [¢ : {16 .. 22}], [0x80], and [0x81].

PRFOKS2PINE 51y pRECKO™Md 56 used in §4.19 In-band secret distribution (Sapling and Orchard)’ on p. 63.
PRF"S%P"¢ js used in §4.17.2 ‘Spend Statement (Sapling)’ on p. 58.
PRF™O™"d s ysed in §4.17.4 ‘Action Statement (Orchard)’ on p. 60.
All of these Pseudo Random Functions are instantiated in §5.4.2 ‘Pseudo Random Functions’ on p. 83.
Security requirements:

- Security definitions for Pseudo Random Functions are given in [BDJR2000, section 4].

- In addition to being Pseudo Random Functions, it is required that PRF2%"" PRF?, PRF"fSProut pRpnfSapling ;g
PRFYO " e collision-resistant across all z — i.e. finding (z,y) ;é_(m', y') such that PRF3'"(y) = PRF"(y/)
should not be feasible, and similarly for PRF?, PRF"SPut pRESapling g pRrpnfOrchard

expand

- See the note in §4.2.3 ‘Orchard Key Components’ on p. 36 for a security caveat about the use of PRF

Non-normative note: PRF"P"* was called PRF*" in Zerocash [BCGGMTV2014], and just PRF" in some previous
versions of this specification.
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41.3 Pseudo Random Permutations

PRP, denotes a Pseudo Random Permutation keyed by .
Let £y and ¢4 be as defined in §5.3 ‘Constants’ on p.70.

One Pseudo Random Permutation is used for Orchard, to generate diversifiers from a diversifier key and index (an
identical construction is also used for Sapling in [ZIP-32]):

PRPY - IB%YM(W/S] « IB%V’«] N B[(‘d]_
It is instantiated in §5.4.4 ‘Pseudo Random Permutations’ on p.85.

Security requirement: PRP? is a keyed Pseudo Random Permutation as defined in [BKR2001].

4.1.4 Symmetric Encryption

Let Sym be an authenticated one-time symmetric encryption scheme with keyspace Sym.K, encrypting plaintexts
in Sym.P to produce ciphertexts in Sym.C.

Sym.Encrypt : Sym. K x Sym.P — Sym.C is the encryption algorithm.

Sym.Decrypt : Sym.K x Sym.C — Sym.P U {L} is the decryption algorithm, such that for any K € Sym.K and
P € Sym.P, Sym.Decrypty (Sym.Encrypty (P)) = P. L is used to represent the decryption of an invalid ciphertext.

Security requirement: Sym must be one-time (INT-CTXT A IND-CPA)-secure [BN2007]. “One-time” here means
that an honest protocol participant will almost surely encrypt only one message with a given key; however, the
adversary may make many adaptive chosen ciphertext queries for a given key.

415 Key Agreement

A key agreement scheme is a cryptographic protocol in which two parties agree a shared secret, each using their
private key and the other party’s public key.

A key agreement scheme KA defines a type of public keys KA.Public, a type of private keys KA.Private, and a type of
shared secrets KA.SharedSecret. Optionally, it also defines a type KA.PublicPrimeSubgroup C KA.Public.

Sprout

Optional: Let KA.FormatPrivate : BI** | — KA Private be a function to convert a bit string of length £32°"* to a KA
private key.

Let KA.DerivePublic : KA.Private x KA.Public — KA.Public be a function that derives the KA public key corresponding
to a given KA private key and base point.

Let KA.Agree : KA.Private x KA.Public — KA.SharedSecret be the agreement function.
Optional: Let KA.Base : KA.Public be a public base point.

Note: The range of KA.DerivePublic may be a strict subset of KA.Public.

Security requirements:
- KA.FormatPrivate must preserve sufficient entropy from its input to be used as a secure KA private key.

- The key agreement and the KDF defined in the next section must together satisfy a suitable adaptive security
assumption along the lines of [Bernstein2006, section 3] or [ABR1999, Definition 3].

More precise formalization of these requirements is beyond the scope of this specification.
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4.1.6 Key Derivation

A Key Derivation Function is defined for a particular key agreement scheme and authenticated one-time symmetric
encryption scheme; it takes the shared secret produced by the key agreement and additional arguments, and
derives a key suitable for the encryption scheme.

The inputs to the Key Derivation Function differ between the Sprout and Sapling and Orchard KDFs:

KDF>™"* takes as input an output index in {1..N"*"}, the value hg, the shared Diffie-Hellman secret sharedSecret,
the ephemeral public key epk, and the recipient’s public transmission key pken.. It is suitable for use with KA®P™

and derives keys for Sym.Encrypt.

KDFSPUt: (1. N""} x Blsi) x KASP©U SharedSecret x KASP™U Public x KASP™" Public — Sym.K

KDF>?Pi" takes as input the shared Diffie-Hellman secret sharedSecret and the ephemeral public key epk. (It does
not have inputs taking the place of the output index, hgj,, Or pkeyc.) It is suitable for use with KAS#i"e and derives
keys for Sym.Encrypt.

KDFS*P'"e : KAS?PME SharedSecret x BY4/8) — Sym. K

As in Sapling, KDF "™

epk. It is suitable for use with KA%™"* and derives keys for Sym.Encrypt.

takes as input the shared Diffie-Hellman secret sharedSecret and the ephemeral public key

KDFOrehard s K AOrehard SharedSecret x BYI#/8 — Sym K

Security requirements:

- The asymmetric encryption scheme in §4.18 ‘In-band secret distribution (Sprout)’ on p.62, constructed
from KAt KDF*P®“* and Sym, is required to be IND-CCA2-secure and key-private.

- The asymmetric encryption scheme in §4.19 Tn-band secret distribution (Sapling and Orchard)’ on p. 63,
constructed from KA KDF>*Pi"€ and Sym or from KA?™ " KDFO"" and Sym, is required to be IND-
CCA2-secure and key-private.

Key privacy is defined in [BBDP2001].

4.1.7 Signature

A signature scheme Sig defines:
- atype of signing keys Sig.Private;
- atype of validating keys Sig.Public;
- atype of messages Sig.Message;
- atype of signatures Sig.Signature;
- arandomized signing key generation algorithm Sig.GenPrivate : () & Sig.Private;
- an injective validating key derivation algorithm Sig.DerivePublic : Sig.Private — Sig.Public;
- arandomized signing algorithm Sig.Sign : Sig.Private x Sig.Message & Sig.Signature;

- avalidating algorithm Sig.Validate : Sig.Public x Sig.Message x Sig.Signature — B;

such that for any signing key sk <% Sig.GenPrivate() and corresponding validating key vk = Sig.DerivePublic(sk), and
any m : Sig.Message and s : Sig.Signature & Sig.Sign, (m), Sig.Validate,, (m, s) = 1.
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Zcash uses four signature schemes:

- one used for signatures that can be validated by script operations such as 0P_CHECKSIG and OP_CHECKMULTISIG
as in Bitcoin;

- one called JoinSplitSig which is used to sign transactions that contain at least one JoinSplit description
(instantiated in §5.4.6 ‘Ed25519’ on p. 87);

- [Sapling onward] one called SpendAuthSig which is used to sign authorizations of Spend transfers (instantiated
in §5.4.71 ‘Spend Authorization Signature (Sapling and Orchard)’ on p.91);

- [Sapling onward] one called BindingSig. A Sapling binding signature is used to enforce balance of Spend
transfers and Output transfers, and to prevent their replay across transactions. Similarly, an Orchard binding
signature is used to enforce balance of Action transfers and to prevent their replay. BindingSig is instantiated
for both Sapling and Orchard in §5.4.7.2 ‘Binding Signature (Sapling and Orchard)’ on p.91.

The signature scheme used in script operations is instantiated by ECDSA on the secp256k1 curve. JoinSplitSig is
instantiated by Ed25519. SpendAuthSig and BindingSig are instantiated by RedDSA; on the Jubjub curve in Sapling,
and on the Pallas curve in Orchard.

The following security property is needed for JoinSplitSig and BindingSig. Security requirements for SpendAuthSigare
defined in the next section, §4.1.7.1 ‘Signature with Re-Randomizable Keys’ on p.27. An additional requirement
for BindingSig is defined in §4.1.7.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on p. 28.

Security requirement:  JoinSplitSig and each instantiation of BindingSig must be Strongly Unforgeable under
(non-adaptive) Chosen Message Attack (SU-CMA), as defined for example in [BDEHR2011, Definition 6].° This allows
an adversary to obtain signatures on chosen messages, and then requires it to be infeasible for the adversary to
forge a previously unseen valid (message, signature) pair without access to the signing key.

Non-normative notes:

- We need separate signing key generation and validating key derivation algorithms, rather than the more
conventional combined key pair generation algorithm Sig.Gen : () & Sig.Private x Sig.Public, to support the
key derivation in §4.2.2 Sapling Key Components’ on p.34 and in §4.2.3 ‘Orchard Key Components’ on p. 36.

The definitions of schemes with additional features in §4.1.7.1 ‘Signature with Re-Randomizable Keys’ on
p-27 and in §4.1.7.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on p. 28 also become
simpler.

- A fresh signature key pair is generated for each transaction containing a JoinSplit description. Since each
key pair is only used for one signature (see §4.11 ‘Non-malleability (Sprout)’ on p.48), a one-time signature
scheme would suffice for JoinSplitSig. This is also the reason why only security against non-adaptive chosen
message attack is needed. In fact the instantiation of JoinSplitSig uses a scheme designed for security under
adaptive attack even when multiple signatures are signed under the same key.

- [Sapling onward] The same remarks as above apply to BindingSig, except that the key is derived from the
randomness of value commitments. This results in the same distribution as of freshly generated key pairs, for
each transaction containing Spend descriptions or Output descriptions or Action descriptions.

- SU-CMA security requires it to be infeasible for the adversary, not knowing the private key, to forge a distinct
signature on a previously seen message. That is, JoinSplit signatures and Sapling binding signatures and
Orchard binding signatures are intended to be nonmalleable in the sense of [BIP-62].

- The terminology used in this specification is that we “validate” signatures, and “verify” zk-SNARK proofs.

® The scheme defined in that paper was attacked in [LM2017], but this has no impact on the applicability of the definition.
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4.1.71 Signature with Re-Randomizable Keys

A signature scheme with re-randomizable keys Sig is a signature scheme that additionally defines:
- atype of randomizers Sig.Random;
- a randomizer generator Sig.GenRandom : () & Sig.Random;
- a signing key randomization algorithm Sig.RandomizePrivate : Sig.Random x Sig.Private — Sig.Private;
- a validating key randomization algorithm Sig.RandomizePublic : Sig.Random x Sig.Public — Sig.Public;

- adistinguished “identity” randomizer Os;g rangom ¢ Sig-Random
such that:

- for any « : Sig.Random, Sig.RandomizePrivate,, : Sig.Private — Sig.Private is injective and easily invertible;
- Sig.RandomizePrivatep, . . is the identity function on Sig.Private.
- for any sk : Sig.Private,
Sig.RandomizePrivate(a, sk) : a < Sig.GenRandom()
is identically distributed to Sig.GenPrivate().

- for any sk : Sig.Private and « ¢ Sig.Random,
Sig.RandomizePublic(a, Sig.DerivePublic(sk)) = Sig.DerivePublic(Sig.RandomizePrivate(a, sk)).

The following security requirement for such signature schemes is based on that given in [FKMSSS2016, section 3].
Note that we require Strong Unforgeability with Re-randomized Keys, not Existential Unforgeability with Re-
randomized Keys (the latter is called “Unforgeability under Re-randomized Keys" in [FKMSSS2016, Definition 8]).
Unlike the case for JoinSplitSig, we require security under adaptive chosen message attack with multiple messages
signed using a given key. (Although each note uses a different re-randomized key pair, the same original key pair
can be re-randomized for multiple notes, and also it can happen that multiple transactions spending the same
note are revealed to an adversary.)

Security requirement: Strong Unforgeability with Re-randomized Keys under adaptive Chosen Message At-
tack (SURK-CMA)

For any sk : Sig.Private, let
O,y ¢ Sig.Message x Sig.Random — Sig.Signature

be a signing oracle with state Q : 9P(Sig.Message x Sig.Signature) initialized to {} that records queried messages
and corresponding signatures.

Oy = let mutable @ < {} in (m ¢ Sig.Message, « : Sig.Random) —
leto = Sig-SignSig‘RandomizePrivate(a,sk) (m)

set @+ QU {(m,o)}

return o : Sig.Signature.

For random sk <* Sig.GenPrivate() and vk = Sig.DerivePublic(sk), it must be infeasible for an adversary given vk and
anew instance of O, to find (m', o', &) such that Sig.VaIidateSigvRandomizepub“c(a/yvk)(m', o)y =1land (m', o) ¢ 04.Q.
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Non-normative notes:

- The randomizer and key arguments to Sig.RandomizePrivate and Sig.RandomizePublic are swapped relative to
[FKMSSS2016, section 3].

- The requirement for the identity randomizer Og;g random simplifies the definition of SURK-CMA by removing
the need for two oracles (because the oracle for original keys, called O, in [FKMSSS2016], is a special case of
the oracle for randomized keys).

- Since Sig.RandomizePrivate(a, sk) : @ ¢ Sig.Random has an identical distribution to Sig.GenPrivate(), and since
Sig.DerivePublic is a deterministic function, the combination of a re-randomized validating key and signature(s)
under that key do not reveal the key from which it was re-randomized.

- Since Sig.RandomizePrivate,, is injective and easily invertible, knowledge of Sig.RandomizePrivate(«, sk) and «
implies knowledge of sk.

4.1.7.2 Signature with Signing Key to Validating Key Monomorphism

A signature scheme with key monomorphism Sig is a signature scheme that additionally defines:

- an abelian group on signing keys, with operation & : Sig.Private x Sig.Private — Sig.Private and identity Og;

- an abelian group on validating keys, with operation ¢ ¢ Sig.Public x Sig.Public — Sig.Public and identity O,,.

such that for any sk, _, : Sig.Private, Sig.DerivePublic(sk; B sk,) = Sig.DerivePublic(sk;) 4 Sig.DerivePublic(sk,).

In other words, Sig.DerivePublic is a monomorphism (that is, an injective homomorphism) from the signing key
group to the validating key group.

For N : N¥,
N
. Hi:fki means sk; B sky B - - - B sky;

N
: Q}izlvki means vk, ¢ vky @ - - - & vky.

. . . . . O O
When N = 0 these yield the appropriate group identity, i.e. HﬂiZISki = Og and $¢:1Vki = 0.
Bsk means the signing key such that (8sk) @ sk = Og, and sk, 8 sk, means sk; B (Bsk,).
& vk means the validating key such that (¢ vk) ¢ vk = O, and vk; & vk, means vk; ¢ (& vky).
With a change of notation from p to Sig.DerivePublic, 4+ to &, and - to ¢, this is similar to the definition of a “Signature

with Secret Key to Public Key Homomorphism” in [DS2016, Definition 13], except for an additional requirement for
the homomorphism to be injective.

Security requirement:  For any sk, : Sig.Private, and an unknown sk, <* Sig.GenPrivate() chosen independently
of sky, the distribution of sk, B sk, is computationally indistinguishable from that of Sig.GenPrivate(). (Since &

n

is an abelian group operation, this implies that for n : NT, HHiZISki is computationally indistinguishable from
Sig.GenPrivate() when at least one of sk; ,, is unknown.)

41.8 Commitment

A commitment scheme is a function that, given a commitment trapdoor generated at random and an input, can be
used to commit to the input in such a way that:

- no information is revealed about it without the trapdoor (“hiding”); and

- given the trapdoor and input, the commitment can be verified to “open” to that input and no other ("binding”).
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A commitment scheme COMM defines a type of inputs COMM.Input, a type of commitments COMM.Output, a type
of commitment trapdoors COMM. Trapdoor, and a trapdoor generator COMM.GenTrapdoor : () & COMM.Trapdoor.

Let COMM : COMM.Trapdoor x COMM.Input — COMM.Output be a function satisfying the following security
requirements.

Security requirements:

. Computational hiding: For all z, 2" : COMM.Input, the distributions { COMM,.(z) | » & COMM.GenTrapdoor() }
and { COMM,.(z") | » & COMM.GenTrapdoor() } are computationally indistinguishable.

- Computational binding: It is infeasible to find z, 2" : COMM.Input and r," : COMM.Trapdoor such that = # '
and COMM, () = COMM ().

Notes:

- COMM.GenTrapdoor need not produce the uniform distribution on COMM.Trapdoor. In that case, it is incorrect
to choose a trapdoor from the latter distribution.

. If it were only feasible to find z : COMM.Input and r, 7" : COMM.Trapdoor such that r # " and COMM,.(z) =

COMM, /(x), this would not contradict the computational binding security requirement. (In fact, this is feasible

Sapling

for NoteCommit and ValueCommit>*"™™ because trapdoors are equivalent modulo 7, and the range of a

Sapling Sapling
trapdoor for those algorithms is {0 .. 2% —1} where 2% > r;)

Let (30reut goprout 3preut and £, be as defined in §5.3 ‘Constants’ on p.70.

Sprout]

Sprout
Define NoteCommit>™°" Trapdoor := Bl | and NoteCommit>™°"*. Qutput := Bmerel

Sprout uses a note commitment scheme

[ESprou Sprout

PRF t] X {0 . 2Zva|ue_1} X BWPRF ]
— NoteCommit>™°"*.Output,

Sprout

NoteCommit NoteCommit>P®"" Trapdoor x B

instantiated in § 5.4.8.1 ‘Sprout Note Commitments’ on p.91.

Let (22" he as defined in §5.3 ‘Constants’ on p.70.
Let J©, ¢y, and 7y be as defined in §5.4.9.3 ‘Jubjub’ on p. 98.
Define:

NoteCommit>**""& Trapdoor := {0.. 2@32?%—1} and NoteCommit>*P""€ Qutput := J;

. Saplin, .
ValueCommit>*""& Trapdoor := {0... 26“53’371} and ValueCommit®>**"™8 Qutput := J.
Sapling uses two additional commitment schemes:
NoteCommit>®™™ : NoteCommit>*™ "€ Trapdoor x B} x BI%) x {0..2%—1} — NoteCommit>**""€.0utput

. Sapli . Sapli =1 -1 .. Sapli
ValueCommit>®""€ : ValueCommit>*""& Trapdoor x {5~} — ValueCommit>*""& Output

Sapling -

NoteCommit>*"" is instantiated in §5.4.8.2 ‘Windowed Pedersen commitments’ on p.92, and ValueCommit is

instantiated in §5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’ on p.93.

Sapling Sapling

Non-normative note: NoteCommit and ValueCommit always return points in the subgroup J ™) However,
we declare the type of these commitment outputs to be J because they are not directly checked to be in the subgroup

>2Pling 5utputs appear in Spend descriptions and Output descriptions, or when the cmu field
derived from a NoteCommit>*P""€ appears in an Output description.

when ValueCommit

Let (2" be as defined in §5.3 ‘Constants’ on p.70.

“scalar

Let P, B, {p, gp, and rp be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p. 101
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Define:
.. Orchard L (Orchard .. Orchard L .
NoteCommit .Trapdoor := {0.. 2" —1} and NoteCommit Output :=PU{L};

Orchard

Orehard Trapdoor := {0.. 2% —1} and ValueCommit®™ " Output := P.

ValueCommit
. ,Orchard .
Commit™* Trapdoor := {0.. 2% —1} and Commit™*.Output := {1..¢p — 1} U{L}.

Orchard uses three additional commitment schemes:

NoteCommit®™™ : NoteCommit®™" Trapdoor x Bl x B! x {0..2%m—1}
x F, xF, — NoteCommit® ™. Output
ValueCommit°™™ : ValueCommit®™"™ Trapdoor x {- ’V“;] . ’V“;] } — ValueCommit®°™" Output
Commit™ : Commit'*. Trapdoor x P, x F,, — Commit™*.Output
Non-normative note: NoteCommit®™ and Commit"* can return L with insignificant probability.
Orchard ivk Orchard

NoteCommit and Commit™" are instantiated in §5.4.8.4 ‘Sinsemilla commitments’ on p.94. ValueCommit
is instantiated in § 5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’ on p. 93.

4.19 Represented Group

A represented group G consists of:
- a subgroup order parameter r¢ : N*, which must be prime;
- a cofactor parameter hg : NT;
- agroup G of order hg - rg, written additively with operation + : G x G — G, and additive identity Og;
- a bit-length parameter ¢ : N;
- arepresentation function reprg : G — B! and an abstraction function abstg : B! - G U {1}, such that

abstg is a left inverse of repr, i.e. for all P € G, abstg (reprg (P)) = P.

Note: Ideally, we would also have that for all S not in the image of reprg, abstg (S) = L. This may not be true in all
cases, i.e. there can be non-canonical encodings P* such that reprg (abstg (Px)) # Px.

Define G") as the order-rg subgroup of G, which is called a represented subgroup. Note that this includes Og. For

r)*.

the set of points of order rg (which excludes Og), we write G(
Define GY) := {reprg (P) : Blé<] | P e G"}. (This intentionally excludes non-canonical encodings if there are any.)
For G : G we write —G for the negation of G, such that (—G) + G = Og. We write G — H for G + (—H).

We also extend the »  notation to addition on group elements.

For G : G and k : Z we write [k] G for scalar multiplication on the group, i.e.

S G ifk>0
k]G = T
1(—G), otherwise.

i=

For G : G and a : I, , we may also write [a] G meaning [a mod 7] G as defined above. (This variant is not defined
for fields other than IE‘TG.)
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4110 Coordinate Extractor

A coordinate extractor for a represented group G is a function Extract

Note:

50 G 5 T for some type T.

Unlike the representation function reprg, Extract ¢y need not have an efficiently computable left inverse.

c®

4.1.11 Group Hash

®
Given a represented subgroup G, a family of group hashes into the subgroup, denoted GroupHash® ', consists of:

&
- atype GroupHashG .URSType of Uniform Random Strings;

®
- atype GroupHash® .Input of inputs;

@) @) @)
- a function GroupHashG : GroupHashG’ .URSType x GroupHashG Anput — G,

In§5.4.9.5 ‘Group Hash into Jubjub’ onp.100, we instantiate a family of group hashes into the Jubjub curve defined
by §5.4.9.3 ‘Jubjub’ on p.98.

@
Security requirement:  For a randomly selected URS : GroupHash® .URSType, it must be reasonable to model

®
GroupHash(S’RS (restricted to inputs for which it does not return 1) as a random oracle.

In §5
curves. These are not strictly speaking families of group hashes, because they have a trivial URS, and so the above
security definition does not apply. Nevertheless, they can be heuristically modelled as random oracles.

4.9.8 ‘Group Hash into Pallas and Vesta’ on p.103, we instantiate group hashes into the Pallas and Vesta

Non-normative notes:

() * .
. GroupHash” * is used to obtain generators of the Jubjub curve for various purposes: the bases G>**"" and

7#{>%P'"8 ysed in Sapling key generation, the Pedersen hash defined in §5.4.1.7 ‘Pedersen Hash Function’ on
p.76, and the commitment schemes defined in §5.4.8.2 ‘Windowed Pedersen commitments’ on p.92 and in
§5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’ on p.93.

The security property needed for these uses can alternatively be defined in the standard model as follows:

®
Discrete Logarithm Independence: For a randomly selected member GroupHash‘S’RS of the family, it is infeasi-

* [n]

@
ble to find a sequence of distinct inputs m; _, ¢ GroupHashG .Input[”] and a sequence of nonzero z; ,, : I,

n ®
such that Zzzl([xl] GroupHashS’RS(mi)) =0g.

- Under the Discrete Logarithm assumption on G", a random oracle almost surely satisfies Discrete Logarithm

Independence. Discrete Logarithm Independence implies collision resistance, since a collision (my, m,) for

@
GroupHash(S’RS trivially gives a discrete logarithm relation with z; = 1 and x5 = —1.

()= )
. GroupHash”  is used in §5.4.1.6 ‘DiversifyHash>*™"€ and DiversifyHash®" " Hash Functions’ on p.75 to in-

stantiate DiversifyHash>*"""& We do not know how to prove the Unlinkability property defined in that section

() *
in the standard model, but in a model where GroupHash” ~ (restricted to inputs for which it does not return
1) is taken as a random oracle, it is implied by the Decisional Diffie-Hellman assumption on J ® and similarly
for GroupHash” .

- URS is a Uniform Random String; we chose it verifiably at random (see § 5.9 ‘Randomness Beacon’ on p.116),

after fixing the concrete group hash algorithm to be used. This mitigates the possibility that the group hash
algorithm could have been backdoored. For Orchard, we considered a URS to be unnecessary, because we
follow [ID-hashtocurve] which does not use one.
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4.1.12 Represented Pairing

A represented pairing Palr consists of:
- a group order parameter rp,;, : N* which must be prime;
- two represented subgroups PA]IR?:)Q, both of order rp,;
- agroup ]P’Amgf) of order rp,,, written multiplicatively with operation - ¢ IP’A]UR(TT) X PAHR%C) — IP’A]IR(TT) and group
identity 1p,p;

- three generators PP, , ., of IP’A]IR%)T respectively;

- a pairing function ép,y, : PR x Pame{) — Paie! satisfying:
- (Bilinearity) forall a,b: F:, P : Par)”, and Q : PARY, épe([a] P, [b] Q)= épun(P, Q)*": and

- (Nondegeneracy) there does not exist P : PA]IRY)* such that forall @ : PA]IR&T), e (P, Q) = 1ppp.

4.113 Zero-Knowledge Proving System

A zero-knowledge proving system is a cryptographic protocol that allows proving a particular statement, dependent
on primary and auxiliary inputs, in zero knowledge — that is, without revealing information about the auxiliary
inputs other than that implied by the statement. The type of zero-knowledge proving system needed by Zcash is a
preprocessing zk-SNARK [BCCGLRT2014].

A preprocessing zk-SNARK instance ZK defines:
- atype of zero-knowledge proving keys, ZK.ProvingKey;
- atype of zero-knowledge verifying keys, ZK VerifyingKey;
- atype of primary inputs ZK.Primarylnput;
- atype of auxiliary inputs ZK.Auxiliarylnput;
- atype of zk-SNARK proofs ZK.Proof;
- a type ZK.SatisfyingInputs C ZK.Primarylnput x ZK.Auxiliarylnput of inputs satisfying the statement;
- arandomized key pair generation algorithm ZK.Gen : () & ZK.ProvingKey x ZK.VerifyingKey;
- a proving algorithm ZK.Prove : ZK.ProvingKey x ZK.Satisfyinglnputs — ZK.Proof;
- averifying algorithm ZK.Verify : ZK.VerifyingKey x ZK.Primarylnput x ZK.Proof — B;

The security requirements below are supposed to hold with overwhelming probability for (pk, vk) < ZK.Gen().

Security requirements:

- Completeness: An honestly generated proof will convince a verifier: for any (z,w) € ZK.SatisfyingInputs, if
ZK.Prove (z,w) outputs 7, then ZK.Verify,, (z,7) = 1.

- Knowledge Soundness: For any adversary A able to find an « : ZK.Primarylnput and proof = : ZK.Proof
such that ZK.Verify,, (x,7) = 1, there is an efficient extractor £, such that if £ (vk, p