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Abstract. Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash, with
security fixes and improvements to performance and functionality. It bridges the existing transparent
payment scheme used by Bitcoin with a shielded payment scheme secured by zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKs). It attempted to address the problem of mining
centralization by use of the Equihash memory-hard proof-of-work algorithm.

This specification defines the Zcash consensus protocol at launch, and after each of the upgrades
codenamed Overwinter, Sapling, Blossom, Heartwood, and Canopy. It is a work in progress. Protocol
differences from Zerocash and Bitcoin are also explained.
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1 Introduction

Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash [BCGGMTV2014], with
security fixes and improvements to performance and functionality. It bridges the existing transparent payment
scheme used by Bitcoin [Nakamoto2008] with a shielded payment scheme secured by zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKS).

Changes from the original Zerocash are explained in § 8 ‘Differences from the Zerocash paper’ on p.100, and
highlighted in magenta throughout the document.

Changes specific to the Overwinter upgrade are highlighted in blue.

Changes specific to the Sapling upgrade following Overwinter are highlighted in green.
Changes specific to the Blossom upgrade following Sapling are highlighted in red.
Changes specific to the Heartwood upgrade following Blossom are highlighted in orange.
Changes specific to the Canopy upgrade following Heartwood are highlighted in purple.

All of these are also changes from Zerocash. The name Sprout is used for the Zcash protocol prior to Sapling (both
before and after Overwinter), and in particular its shielded protocol.

Technical terms for concepts that play an important réle in Zcash are written in slanted text. Italics are used for
emphasis and for references between sections of the document.

The key words MUST, MUST NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this docu-
ment are to be interpreted as described in [RFC-2119] when they appear in ALL CAPS. These words may also appear
in this document in lower case as plain English words, absent their normative meanings.

This specification is structured as follows:
- Notation — definitions of notation used throughout the document;
- Concepts — the principal abstractions needed to understand the protocol;
- Abstract Protocol — a high-level description of the protocol in terms of ideal cryptographic components;
- Concrete Protocol — how the functions and encodings of the abstract protocol are instantiated;
- Network Upgrades — the strategy for upgrading the Zcash protocol.

- Consensus Changes from Bitcoin — how Zcash differs from Bitcoin at the consensus layer, including the
Proof of Work;

- Differences from the Zerocash protocol — a summary of changes from the protocol in [BCGGMTV2014].
- Appendix: Circuit Design — details of how the Sapling circuit is defined as a quadratic constraint program.

- Appendix: Batching Optimizations — improvements to the efficiency of validating multiple signatures and
verifying multiple proofs.

1.1 Caution

Zcash security depends on consensus. Should a program interacting with the Zcash network diverge from con-
sensus, its security will be weakened or destroyed. The cause of the divergence doesn't matter: it could be a bug
in your program, it could be an error in this documentation which you implemented as described, or it could be
that you do everything right but other software on the network behaves unexpectedly. The specific cause will not
matter to the users of your software whose wealth is lost.

Having said that, a specification of intended behaviour is essential for security analysis, understanding of the
protocol, and maintenance of Zcash and related software. If you find any mistake in this specification, please file
an issue at https://github.com/zcash/zips/issues or contact <security@z.cash>.
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1.2 High-level Overview

The following overview is intended to give a concise summary of the ideas behind the protocol, for an audience
already familiar with block chain-based cryptocurrencies such as Bitcoin. It is imprecise in some aspects and is
not part of the normative protocol specification. This overview applies to both Sprout and Sapling, differences in
the cryptographic constructions used notwithstanding.

Value in Zcash is either transparent or shielded. Transfers of transparent value work essentially as in Bitcoin and
have the same privacy properties. Shielded value is carried by notes?, which specify an amount and (indirectly) a
shielded payment address, which is a destination to which notes can be sent. As in Bitcoin, this is associated with a
private key that can be used to spend notes sent to the address; in Zcash this is called a spending key.

To each note there is cryptographically associated a note commitment. Once the transaction creating a note has
been mined, the note is associated with a fixed note position in a tree of note commitments, and with a nullifier?
unique to that note. Computing the nullifier requires the associated private spending key (or the nullifier deriving
key for Sapling notes). It is infeasible to correlate the note commitment or note position with the corresponding
nullifier without knowledge of at least this key. An unspent valid note, at a given point on the block chain, is one for
which the note commitment has been publically revealed on the block chain prior to that point, but the nullifier
has not.

A transaction can contain transparent inputs, outputs, and scripts, which all work as in Bitcoin [Bitcoin-Protocol].
It also includes JoinSplit descriptions, Spend descriptions, and Output descriptions. Together these describe
shielded transfers which take in shielded input notes, and/or produce shielded output notes. (For Sprout, each
JoinSplit description handles up to two shielded inputs and up to two shielded outputs. For Sapling, each shielded
input or shielded output has its own description.) It is also possible for value to be transferred between the
transparent and shielded domains.

The nullifiers of the input notes are revealed (preventing them from being spent again) and the commitments of the
output notes are revealed (allowing them to be spent in future). A transaction also includes computationally sound
zk-SNARK proofs and signatures, which prove that all of the following hold except with insignificant probability:

For each shielded input,
- [Sapling onward] there is a revealed value commitment to the same value as the input note;
- if the value is nonzero, some revealed note commitment exists for this note;
- the prover knew the proof authorizing key of the note;

- the nullifier and note commitment are computed correctly.

and for each shielded output,
- [Sapling onward] there is a revealed value commitment to the same value as the output note;
- the note commitment is computed correctly;

- itis infeasible to cause the nullifier of the output note to collide with the nullifier of any other note.

For Sprout, the JoinSplit statement also includes an explicit balance check. For Sapling, the value commitments
corresponding to the inputs and outputs are checked to balance (together with any net transparent input or output)
outside the zk-SNARK.

In addition, various measures (differing between Sprout and Sapling) are used to ensure that the transaction cannot
be modified by a party not authorized to do so.

Outside the zk-SNARK, it is checked that the nullifiers for the input notes had not already been revealed (i.e. they
had not already been spent).

2 In Zerocash [BCGGMTV2014], notes were called “coins”, and nullifiers were called “serial numbers”.
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A shielded payment address includes a transmission key for a “key-private” asymmetric encryption scheme.
Key-private means that ciphertexts do not reveal information about which key they were encrypted to, except to a
holder of the corresponding private key, which in this context is called the receiving key. This facility is used to
communicate encrypted output notes on the block chain to their intended recipient, who can use the receiving
key to scan the block chain for notes addressed to them and then decrypt those notes.

In Sapling, for each spending key there is a full viewing key that allows recognizing both incoming and outgoing
notes without having spend authority. This is implemented by an additional ciphertext in each Output description.

The basis of the privacy properties of Zcash is that when a note is spent, the spender only proves that some
commitment for it had been revealed, without revealing which one. This implies that a spent note cannot be linked
to the transaction in which it was created. That is, from an adversary’s point of view the set of possibilities for a
given note input to a transaction —its note traceability set— includes all previous notes that the adversary does
not control or know to have been spent.i This contrasts with other proposals for private payment systems, such
as CoinJoin [Bitcoin-CoinJoin] or CryptoNote [vanSaberh2014], that are based on mixing of a limited number of
transactions and that therefore have smaller note traceability sets.

The nullifiers are necessary to prevent double-spending: each note on the block chain only has one valid nullifier,
and so attempting to spend a note twice would reveal the nullifier twice, which would cause the second transaction
to be rejected.

2 Notation

B means the type of bit values, i.e. {0,1}. BY means the type of byte values, i.e. {0..255}.

N means the type of nonnegative integers. N* means the type of positive integers. Z means the type of integers.
Q means the type of rationals.

x ¢ T is used to specify that  has type T. A cartesian product type is denoted by S x T, and a function type by
S — T. An argument to a function can determine other argument or result types.

The type of a randomized algorithm is denoted by S & T The domain of a randomized algorithm may be (),
indicating that it requires no arguments. Given f : S & T and s : S, sampling a variable x : T' from the output of f
applied to s is denoted by z & f(s).

Initial arguments to a function or randomized algorithm may be written as subscripts, e.g. if z ¢ X,y : Y, and
f: X xY — Z then an invocation of f(z,y) can also be written f,(y).

{z s T| p,} means the subset of z from T for which p,, (a boolean expression depending on ) holds.
T C U indicates that 7' is an inclusive subset or subtype of U. S UT means the set union of S and T'.
S N T means the set intersection of Sand T, i.e. {z : S|z € T}.

S\ T means the set difference obtained by removing elements in T’ from S, i.e. {x : S|z ¢ T}.

x: T — e, : U means the function of type ' — U mapping formal parameter x to e, (an expression depending
on x). The types T and U are always explicit.

r:Trgye,:Umeansx : T — e, : UUV restricted to the domain {z : T'| e, ¢ V' } and range U.

9(T) means the powerset of T.

T, where T is a type and ¢ is an integer, means the type of sequences of length ¢ with elements in T'. For example,
B means the set of sequences of /¢ bits, and BY* means the set of sequences of k bytes.

® We make this claim only for fully shielded transactions. It does not exclude the possibility that an adversary may use data present in
the cleartext of a transaction such as the number of inputs and outputs, or metadata-based heuristics such as timing, to make proba-
bilistic inferences about transaction linkage. For consequences of this in the case of partially shielded transactions, see [Peterson2017],
[Quesnelle2017], and [KYMM2018].
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BY™ means the type of byte sequences of arbitrary length.
length(S) means the length of (number of elements in) S.
truncate, (S) means the sequence formed from the first k¥ elements of S.

0x followed by a string of monospace hexadecimal digits means the corresponding integer converted from hexadec-
imal. [0x00]° means the sequence of / zero bytes.

“

.." means the given string represented as a sequence of bytes in US-ASCII. For example, “abc” represents the
byte sequence [0x61, 0x62, 0x63 ].

[0]° means the sequence of ¢ zero bits. [1]* means the sequence of £ one bits.

a..b, used as a subscript, means the sequence of values with indices a through b inclusive. For example, aj" yrev

means the sequence (a5, a5, - ap, ). (For consistency with the notation in [BCGGMTV2014] and in [BK2016],
this specification uses 1-based indexing and inclusive ranges, notwithstanding the compelling arguments to the

contrary made in [EWD-831].)
{a..b} means the set or type of integers from a through b inclusive.

[ f(z) for x from a up to b | means the sequence formed by evaluating f on each integer from a to b inclusive, in
ascending order. Similarly, [ f(z) for « from a down to b ] means the sequence formed by evaluating f on each
integer from a to b inclusive, in descending order.

a || b means the concatenation of sequences a then b.

concaty(S) means the sequence of bits obtained by concatenating the elements of S viewed as bit sequences. If the
elements of S are byte sequences, they are converted to bit sequences with the most significant bit of each byte
first.

sorted(S) means the sequence formed by sorting the elements of S.
F,, means the finite field with n elements, and FF;, means its group under multiplication (which excludes 0).

Where there is a need to make the distinction, we denote the unique representative of a ¢ F,, in the range {0..n — 1}
(or the unique representative of a : IF;, in the range {1..n — 1}) as @ mod n. Conversely, we denote the element of I,
corresponding to an integer k : Z as k (mod n). We also use the latter notation in the context of an equality k = &’
(mod n) as shorthand for k mod n = k" mod n, and similarly k # &’ (mod n) as shorthand for & mod n # k&’ mod n.
(When referring to constants such as 0 and 1 it is usually not necessary to make the distinction between field
elements and their representatives, since the meaning is normally clear from context.)

[, [2] means the ring of polynomials over z with coefficients in F,,.

a + b means the sum of a and b. This may refer to addition of integers, rationals, finite field elements, or group
elements (see §4.1.8 ‘Represented Group’ on p. 26) according to context.

—a means the value of the appropriate integer, rational, finite field, or group type such that (—a) + a = 0 (or when a
is an element of a group G, (—a) + a = Og), and a — b means a + (—b).

a - b means the product of multiplying a and b. This may refer to multiplication of integers, rationals, or finite field
elements according to context (this notation is not used for group elements).
a

a/b, also written ;

, means the value of the appropriate integer, rational, or finite field type such that (a/b) - b = a.

amod ¢, fora : Nand ¢ : N*, means the remainder on dividing a by ¢. (This usage does not conflict with the notation
above for the unique representative of a field element.)

a @ b means the bitwise-exclusive-or of ¢ and b, and a & b means the bitwise-and of a and b. These are defined on
integers or (equal-length) bit sequences according to context.

N N N
Z a; means the sum of a; . H a; means the product of a;_y. @ a; means the bitwise exclusive-or of a; y.
i=1 i=1 i=1

. . . 0 0 0

When N = 0 these yield the appropriate neutral element, i.e. Zizlai =0, Hi:lai =1, and @i=1ai = 0 or the
all-zero bit sequence of length given by the type of a.

10



Va' where a : [F,, means the positive square root of a in If,, i.e. in the range {O " q%l} It is only used in cases where
the square root must exist.

Va, where a : [F,, means an arbitrary square root of a in I, or L if no such square root exists.
b?x:ymeansxwhenb=1, orywhenb=0.

a’, for a an integer or finite field element and b : Z, means the result of raising a to the exponent b, i.e.

H; a, ifb>0

1 .
[ .=, otherwise.
la

1=

The [k] P notation for scalar multiplication in a group is defined in §4.1.8 ‘Represented Group’ on p. 26.

The convention of affixing x to a variable name is used for variables that denote bit-sequence representations of
group elements.

The binary relations <, <, =, >, and > have their conventional meanings on integers and rationals, and are defined
lexicographically on sequences of integers.

floor(z) means the largest integer < z. ceiling () means the smallest integer > .

bitlength(z), for z : N, means the smallest integer ¢ such that 2 > .

The symbol L is used to indicate unavailable information, or a failed decryption or validity check.
The following integer constants will be instantiated in § 5.3 ‘Constants’ on p.53:

MerkleDepthsprOUtv MerkleDepthsap“ng' N0|d' Nnewv gvaluer gMerkIeSproutv fMerkIeSapIingv ghSig' gPRFSproutr gPRFexpandr
Cprrntsapling: Lrems Cseed: Lay o Lo Lsior Car Livio Lovir Lscalarr MAX_MONEY, BlossomActivationHeight,
CanopyActivationHeight, ZIP212GracePeriod SlowStartInterval, PreBlossomHalvinglnterval, MaxBlockSubsidy,
NumFounderAddresses, PoWLimit, PoWAveragingWindow, PoWMedianBlockSpan, PoWDampingFactor,
PreBlossomPoWTargetSpacing, and PostBlossomPoW TargetSpacing.

The bit sequence constants Uncommitted>P™* : Bl‘veessonl and Uncommitted®P™™e : Blfveessnine] and rational con-
stants FoundersFraction, PoWMaxAdjustDown, and PoWMaxAdjustUp will also be defined in that section.

We use the abbreviation “ctEdwards” to refer to complete twisted Edwards elliptic curves and coordinates (see
§5.4.8.3 ‘Jubjub’ on p.73).
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3 Concepts

3.1 Payment Addresses and Keys

Users who wish to receive payments in the Zcash protocol must have a shielded payment address, which is
generated from a spending key.

The following diagram depicts the relations between key components in Sprout and Sapling. Arrows point from a
component to any other component(s) that can be derived from it. Double lines indicate that the same component
is used in multiple abstractions.

Sprout Sapling
Shielded payment address Shielded payment address
Paying key Apk PKene ) Transmission key Diversifier d—> pky ) Transmission key

A

Incomin, .. Incoming :
viewing kgy { Capk Ske"D Receiving key viewing key ( vk >
Full
viewing key { ( aK s X ovk )
Proof author- ( ak nsk)
izing key A
Expanded { <ask nsk)( ovk)
spending key - 2 P

Spending key

Spending key

[Sprout] The receiving key ske,., incoming viewing key ivk = (ay, skenc), and shielded payment address addr,,, =
(apk, Pkenc) are derived from the spending key a, as described in §4.2.1 ‘Sprout Key Components’ on p.29.

[Sapling onward] An expanded spending key is composed of a Spend authorizing key ask, a nullifier private key nsk,
and an outgoing viewing key ovk. From these components we can derive an proof authorizing key (ak, nsk), a full
viewing key (ak, nk, ovk), an incoming viewing key ivk, and a set of diversified payment addresses addry = (d, pky),
as described in §4.2.2 ‘Sapling Key Components’ on p.29.

The consensus protocol does not depend on how an expanded spending key is constructed. Two methods of doing
so are defined:

1. Generate a spending key sk at random and derive the expanded spending key (ask, nsk, ovk) from it, as shown
in the diagram above and described in §4.2.2 ‘Sapling Key Components’ on p.29.

2. Obtain an extended spending key as specified in [ZIP-32]; this includes a superset of the components of an
expanded spending key. This method is used in the context of a Hierarchical Deterministic Wallet.

Non-normative note: In zcashd, all Sapling keys and addresses are derived according to [ZIP-32].
The composition of shielded payment addresses, incoming viewing keys, full viewing keys, and spending keys is
a cryptographic protocol detail that should not normally be exposed to users. However, user-visible operations

should be provided to obtain a shielded payment address or incoming viewing key or full viewing key from a
spending key or extended spending key .
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Users can accept payment from multiple parties with a single shielded payment address and the fact that these
payments are destined to the same payee is not revealed on the block chain, even to the paying parties. However if
two parties collude to compare a shielded payment address they can trivially determine they are the same. In the
case that a payee wishes to prevent this they should create a distinct shielded payment address for each payer.

[Sapling onward] Sapling provides a mechanism to allow the efficient creation of diversified payment addresses
with the same spending authority. A group of such addresses shares the same full viewing key and incoming
viewing key, and so creating as many unlinkable addresses as needed does not increase the cost of scanning the
block chain for relevant transactions.

Note: Itis conventional in cryptography to refer to the key used to encrypt a message in an asymmetric encryption
scheme as the “public key”. However, the public key used as the transmission key component of an address (pkepc
or pky) need not be publically distributed; it has the same distribution as the shielded payment address itself. As
mentioned above, limiting the distribution of the shielded payment address is important for some use cases. This
also helps to reduce reliance of the overall protocol on the security of the cryptosystem used for note encryption
(see §4.16 Tn-band secret distribution (Sprout)’ on p.46 and §4.17 ‘In-band secret distribution (Sapling)’ on
p-47), since an adversary would have to know pk,,. or some pky in order to exploit a hypothetical weakness in that
cryptosystem.

3.2 Notes

A note (denoted n) can be a Sprout note or a Sapling note. In either case it represents that a value v is spendable
by the recipient who holds the spending key corresponding to a given shielded payment address.

Let MAX_MONEY, £presprout: LPREnfsapling: @aNd /g be as defined in §5.3 ‘Constants’ on p. 53.

Let NoteCommit>™" be as defined in §5.4.71 ‘Sprout Note Commitments’ on p. 68.

Let NoteCommit>*"""¢ be as defined in §5.4.7.2 ‘Windowed Pedersen commitments’ on p. 68.

Let KAS*P"€ be a5 defined in §5.4.4.3 ‘Sapling Key Agreement’ on p. 63.

A Sprout note is a tuple (a, v, p, rcm), where:
©apk Blteresmon] i the paying key of the recipient’s shielded payment address;
- v:{0..MAX_MONEY} is an integer representing the value of the note in zatoshi (1 ZEC = 10® zatoshi);
. p 2 Blfreseon) j5 ysed as input to PRF;‘:k to derive the nullifier of the note;
- rem : NoteCommit>™°"* Trapdoor is a random commitment trapdoor as defined in §4.1.7 ‘Commitment’ on

p. 25.

Let Note®™°"* be the type of a Sprout note, i.e.

Note®Pout ;= Blfrreswon] 5 (0 MAX_MONEY} x Bl‘rrsmeul . NoteCommit™P°"* Trapdoor.

A Sapling note is a tuple (d, pky, v, rcm), where:
. d : Bl is the diversifier of the recipient’s shielded payment address;

- pkq : KA>®M pyblicPrimeSubgroup is the diversified transmission key of the recipient’s shielded payment
address;

- v {0..MAX_MONEY} is an integer representing the value of the note in zatoshi;

- rcm : NoteCommit>*P"8 Trapdoor is a random commitment trapdoor as defined in §4.1.7 ‘Commitment’ on
p- 25.
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Let Note®>*"8 be the type of a Sapling note, i.e.

Note>*P'"e .— Bl 5 KAS?Pi"e pyblicPrimeSubgroup x {0.. MAX_MONEY} x NoteCommit>*"™"¢ Trapdoor.

Creation of new notes is described in §4.6 ‘Sending Notes’ on p.34. When notes are sent, only a commitment (see
§4.1.7 ‘Commitment’ on p.25) to the above values is disclosed publically, and added to a data structure called the
note commitment tree. This allows the value and recipient to be kept private, while the commitment is used by the
zk-SNARK proof when the note is spent, to check that it exists on the block chain.

A Sprout note commitment on a note n = (a, v, p, rcm) is computed as

NoteCommitment>P"(n) = NoteCommitrSCpnT”t(apk, v, p),

where NoteCommit>™" is instantiated in § 5.4.71 ‘Sprout Note Commitments’ on p. 68.

Let DiversifyHash be as defined in §5.4.1.6 ‘DiversifyHash Hash Function’ on p.57.

A Sapling note commitment on a note n = (d, pkq, v, rcm) is computed as

gq := DiversifyHash(d)

J_, lfgd =1
Sapling

rcm

NoteCommitment>2""8(n) := _
NoteCommit

(repry(gq), reprj(pky),v), otherwise.

Sapling

where NoteCommit is instantiated in § 5.4.7.2 ‘Windowed Pedersen commitments’ on p.68.

Notice that the above definition of a Sapling note does not have a p field. There is in fact a p value associated with
each Sapling note, but this can only be computed once its position in the note commitment tree is known (see § 3.4
“Transactions and Treestates’ on p.15 and § 3.7 ‘Note Commitment Trees’ on p.17). We refer to the combination
of a note and its note position pos, as a positioned note.

For a positioned note, we can compute the value p as described in §4.14 ‘Note Commitments and Nullifiers’ on
p-42.

A nullifier (denoted nf) is derived from the p value of a note and the recipient’s spending key ag or nullifier deriving
key nk. This computation uses a Pseudo Random Function (see §4.1.2 ‘Pseudo Random Functions’ on p.20), as
described in §4.14 ‘Note Commitments and Nullifiers’ on p.42.

A note is spent by proving knowledge of (p, ay) or (p, ak, nsk) in zero knowledge while publically disclosing its
nullifier nf, allowing nf to be used to prevent double-spending. In the case of Sapling, a spend authorization
signature is also required, in order to demonstrate knowledge of ask.

3.2.1 Note Plaintexts and Memo Fields

Transmitted notes are stored on the block chain in encrypted form, together with a representation of the note
commitment cm.

The note plaintexts in each JoinSplit description are encrypted to the respective transmission keys pkgne | yrew.
Each Sprout note plaintext (denoted np) consists of

(leadByte : BY, v : {0.. 2% —1},p Blferrseonl rem : NoteCommit>™° . Trapdoor, memo IB%Y[SHJ).

[Sapling onward] The note plaintext in each Output description is encrypted to the diversified payment address
(da pkd)
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Each Sapling note plaintext (denoted np) consists of

(leadByte : BY, d : Bl v {0.. 2% —1}, rseed : B memo : IB%Y[512])

The fields d and v are as defined in § 3.2 ‘Notes’ on p.13.
The field rseed is described in §4.6.2 ‘Sending Notes (Sapling)’ on p. 34.

memo represents a 512-byte memo field associated with this note. The usage of the memo field is by agreement
between the sender and recipient of the note.

Encodings are given in §55.5 ‘Encodings of Note Plaintexts and Memo Fields’ on p.77. The result of encryption
forms part of a transmitted note(s) ciphertext. For further details, see §4.16 In-band secret distribution (Sprout)
on p.46 and §4.17 ‘In-band secret distribution (Sapling)’ on p.47.

3.3 The Block Chain

At a given point in time, each full validator is aware of a set of candidate blocks. These form a tree rooted at the
genesis block, where each node in the tree refers to its parent via the hashPrevBlock block header field (see §7.5
‘Block Header Encoding and Consensus’ on p.90).

A path from the root toward the leaves of the tree consisting of a sequence of one or more valid blocks consistent
with consensus rules, is called a valid block chain.

Each block in a block chain has a block height. The block height of the genesis block is 0, and the block height of
each subsequent block in the block chain increments by 1.

In order to choose the best valid block chain in its view of the overall block tree, a node sums the work, as defined
in §7.6.5 ‘Definition of Work’ on p. 95, of all blocks in each valid block chain, and considers the valid block chain
with greatest total work to be best. To break ties between leaf blocks, a node will prefer the block that it received
first.

The consensus protocol is designed to ensure that for any given block height, the vast majority of nodes should
eventually agree on their best valid block chain up to that height.

3.4 Transactions and Treestates

Each block contains one or more transactions.

Transparent inputs to a transaction insert value into a transparent transaction value pool associated with the
transaction, and transparent outputs remove value from this pool. As in Bitcoin, the remaining value in the pool is
available to miners as a fee.

Consensus rule:  The remaining value in the transparent transaction value pool MUST be nonnegative.

To each transaction there are associated initial treestates for Sprout and for Sapling. Each treestate consists of:

- a note commitment tree (§ 3.7 ‘Note Commitment Trees’ on p.17);

- a nullifier set (§ 3.8 ‘Nullifier Sets’ on p.18).

Validation state associated with transparent inputs and outputs, such as the UTXO (Unspent Transaction Output)
set, is not described in this document; it is used in essentially the same way as in Bitcoin.

An anchor is a Merkle tree root of a note commitment tree (either the Sprout tree or the Sapling tree). It uniquely
identifies a note commitment tree state given the assumed security properties of the Merkle tree’s hash function.
Since the nullifier set is always updated together with the note commitment tree, this also identifies a particular
state of the associated nullifier set.

15


https://zips.z.cash/protocol/canopy.pdf#blockchain
https://zips.z.cash/protocol/canopy.pdf#transactions

In a given block chain, for each of Sprout and Sapling, treestates are chained as follows:
- The input treestate of the first block is the empty treestate.
- The input treestate of the first transaction of a block is the final treestate of the immediately preceding block.

- The input treestate of each subsequent transaction in a block is the output treestate of the immediately
preceding transaction.

- The final treestate of a block is the output treestate of its last transaction.

JoinSplit descriptions also have interstitial input and output treestates for Sprout, explained in the following section.
There is no equivalent of interstitial treestates for Sapling.

3.5 JoinSplit Transfers and Descriptions

A JoinSplit description is data included in a transaction that describes a JoinSplit transfer, i.e. a shielded value
transfer. In Sprout, this kind of value transfer was the primary Zcash-specific operation performed by transactions.

A JoinSplit transfer spends N notes n‘;ldNou and transparent input v, and creates N™" notes n}®y and trans-
new

parent output vy It is associated with a JoinSplit statement instance (§4.15.1 ‘JoinSplit Statement (Sprout)’ on
p-43), for which it provides a zk-SNARK proof .

Each transaction has a sequence of JoinSplit descriptions.

The total v value adds to, and the total ngdb value subtracts from the transparent transaction value pool of the
containing transaction.

The anchor of each JoinSplit description in a transaction refers to a Sprout treestate.

For each of the N° shielded inputs, a nullifier is revealed. This allows detection of double-spends as described in
§3.8 ‘Nullifier Sets’ on p.18.

For each JoinSplit description in a transaction, an interstitial output treestate is constructed which adds the note
commitments and nullifiers specified in that JoinSplit description to the input treestate referred to by its anchor.
This interstitial output treestate is available for use as the anchor of subsequent JoinSplit descriptions in the same
transaction. In general, therefore, the set of interstitial treestates associated with a transaction forms a tree in which
the parent of each node is determined by its anchor.

Interstitial treestates are necessary because when a transaction is constructed, it is not known where it will
eventually appear in a mined block. Therefore the anchors that it uses must be independent of its eventual position.

Consensus rules:
- The input and output values of each joinSplit transfer MUST balance exactly.

- For the first JoinSplit description of a transaction, the anchor MUST be the output Sprout treestate of a
previous block.

- The anchor of each JoinSplit description in a transaction MUST refer to either some earlier block’s final
Sprout treestate, or to the interstitial output treestate of any prior JoinSplit description in the same transaction.

3.6 Spend Transfers, Output Transfers, and their Descriptions

JoinSplit transfers are not used for Sapling notes. Instead, there is a separate Spend transfer for each shielded
input, and a separate Output transfer for each shielded output.

Spend descriptions and Output descriptions are data included in a transaction that describe Spend transfers and
Output transfers, respectively.
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A Spend transfer spends a note n°. Its Spend description includes a Pedersen value commitment to the value of

the note. It is associated with an instance of a Spend statement (§4.15.2 ‘Spend Statement (Sapling)’ on p.44) for
which it provides a zk-SNARK proof.

An Output transfer creates a note n"®". Similarly, its Output description includes a Pedersen value commitment to

the note value. It is associated with an instance of an Output statement (§4.15.3 ‘Output Statement (Sapling)’ on
p.45) for which it provides a zk-SNARK proof .

Each transaction has a sequence of Spend descriptions and a sequence of Output descriptions.

To ensure balance, we use a homomorphic property of Pedersen commitments that allows them to be added and
subtracted, as elliptic curve points (§ 5.4.7.3 ‘Homomorphic Pedersen commitments’ on p.69). The result of adding
two Pedersen value commitments, committing to values v; and vy, is a new Pedersen value commitment that
commits to v; + vy. Subtraction works similarly.

Therefore, balance can be enforced by adding all of the value commitments for shielded inputs, subtracting all
of the value commitments for shielded outputs, and proving by use of a binding signature (as described in §4.12
‘Balance and Binding Signature (Sapling)’ on p.39) that the result commits to a value consistent with the net
transparent value change. This approach allows all of the zk-SNARK statements to be independent of each other,
potentially increasing opportunities for precomputation.

A Spend description includes an anchor, which refers to the output Sapling treestate of a previous block. It also
reveals a nullifier, which allows detection of double-spends as described in § 3.8 ‘Nullifier Sets’ on p.18.

Non-normative note: Interstitial treestates are not necessary for Sapling, because a Spend transfer in a given
transaction cannot spend any of the shielded outputs of the same transaction. This is not an onerous restriction
because, unlike Sprout where each JoinSplit transfer must balance individually, in Sapling it is only necessary for
the whole transaction to balance.

Consensus rules:

- The transaction MUST balance as specified in §4.12 ‘Balance and Binding Signature (Sapling)’ on p. 39.

- The anchor of each Spend description MUST refer to some earlier block’s final Sapling treestate.

3.7 Note Commitment Trees

rt
/\
/\
?
cmy cmy cm, cmy cmy ?

A note commitment tree is an incremental Merkle tree of fixed depth used to store note commitments that JoinSplit
transfers or Spend transfers produce. Just as the unspent transaction output set (UTXO set) used in Bitcoin, it is
used to express the existence of value and the capability to spend it. However, unlike the UTXO set, it is not the job
of this tree to protect against double-spending, as it is append-only.

A root of a note commitment tree is associated with each treestate (§ 3.4 “Transactions and Treestates’ on p.15).

Each node in the incremental Merkle tree is associated with a hash value of size yeriesprout OF {nerkiesapling Pits. The
layer numbered h, counting from Jayer 0 at the root, has 2" nodes with indices 0 to 2" — 1 inclusive. The hash
value associated with the node at index i in layer h is denoted M.

The index of a note’s commitment at the leafmost layer (MerkleDepth®™®"*>*?""€) i5 called its note position.
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3.8 Nullifier Sets

Each full validator maintains a nullifier set logically associated with each treestate. As valid transactions containing
JoinSplit transfers or Spend transfers are processed, the nullifiers revealed in JoinSplit descriptions and Spend
descriptions are inserted into the nullifier set associated with the new treestate. Nullifiers are enforced to be
unique within a valid block chain, in order to prevent double-spends.

Consensus rule: A nullifier MUST NOT repeat either within a transaction, or across transactions in a valid block
chain. Sprout and Sapling nullifiers are considered disjoint, even if they have the same bit pattern.

3.9 Block Subsidy, Funding Streams, and Founders’ Reward

Like Bitcoin, Zcash creates currency when blocks are mined. The value created on mining a block is called the
block subsidy.

[Pre-Canopy] The block subsidy is composed of a miner subsidy and a Founders’Reward.

[Canopy onward] The block subsidy is composed of a miner subsidy and a series of funding streams.

As in Bitcoin, the miner of a block also receives transaction fees.

The calculations of the block subsidy, miner subsidy, Founders’Reward, and funding streams depend on the block
height, as defined in § 3.3 The Block Chain’ on p.15.

The calculations are described in § 7.7 ‘Calculation of Block Subsidy, Funding Streams, and Founders’ Reward’
on p.95.

3.10 Coinbase Transactions
The first (and only the first) transaction in a block is a coinbase transaction, which collects and spends any miner
subsidy and transaction fees paid by transactions included in this block.

[Pre-Canopy] The coinbase transaction MUST also pay the Founders’ Reward as described in
§7.8 ‘Payment of Founders’ Reward’ on p. 96.

[Canopy onward] The coinbase transaction MUST also pay the funding streams as described in
§79 ‘Payment of Funding Streams’ on p.98.

3.11 Mainnet and Testnet

The production Zcash network, which supports the ZEC token, is called Mainnet. Governance of its protocol is
by agreement between the Electric Coin Company and the Zcash Foundation [ECCZF2019]. Subject to errors and
omissions, each version of this document intends to describe some version (or planned version) of that agreed
protocol.

All block hashes given in this section are in RPC byte order (that is, byte-reversed relative to the normal order for a
SHA-256 hash).

Mainnet genesis block: 00040fe8ec8471911baaldb1266eal5dd06b4a8a5c453883c000b031973dce08
Mainnet Blossom activation block: 00000000020bebb33c1b34b67a982a328ab212a206dacbe561a7cc94aab3edbb

There is also a public test network called Testnet. It supports a TAZ token which is intended to have no monetary
value. By convention, Testnet activates network upgrades (as described in § 6 ‘Network Upgrades’ on p. 83) before
Mainnet, in order to allow for errors or ambiguities in their specification and implementation to be discovered.
The Testnet block chain is subject to being rolled back to a prior block at any time.

Testnet genesis block: 05a60a92d99d85997cce3b87616c089f6124d7342af37106edc76126334a2¢38
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Testnet Heartwood activation block: 05688d8a0e9ff7c04f6f05e6d695dc5ab43b9c4803342d77ae360b2b27d2468¢
We call the smallest units of currency (on either network) zatoshi.
On Mainnet, 1 ZEC = 10° zatoshi. On Testnet, 1 TAZ = 10° zatoshi.

Other networks using variants of the Zcash protocol may exist, but are not described by this specification.

4 Abstract Protocol

4.1 Abstract Cryptographic Schemes
4.1.1 Hash Functions

Let MerkIeDepthSpm"'t, gMerkIeSproutv MerkleDepthsap“ng, éMerkleSapling' Eivk, gdr éSeed' EPRFSprout’ Zhsig' and NOId be as deﬁned
in §5.3 ‘Constants’ on p. 53.

Let J, 1, I®* rj, and £; be as defined in §5.4.8.3 ‘Jubjub’ on p.73.

The functions MerkleCRHP®* : {0 .. MerkleDepth®""®"t — 1} x Bl meesmrou] 5 Blluenicsmon] _y Blluerismon] and (for Sapling),
MerkleCRH>™™ : {0 MerkleDepth>*P"& — 1} x Bl‘werisuing] 5 Blluersaping] _y Bllueriessning] are hash functions used in
§4.8 ‘Merkle Path Validity on p.37. MerkleCRH>*™" is collision-resistant on all its arguments, and MerkleCRH>"®"*
is collision-resistant except on its first argument.

Both of these functions are instantiated in § 5.4.1.3 ‘Merkle Tree Hash Function’ on p.55.

old
hSigCRH : Bléseeal  Bllrresprond (N1 JoinSplitSig.Public — Bl4sel is a collision-resistant hash function used in §4.3
‘JoinSplit Descriptions’ on p.31. It is instantiated in §5.4.1.4 ‘hg;, Hash Function’ on p. 56.

EquihashGen : (n : NT) x Nt x BY™ x N* — B is another hash function, used in §7.6.1 ‘Equihash’ on p-92 to
generate input to the Equihash solver. The first two arguments, representing the Equihash parameters n and k, are
written subscripted. It is instantiated in §5.4.1.9 ‘Equihash Generator’ on p.60.

CRHY : B4 x Bl {0.. A 1} is a collision-resistant hash function used in §4.2.2 ‘Sapling Key Components’
on p. 29 to derive an incoming viewing key for a Sapling shielded payment address. It is also used in the Spend
statement (§4.15.2 ‘Spend Statement (Sapling)’ on p.44) to confirm use of the correct keys for the note being
spent. It is instantiated in §5.4.1.5 ‘CRH"* Hash Function’ on p.56.

MixingPedersenHash : J x {0..r; — 1} — J is a hash function used in §4.14 ‘Note Commitments and Nullifiers’ on
p. 42 to derive the unique p value for a Sapling note. It is also used in the Spend statement to confirm use of the
correct p value as an input to nullifier derivation. It is instantiated in §5.4.1.8 ‘Mixing Pedersen Hash Function’ on
p- 60.

DiversifyHash : B — J™*is a hash function instantiated in §5.4.1.6 ‘DiversifyHash Hash Function’ on p.57, and
satisfying the Unlinkability security property described in that section. It is used to derive a diversified base from a
diversifier in §4.2.2 ‘Sapling Key Components’ on p.29.
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4.1.2 Pseudo Random Functions
PRF, is a Pseudo Random Function keyed by x.
Let £, £, Lhsig: £pRFsprout: Lsk: Lovk: LPRFexpand: LPRFnfSapling: N°? and N™" be as defined in § 5.3 ‘Constants’ on p. 53.

Let ¢; and I be as defined in §5.4.8.3 “Jubjub’ on p. 73.
Let Sym be as defined in § 5.4.3 ‘Symmetric Encryption’ on p. 62.

For Sprout, four independent PRF, are needed:

PRE2ddr . B[eask] « BY _ Rl¢rresprout]
PRF"f . B[eask] > B[epRFsprout] N B[ZPRFspmut]
PRFPk . B[eask] ~ {1..N°Id} > B[ZhSig] N ]B[@PRFsmut]
PRFP ° B[é“’] X {1”NneW} X BMhS\'g] - BVFRFSpmm]

These are used in §4.15.1 “JoinSplit Statement (Sprout)’ on p.43; PRF** is also used to derive a shielded payment
address from a spending key in §4.2.1 ‘Sprout Key Components’ on p. 29.

For Sapling, three additional PRF,, are needed:

PRFexpand . B[Zsk] < BY[N] N ]:BY[éPRFexpand/S]
PREOk o wyllow/8l o pylls/8l o mylt/8l o mylé/8l Sym.K
PRF"fsap“ng . JS:) > B[Q] N ]:BY[EPRanSapI'\ng/8]

PRF®** is used in the following places:
- §4.2.2 ‘Sapling Key Components’ on p. 29, with inputs [0], [1], [2], and [3, 7 : BY];

- in the processes of sending and receiving Sapling notes (see §4.6.2 ‘Sending Notes (Sapling)’ on p.34 and
§4.17 ‘In-band secret distribution (Sapling)’ on p.47), with inputs [4] and [5];

- in [ZIP-32], with inputs [0], [1], [2] (intentionally matching §4.2.2 on p.29), and [t : {16..22}].

PRF°* is used in §4.17 ‘In-band secret distribution (Sapling)’ on p.47.
PRF"S2Pne i¢ ysed in §4.15.2 ‘Spend Statement (Sapling)’ on p.44.
All of these Pseudo Random Functions are instantiated in §5.4.2 ‘Pseudo Random Functions’ on p. 61.
Security requirements:
- Security definitions for Pseudo Random Functions are given in [BDJR2000, section 4].

- In addition to being Pseudo Random Functions, it is required that PRFY, PRF2‘" PRF? and PRF]™*""8 e
collision-resistant across all 2 — i.e. finding (z,y) # (x'? y') such that PRFY (y) = PRF"(y') should not be
feasible, and similarly for PRF**" and PRF® and PRF"">Pline,

Non-normative note: PRF" was called PRF™" in Zerocash [BCGGMTV2014].

4.1.3 Symmetric Encryption

Let Sym be an authenticated one-time symmetric encryption scheme with keyspace Sym.K, encrypting plaintexts
in Sym.P to produce ciphertexts in Sym.C.

Sym.Encrypt : Sym. K x Sym.P — Sym.C is the encryption algorithm.

Sym.Decrypt : Sym.K x Sym.C — Sym.P U {L} is the decryption algorithm, such that for any K € Sym.K and
P € Sym.P, Sym.Decrypty (Sym.Encryptk (P)) = P. L is used to represent the decryption of an invalid ciphertext.
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Security requirement: Sym must be one-time (INT-CTXT A IND-CPA)-secure [BN2007]. “One-time” here means
that an honest protocol participant will almost surely encrypt only one message with a given key; however, the
adversary may make many adaptive chosen ciphertext queries for a given key.

414 Key Agreement
A key agreement scheme is a cryptographic protocol in which two parties agree a shared secret, each using their
private key and the other party’s public key .

A key agreement scheme KA defines a type of public keys KA.Public, a type of private keys KA.Private, and a type of
shared secrets KA.SharedSecret. Optionally, it also defines a type KA.PublicPrimeSubgroup C KA.Public.

Optional: Let KA.FormatPrivate : Bléereseen] _y KA Private be a function to convert a bit string of length /pregprout to @
KA private key.

Let KA.DerivePublic : KA.Private x KA.Public — KA.Public be a function that derives the KA public key corresponding
to a given KA private key and base point.

Let KA.Agree : KA.Private x KA.Public — KA.SharedSecret be the agreement function.
Optional: Let KA.Base : KA.Public be a public base point.

Note: The range of KA.DerivePublic may be a strict subset of KA.Public.

Security requirements:
- KA.FormatPrivate must preserve sufficient entropy from its input to be used as a secure KA private key.
- The key agreement and the KDF defined in the next section must together satisfy a suitable adaptive security

assumption along the lines of [Bernstein2006, section 3] or [ABR1999, Definition 3].

More precise formalization of these requirements is beyond the scope of this specification.

4.1.5 Key Derivation

A Key Derivation Function is defined for a particular key agreement scheme and authenticated one-time symmetric
encryption scheme; it takes the shared secret produced by the key agreement and additional arguments, and
derives a key suitable for the encryption scheme.

The inputs to the Key Derivation Function differ between the Sprout and Sapling KDFs:

KDF>P°"! takes as input an output index in {1..N"*"}, the value hsig, the shared Diffie-Hellman secret sharedSecret,

the ephemeral public key epk, and the recipient’s public transmission key pkenc. It is suitable for use with KAP™

and derives keys for Sym.Encrypt.

KDFSPUt {1, N} x Blfsisl x KASP™"* SharedSecret x KASP™" Public x KASP™®"* Public — Sym.K

KDF>?Pi"€ takes as input the shared Diffie-Hellman secret sharedSecret and the ephemeral public key epk. (It does
not have inputs taking the place of the output index, hg;,, or pke,c.) It is suitable for use with KAS#'i"e and derives
keys for Sym.Encrypt.

KDFSPline ; K ASPI"e SharedSecret x KAS?PI™ Public — Sym.K
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Security requirements:

- The asymmetric encryption scheme in §4.16 ‘In-band secret distribution (Sprout) on p.46, constructed
from KAt KDF*P™®“* and Sym, is required to be IND-CCA2-secure and key-private.

- The asymmetric encryption scheme in §4.17 In-band secret distribution (Sapling)’ on p.47, constructed
from KA®>*P"& KDF>P"8 and Sym, is required to be IND-CCA2-secure and key-private.

Key privacy is defined in [BBDP2001].

4.1.6 Signature

A signature scheme Sig defines:
- atype of signing keys Sig.Private;
- atype of validating keys Sig.Public;
- atype of messages Sig.Message;
- atype of signatures Sig.Signature;
- arandomized signing key generation algorithm Sig.GenPrivate : () & Sig.Private;
- an injective validating key derivation algorithm Sig.DerivePublic : Sig.Private — Sig.Public;
- arandomized signing algorithm Sig.Sign : Sig.Private x Sig.Message & Sig.Signature;
- avalidating algorithm Sig.Validate : Sig.Public x Sig.Message x Sig.Signature — B;

such that for any signing key sk <* Sig.GenPrivate() and corresponding validating key vk = Sig.DerivePublic(sk), and
any m : Sig.Message and s : Sig.Signature < Sig.Sign,, (m), Sig.Validate,, (m, s) = 1.

Zcash uses four signature schemes:

- one used for signatures that can be validated by script operations such as 0P_CHECKSIG and OP_CHECKMULTISIG
as in Bitcoin;

- one called JoinSplitSig (instantiated in § 5.4.5 ‘Ed25519” on p. 63), which is used to sign transactions that contain
at least one JoinSplit description;

- [Sapling onward] one called SpendAuthSig (instantiated in § 5.4.6.1 ‘Spend Authorization Signature’ on p.67)
which is used to sign authorizations of Spend transfers;

- [Sapling onward] one called BindingSig (instantiated in § 5.4.6.2 ‘Binding Signature’ on p. 68), which is used
to enforce balance of Spend transfers and Output transfers, and to prevent their replay across transactions.

The following security property is needed for JoinSplitSig and BindingSig. Security requirements for SpendAuthSig are
defined in the next section, §4.1.6.1 ‘Signature with Re-Randomizable Keys’ on p.23. An additional requirement
for BindingSig is defined in §4.1.6.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on p. 24.

Security requirement:  JoinSplitSig and BindingSig must be Strongly Unforgeable under (non-adaptive) Chosen
Message Attack (SU-CMA), as defined for example in [BDEHR2011, Definition 6].* This allows an adversary to obtain
signatures on chosen messages, and then requires it to be infeasible for the adversary to forge a previously unseen
valid (message, signature) pair without access to the signing key.

* The scheme defined in that paper was attacked in [LM2017], but this has no impact on the applicability of the definition.
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Non-normative notes:

- We need separate signing key generation and validating key derivation algorithms, rather than the more
conventional combined key pair generation algorithm Sig.Gen : () & Sig.Private x Sig.Public, to support the key
derivation in §4.2.2 ‘Sapling Key Components’ on p.29. This also simplifies some aspects of the definitions
of signature schemes with additional features in §4.1.6.1 ‘Signature with Re-Randomizable Keys’ on p.23
and §4.1.6.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on p. 24.

- A fresh signature key pair is generated for each transaction containing a JoinSplit description. Since each
key pair is only used for one signature (see §4.10 ‘Non-malleability (Sprout)’ on p.38), a one-time signature
scheme would suffice for JoinSplitSig. This is also the reason why only security against non-adaptive chosen
message attack is needed. In fact the instantiation of JoinSplitSig uses a scheme designed for security under
adaptive attack even when multiple signatures are signed under the same key.

- [Sapling onward] The same remarks as above apply to BindingSig, except that the key is derived from the
randomness of value commitments. This results in the same distribution as of freshly generated key pairs, for
each transaction containing Spend descriptions or Output descriptions.

- SU-CMA security requires it to be infeasible for the adversary, not knowing the private key, to forge a distinct
signature on a previously seen message. That is, JoinSplit signatures and binding signatures are intended to
be nonmalleable in the sense of [BIP-62].

- The terminology used in this specification is that we “validate” signatures, and “verify” zk-SNARK proofs.

4.1.6.1 Signature with Re-Randomizable Keys

A signature scheme with re-randomizable keys Sig is a signature scheme that additionally defines:

- atype of randomizers Sig.Random;

- a randomizer generator Sig.GenRandom : () & Sig.Random;

- a signing key randomization algorithm Sig.RandomizePrivate : Sig.Random x Sig.Private — Sig.Private;
- a validating key randomization algorithm Sig.RandomizePublic : Sig.Random x Sig.Public — Sig.Public;

- a distinguished “identity” randomizer Os;g random @ Sig-Random

such that:

- for any « ¢ Sig.Random, Sig.RandomizePrivate,, : Sig.Private — Sig.Private is injective and easily invertible;
- Sig.RandomizePrivatep, . . is the identity function on Sig.Private.
- for any sk : Sig.Private,
Sig.RandomizePrivate(a, sk) : a & Sig.GenRandom()
is identically distributed to Sig.GenPrivate().

- for any sk : Sig.Private and « : Sig.Random,
Sig.RandomizePublic(a, Sig.DerivePublic(sk)) = Sig.DerivePublic(Sig.RandomizePrivate(a, sk)).

The following security requirement for such signature schemes is based on that given in [FKMSSS2016, section 3].
Note that we require Strong Unforgeability with Re-randomized Keys, not Existential Unforgeability with Re-
randomized Keys (the latter is called “Unforgeability under Re-randomized Keys” in [FKMSSS2016, Definition 8]).
Unlike the case for JoinSplitSig, we require security under adaptive chosen message attack with multiple messages
signed using a given key. (Although each note uses a different re-randomized key pair, the same original key pair
can be re-randomized for multiple notes, and also it can happen that multiple transactions spending the same
note are revealed to an adversary.)
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Security requirement: Strong Unforgeability with Re-randomized Keys under adaptive Chosen Message At-
tack (SURK-CMA)

For any sk : Sig.Private, let
O,y ¢ Sig.Message x Sig.Random — Sig.Signature

be a signing oracle with state Q : 9P(Sig.Message x Sig.Signature) initialized to {} that records queried messages
and corresponding signatures.

Oy :=var Q < {} in (m : Sig.Message, « : Sig.Random)
leto = Sig-SignSig.RandomizePrivate(a,sk) (m)

Q< Qu{(m,0)}

return o : Sig.Signature.

For random sk < Sig.GenPrivate() and vk = Sig.DerivePublic(sk), it must be infeasible for an adversary given vk and
anew instance of Oy, to find (m', o', a’) such that Sig.Validateg, . gomizepublic(a’ vk (M ') = L and (m’,0") & Og.Q.
Non-normative notes:

- The randomizer and key arguments to Sig.RandomizePrivate and Sig.RandomizePublic are swapped relative to
[FKMSSS2016, section 3].

- The requirement for the identity randomizer Og;g random simplifies the definition of SURK-CMA by removing
the need for two oracles (because the oracle for original keys, called O; in [FKMSSS2016], is a special case of
the oracle for randomized keys).

- Since Sig.RandomizePrivate(«, sk) : @ ¢ Sig.Random has an identical distribution to Sig.GenPrivate(), and since
Sig.DerivePublic is a deterministic function, the combination of a re-randomized validating key and signature(s)
under that key do not reveal the key from which it was re-randomized.

- Since Sig.RandomizePrivate,, is injective and easily invertible, knowledge of Sig.RandomizePrivate(«, sk) and o
implies knowledge of sk.

4.1.6.2 Signature with Signing Key to Validating Key Monomorphism

A signature scheme with key monomorphism Sig is a signature scheme that additionally defines:
- an abelian group on signing keys, with operation & : Sig.Private x Sig.Private — Sig.Private and identity Og;

- an abelian group on validating keys, with operation ¢ : Sig.Public x Sig.Public — Sig.Public and identity O,

such that for any sk;_, ¢ Sig.Private, Sig.DerivePublic(sk; B sky) = Sig.DerivePublic(sk;) 4 Sig.DerivePublic(sk,).
In other words, Sig.DerivePublic is a monomorphism (that is, an injective homomorphism) from the signing key

group to the validating key group.
For N : N*,

N
. Bizlski means sk B sko 8 - - - B sky;
N
. @izlvki means vk; ¢ vky & - - - & vky.
0 0
When N = 0 these yield the appropriate group identity, i.e. Hﬂizlski = Oy and Q%:lei = 0,
Bsk means the signing key such that (Bsk) @ sk = O, and sk; B sk, means sk, B (Bsks).

&vk means the validating key such that (6 vk) 4 vk = O, and vk; ¢ vk, means vk; ¢ (©vk,).
With a change of notation from p to Sig.DerivePublic, + to &, and - to ¢, this is similar to the definition of a “Signature

with Secret Key to Public Key Homomorphism” in [DS2016, Definition 13], except for an additional requirement for
the homomorphism to be injective.
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Security requirement:  For any sk, : Sig.Private, and an unknown sk, < Sig.GenPrivate() chosen independently
of sky, the distribution of sk, @ sk, is computationally indistinguishable from that of Sig.GenPrivate(). (Since &

is an abelian group operation, this implies that for n : N7, Hﬂllski is computationally indistinguishable from
Sig.GenPrivate() when at least one of sk; ,, is unknown.)

417 Commitment

A commitment scheme is a function that, given a commitment trapdoor generated at random and an input, can be
used to commit to the input in such a way that:

- no information is revealed about it without the trapdoor (*hiding”),

- given the trapdoor and input, the commitment can be verified to “open” to that input and no other ("binding”).

A commitment scheme COMM defines a type of inputs COMM.Input, a type of commitments COMM.Output, a type
of commitment trapdoors COMM . Trapdoor, and a trapdoor generator COMM.GenTrapdoor : () & COMM.Trapdoor.

Let COMM : COMM.Trapdoor x COMM.Input — COMM.Output be a function satisfying the following security
requirements.

Security requirements:

. Computational hiding: For all z,z" : COMM.Input, the distributions { COMM,.(z) | » & COMM.GenTrapdoor() }
and { COMM,.(2") | » & COMM.GenTrapdoor() } are computationally indistinguishable.

. Computational binding: It is infeasible to find , 2" : COMM.Input and 7, 7" : COMM.Trapdoor such that = # '
and COMM, (z) = COMM. ().
Notes:

- COMM.GenTrapdoor need not produce the uniform distribution on COMM.Trapdoor. In that case, it is incorrect
to choose a trapdoor from the latter distribution.

. If it were only feasible to find # : COMM.Input and 7,7’ : COMM.Trapdoor such that  # " and COMM,.(z) =

COMM, /(x), this would not contradict the computational binding security requirement. (In fact, this is feasible

for NoteCommit>*P™"¢ and ValueCommit because trapdoors are equivalent modulo rj, and the range of a trapdoor

for those algorithms is {0 .. 2= —1} where 2% > ;)
Let £;cm. Lnerkiesprout: £PRFSprout: aNd £y, be as defined in §5.3 ‘Constants’ on p. 53.
Define NoteCommit>P"* . Trapdoor := Bl and NoteCommit>P®"*.Output := Bl meriesprou]

Sprout uses a note commitment scheme

NoteCommit®™°"* : NoteCommit>™°"* Trapdoor x BlfPrrseeul 5 £ 2fene 1} x plfprespon]
— NoteCommit>°"* Output,

instantiated in §5.4.7.1 ‘Sprout Note Commitments’ on p.68.

Let {y.,1or be as defined in § 5.3 ‘Constants’ on p.53.

Let J and ry be as defined in §5.4.8.3 Jubjub’ on p.73.
Define:
NoteCommit>*"& Trapdoor := {0.. 2% —1} and NoteCommit>*"""¢ Qutput := J;

ValueCommit. Trapdoor := {0.. 2% —1} and ValueCommit.Output := J.
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Sapling uses two additional commitment schemes:

NoteCommit>®™"& : NoteCommit>*P"¢ Trapdoor x B“! x B! x {0.. 2% —1} — NoteCommit>**"8 Output

. . =1 ry—1 .
ValueCommit : ValueCommit. Trapdoor x {—'32 . 'JQ } — ValueCommit.Output

NoteCommit>**"™ is instantiated in § 5.4.7.2 ‘Windowed Pedersen commitments’ on p. 68, and ValueCommit is instan-
tiated in § 5.4.7.3 ‘Homomorphic Pedersen commitments’ on p. 69.

Non-normative note: NoteCommit>**""8 and ValueCommit always return points in the subgroup J*. However, we
declare the type of these commitment outputs to be J because they are not directly checked to be in the subgroup
when ValueCommit outputs appear in Spend descriptions and Output descriptions, or when the cmu field derived
from a NoteCommit>*""8 appears in an Output description.

4.1.8 Represented Group

A represented group G consists of:
- a subgroup order parameter g : N*, which must be prime;
- a cofactor parameter hg : NT;
- agroup G of order hg - rg, written additively with operation + : G x G — G, and additive identity Og;
- a bit-length parameter {; : N;

- arepresentation function reprg : G — B} and an abstraction function abstg ¢ B! 5 Gu {L}, such that
abstg is the left inverse of reprg, i.e. for all P € G, abstg (reprg (P)) = P, and for all S not in the image of reprg,
abstg (S) = L.

Define G as the order-rg subgroup of G, which is called a represented subgroup. Note that this includes Og. For
the set of points of order r¢ (which excludes Og), we write GO,

Define GY := {repre(P) : Bl | P e GM}.
For G : G we write —G for the negation of G, such that (—G) + G = Og. We write G — H for G + (—H).

We also extend the Y  notation to addition on group elements.
For G : G and k : Z we write [k] G for scalar multiplication on the group, i.e.

o S G k>0

k

Zi:l(_G)’ otherwise.

For G : G and a : I, , we may also write [a] G meaning [a mod 7] G as defined above. (This variant is not defined
for fields other than I, )

4.1.9 Hash Extractor

A hash extractor for a represented group G is a function Extract ¢ : G" = T for some type T such that Extract ¢

is injective on G (the subgroup of G of order rg).

Note:  Unlike the representation function reprg, Extract ,«» need not have an efficiently computable left inverse.
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4.1.10 Group Hash

Given a represented subgroup G, a family of group hashes into the subgroup, denoted GroupHasth, consists of:
- atype GroupHash.URSType of Uniform Random Strings;
- a type GroupHash.Input of inputs;
- a function GroupHasth ¢ GroupHash.URSType x GroupHash.Input — G,

In §5.4.8.5 ‘Group Hash into Jubjub’ on p.74, we instantiate a family of group hashes into the Jubjub curve defined
by §5.4.8.3 Jubjub’ on p.73.

Security requirement: For a randomly selected URS : GroupHash.URSType, it must be reasonble to model

®
GroupHash(S’RS (restricted to inputs for which it does not return L) as a random oracle.

Non-normative notes:

. GroupHashJW is used to obtain generators of the Jubjub curve for various purposes: the bases G and H
used in Sapling key generation, the Pedersen hash defined in §5.4.1.7 ‘Pedersen Hash Function’ on p.58, and
the commitment schemes defined in §5.4.7.2 ‘Windowed Pedersen commitments’ on p.68 and in §5.4.7.3
‘Homomorphic Pedersen commitments’ on p.69.

The security property needed for these uses can alternatively be defined in the standard model as follows:

®
Discrete Logarithm Independence: For a randomly selected member GroupHash‘S’Rs of the family, it is infea-
* [n]

sible to find a sequence of distinct inputs m,_, ¢ GroupHash.Input[n] and a sequence of nonzero z;_,, : ;.

n G(T‘)
such that ZLZI([J:Z] GroupHashURS(mi)) =0g.
- Under the Discrete Logarithm assumption on G, a random oracle almost surely satisfies Discrete Logarithm
Independence. Discrete Logarithm Independence implies collision resistance, since a collision (my, m,) for
®
Grou pHash(S’RS trivially gives a discrete logarithm relation with z; = 1 and x5 = —1.
()=
. GroupHash’ s also used to instantiate DiversifyHash in §5.4.1.6 ‘DiversifyHash Hash Function’ on p.57. We
do not know how to prove the Unlinkability property defined in that section in the standard model, but in a

()=
model where Grou pHash“H (restricted to inputs for which it does not return L) is taken as a random oracle, it
is implied by the Decisional Diffie-Hellman assumption on J ®,

- URS is a Uniform Random String; we choose it verifiably at random (see § 5.9 ‘Randomness Beacon’ on p. 83),
after fixing the concrete group hash algorithm to be used. This mitigates the possibility that the group hash
algorithm could have been backdoored.

4.1.11 Represented Pairing

A represented pairing P consists of:
- a group order parameter 7 : N* which must be prime;
- two represented subgroups IP’Y)Q both of order rp;
- agroup ]ng) of order rp, written multiplicatively with operation - : }P’gf) X ]P’gf) — ]P’gf) and group identity 1p;
- three generators Pp, , , of IP’@ZT respectively;
. a pairing function ép : P x PY) — P satisfying:
- (Bilinearity) foralla,b:F;, P: P, and Q : P, ép([a] P, [b] Q)= ép(P,Q)""; and
- (Nondegeneracy) there does not exist P : IP)Y)* such that for all Q : Pg), ép(P, Q)= 1p.
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4.112 Zero-Knowledge Proving System

A zero-knowledge proving system is a cryptographic protocol that allows proving a particular statement, dependent
on primary and auxiliary inputs, in zero knowledge — that is, without revealing information about the auxiliary
inputs other than that implied by the statement. The type of zero-knowledge proving system needed by Zcash is a
preprocessing zk-SNARK [BCCGLRT2014].

A preprocessing zk-SNARK instance ZK defines:
- atype of zero-knowledge proving keys, ZK.ProvingKey;
- a type of zero-knowledge verifying keys, ZK VerifyingKey;
- atype of primary inputs ZK.Primarylnput;
- atype of auxiliary inputs ZK.Auxiliarylnput;
- atype of zk-SNARK proofs ZK.Proof;
- atype ZK.SatisfyingInputs C ZK.Primarylnput x ZK.Auxiliarylnput of inputs satisfying the statement;
- arandomized key pair generation algorithm ZK.Gen : () & ZK.ProvingKey x ZK.VerifyingKey;
- a proving algorithm ZK.Prove : ZK.ProvingKey x ZK.Satisfyinglnputs — ZK.Proof;
- averifying algorithm ZK.Verify : ZK.VerifyingKey x ZK.Primarylnput x ZK.Proof — B;

The security requirements below are supposed to hold with overwhelming probability for (pk, vk) < ZK.Gen().

Security requirements:

- Completeness: An honestly generated proof will convince a verifier: for any (z,w) € ZK.Satisfyinglnputs, if
ZK.Prove (z,w) outputs m, then ZK.Verify,, (z,m) = 1.

- Knowledge Soundness: For any adversary A able to find an z : ZK.Primarylnput and proof = : ZK.Proof
such that ZK.Verify,, (x,m) = 1, there is an efficient extractor £4 such that if £4(vk, pk) returns w, then the
probability that (z,w) ¢ ZK.Satisfyinglnputs is insignificant.

- Statistical Zero Knowledge: An honestly generated proof is statistical zero knowledge. That is, there is a
feasible stateful simulator S such that, for all stateful distinguishers D, the following two probabilities are not
significantly different:

(pk,vk) & ZK.Gen() (pk,vk) & S()
(xz,w) € ZK.Satisfyinglnputs
(x,w) & D(pk, vk) and Pr (x,w) & D(pk, vk)

T & ZK.Prove, (z,w) & S(z)

(z,w) € ZK.SatisfyingInputs
D(m) =1

Pr
D(m =1

These definitions are derived from those in [BCTV2014b, Appendix C|, adapted to state concrete security for a fixed
circuit, rather than asymptotic security for arbitrary circuits. (ZK.Prove corresponds to P, ZK.Verify corresponds
to V, and ZK.Satisfyinglnputs corresponds to R in the notation of that appendix.)

The Knowledge Soundness definition is a way to formalize the property that it is infeasible to find a new proof
wwhere ZK.Verify,, (z,n) = 1 without knowing an auxiliary input w such that (x,w) € ZK.SatisfyingInputs. Note
that Knowledge Soundness implies Soundness — i.e. the property that it is infeasible to find a new proof = where
ZK.Verify,, (z,m) = 1 without there existing an auxiliary input w such that (z, w) € ZK.Satisfyinglnputs.

Non-normative notes:

- The above properties do not include nonmalleability [DSDCOPS2001], and the design of the protocol using
the zero-knowledge proving system must take this into account.

- The terminology used in this specification is that we “validate” signatures, and “verify” zk-SNARK proofs.
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Zcash uses two proving systems:

- BCTV14(§5.4.9.1 ‘BCTV14 on p.75) is used with the BN-254 pairing (§ 5.4.8.1 ‘BN-254" on p. 70), to prove and
verify the Sprout JoinSplit statement (§4.15.1 ‘JoinSplit Statement (Sprout)’ on p. 43) before Sapling activa-
tion.

- Groth16 (§5.4.9.2 ‘Groth16’ on p.76) is used with the BLS12-381 pairing (§5.4.8.2 ‘BLS12-381’ on p.71), to prove
and verify the Sapling Spend statement (§4.15.2 ‘Spend Statement (Sapling) on p.44) and Output statement
(§4.15.3 ‘Output Statement (Sapling)’ on p.45). It is also used to prove and verify the JoinSplit statement
after Sapling activation.

These specializations are: ZKJoinSplit for the Sprout JoinSplit statement (with BCTV14 and BN-254, or Groth16 and
BLS12-381); ZKSpend for the Sapling Spend statement; and ZKOutput for the Sapling Output statement.

We omit key subscripts on ZKJoinSplit.Prove and ZKJoinSplit.Verify, taking them to be either the BCTV14 proving
key and verifying key defined in §5.7 ‘BCTV14 zk-SNARK Parameters’ on p. 82, or the sprout-groth16.params
Grothl6 proving key and verifying key defined in §5.8 ‘Groth16 zk-SNARK Parameters’ on p. 83, according to
whether the proof appears in a block before or after Sapling activation.

We also omit subscripts on ZKSpend.Prove, ZKSpend.Verify, ZKOutput.Prove, and ZKOutput.Verify, taking them to be
the relevant Groth16 proving keys and verifying keys defined in § 5.8 ‘Groth16 zk-SNARK Parameters’ on p. 83.

4.2 Key Components

4.2.1 Sprout Key Components

Let £, be as defined in §5.3 ‘Constants’ on p. 53.
Let PRF**" be a Pseudo Random Function, instantiated in §5.4.2 ‘Pseudo Random Functions’ on p.61.

Let KASP™®“ be a key agreement scheme, instantiated in § 5.4.4.1 ‘Sprout Key Agreement’ on p.62.

A new Sprout spending key aq is generated by choosing a bit sequence uniformly at random from Bl

apk: SKenc and pke,c are derived from ag as follows:
ddr
apk == PRF(0)
Skenc 1= KA FormatPrivate(PRF32"" (1))
Phene := KASP™“" DerivePublic(skenc, KASP™"* Base).

4.2.2 Sapling Key Components

Let Lprrexpand: Lsk: Lovk and £y be as defined in §5.3 ‘Constants’ on p. 53.
Let PRF¥P*" and PRF°™ be Pseudo Random Functions instantiated in §5.4.2 ‘Pseudo Random Functions’ on p. 61,
Let KAS?PINE he o key agreement scheme, instantiated in §5.4.4.3 ‘Sapling Key Agreement’ on p. 63.

Let CRHY be a hash function, instantiated in §5.4.1.5 ‘CRH"* Hash Function’ on p. 56.
Let DiversifyHash be a hash function, instantiated in §5.4.1.6 ‘DiversifyHash Hash Function’ on p.57.

Let SpendAuthSig, instantiated in §5.4.6.1 ‘Spend Authorization Signature’ on p.67, be a signature scheme with
re-randomizable keys.

()=
Let repry, I 79% and J¥ be as defined in §5.4.8.3 ‘Jubjub’ on p.73, and let FindGroupHash” ~ be as defined in
§5.4.8.5 ‘Group Hash into Jubjub’ on p.74.
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Let LEBS20SP : (¢ : N) x Bl — Byl<eline®/®)] and LEOS2IP : (£ : N| £ mod 8 = 0) x BY/¥ — {0..2°~1} be as
defined in § 5.2 ‘Integers, Bit Sequences, and Endianness’ on p.52.

)=
Define H := FindGroupHash’ = (“Zcash_H_",“")

Define ToScalar(x : IB%YMPRF“PM/S]) 1= LEOS2IP,, (2) (mod ry).

A new Sapling spending key sk is generated by choosing a bit sequence uniformly at random from Bl

From this spending key, the Spend authorizing key ask : I, , the proof authorizing key nsk : F, , and the outgoing

/8 are derived as follows:

viewing key ovk : Byl
ask := ToScalar(PRFP™([0]))
nsk := ToScalar(PRFE®2"([1]))

ovk := truncate(s_, /s) (PRFEP™([2)))

If ask = 0, discard this key and repeat with a new sk.

ak : J* nk : J), and the incoming viewing key ivk : {0 .. 2% —1} are then derived as:
ak := SpendAuthSig.DerivePublic(ask)
nk := [nsk] H
ivk := CRHin(reprJ(ak), repr;(nk)).

Ifivk = 0, discard this key and repeat with a new sk.

As explained in § 3.1 Payment Addresses and Keys’ on p.12, Sapling allows the efficient creation of multiple di-
versified payment addresses with the same spending authority. A group of such addresses shares the same full
viewing key and incoming viewing key .

To create a new diversified payment address given an incoming viewing key ivk, repeatedly pick a diversifier

d uniformly at random from Bl until the diversified base g4 = DiversifyHash(d) is not L. Then calculate the
diversified transmission key pky:

pky := KAS®"8 DerivePublic(ivk, g4).
The resulting diversified payment address is (d : B!, pky : KAS*P™™ PublicPrimeSubgroup).

For each spending key, there is also a default diversified payment address with a “random-looking” diversifier.
This allows an implementation that does not expose diversified addresses as a user-visible feature, to use a default
address that cannot be distinguished (without knowledge of the spending key) from one with a random diversifier
as above.

Let first ¢ (BY - TU{L}) - T U{L} be as defined in §5.4.8.5 ‘Group Hash into Jubjub’ on p.74. Define:

L, if DiversifyHash(d) = L

CheckDiversifier(d : IEB[Z‘*]) = {d therwi
, otherwise

DefaultDiversifier(sk : BI‘) := first (i : BY s CheckDiversifier(truncate s, /) (PRFS"([3,4]))) ¢ JO* U {L}).

For a random spending key, DefaultDiversifier returns | with probability approximately 27 2°°: if this happens,
discard the key and repeat with a different sk.
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Notes:

- The protocol does not prevent using the diversifier d to produce “vanity” addresses that start with a meaningful
string when encoded in Bech32 (see §5.6.4 ‘Sapling Payment Addresses’ on p.80). Users and writers of
software that generates addresses should be aware that this provides weaker privacy properties than a
randomly chosen diversifier, since a vanity address can obviously be distinguished, and might leak more
information than intended as to who created it.

- Similarly, address generators MAY encode information in the diversifier that can be recovered by the recipient
of a payment to determine which diversified payment address was used. It is RECOMMENDED that such
diversifiers be randomly chosen unique values used to index into a database, rather than directly encoding
the needed data.

Non-normative notes:

. Assume that PRF®*" is a PRF with output range BY!rreend/8] \yhere 2fPrrernd is Jarge compared to ry.
Define f : Bl x BN — F., by fu(t) := ToScalar(PRFSP™ (1))

Then fisalsoa PRF, since LEOS2IP, Bylerrepand /8 _y 1) 9fPRrepand 11 ig injective; the bias introduced by
reduction modulo 7y is small because § 5.3 ‘Constants’ on p. 53 defines {pgrpexpang s 512, while ry has length 252

bits. It follows that the distribution of ask, i.e. PRFE®2"([0]) : sk & B!, is computationally indistinguishable
from that of SpendAuthSig.GenPrivate() defined in § 5.4.6.1 ‘Spend Authorization Signature’ on p.67.

- Similarly, the distribution of nsk, i.e. ToScalar(PRFS®™([1])) : sk & Bl is computationally indistinguishable

from the uniform distribution on F, . Since nsk : ..~ repry([nsk] H) : 7% is bijective, the distribution of

repr;(nk) will be computationally indistinguishable from uniform on J% (which is the keyspace of PRF"*Ping),

- The zcashd wallet picks diversifiers as in [ZIP-32], rather than using the default diversifier specified above.

4.3 JoinSplit Descriptions
A JoinSplit transfer, as specified in § 3.5 ‘JoinSplit Transfers and Descriptions’ on p.16, is encoded in fransactions
as a JoinSplit description.

Each transaction includes a sequence of zero or more JoinSplit descriptions. When this sequence is non-empty,
the transaction also includes encodings of a JoinSplitSig public validating key and signature.

Let {periesprout: £PRFSprout: {seed: N4 N™" and MAX_MONEY be as defined in §5.3 ‘Constants’ on p. 53.
Let hSigCRH be as defined in §4.1.1 ‘Hash Functions’ on p.19.
Let NoteCommit>™" be as defined in §4.1.7 ‘Commitment’ on p. 25.

Let KA®P™" be as defined in §4.1.4 ‘Key Agreement’ on p.21.

Let Sym be as defined in §4.1.3 ‘Symmetric Encryption’ on p. 20.

Let ZKJoinSplit be as defined in §4.1.12 “Zero-Knowledge Proving System’ on p. 28.
old new

. . L. . Id
A JoinSplit description consists of (Vpup; Vpub » t, N7 o, €M Xnew, epk, randomSeed, h, o, Tz joinspiies C1 N+ )
where

. vg'fb : {0.. MAX_MONEY} is the value that the JoinSplit transfer removes from the transparent transaction
value pool,

new

* Voub ¢ {0.. MAX_MONEY} is the value that the JoinSplit transfer inserts into the transparent transaction value
pool;

« rt 2 Blfweniesoo] s an anchor, as defined in § 3.3 “The Block Chain’ on p.15, for the output treestate of either a
previous block, or a previous JoinSplit transfer in this transaction.

old
. nfildNold : Blferrsoon N7 g the sequence of nullifiers for the input notes;
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- em!® e 2 NoteCommit>™"* Output™ | is the sequence of note commitments for the output notes;

. epk : KA®P™®® Public is a key agreement public key, used to derive the key for encryption of the transmitted
notes ciphertext (§4.16 ‘In-band secret distribution (Sprout)’ on p.46);

- randomSeed : Bl is a seed that must be chosen independently at random for each JoinSplit description;

old
< h et Blferesoen N7 i 5 sequence of tags that bind hg;, to each ay of the input notes;

- TzKkJ0insplit ¢ ZKJoinSplit.Proof is a zk proof with primary input (rt, nf el €M e, p'fb v;ﬁ‘g’, hsig, h, you) for

the JoinSplit statement defined in §4.15.1 ‘JoinSplit Statement (Sprout)’ on p.43 (this is a BCTV14 proof
before Sapling activation, and a Groth16 proof after Sapling activation);

- CP Mg Sym.clN

new]

is a sequence of ciphertext components for the encrypted output notes.

The ephemeralKey and encCiphertexts fields together form the transmitted notes ciphertext.

The value hg, is also computed from randomSeed, nf(l".‘.jNo\d, and the joinSplitPubKey of the containing transaction:

hsig := hSigCRH(randomSeed, nf?'ijou,joinSplitPubKey).

Consensus rules:

- Elements of a JoinSplit description MUST have the types given above (for example: 0 < vg'fb < MAX_MONEY
and 0 < vpiy < MAX_MONEY).

- The proof 7k jeinspit MUST be valid given a primary input formed from the relevant other fields and hg;; — i.e.

old
ZKJoinSplit.Verify((rt, nf1 e CMY e, Vo Vpub » Dsigs Ny xold) s T2k soinsplie) = 1-

- Either vglfb or vp,p MUST be zero.

- [Canopy onward|] vgludb MUST be zero.

4.4 Spend Descriptions

A Spend transfer, as specified in § 3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’ on p.16, is
encoded in transactions as a Spend description.

Each transaction includes a sequence of zero or more Spend descriptions.

Each Spend description is authorized by a signature, called the spend authorization signature.

Let £yierkiesapling @Nd £pRrenfsapling D€ as defined in §5.3 ‘Constants’ on p. 53.

Let ValueCommit.Output be as defined in §4.1.7 ‘Commitment’ on p. 25.

Let SpendAuthSig be as defined in §4.13 ‘Spend Authorization Signature’ on p.41.

Let ZKSpend be as defined in §4.1.12 Zero-Knowledge Proving System’ on p.28.

A Spend description consists of (cv, rt, nf, rk, Tzkspend, SPendAuthSig) where
- cv ¢ ValueCommit.Output is the value commitment to the value of the input note;

- rt : Blfewiswing] i an anchor, as defined in § 3.3 “The Block Chain’ on p. 15, for the output treestate of a previous
block;

- nf : Bylferrsening/8] s the nullifier for the input note;
- rk : SpendAuthSig.Public is a randomized validating key that should be used to validate spendAuthSig;

- Tzkspend ¢ ZKSpend.Proof is a zk-SNARK proof with primary input (cv, rt,nf, rk) for the Spend statement
defined in §4.15.2 ‘Spend Statement (Sapling)’ on p.44;

- spendAuthSig : SpendAuthSig.Signature is as specified in § 4.13 ‘Spend Authorization Signature’ on p.41.
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Consensus rules:
- Elements of a Spend description MUST be canonical encodings of the types given above.
- cvand rk MUST NOT be of small order, i.e. [hj] cv MUST NOT be Oy and [h;] rk MUST NOT be Oj.

- The proof mzkspend MUST be valid given a primary input formed from the other fields except spendAuthSig —
i.e. ZKSpend.Verify((cv, rt, nf, rk), T7kspend) = 1.

- Let SigHash be the SIGHASH transaction hash of this transaction, not associated with an input, as defined in
§4.9 ‘SIGHASH Transaction Hashing’ on p.37 using SIGHASH_ALL.

The spend authorization signature MUST be a valid SpendAuthSig signature over SigHash using rk as the
validating key — i.e. SpendAuthSig.Validate, (SigHash, spendAuthSig) = 1.

Non-normative note: The check that rk is not of small order is technically redundant with a check in the Spend
circuit, but it is simple and cheap to also check this outside the circuit.

4.5 Output Descriptions
An Output transfer, as specified in § 3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’ on p.16, is
encoded in transactions as an Output description.

Each transaction includes a sequence of zero or more Output descriptions. There are no signatures associated
with Output descriptions.

Let ValueCommit.Output be as defined in §4.1.7 ‘Commitment’ on p. 25.

Let Lperkiesapling D€ as defined in §5.3 ‘Constants’ on p. 53.

Let KA®*P"€ he as defined in §4.1.4 ‘Key Agreement’ on p.21.
Let Sym be as defined in §4.1.3 ‘Symmetric Encryption’ on p. 20.
Let ZKOutput be as defined in §4.1.12 Zero-Knowledge Proving System’ on p. 28.

An Output description consists of (cv,cm,, epk, C", C*"*, Tz oytput) Where

- cv : ValueCommit.Output is the value commitment to the value of the output note;

- cm,, ¢ Blfweneswine] is the result of applying Extract; (defined in §5.4.8.4 ‘Hash Extractor for Jubjub’ on p.74)
to the note commitment for the output note;

. epk : KA>®'M8 pyblic is a key agreement public key, used to derive the key for encryption of the transmitted
note ciphertext (§4.17 ‘In-band secret distribution (Sapling)’ on p.47);

- C*"“ : Sym.C is a ciphertext component for the encrypted output note;

- C*": Sym.C is a ciphertext component that allows the holder of a full viewing key to recover the recipient
diversified transmission key pky and the ephemeral private key esk (and therefore the entire note plaintext);

© Tzkoutput ¢ ZKOutput.Proof is a zk-SNARK proof with primary input (cv,cm,,, epk) for the Output statement
defined in §4.15.3 ‘Output Statement (Sapling)’ on p.45.

Consensus rules:
- Elements of an Output description MUST be canonical encodings of the types given above.

- cv and epk MUST NOT be of small order, i.e. [h;] cv MUST NOT be Oy and [hj] epk MUST NOT be Oj.

- The proof mzkoutput MUST be valid given a primary input formed from the other fields except C*"* and C*** —
i.e. ZKSpend.Verify((cv,cm,, epk), Tzkoutput) = 1-
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4.6 Sending Notes

4.6.1 Sending Notes (Sprout)

In order to send Sprout shielded value, the sender constructs a fransaction containing one or more joinSplit
descriptions. This involves first generating a new JoinSplitSig key pair:

joinSplitPrivKey <t JoinSplitSig.GenPrivate()
joinSplitPubKey := JoinSplitSig.DerivePublic(joinSplitPrivKey).

For each JoinSplit description, the sender chooses randomSeed uniformly at random on B! and selects the input
notes. At this point there is sufficient information to compute hgy,, as described in the previous section. The sender

also chooses ¢ uniformly at random on B~ Then it creates each output note with index i : {1..N""}:
. Choose uniformly random rem; & NoteCommit™*"*.GenTrapdoor().
- Compute p; = PRF{, (i, hg;g).
- Compute cm; = NoteCommitf‘cp,::”t(apk,i,v,», ;).
- Let np; = (0x00, v;, p;, rcm;, memo,).
np, e are then encrypted to the recipient transmission keys pke,. 1 x, giving the transmitted notes ciphertext

(epk, C{"ym), as described in §4.16 Tn-band secret distribution (Sprout) on p.46.

In order to minimize information leakage, the sender SHOULD randomize the order of the input notes and of the
output notes. Other considerations relating to information leakage from the structure of transactions are beyond
the scope of this specification.

After generating all of the JoinSplit descriptions, the sender obtains dataToBeSigned : By ™ as described in §4.10
‘Non-malleability (Sprout)’ on p. 38, and signs it with the private JoinSplit signing key:

joinSplitSig < JoinSplitSig.SignjoinsplitPrivkey(dataToBeSigned)

Then the encoded transaction including joinSplitSig is submitted to the network.

[Canopy onward] Note: [ZIP-211] specifies that nodes and wallets MUST disable any facilities to send to Sprout
addresses. This SHOULD be made clear in user interfaces and API documentation.

The facility to send to Sprout addresses is in any case OPTIONAL for a particular node or wallet implementation.

4.6.2 Sending Notes (Sapling)
In order to send Sapling shielded value, the sender constructs a fransaction containing one or more Output
descriptions.
Let ValueCommit and NoteCommit>*"""¢ be as specified in §4.1.7 ‘Commitment’ on p. 25.
Let KA>*'" be as defined in §4.1.4 ‘Key Agreement’ on p. 21.
Let DiversifyHash be as defined in §4.1.1 ‘Hash Functions’ on p.19.
Let repry, 75, and hy be as defined in §5.4.8.3 Jubjub’ on p.73.
Let ovk be an outgoing viewing key that is intended to be able to decrypt this payment. This may be one of:
- the outgoing viewing key for the address (or one of the addresses) from which the payment was sent;

- the outgoing viewing key for all payments associated with an “account”, to be defined in [ZIP-32];

- 1, if the sender should not be able to decrypt the payment once it has deleted its own copy.
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Note: Choosing ovk = L is useful if the sender prefers to obtain forward secrecy of the payment information with
respect to compromise of its own secrets.

Let CanopyActivationHeight be as defined in §5.3 ‘Constants’ on p. 53.

Let leadByte be the note plaintext lead byte. This MUST be 0x01 if for the next block, height < CanopyActivationHeight,
or 0x02 if height > CanopyActivationHeight.

For each Output description, the sender selects a value v : {0.. MAX_MONEY} and a destination Sapling shielded
payment address (d, pky), and then performs the following steps:

Check that pky is of type KA®*'"8 PublicPrimeSubgroup, i.e. it is a valid ctEdwards curve point on the Jubjub curve
(as defined in §5.4.8.3 ‘Jubjub’ on p. 73), and [ry] pky = O;.
Calculate g4 = DiversifyHash(d) and check that g4 # L.
Choose a uniformly random commitment trapdoor rcv ¢ ValueCommit.GenTrapdoor ().
If leadByte = 0x01:
Choose a uniformly random ephemeral private key esk & KA Private \ {0}.
Choose a uniformly random commitment trapdoor rem & NoteCommit>**""€ GenTrapdoor ().
Set rseed := rcm := LEBS20SP 55 (I12LEBSP 55 (rcm)).
else:

Choose uniformly random rseed By,
Derive esk = ToScalar (PRFEP2([4])).

rseed

Derive rem = ToScaIar(PRFeXpa"d([5])).

rseed

Calculate
cv := ValueCommit,, (v)

cm := NoteCommit>>*™™ (repr; (g4), repry(pkg), v)

Let np = (leadByte, d, v, rseed, memo).

Encrypt np to the recipient diversified transmission key pkq with diversified base g4, and to the outgoing
viewing key ovk, giving the transmitted note ciphertext (epk, C*"°, C°""). This procedure is described in §4.17.1
‘Encryption (Sapling)’ on p.48; it also uses cv and cm to derive the outgoing cipher key, and takes esk as an
input.

Generate a proof mzkoutput for the Output statement in §4.15.3 ‘Output Statement (Sapling)’ on p.45.

enc out
Return (cv, cm, epk, C*™, C™™, 7k output ) -

In order to minimize information leakage, the sender SHOULD randomize the order of Output descriptions in a
transaction. Other considerations relating to information leakage from the structure of transactions are beyond the
scope of this specification. The encoded transaction is submitted to the network.

4.7 Dummy Notes
4.71 Dummy Notes (Sprout)

The fields in a JoinSplit description allow for N° input notes, and N™" output notes. In practice, we may wish to
encode a JoinSplit transter with fewer input or output notes. This is achieved using dummy notes.
Let £, and lprrsprout b€ as defined in §5.3 ‘Constants’ on p. 53.

Let PRF"™ be as defined in §4.1.2 ‘Pseudo Random Functions’ on p. 20.

Let NoteCommit>™" be as defined in §4.1.7 ‘Commitment’ on p. 25.
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A dummy Sprout input note, with index i in the JoinSplit description, is constructed as follows:

- Generate a new uniformly random spending key agL(f,,; & Bl and derive its paying key ag'kc{i .
- Set v = 0.

. Choose uniformly random p%¢ & Blerrseen] and rem?® & NoteCommit>P"t. GenTrapdoor().

. Compute nf$' = PRF™, (p9').
Ask, 4

- Let path,; be a dummy Merkle path for the auxiliary input to the JoinSplit statement (this will not be checked).
- When generating the JoinSplit proof, set enforceMerklePath; to 0.

A dummy Sprout output note is constructed as normal but with zero value, and sent to a random shielded payment
address.

4.7.2 Dummy Notes (Sapling)

In Sapling there is no need to use dummy notes simply in order to fill otherwise unused inputs as in the case of a
JoinSplit description; nevertheless it may be useful for privacy to obscure the number of real shielded inputs from
Sapling notes.

Let £y be as defined in § 5.3 ‘Constants’ on p.53.

Let ry and repr; be as defined in §5.4.8.3 Jubjub’ on p.73.

Let H be as defined in §4.2.2 ‘Sapling Key Components’ on p.29.

Let PRF"™*'"8 he a5 defined in §4.1.2 ‘Pseudo Random Functions’ on p. 20.
Let NoteCommit>*P""€ be as defined in §4.1.7 ‘Commitment’ on p. 25.

A dummy Sapling input note is constructed as follows:
- Choose uniformly random sk <& Bl

- Generate a new diversified payment address (d, pky) for sk as described in §4.2.2 ‘Sapling Key Components’
on p.29.

old

- Setv®® =0, and set pos = 0.

- Choose uniformly random rem & NoteCommit>**""8 GenTrapdoor(). and nsk <& .,

- Compute nk = [nsk] H and nkx = repry(nk).

Sapling

. Compute p = cm® = NoteCommit="""€ (repr;(gy), reprj(pkd),vdd).

. Compute nf® = PRFf2Ping (repr (o)),

nkx

- Construct a dummy Merkle path path for use in the auxiliary input to the Spend statement (this will not be
checked, because v = 0).

As in Sprout, a dummy Sapling output note is constructed as normal but with zero value, and sent to a random
shielded payment address.
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4.8 Merkle Path Validity

Let MerkleDepth be MerkleDepth®™"* for the Sprout note commitment tree, or MerkleDepth®*"™™ for the Sapling
note commitment tree. These constants are defined in § 5.3 ‘Constants’ on p.53.

Similarly, let MerkleCRH be MerkleCRH*™"* for Sprout, or MerkleCRH>*""" for Sapling.

The following discussion applies independently to the Sprout and Sapling note commitment trees.
Each node in the incremental Merkle tree is associated with a hash value, which is a bit sequence.

The Jayer numbered h, counting from layer 0 at the root, has 2" nodes with indices 0 to 2" — 1 inclusive.
Let M! be the hash value associated with the node at index i in layer h.

The nodes at layer MerkleDepth are called leaf nodes. When a note commitment is added to the tree, it occupies
the leaf node hash value MY'*™*PP™ for the next available i.

As-yet unused Jeaf nodes are associated with a distinguished hash value Uncommitted>™*"* or Uncommitted>*""". It
is assumed to be infeasible to find a preimage note n such that NoteCommitment>""*(n) = Uncommitted*™°"*. (No
similar assumption is needed for Sapling because we use a representation for Uncommitted>*™" that cannot occur
as an output of NoteCommitment>>"""€ )

The nodes at layers 0 to MerkleDepth — 1 inclusive are called internal nodes, and are associated with MerkleCRH
outputs. Internal nodes are computed from their children in the next layer as follows: for 0 < h < MerkleDepth and
0<i<2",

M := MerkleCRH(M5;™ MEEL ).

A Merkle path from leaf node MY*™M'P**'" in the incremental Merkle tree is the sequence

[ M‘Zb“ng(h’i) for h from MerkleDepth down to 1 ],

where
sibling(h, i) := floor<2Merkeéepmh> &1

MerkleDepth

Given such a Merkle path, it is possible to verify that leaf node M; is in a tree with a given root rt = Mg,

4.9 SIGHASH Transaction Hashing

Bitcoin and Zcash use signatures and/or non-interactive proofs associated with transaction inputs to authorize
spending. Because these signatures or proofs could otherwise be replayed in a different transaction, it is necessary
to “bind” them to the transaction for which they are intended. This is done by hashing information about the
transaction and (where applicable) the specific input, to give a SIGHASH transaction hash which is then used for
the Spend authorization. The means of authorization differs between transparent inputs, inputs to Sprout joinSplit
transfers, and Sapling Spend transfers, but (for a given transaction version) the same SIGHASH transaction hash
algorithm is used.

In the case of Zcash, the BCTV14 and Groth16 proving systems used are malleable, meaning that there is the
potential for an adversary who does not know all of the auxiliary inputs to a proof, to malleate it in order to create a
new proof involving related auxiliary inputs [DSDCOPS2001]. This can be understood as similar to a malleability
attack on an encryption scheme, in which an adversary can malleate a ciphertext in order to create an encryption of a
related plaintext, without knowing the original plaintext. Zcash has been designed to mitigate malleability attacks, as
described in §4.10 ‘Non-malleability (Sprout)’ on p.38, §4.12 ‘Balance and Binding Signature (Sapling)’ on
p-39, and §4.13 ‘Spend Authorization Signature’ on p.4l.
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To provide additional flexibility when combining Spend authorizations from different sources, Bitcoin defines sev-
eral SIGHASH types that cover various parts of a transaction [Bitcoin-SigHash]. One of these types is SIGHASH_ALL,
which is used for Zcash-specific signatures, i.e. JoinSplit signatures, spend authorization signatures, and binding
signatures. In these cases the SIGHASH transaction hash is not associated with a transparent input, and so the
input to hashing excludes all of the scriptSig fields in the non-Zcash-specific parts of the transaction.

In Zcash, all SIGHASH types are extended to cover the Zcash-specific fields nJoinSplit, vJoinSplit, and if present
joinSplitPubKey. These fields are described in § 7.1 “Transaction Encoding and Consensus’ on p.85. The hash
does not cover the field joinSplitSig. After Overwinter activation, all SIGHASH types are also extended to cover
transaction fields introduced in that upgrade, and similarly after Sapling activation.

The original SIGHASH algorithm defined by Bitcoin suffered from some deficiencies as described in [ZIP-143]; in
Zcash these are to be addressed by changing this algorithm as part of the Overwinter upgrade.

[Pre-Overwinter| The SIGHASH algorithm used prior to Overwinter activation, i.e. for version 1 and 2 transactions,
will be defined in [ZIP-76] (to be written).

[Overwinter only, pre-Sapling] The SIGHASH algorithm used after Overwinter activation and before Sapling
activation, i.e. for version 3 transactions, is defined in [ZIP-143].

[Sapling onward] The SIGHASH algorithm used after Sapling activation, i.e. for version 4 transactions, is defined in
[Z1P-243].

[Blossom onward] The SIGHASH algorithm used after Blossom activation is the same as for Sapling, but using the
Blossom consensus branch ID 0x2BB40E60 as defined in [ZIP-206].

[Heartwood onward] The SIGHASH algorithm used after Heartwood activation is the same as for Sapling, but
using the Heartwood consensus branch ID 0xF5B9230B as defined in [ZIP-250].

[Canopy onward] The SIGHASH algorithm used after Canopy activation is the same as for Sapling, but using the
Canopy consensus branch ID 0xE9FF75A6 as defined in [ZIP-251].

410 Non-malleability (Sprout)

Let dataToBeSigned be the hash of the transaction, not associated with an input, using the SIGHASH_ALL SIGHASH
type.

In order to ensure that a JoinSplit description is cryptographically bound to the transparent inputs and outputs
corresponding to vy, and vglfb, and to the other JoinSplit descriptions in the same transaction, an ephemeral
JoinSplitSig key pair is generated for each transaction, and the dataToBeSigned is signed with the private signing key

of this key pair. The corresponding public validating key is included in the transaction encoding as joinSplitPubKey.
JoinSplitSig is instantiated in §5.4.5 ‘Ed25519 on p. 63.

If nJoinSplit is zero, the joinSplitPubKey and joinSplitSig fields are omitted. Otherwise, a transaction has a
correct JoinSplit signature if and only if JoinSplitSig.Validate;oinsp1itPubkey (dataToBeSigned, joinSplitSig) = 1.

Let hg;, be computed as specified in §4.3 ‘JoinSplit Descriptions’ on p.31.
Let PRFP* be as defined in §4.1.2 ‘Pseudo Random Functions’ on p.20.

For each i € {1..N°}, the creator of a JoinSplit description calculates h; = PRF':J,‘.d (4, hsig)-

sk, 7
The correctness of h, .« is enforced by the JoinSplit statement given in §4.15.1 ‘JoinSplit Statement (Sprout)’ on
p.43. This ensures that a holder of all of the 2%

sk, 1.
the use of the private signing key corresponding to joinSplitPubKey to sign this transaction.

o for every JoinSplit description in the transaction has authorized
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4.11 Balance (Sprout)

In Bitcoin, all inputs to and outputs from a transaction are transparent. The total value of transparent outputs must
not exceed the total value of transparent inputs. The net value of transparent inputs minus transparent outputs is
transferred to the miner of the block containing the transaction; it is added to the miner subsidy in the coinbase
transaction of the block.

Zcash Sprout extends this by adding JoinSplit transfers. Each JoinSplit transfer can be seen, from the perspective
of the transparent transaction value pool, as an input and an output simultaneously.

vg'fb takes value from the transparent transaction value pool and vy adds value to the transparent transaction

value pool. As a result, vgludb is treated like an output value, whereas vpiy is treated like an input value.

Unlike original Zerocash [BCGGMTV2014], Zcash does not have a distinction between Mint and Pour operations.
The addition of ngdb to a JoinSplit description subsumes the functionality of both Mint and Pour.

Also, a difference in the number of real input notes does not by itself cause two JoinSplit descriptions to be
distinguishable.

As stated in §4.3 “JoinSplit Descriptions’ on p. 31, either vSLdb or vpop, MUST be zero. No generality is lost because,

if a transaction in which both v‘;'fb and vy, were nonzero were allowed, it could be replaced by an equivalent

one in which min(vgludb, Vpub ) is subtracted from both of these values. This restriction helps to avoid unnecessary

distinctions between transactions according to client implementation.

4.12 Balance and Binding Signature (Sapling)

Sapling adds Spend transfers and Output transfers to the transparent and JoinSplit transfers present in Sprout.
The net value of Spend transfers minus Output transfers in a transaction is called the balancing value, measured in
zatoshi as a signed integer v**"¢,

VP2 is encoded explicitly in a transaction as the field valueBalance. (Transaction fields are described in § 7.1

“Transaction Encoding and Consensus’ on p. 85.)

A positive balancing value takes value from the Sapling transaction value pool and adds it to the transparent
transaction value pool. A negative balancing value does the reverse. As a result, positive v**"* is treated like an
input to the transparent transaction value pool, whereas negative v***" is treated like an output from that pool.

Consistency of v"®2" with the value commitments in Spend descriptions and Output descriptions is enforced by

the binding signature. This signature has a dual réle in the Sapling protocol:

- To prove that the total value spent by Spend transfers, minus that produced by Output transfers, is consistent
with the v field of the transaction;

- To prove that the signer knew the randomness used for the Spend and Output value commitments, in order
to prevent Output descriptions from being replayed by an adversary in a different transaction. (A Spend
description already cannot be replayed due to its spend authorization signature.)

Instead of generating a key pair at random, we generate it as a function of the value commitments in the Spend
descriptions and Output descriptions of the transaction, and the balancing value.

Let J™, ] and r; be as defined in §5.4.8.3 ‘Jubjub’ on p.73.

Let ValueCommit, V, and R be as defined in §5.4.7.3 ‘Homomorphic Pedersen commitments’ on p. 69:

rp—1 rp—1
2 2

ValueCommit ¢ ValueCommit. Trapdoor x {— } — ValueCommit.Output;

V= J* is the value base in ValueCommit;

R : J"* is the randomness base in ValueCommit.
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BindingSig, ¢, and EE are instantiated in §5.4.6.2 ‘Binding Signature’ on p.68. These and the derived notation ¢,
N
_ B8 and Hﬂ are specified in §4.1.6.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on

p2

Suppose that the transaction has:

Id

- n Spend descriptions with value commitments cv3" d

e . Id
', committing to values v{',, with randomness rcv{",,;

- m Output descriptions with value commitments cv,, committing to values v{<}, with randomness revi®,

. bal
- balancing value v>**",

In a correctly constructed transaction, v"*"* = Z v — > V1 but validators cannot check this directly
=1 Jj=1 J

because the values are hidden by the commitments.

Instead, validators calculate the transaction binding validating key as:

bvk := <$ CV?Id> & (Q} cv;ew> & ValueCommit, (v*2").
i=1 j=1

(This key is not encoded explicitly in the transaction and must be recalculated.)

. Id . ..
The signer knows revi,, and rcvi®y,, and so can calculate the corresponding signing key as:

bsk := (Hﬂ rcv;-)ld) =i (Hﬂ rcv;ew>.
i=1 j=1

In order to check for implementation faults, the signer SHOULD also check that
bvk = BindingSig.DerivePublic(bsk).

Let SigHash be the SIGHASH transaction hash as defined in [ZIP-243], not associated with an input, using the
SIGHASH type SIGHASH_ALL.

A validator checks balance by validating that BindingSig.Validatey,, (SigHash, bindingSig) = 1.
We now explain why this works.

A binding signature proves knowledge of the discrete logarithm bsk of bvk with respect to R. That is, bvk = [bsk] R.
So the value 0 and randomness bsk is an opening of the Pedersen commitment bvk = ValueCommity (0). By the
binding property of the Pedersen commitment, it is infeasible to find another opening of this commitment to a
different value.

Similarly, the binding property of the value commitments in the Spend descriptions and Output descriptions
ensures that an adversary cannot find an opening to more than one value for any of those commitments, i.e. we
may assume that v, are determined by cv$',, and that vi*%, are determined by cv{®%,. We may also assume, from
Knowledge Soundness of Groth16, that the Spend proofs could not have been generated without knowing revg
(mod ry), and the Output proofs could not have been generated without knowing revi®), (mod ry).

Using the fact that ValueCommit,, (v) = [v] V ¢ [rcv] R, the expression for bvk above is equivalent to:

(B8] () o]y |(Eer)o (e

n m
= ValueCommit, (Zv old — D>V~ vbala"ce)

i=1 j=1

bvk =
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m

n
* old new balance
Letv:gvi—gvj—v .
i=1

Jj=1

Suppose that v = v** £ 0 (mod ;). Then bvk = ValueCommity (v"*®). If the adversary were able to find the
discrete logarithm of this bvk with respect to R, say bsk’ (as needed to create a valid binding signature), then

(v**? bsk) and (0, bsk’) would be distinct openings of bvk to different values, breaking the binding property of the
value commitment scheme.

The above argument shows only that v* = 0 (mod r;}); in order to show that v* = 0, we will also demonstrate that it

—1 —1
does not overflow {— n— }

The Spend statements prove that all of v§, are in {0.. 2% —1}. Similarly the Output statements prove that all of
vi® are in {0.. 2% —1}. vP2"® is encoded in the transaction as a signed two's complement 64-bit integer in the
range {—2% ..2%% —1}. ¢ .1« is defined as 64, so v* is in the range {—m - (2°* —1) — 2% +1..n- (2% — 1) + 2%} The
maximum transaction size of 2 MB limits n to at most floor (2233990 ) = 5208 and m to at most floor (29999 ) = 2109,

ensuring v € {—38913406623490299131842 .. 96079866507916199586728} which is a subrange of {— ”2_1 .. ”2_1 }

Thus checking the binding signature ensures that the transaction balances, without the individual values of the
Spend descriptions and Output descriptions being revealed.

In addition this proves that the signer, knowing the f§-sum of the value commitment randomnesses, authorized a
transaction with the given SIGHASH transaction hash by signing SigHash.

Note: The spender MAY reveal any strict subset of the value commitment randomnesses to other parties that
are cooperating to create the transaction. If all of the value commitment randomnesses are revealed, that could
allow replaying the Output descriptions of the transaction.

Non-normative note: The technique of checking signatures using a validating key derived from a sum of Pedersen
commitments is also used in the Mimblewimble protocol [Jedusor2016]. The private key bsk acts as a “synthetic
new

blinding factor”, in the sense that it is synthesized from the other blinding factors (trapdoors) revd and revi® ;
this technique is also used in Bulletproofs [Dalek-notes].

4.13 Spend Authorization Signature

SpendAuthSig is used in Sapling to prove knowledge of the spending key authorizing spending of an input note. It
is instantiated in § 5.4.6.1 ‘Spend Authorization Signature’ on p.67.

Knowledge of the spending key could have been proven directly in the Spend statement, similar to the check in
§4.15.1 ‘JoinSplit Statement (Sprout)’ on p. 43 that is part of the JoinSplit statement. The motivation for a separate
signature is to allow devices that are limited in memory and computational capacity, such as hardware wallets, to
authorize a Sapling shielded Spend. Typically such devices cannot create, and may not be able to verify, zk-SNARK
proofs for a statement of the size needed using the BCTV14 or Groth16 proving systems.

The validating key of the signature must be revealed in the Spend description so that the signature can be checked
by validators. To ensure that the validating key cannot be linked to the shielded payment address or spending key
from which the note was spent, we use a signature scheme with re-randomizable keys. The Spend statement
proves that this validating key is a re-randomization of the spend authorization address key ak with a randomizer
known to the signer. The spend authorization signature is over the SIGHASH transaction hash, so that it cannot be
replayed in other transactions.
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Let SigHash be the SIGHASH transaction hash as defined in [ZIP-243], not associated with an input, using the
SIGHASH type SIGHASH_ALL.

Let ask be the spend authorization private key as defined in §4.2.2 ‘Sapling Key Components’ on p.29.
For each Spend description, the signer chooses a fresh spend authorization randomizer «:

1. Choose a & SpendAuthSig.GenRandom().

2. Let rsk = SpendAuthSig.RandomizePrivate(«, ask).
3. Let rk = SpendAuthSig.DerivePublic(rsk).
4

. Generate a proof m7kspend Of the Spend statement (§4.15.2 ‘Spend Statement (Sapling)’ on p.44), with o in
the auxiliary input and rk in the primary input.

5. Let spendAuthSig = SpendAuthSig.Sign,., (SigHash).

The resulting spendAuthSig and 77kspend are included in the Spend description.

Note: If the spender is computationally or memory-limited, step 4 (and only step 4) MAY be delegated to a
different party that is capable of performing the zk-SNARK proof . In this case privacy will be lost to that party
since it needs ak and the proof authorizing key nsk; this allows also deriving the nk component of the full viewing
key. Together ak and nk are sufficient to recognize spent notes and to recognize and decrypt incoming notes.
However, the other party will not obtain spending authority for other transactions, since it is not able to create a
spend authorization signature by itself.

4.14 Note Commitments and Nullifiers

A transaction that contains one or more JoinSplit descriptions or Spend descriptions, when entered into the block
chain, appends to the note commitment tree with all constituent note commitments.

All of the constituent nullifiers are also entered into the nullifier set of the associated treestate. A transaction is not
valid if it would have added a nullifier to the nullifier set that already exists in the set (see § 3.8 ‘Nullifier Sets’ on

p.18).
In Sprout, each note has a p component.

In Sapling, each positioned note has an associated p value which is computed from its note commitment cm and
note position pos as follows:

p := MixingPedersenHash(cm, pos).
MixingPedersenHash is defined in §5.4.1.8 ‘Mixing Pedersen Hash Function’ on p. 60.
Let PRF™ and PRF"®?P"¢ be a5 instantiated in §5.4.2 ‘Pseudo Random Functions’ on p. 61.

For a Sprout note, the nullifier is derived as PRF;:k (p), where ay is the spending key associated with the note.

nfSapling

NI (px), where nkx is a representation of the nullifier deriving

For a Sapling note, the nullifier is derived as PRF
key associated with the note and px = repr;(p).
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415 Zk-SNARK Statements
4.15.1 JoinSplit Statement (Sprout)

Let {perklesprout: {PRFSprout: MerkleDepth®™°", £, .. by, Ly lrsigs N°? N"" be as defined in §5.3 ‘Constants’ on p.53.
Let PRF*" PRF", PRF? and PRF’ be as defined in §4.1.2 ‘Pseudo Random Functions’ on p. 20.

Let NoteCommit>™"* be as defined in §4.1.7 ‘Commitment’ on p.25, and let Note>™*"
as defined in § 3.2 ‘Notes’ on p. 13.

and NoteCommitment>°"t be

A valid instance of a JoinSplit statement, Tz joinspiit- @ssures that given a primary input:

(rt e B[KMerkleSprout]’

Id [ Ne
nf<1> Nold . B[ PRFSprout][ ]’

cm® e = NoteCommit>P** Qutput™ 7
Id Cualue
Ve s {0 b 1},

Voub ¢ {0, 2‘Zva'ue_1}7
hsig : B[ZhSig], .
hl..Nold « BléPresprout] IN ]>,

the prover knows an auxiliary input:

Sprout old
MerkleDepth N
(pathl o :]BVMeruespmut][ erkleDept| 1IN

Sprout old
POS, Lo ¢ {0“2MerkleDepth _1}[N ]

Id
;) NG : Note

)

)

n Sprout [N°|d] ’

old . mll, JIN%
ok N P B ;

. NoteSprout[N ] ’

a
0]\ rew
@ : IB%M"},
enforceMerklePath, oo ¢ IB%[NOM]),
where:
for eachi € {1.N°}: ng = (a;'k‘{i,vf'd7 p rem?'?y;
for eachi € {1.N""}: 0™ = (agi%,vi-\pi rem;=)
such that the following conditions hold:

Merkle path validity for eachi € {1..N} | enforceMerklePath; = 1: (path;, pos;) is a valid Merkle path (see §4.8
‘Merkle Path Validity on p.37) of depth MerkleDepth®™°"* from NoteCommitment™™"*(n%) to the anchor rt.

Note: Merkle path validity covers conditions 1. (a) and 1.(d) of the NP statement in [BCGGMTV2014, section 4.2].

Merkle path enforcement  for each i € {1..N%}, if v§"! £ 0 then enforceMerklePath; = 1.

w

old N old new N new 4
Balance Voub +Zi:1\/i = Vpub + ZZ:I VA= {0 9 value_l}'
Nullifier integrity  for each i € {1.N%}: nf = PRF™ (p9).
sk,

Spend authority  for eachi € {1.N°‘}: 2%, = PRF:glddr(U).

sk,

Non-malleability for each i € {1.N°}: h;, = PRFZEd (i, hsig)-
sk,

Uniqueness of p;"  for each i € {1.N""}: p]*" = PRF{, (i, hgg).

Sprout( r_1ew)
K3

Note commitment integrity for each i € {1.N"""}: cm}®¥ = NoteCommitment n

For details of the form and encoding of proofs, see §5.4.9.1 ‘BCTV14’ on p.75.
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4.15.2 Spend Statement (Sapling)

Let Lyterkiesapling: LPRFnfSapling: @aNd Lscaa be as defined in §5.3 ‘Constants’ on p. 53.

Let ValueCommit and NoteCommit>*P""¢ be as specified in §4.1.7 ‘Commitment’ on p. 25.

Let SpendAuthSig be as defined in §5.4.6.1 ‘Spend Authorization Signature’ on p.67.

Let J, J®, repry, ¢, 73, and hy be as defined in §5.4.8.3 Jubjub’ on p. 73.

Let Extractjm : J0) s Bltveniessoine] e a5 defined in §5.4.8.4 ‘Hash Extractor for Jubjub’ on p.74.
Let H be as defined in §4.2.2 ‘Sapling Key Components’ on p.29.

A valid instance of a Spend statement, Tzkspend, @ssures that given a primary input:

(rt ° B[zMerkleSapling],

ov®@ ¢ ValueCommit.Output,

nf°|d . BY[ZPRanSapIing/8]7
rk : SpendAuthSig.Public),
the prover knows an auxiliary input:

(path : Blfweree [MerkleDepth™*""]

)

pos : {0.. 2MerkleDepthSapung 1
gq:J,

pky ¢ J,

Vol {0“2%%_1}’

rcV°|d . {0 . 2€SCalay _1}’

Cmold 3,1]7

rcm°|d . {0 . 2€SCalar _1}7

e {O .. 2€SCa|ar_1}’

ak : SpendAuthSig. Public,
nsk : {0,,2&%,_1})

)

such that the following conditions hold:

Sapling

PINS (repr (a). repr; (pka), V).

Note commitment integrity cm®? = NoteCommit
rc

Merkle path validity  Either v®'! = 0; or (path, pos) is a valid Merkle path of depth MerkleDepth>**'"¢ as defined in
$4.8 ‘Merkle Path Validity’ on p.37, from cm, = Extract; (cm®) to the anchor rt.

Value commitment integrity cv® = ValueCommit, _ o (v,
Small order checks g4 and ak are not of small order, i.e. [h;] gg # Oy and [h;] ak # Oy.

Nullifier integrity  nf*? = PRFT>"P"8 (o) where
nkx = repry([nsk] H)
px = repr; (MixingPedersenHash(cm®, pos)).

Spend authority rk = SpendAuthSig.RandomizePublic(«, ak).

Diversified address integrity  pky = [ivk] g4 where
ivk = CRH"Y  (akx, nkx)
akx = repry(ak).

For details of the form and encoding of Spend statement proofs, see §5.4.9.2 ‘Groth16’ on p. 76.
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Notes:

- Public and auxiliary inputs MUST be constrained to have the types specified. In particular, see § A.3.3.2
‘ctEdwards [deJcompression and validation’ on p.142, for required validity checks on compressed repre-
sentations of Jubjub curve points.

The ValueCommit.Output and SpendAuthSig.Public types also represent points, i.e. J.

- Inthe Merkle path validity check, each layer does not check that its input bit sequence is a canonical encoding
(in {0..rg — 1}) of the integer from the previous layer.

- Itis not checked in the Spend statement that rk is not of small order. However, this is checked outside the
Spend statement, as specified in §4.4 ‘Spend Descriptions’ on p. 32.

. Itis not checked that rev®® < r; or that rem®? < ;.

- SpendAuthSig.RandomizePublic(a, ak) = ak+[a] G. (G isas defined in § 5.4.6.1 ‘Spend Authorization Signature’
on p.67)

4.15.3 Output Statement (Sapling)

Let Lperkiesapling @Nd Lscaior be as defined in §5.3 ‘Constants’ on p. 53.

Let ValueCommit and NoteCommit>*P'" be as specified in §4.1.7 ‘Commitment’ on p. 25.

Let J, repr;, and hj be as defined in §5.4.8.3 ‘Jubjub’ on p.73.

A valid instance of an Output statement, Tzxoutpyt @ssures that given a primary input:
(cv™ : ValueCommit.Output,

o [fM kleSapli ]
Cmu e B erkleSapling ,

epk : J),
the prover knows an auxiliary input:

(84 :J,
pkxq : B[%],
V' 2 {0, 20 1},
rev™™ ¢ {0.. 2% 1},
rem"™ 2 {0 .. 2% 1},
esk : {0.. 2% —1})

such that the following conditions hold:

Note commitment integrity ~cm, = Extract e (NoteCommitf:r:Lng(g*d, pkog, V")), where gx4 = repr;(gq).

n

Value commitment integrity  cv"®" = ValueCommit, e (V).

Small order check g4 is not of small order, i.e. [hj] g4 # Oj.
Ephemeral public key integrity epk = [esk] gy.

For details of the form and encoding of Output statement proofs, see §5.4.9.2 ‘Groth16’ on p. 76.
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Notes:

- Public and auxiliary inputs MUST be constrained to have the types specified. In particular, see §A.3.3.2
‘ctEdwards [deJcompression and validation’ on p.142, for required validity checks on compressed repre-
sentations of Jubjub curve points.

The ValueCommit.Output type also represents points, i.e. J.

- The validity of pkxy is not checked in this circuit.

. Itis not checked that rev®® < 7y or that rem®? < 7.

4.16 In-band secret distribution (Sprout)
In Sprout, the secrets that need to be transmitted to a recipient of funds in order for them to later spend, are v, p,
and rcm. A memo field (§ 3.2.1 ‘Note Plaintexts and Memo Fields’ on p.14) is also transmitted.

To transmit these secrets securely to a recipient without requiring an out-of-band communication channel, the
transmission key pke,. is used to encrypt them. The recipient’s possession of the associated incoming viewing key
ivk is used to reconstruct the original note and memo field.

new

A single ephemeral public key is shared between encryptions of the N™" shielded outputs in a JoinSplit description.
All of the resulting ciphertexts are combined to form a transmitted notes ciphertext.

For both encryption and decryption,
- let Sym be the scheme instantiated in § 5.4.3 ‘Symmetric Encryption’ on p. 62;
. let KDFSP™! be the Key Derivation Function instantiated in § 5.4.4.2 ‘Sprout Key Derivation’ on p.63;

- let KASP™"® be the key agreement scheme instantiated in § 5.4.4.1 ‘Sprout Key Agreement’ on p.62;
- let hg;, be the value computed for this JoinSplit description in §4.3 ‘JoinSplit Descriptions’ on p.31.

4.16.1 Encryption (Sprout)

Let KA be the key agreement scheme instantiated in §5.4.4.1 ‘Sprout Key Agreement’ on p. 62.
Let pke,c 1. N be the transmission keys for the intended recipient addresses of each new note.

Let np, yr be Sprout note plaintexts defined in § 5.5 ‘Encodings of Note Plaintexts and Memo Fields’ onp.77.

Then to encrypt:

. Generate a new KA (public, private) key pair (epk, esk).
- Fori e {1.N""},

- Let P{" be the raw encoding of np,.
Let sharedSecret; := KA Agree(esk, PKenc.i)-
- Let K&" := KDF>P (4, hsig, sharedSecret;, epk, pkenc ; )-
- Let G := Sym.Encryptycere (P7™).

The resulting transmitted notes ciphertext is (epk, C{"rev ).

Note: It is technically possible to replace C;" for a given note with a random (and undecryptable) dummy
ciphertext, relying instead on out-of-band transmission of the note to the recipient. In this case the ephemeral key
MUST still be generated as a random public key (rather than a random bit sequence) to ensure indistinguishability
from other JoinSplit descriptions. This mode of operation raises further security considerations, for example of
how to validate a Sprout note received out-of-band, which are not addressed in this document.
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4.16.2 Decryption (Sprout)

Let ivk = (ap, skenc) be the recipient’s incoming viewing key, and let pk.,. be the corresponding transmission key
derived from sk, as specified in §4.2.1 ‘Sprout Key Components’ on p.29.

Let cm; yrew be the note commitments of each output coin.

Then for each i € {1..N"®"}, the recipient will attempt to decrypt that ciphertext component (epk, C;") as follows:
let sharedSecret; = KA®P™"" Agree(skepc, epk)
let K& = KDF>P™Ut(;, hsig, sharedSecret;, epk, pkenc)

return DecryptNoteSprout (K7™, C™, cm;, ay).

DecryptNoteSprout(K;™, C5™, cm;, a,) is defined as follows:
let P{™ = Sym.Decryptye<(C;™)
if P{"° = 1, return L

extract np, = (leadByte, : BY, v, : {0..2%m —1}, p, : Blrrswon] rem. < NoteCommit>™" Trapdoor, memo; : B2

from P{"™

if leadByte, # 0x00 or NoteCommitmentSpm“t((apk, Vi, i, rcm;)) # cm;, return L, else return np;.

To test whether a note is unspent in a particular block chain also requires the spending key a; the coin is unspent
if and only if nf = PRF;‘:k (p) is not in the nullifier set for that block chain.
Notes:

- The decryption algorithm corresponds to step 3 (b) i. and ii. (first bullet point) of the Receive algorithm shown
in [BCGGMTV2014, Figure 2I.

- A note can change from being unspent to spent as a node’s view of the best valid block chain is extended by
new transactions. Also, block chain reorganizations can cause a node to switch to a different best valid block
chain that does not contain the transaction in which a note was output.

See §8.7 ‘In-band secret distribution’ on p.104 for further discussion of the security and engineering rationale
behind this encryption scheme.

417 In-band secret distribution (Sapling)

In Sapling, the secrets that need to be transmitted to a recipient of funds in order for them to later spend, are d, v,
and rcm. A memo field (§ 3.2.1 ‘Note Plaintexts and Memo Fields’ on p.14) is also transmitted.

To transmit these secrets securely to a recipient without requiring an out-of-band communication channel, the
diversified transmission key pkq is used to encrypt them. The recipient’s possession of the associated incoming
viewing key ivk is used to reconstruct the original note and memo field.

Unlike in a Sprout JoinSplit description, each Sapling shielded output is encrypted by a fresh ephemeral public
key.
For both encryption and decryption,

- let 4, be as defined in § 5.3 ‘Constants’ on p.53;

- let Sym be the scheme instantiated in § 5.4.3 ‘Symmetric Encryption’ on p.62;

. let KDF**"'"8 be the Key Derivation Function instantiated in § 5.4.4.4 ‘Sapling Key Derivation’ on p.63;

- let KA®*'™ e the key agreement scheme instantiated in §5.4.4.3 ‘Sapling Key Agreement’ on p. 63;

- let £y and repr; be as defined in §5.4.8.3 ‘Jubjub’ on p.73;

- let Extractjm be as defined in §5.4.8.4 ‘Hash Extractor for Jubjub’ on p.74;

- let PRF°™ be as instantiated in §5.4.2 ‘Pseudo Random Functions’ on p. 61.
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4171 Encryption (Sapling)

Let pky : KAS*M& py, blicPrimeSubgroup be the diversified transmission key for the intended recipient address of a
new Sapling note, and let g4 : KA>*P™™ PublicPrimeSubgroup be the corresponding diversified base computed as
DiversifyHash(d).

Since Sapling note encryption is used only in the context of §4.6.2 ‘Sending Notes (Sapling)’ on p. 34, we may
assume that g4 has already been calculated and is not L. Also, the ephemeral private key esk has been chosen.

Let ovk : Bylex/8 {L} be as described in §4.6.2 ‘Sending Notes (Sapling)’ on p. 34, i.e. the outgoing viewing key
of the shielded payment address from which the note is being spent, or an outgoing viewing key associated with a
[Z1P-32] account, or L.

Let np = (leadByte, d, v, rseed, memo) be the Sapling note plaintext.

np is encoded as defined in § 5.5 ‘Encodings of Note Plaintexts and Memo Fields’ on p.77.

Let cv be the value commitment for the new note, and let cm be the note commitment. (These are needed to derive
the outgoing cipher key ock in order to produce the Output ciphertext C°**)

Then to encrypt:

let P*"° be the raw encoding of np

let epk = KA>*™™ DerivePublic(esk, g4)

let sharedSecret = KA>*P™"8 Agree(esk, pky)

let K" = KDF>*"""8 (sharedSecret, epk)

let C*" = Sym.Encryptyen (P")

if ovk = L:

choose random ock & Sym.K and op & Byl(4+256)/8]

else:

let cv = LEBS20SP,, (repry(cv))

let cmu = LEBS20SP 56 (Extract ) (cm))

let ephemeralkey = LEBS20SP,, (repry(epk))

let ock = PRFf (v, cmu, ephemeralKey)
let op = LEBS20SP, 556 (repry(pkq) || 12LEBSPys6(esk))

let C*** = Sym.Encrypt, (op)

The resulting transmitted note ciphertext is (epk, C*"°, C*"*).

Note: It is technically possible to replace C*™ for a given note with a random (and undecryptable) dummy
ciphertext, relying instead on out-of-band transmission of the note to the recipient. In this case the ephemeral key
MUST still be generated as a random public key (rather than a random bit sequence) to ensure indistinguishability
from other Output descriptions. This mode of operation raises further security considerations, for example of how
to validate a Sapling note received out-of-band, which are not addressed in this document.

4.17.2 Decryption using an Incoming Viewing Key (Sapling)

Letivk : {0..2%—1} be the recipient’s incoming viewing key, as specified in §4.2.2 ‘Sapling Key Components’ on
p- 29.

Let (epk, C*", C°"*) be the transmitted note ciphertext from the Output description. Let cmu be that field of the
Output description (encoding the u-coordinate of the note commitment).

Let the constant CanopyActivationHeight be as defined in §5.3 ‘Constants’ on p. 53.
Let height be the block height of the block containing this transaction.
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enc

The recipient will attempt to decrypt the epk and C
let sharedSecret = KA®*"€ Agree(ivk, epk)
let K*"© = KDF>*"'""& (sharedSecret, epk)
let P*" = Sym.Decrypt,er (C*"™)
if P"“ = 1, return L
— . o mlll |, . Lyalue - Ry[32] . y[512] enc
extract np = (leadByte : BY,d : B"¢' v : {0..2" —1} rseed : BY"“ memo : BY" ) from P

[Pre-Canopy] if leadByte # 0x01, return L

components of the transmitted note ciphertext as follows:

[Pre-Canopy] let rcem = rseed
[Canopy onward] if height < CanopyActivationHeight + ZIP212GracePeriod and leadByte ¢ {0x01, 0x02}, return L
[Canopy onward] if height > CanopyActivationHeight + ZIP212GracePeriod and leadByte # 0x02, return L

rseed, if leadByte = 0x01
ToScalar (PRFZP3([5])), otherwise

rseed

[Canopy onward] let rem = {

let rem = LEOS2IP,54(rcm) and gy = DiversifyHash(d)
ifrem > ryorgy = L, return L

let pky = KA>*®™™& DerivePublic(ivk, g4)

let cm;, = Extract ;) (NoteCommitf’;g“"g(reprj(gd), repry(pkq), v)).

if LEBS20SPys6(cm,,) # cmu, return L
[Canopy onward] if leadByte # 0x01:
esk = ToScalar (PRF23([4]))

rseed

if KAS*P""8 DerivePublic(esk, g4) # epk, return L

return np.

A received Sapling note is necessarily a positioned note, and so its p value can immediately be calculated as
described in §4.14 ‘Note Commitments and Nullifiers’ on p.42.

To test whether a Sapling note is unspent in a particular block chain also requires the nullifier deriving key nkx;

the coin is unspent if and only if nf = PRFE>P" (repr; (p)) is not in the nullifier set for that block chain.

Note: A note can change from being unspent to spent as a node’s view of the best valid block chain is extended
by new transactions. Also, block chain reorganizations can cause a node to switch to a different best valid block
chain that does not contain the transaction in which a note was output.

Non-normative note: Normally only transmitted note ciphertexts of transactions in blocks need to be decrypted.
A client MAY attempt to decrypt a transmitted note ciphertext of a transaction in the mempool, using the next
block height for height. However, in that case it MUST NOT assume that the transaction will be mined and MUST
treat the decrypted information as provisional.

4.17.3 Decryption using a Full Viewing Key (Sapling)

Let ovk : BY“+/% be the outgoing viewing key, as specified in §4.2.2 ‘Sapling Key Components’ on p. 29, that is to
be used for decryption. (If ovk = L was used for encryption, the payment is not decryptable by this method.)

Let (epk, C*"°, C°*") be the transmitted note ciphertext, and let cv, cmu, and ephemeralKey be those fields of the
Output description (encoding the value commitment, the u-coordinate of the note commitment, and epk).
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The outgoing viewing key holder will attempt to decrypt the transmitted note ciphertext as follows:

let ock = PRF} (cv, cmu, ephemeralKey)

let op = Sym.Decrypt, (C*)

ifop = L, return L

extract (pkxg ¢ B[Zﬂ],g : IB%Y[?’Q]) from op

let esk = LEOS2IP,5¢(esk) and pky = abstj(pkxky)

if esk > 7} or pky ¢ KA PyplicPrimeSubgroup, return L

let sharedSecret = KA Agree(esk, pky)

let K" = KDF>*"""8 (sharedSecret, epk)

let P*" = Sym.Decrypt,en (C*"™)

if P"“ = |, return L

extract np = (leadByte : BY d : Bl v {0.. 2 vatue —1}, rseed : BYB2 memo ]B%Y[512]) from P
[Pre-Canopy] if leadByte # 0x01, return L

[Pre-Canopy] let rcm = rseed

[Canopy onward] if height < CanopyActivationHeight + ZIP212GracePeriod and leadByte ¢ {0x01, 0x02}, return L
[Canopy onward] if height > CanopyActivationHeight + ZIP212GracePeriod and leadByte # 0x02, return L
[Canopy onward] if leadByte # 0x01 and ToScalar (PRFE3([4])) # esk, return L

rseed

rseed, if leadByte = 0x01
ToScalar (PRFZP3([5])), otherwise

rseed

[Canopy onward] let rem = {

let rem = LEOS2IP,54(rcm) and gy = DiversifyHash(d)
if rem > ryorgy = L, return L

let cm,, = Extract () (NoteCommit 2P (vepr; (g4), repr; (pky), v))

if LEBS20SPys6(cm,,) # cmu, return L
if KAS*P""& DerivePublic(esk, g4) # epk, return L

return np.
Note: For avalid fransaction it must be the case that ephemeralKey = LEBS20SP,, (repry(epk)).

Non-normative note: Implementors should pay close attention to the similarities and differences between this
procedure and that in §4.17.2 ‘Decryption using an Incoming Viewing Key (Sapling)’ on p.48. In particular:

- in this procedure, the ephemeral private key esk’ derived from rseed is checked to be identical to that obtained
from op (when leadByte # 0x01);
- in this procedure, pky is obtained from op rather than being derived as KA®*"™™& DerivePublic(ivk, gg);

- in this procedure, the check that KA®*P" DerivePublic(esk, g;) = epk is unconditional rather than being
dependent on leadByte # 0x01, and it uses the esk obtained from op.

Non-normative note: Normally only transmitted note ciphertexts of transactions in blocks need to be decrypted.
A client MAY attempt to decrypt a transmitted note ciphertext of a transaction in the mempool, using the next
block height for height. However, in that case it MUST NOT assume that the transaction will be mined and MUST
treat the decrypted information as provisional.
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4.18 Block Chain Scanning (Sprout)

Let £pRrrsprout b€ as defined in §5.3 ‘Constants’ on p.53.
Let Note®™°"* be as defined in § 3.2 ‘Notes’ on p.13.

Let KASP™" be as defined in §5.4.4.1 ‘Sprout Key Agreement’ on p. 62.

The following algorithm can be used, given the block chain and a Sprout spending key ay, to obtain each note sent
to the corresponding shielded payment address, its memo field field, and its final status (spent or unspent).

Let ivk = (ap * B presroun] SKenc © KASpm“t.Private) be the incoming viewing key corresponding to ay, and let pk,. be
the associated transmission key, as specified in §4.2.1 ‘Sprout Key Components’ on p.29.

Initialize ReceivedSet : Q’(Notes’pm”t X ]BY[512]) ={}.
Initialize SpentSet : @(Notes"m”t) ={}

Sprout

Initialize NullifierMap : BLreseon] _y Note to the empty mapping.

For each transaction tx,
For each JoinSplit description in tx,
Let (epk, C{"y~) be the transmitted notes ciphertext of the JoinSplit description.
Foriin 1.N"®",

Attempt to decrypt the transmitted notes ciphertext component (epk, C;'©) using ivk with the
algorithm in §4.16.2 ‘Decryption (Sprout)’ on p.47. If this succeeds giving np:

Extract n and memo : BY"'? from np (taking the a field of the note to be a, from ivk).
Add (n, memo) to ReceivedSet.
Calculate the nullifier nf of n using ag, as described in § 3.2 ‘Notes’ on p.13.

Add the mapping nf — n to NullifierMap.

Let nf, Lo« be the nullifiers of the JoinSplit description.

Foriin 1..N°9

If nf; is present in NullifierMap, add NullifierMap(nf;) to SpentSet.

Return (ReceivedSet, SpentSet).

4.19 Block Chain Scanning (Sapling)

In Sapling, block chain scanning requires only the nk and ivk key components, rather than a spending key as in
Sprout.

Typically, these components are derived from a full viewing key as described in §4.2.2 ‘Sapling Key Components’
on p.29.

Let £pRrenfsapling P€ as defined in §5.3 ‘Constants’ on p. 53.
Let Note>*'" be as defined in § 3.2 ‘Notes’ on p. 13.

Let KAS®'"8 he as defined in §5.4.4.3 ‘Sapling Key Agreement’ on p.63.
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The following algorithm can be used, given the block chain and (nk : I ivk : {0..2%—1}), to obtain each note
sent to the corresponding shielded payment address, its memo field field, and its final status (spent or unspent).

Initialize ReceivedSet : 975(NoteSapling x ]B%Y[512]) ={}.

Initialize SpentSet : Q’(Notesap“"g) ={}

Initialize NullifierMap : BY!/Prrsaping/8] _ NoteS2P"8 16 the empty mapping.
For each transaction tx,

For each Output description in tx with note position pos,

Attempt to decrypt the transmitted note ciphertext components epk and C*"* using ivk with the algorithm
in §4.17.2 ‘Decryption using an Incoming Viewing Key (Sapling)’ on p.48. If this succeeds giving np:

Extract n and memo : BY®'? from np.
Add (n, memo) to ReceivedSet.

Calculate the nullifier nf of n using nk and pos as described in § 3.2 ‘Notes’ on p. 13.

Add the mapping nf — n to NullifierMap.

For each Spend description in tx,
Let nf be the nullifier of the Spend description.
If nf is present in NullifierMap, add NullifierMap(nf) to SpentSet.

Return (ReceivedSet, SpentSet).

Non-normative notes:

- The above algorithm does not use the ovk key component, or the C*** transmitted note ciphertext component.
When scanning the whole block chain, these are indeed not necessary. The advantage of supporting decryption
using ovk as described in §4.17.3 ‘Decryption using a Full Viewing Key (Sapling)’ on p.49, is that it allows
recovering information about the note plaintexts sent in a transaction from that transaction alone.

- When scanning only part of a block chain, it may be useful to augment the above algorithm with decryption
of C°** components for each transaction, in order to obtain information about notes that were spent in the
scanned period but received outside it.

- The above algorithm does not detect notes that were sent “out-of-band” or with incorrect transmitted note
ciphertexts. It is possible to detect whether such notes were spent only if their nullifiers are known.

5 Concrete Protocol

5.1 Caution

TODO: Explain the kind of things that can go wrong with linkage between abstract and concrete protocol. E.g. §8.5
‘Internal hash collision attack and fix’ on p.102

5.2 Integers, Bit Sequences, and Endianness

All integers in Zcash-specific encodings are unsigned, have a fixed bit length, and are encoded in little-endian byte
order unless otherwise specified.
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The following functions convert between sequences of bits, sequences of bytes, and integers:

- I2LEBSP : (¢ : N) x {0..2° -1} — B such that [2LEBSP,(z) is the sequence of ¢ bits representing z in
little-endian order;

- 12BEBSP : (£ : N) x {0..2°~1} — B such that I2BEBSP,(x) is the sequence of ¢ bits representing = in
big-endian order.

- LEBS2IP : (¢ N) x Bl — {0..2°~1} such that LEBS2IP,(S) is the integer represented in little-endian order
by the bit sequence S of length .

- LEOS2IP : (£ : N| £mod 8 = 0) x B8 — {0..2°—1} such that LEOS2IP,(S) is the integer represented in
little-endian order by the byte sequence S of length ¢/8.

. LEBS20SP : (¢ : N) x Bl — pylcme(/8)] gefined as follows: pad the input on the right with 8 - ceiling (¢/8) — ¢
zero bits so that its length is a multiple of 8 bits. Then convert each group of 8 bits to a byte value with the
least significant bit first, and concatenate the resulting bytes in the same order as the groups.

. LEOS2BSP : (¢ : N| £ mod 8 = 0) x BYc""e(¢/8)] _, Bl defined as follows: convert each byte to a group of 8
bits with the least significant bit first, and concatenate the resulting groups in the same order as the bytes.

In bit layout diagrams, each box of the diagram represents a sequence of bits. Diagrams are read from left-to-right,
with lines read from top-to-bottom; the breaking of boxes across lines has no significance. The bit length ¢ is
given explicitly in each box, except when it is obvious (e.g. for a single bit, or for the notation [0]° representing the
sequence of ¢ zero bits, or for the output of LEBS20SP,).

The entire diagram represents the sequence of bytes formed by first concatenating these bit sequences, and then
treating each subsequence of 8 bits as a byte with the bits ordered from most significant to least significant. Thus
the most significant bit in each byte is toward the left of a diagram. (This convention is used only in descriptions of
the Sprout design; in the Sapling additions, bit/byte sequence conversions are always specified explicitly.) Where
bit fields are used, the text will clarify their position in each case.

5.3 Constants

Define:

MerkleDepth®P°" : N := 29
MerkleDepth>*'"€ : N := 32

NoY . N =2
N™:N:=2
V4 :N:=64

value

gMerkIeSprout : N := 256
EMerkleSapling : N := 255
lhsig = N := 256
CpRFsprout ¢ N 1= 256
éPRFexpand ¢ N:=512
EPRanSapIing : N := 256
ércm ¢ N := 256

kSeed : N =256

0y, ¢+ N:=252
(g N =252
(g : N := 256
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04N =88

e 2 N = 251

st N = 256

ot 2 N i= 252

Uncommitted®ProUt ¢ Blfmenespou] .~ [0] Frerkiesprout

Uncommittedsap”ng . B[eMerkleSaphng] - I2LEBSPZMeyk|eSapnng(1)

MAX_MONEY : N := 2.1-10"° (zatoshi)

653600, for Mainnet

BlossomActivationHeight : N :=
584000, for Testnet

1046400, for Mainnet

CanopyActivationHeight : N :=
1028500, for Testnet

Z1P212GracePeriod : N := 32256
SlowStartInterval : N := 20000
PreBlossomHalvinglinterval : N := 840000
MaxBlockSubsidy : N := 1.25-10° (zatoshi)

NumFounderAddresses : N := 48

1

FoundersFraction : Q := ¢

24
23

— 1, for Mainnet
PoWLimit : N := {2251 , tor Mainne

— 1, for Testnet
PoWAveragingWindow : N := 17
PoWMedianBlockSpan : N := 11
PoWMaxAdjustDown : Q := 32
PoWMaxAdjustUp : Q := %

PoWDampingFactor : N := 4
PreBlossomPoWTargetSpacing : N := 150 (seconds).

PostBlossomPoWTargetSpacing : N := 75 (seconds).

5.4 Concrete Cryptographic Schemes

5.4.1 Hash Functions

5.4.1.1 SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions

SHA-256 and SHA-512 are defined by [NIST2015].

Zcash uses the full SHA-256 hash function to instantiate NoteCommitment

SHA-256 : BN _, py[32

[NIST2015] strictly speaking only specifies the application of SHA-256 to messages that are bit sequences, producing
outputs (“message digests”) that are also bit sequences. In practice, SHA-256 is universally implemented with a
byte-sequence interface for messages and outputs, such that the most significant bit of each byte corresponds to
the first bit of the associated bit sequence. (In the NIST specification “first” is conflated with “leftmost”)
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SHA-256d, defined as a double application of SHA-256, is used to hash block headers:

SHA-256d : BYI"l — Byl®?)
Zcash also uses the SHA-256 compression function, SHA256Compress. This operates on a single 512-bit block and
excludes the padding step specified in [NIST2015, section 5.1].

That is, the input to SHA256Compress is what [NIST2015, section 5.2] refers to as “the message and its padding”. The
Initial Hash Value is the same as for full SHA-256.

SHA256Compress is used to instantiate several Pseudo Random Functions and MerkleCRH>P™".

SHA256Compress : BI12 — B[2%¢]
The ordering of bits within words in the interface to SHA256Compress is consistent with [NIST2015, section 3.1], i.e.
big-endian.
Ed25519 uses SHA-512:

SHA-512 : Byl — By(®

The comment above concerning bit vs byte-sequence interfaces also applies to SHA-512.

5.4.1.2 BLAKE2 Hash Functions

BLAKE? is defined by [ANWW?2013]. Zcash uses both the BLAKE2b and BLAKE2s variants.

BLAKE2b-¢(p, ) refers to unkeyed BLAKE2b-{ in sequential mode, with an output digest length of ¢/8 bytes, 16-byte
personalization string p, and input z.

BLAKE2b is used to instantiate hSigCRH, EquihashGen, and KDFP*, From Overwinter onward, it is used to compute
SIGHASH transaction hashes as specified in [ZIP-143], or as in [ZIP-243] after Sapling activation. For Sapling, it
is also used to instantiate PRF¥P*" PRF°®, KDF>*"""¢ and in the RedJubjub signature scheme which instantiates
SpendAuthSig and BindingSig.

BLAKE2b-¢ : BY[*! » gyIN _, pgyl¢/8]

Note: BLAKE2b-/ is not the same as BLAKE2b-512 truncated to ¢ bits, because the digest length is encoded in the
parameter block.

BLAKE2s-{(p, z) refers to unkeyed BLAKE2s-¢ in sequential mode, with an output digest length of ¢/8 bytes, 8-byte
personalization string p, and input z.

’ ) (r)=
BLAKE?2s is used to instantiate PRF"°2P"¢ CRHY and GroupHash? .

BLAKE2s-¢ : BYI8! » g™ _, pyl¢/8]

5.4.1.3 Merkle Tree Hash Function

MerkleCRH>"""* and MerkleCRH>*""™ are used to hash incremental Merkle tree hash values for Sprout and Sapling
respectively.
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MerkleCRH>P"t Hash Function

MerkleCRH*™"" : {0 .. MerkleDepth®™* — 1} x Blensesmou] 5 llmericsmont] _y ltwensesmonc] s defined as follows:

MerkleCRHP®“ (layer, left, right) := SHA256Compress (] 256-bit left 256-bit right \)

SHA256Compress is defined in §5.4.1.1 SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions’ on
p. 54.

Security requirement: SHA256Compress must be collision-resistant, and it must be infeasible to find a preimage
a such that SHA256Compress(z) = [0]*°°.

Notes:
- The layer argument does not affect the output.

- SHA256Compress is not the same as the SHA-256 function, which hashes arbitrary-length byte sequences.

MerkleCRH>?""¢ Hash Function

Let PedersenHash be as specified in §5.4.1.7 ‘Pedersen Hash Function’ on p.58.

MerkleCRH®*P""8 : {0 .. MerkleDepth>2P"e — 11 x Blfveriswing) ¢ leversisaning] _y Blmentesanivg] s defined as follows:

MerkleCRH®®P""8 (|ayer, left, right) := PedersenHash(“Zcash_PH", 1 || left || right)
where [ = I2LEBSP6(MerkIeDepthS""pling — 1 — layer).

Security requirement: PedersenHash must be collision-resistant.

Note: The prefix | provides domain separation between inputs at different layers of the note commitment tree.
NoteCommit>**""8 like PedersenHash, is defined in terms of PedersenHash ToPoint, but using a prefix that cannot collide
with a layer prefix, as noted in §5.4.7.2 ‘Windowed Pedersen commitments’ on p. 68.

5.4.14 hg, Hash Function
hSigCRH is used to compute the value hg, in §4.3 ‘“JoinSplit Descriptions’ on p. 31.

hSigCRH(randomSeed, nfi'ﬁjNo\d, joinSplitPubKey) := BLAKE2b-256(“ZcashComputehSig”, hSiglnput)

where

hSiglnput := ‘ 256-bit randomSeed ‘ 256-bit nf$* ‘ 256-bit nfongm 256-bit joinSplitPubKey |.

BLAKE2b-256(p, x) is defined in § 5.4.1.2 ‘BLAKE2 Hash Functions’ on p. 55.
Security requirement: BLAKE2b-256(“ZcashComputehSig”, x) must be collision-resistant on .

5.4.1.5 CRH"* Hash Function

CRH™ is used to derive the incoming viewing key ivk for a Sapling shielded payment address. For its use when
generating an address see §4.2.2 ‘Sapling Key Components’ on p.29, and for its use in the Spend statement see
§4.15.2 ‘Spend Statement (Sapling)’ on p.44.
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It is defined as follows:
CRH™(akx, nkx) := LEOS2IP,5s(BLAKE2s-256(“Zcashivk”, crhinput)) mod 2k
where

crhlnput::’ LEBS20SP 555 (aks) | LEBS20SP 55 (nks) \

BLAKE2b-256(p, x) is defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p.55.

Security requirement: LEOS2IP,54(BLAKE2s-256(“Zcashivk”, x)) mod 2%« must be collision-resistant on a 64-
byte input z. Note that this does not follow from collision resistance of BLAKE2s-256 (and the best possible concrete
security is that of a 251-bit hash rather than a 256-bit hash), but it is a reasonable assumption given the design,
structure, and cryptanalysis to date of BLAKE2s.

Non-normative note: =~ BLAKE2s has a variable output digest length feature, but it does not support arbitrary
bit lengths, otherwise it would have been used rather than external truncation. However, the protocol-specific
personalization string together with truncation achieve essentially the same effect as using that feature.

5.4.1.6 DiversifyHash Hash Function

DiversifyHash is used to derive a diversified base from a diversifier in §4.2.2 ‘Sapling Key Components’ on p. 29.

(r)*
Let GroupHash”  and U be as defined in §5.4.8.5 ‘Group Hash into Jubjub’ on p.74.
Define
()%
DiversifyHash(d) := GroupHashy, (“Zcash_gd”, LEBS20SP, (d))

Security requirement: Unlinkability: Given two randomly selected shielded payment addresses from different
spend authorities, and a third shielded payment address which could be derived from either of those authorities,
such that the three addresses use different diversifiers, it is not possible to tell which authority the third address
was derived from.

Non-normative notes:

)=

. Suppose that GroupHash” ~ (restricted to inputs for which it does not return L) is modelled as a random
oracle from diversifiers to points of order r; on the Jubjub curve. In this model, Unlinkability of DiversifyHash
holds under the Decisional Diffie-Hellman assumption on the prime-order subgroup of the Jubjub curve.

To prove this, consider the ElGamal encryption scheme [EIGamal1985] on this prime-order subgroup, re-
stricted to encrypting plaintexts encoded as the group identity O;. (ElGamal was originally defined for F,,
but works in any prime-order group.) ElGamal public keys then have the same form as diversified payment

addresses. If we make the assumption above on Grou pHashJ(m, then generating a new diversified payment
address from a given address pk, gives the same distribution of (g4, pky’) pairs as the distribution of ElGamal
ciphertexts obtained by encrypting O under pk. TODO: check whether this is justified. Then, the definition
of key privacy (IK-CPA as defined in [BBDP2001, Definition 1]) for ElGamal corresponds to the definition of
Unlinkability for DiversifyHash. (IK-CCA corresponds to the potentially stronger requirement that DiversifyHash
remains Unlinkable when given Diffie-Hellman key agreement oracles for each of the candidate diversified
payment addresses.) So if ElGamal is key-private, then DiversifyHash is Unlinkable under the same conditions.
[BBDP2001, Appendix A] gives a security proof for key privacy (both IK-CPA and IK-CCA) of ElGamal under
the Decisional Diffie-Hellman assumption on the relevant group. (In fact the proof needed is the “small
modification” described in the last paragraph in which the generator is chosen at random for each key.)

- Itis assumed (also for the security of other uses of the group hash, such as Pedersen hashes and commitments)
that the discrete logarithm of the output group element with respect to any other generator is unknown. This
assumption is justified if the group hash acts as a random oracle. Essentially, diversifiers act as handles to
unknown random numbers. (The group hash inputs used with different personalizations are in different
“namespaces”)
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- Informally, the random self-reducibility property of DDH implies that an adversary would gain no advantage
from being able to query an oracle for additional (gg4, pky) pairs with the same spend authority as an existing
shielded payment address, since they could also create such pairs on their own. This justifies only considering
two shielded payment addresses in the security definition.

TODO: FIXME This is not correct, because additional pairs don't quite follow the same distribution as an address
with a valid diversifier. The security definition may need to be more complex to model this properly.

- An 88-bit diversifier cannot be considered cryptographically unguessable at a 128-bit security level; also,

raildomly chosen diversifiers are likely to suffer birthday collisions when the number of choices approaches
2*,
If most users are choosing diversifiers randomly (as recommended in §4.2.2 ‘Sapling Key Components’ on
p-29), then the fact that they may accidentally choose diversifiers that collide (and therefore reveal the fact
that they are not derived from the same incoming viewing key) does not appreciably reduce the anonymity
set.

In [ZIP-32] an 88-bit Pseudo Random Permutation, keyed differently for each node of the derivation tree, is
used to select new diversifiers. This resolves the potential problem, provided that the input to the Pseudo
Random Permutation does not repeat for a given node.

- If the holder of an incoming viewing key permits an adversary to ask for a new address for that incoming
viewing key with a given diversifier, then it can trivially break Unlinkability for the other diversified payment
addresses associated with the incoming viewing key (this does not compromise other privacy properties).
Implementations SHOULD avoid providing such a “chosen diversifier” oracle.

5.4.1.7 Pedersen Hash Function

PedersenHash is an algebraic hash function with collision resistance (for fixed input length) derived from assumed
hardness of the Discrete Logarithm Problem on the Jubjub curve. It is based on the work of David Chaum, Ivan
Damgard, Jeroen van de Graaf, Jurjen Bos, George Purdy, Eugéne van Heijst and Birgit Pfitzmann in [CDvdG1987],
[BCP1988] and [CvHP1991], and of Mihir Bellare, Oded Goldreich, and Shafi Goldwasser in [BGG1995], with optimiza-
tions for efficient instantiation in zk-SNARK circuits by Sean Bowe and Daira Hopwood.

PedersenHash is used in the definitions of Pedersen commitments (§5.4.7.2 ‘Windowed Pedersen commitments’ on
p.68), and of the Pedersen hash for the Sapling incremental Merkle tree (§5.41.3 ‘MerkleCRH>*"""8 Hash Function’
on p. 56).

LetJ, J©, Oy, gy, ry. ay, and dj be as defined in §5.4.8.3 ‘Jubjub’ on p.73.

Let ExtractJ@ : JO s Blfwenteswingl he as defined in §5.4.8.4 ‘Hash Extractor for Jubjub’ on p. 74.

() *
Let FindGroupHash? ~ be as defined in §5.4.8.5 ‘Group Hash into Jubjub’ on p-74.

Let Uncommitted®® ™ be as defined in §5.3 ‘Constants’ on p. 53.

24»671 > 7'.17_1

Let ¢ be the largest integer such that 4 - S ie c:=63.

Define 7 : BY® x N — JO* by:

)+
7P .= FindGroupHash® (D,

32-biti — 1 D
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Define PedersenHashToPoint(D : BY®) A1 : B[Nﬂ) — J% as follows:

Pad M to a multiple of 3 bits by appending zero bits, giving M’
length(M") )
3-c
Split M into n “segments” M, _,, so that M’ = concaty(M, _,), and each of M, ,,_; is of length 3-c¢ bits. (M,,
may be shorter.)

Return Z:;J(MJ] 0. 10,

Let n = ceiling (

where (-) : BBl {—% . T‘”; 1} \ {0} is defined as:

Let k; = length(M;)/3.
Split M; into 3-bit “chunks” m, _, so that M; = concatg(m, . j,).

i

Write each m;; as (s}, 51, s3], and let enc(m;) = (1 - 2-50) - (148 +25]) : Z

k; N
Let (M;) = ijlenc(mj) =D,

+
Finally, define PedersenHash : Byl x BIN'T s plémentesapivg] by:
PedersenHash(D, M) := Extract e (PedersenHashToPoint(D, M)).

See § A.3.3.9 Pedersen hash’ on p.147 for rationale and efficient circuit implementation of these functions.

Security requirement:  PedersenHash and PedersenHashToPoint are required to be collision-resistant between
inputs of fixed length, for a given personalization input D. No other security properties commonly associated with
hash functions are needed.

Non-normative note: These hash functions are not collision-resistant for variable-length inputs.

Theorem 5.4.1. The encoding function (+) is injective.

ki
ryp—1 7y

Proof. We first check that the range of Z enc(m;) - 2401 is a subset of the allowable range {— 5 2_ 1} \ {0}.

Jj=1

ote _q
15

The range of this expression is a subset of {~A .. A} \ {0} where A =4- > 2t (=D — 4.
i=1
When ¢ = 63, we have

4-c
2 15_ ! 0x4444444444444444444444444444444404000000044444444040000004444444444

4 .

r

%1 = 0x73EDA753299D7D483339D80809A1D8053341049E6640841684B872F6B7B965B

ki (j—
so the required condition is met. This implies that there is no “wrap around” and so » enc(my) - 2+U=b may be
=
treated as an integer expression.
encisinjective. In order to prove that (-) is injective, consider (+)* : BBty {0..2-A} suchthat (M,)* = (M,)+A.
k"' . ] — . .
With k; and m; defined as above, we have (M)™ = ijlenc’(mj) 240U~ where enc’(m;) = enc(m;) + 4 is in
{0..8} and enc’ is injective. Express this sum in hexadecimal; then each m; affects only one hex digit, and it is easy
to see that (-} is injective. Therefore so is (+). O

Since the security proof from [BGG1995, Appendix A] depends only on the encoding being injective and its range not
including zero, the proof can be adapted straightforwardly to show that PedersenHashToPoint is collision-resistant
under the same assumptions and security bounds. Because Extract; is injective, it follows that PedersenHash is

equally collision-resistant.
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Theorem 5.4.2. Uncommitted>*™™™ js not in the range of PedersenHash.

Proof. Uncommitted®*" is defined as I2LEBSPy,, . ... (1). By injectivity of 12LEBSP, . ~and definitions of
Pedersen Hash and Extract ¢, I2LEBSP, . (1) can be in the range of PedersenHash only if there exist D : BY¥ and

M : BN such that U (PedersenHashToPoint(D, M)) = 1. The latter can only be the affine-ctEdwards u-coordinate
of a point in J. We show that there are no points in J with affine-ctEdwards u-coordinate 1. Suppose for a

contradiction that (u,v) € J for u = 1 and some v : If,,_. By writing the curve equation as V= (1 —ayu’)/(1—dyu®),

and noting that 1 — dj-u® # 0 because dj is nonsquare, we have v’ = (1 — a;)/(1 — dy). The right-hand-side is a
nonsquare in [, (for the Jubjub curve parameters), so there are no solutions for v (contradiction). O

5.4.1.8 Mixing Pedersen Hash Function

A mixing Pedersen hash is used to compute p from cm and pos in §4.14 ‘Note Commitments and Nullifiers’ on
p.42. It takes as input a Pedersen commitment P, and hashes it with another input .

() *
Define J := FindGroupHash” " (“Zcash_J_","")

We define MixingPedersenHash : J x {0..r; — 1} — J by:
MixingPedersenHash(P, z) := P + [z] J.

Security requirement: The function
(r,M,z)s{0..r; — 1} X BT x {0..7; — 1} — MixingPedersenHash(WindowedPedersenCommit,. (M), z) ¢ J

must be collision-resistant on (r, M, x).
See §A.3.3.10 ‘Mixing Pedersen hash’ on p.149 for efficient circuit implementation of this function.
5.4.1.9 Equihash Generator

EquihashGen,, ;. is a specialized hash function that maps an input and an index to an output of length n bits. It is
used in § 7.6.1 ‘Equihash’ on p. 92.

Let powtag ::’ 64-bit “ZcashPoW” | 32-bitn | 32-bit k ‘

Let powcount(g) := | 32-bitg |.

Let EquihashGen,, ,.(S,7) := T} 11 . p4rn. Where
m:= floor(512),
h:= (i —1mod m) - n;
T := BLAKE2b-(n - m)(powtag, S || powcount(floor(=1))).

Indices of bits in T" are 1-based.
BLAKE2b-/(p, z) is defined in § 5.4.1.2 ‘BLAKE2 Hash Functions’ on p.55.

Security requirement: BLAKE2b-{(powtag, ) must generate output that is sufficiently unpredictable to avoid
short-cuts to the Equihash solution process. It would suffice to model it as a random oracle.

Note: When EquihashGen is evaluated for sequential indices, as in the Equihash solving process (§ 7.6.1 ‘Equihash’
on p. 92), the number of calls to BLAKE2b can be reduced by a factor of floor(512) in the best case (which is a factor
of 2 for n = 200).
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5.4.2 Pseudo Random Functions
Let SHA256Compress be as given in § 5.4.1.1 ‘SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions’
on p. 54.

The Pseudo Random Functions PRF*¥ PRF™, PRFP* and PRF?, described in §4.1.2 ‘Pseudo Random Functions’
on p. 20, are all instantiated using SHA256Compress:

PRF"(t) = SHA256Compress ([ 1] 1]0[0] 252-bit & |8-bitt| [o]** )
PRFY (p) := SHA256Compress (’ 1| 1| 1|0| 252-bit ag | 256-bit p D
PRFapskk (4, hsig) := SHA256Compress ( ’ 0li-1[0 | O| 252-bit ag, | 256-bit hgj, D
PRF® (i, hgg) := SHA256Compress (’o |1| 1|0| 252-bit ¢ | 256-bit hgg \)

Security requirements:
- SHA256Compress must be collision-resistant .

- SHA256Compress must be a PRF when keyed by the bits corresponding to z, a or ¢ in the above diagrams,
with input in the remaining bits.

Note: The first four bits -i.e. the most significant four bits of the first byte- are used to separate distinct uses of
SHA256Compress, ensuring that the functions are independent. As well as the inputs shown here, bits 1011 in this
position are used to distinguish uses of the full SHA-256 hash function; see §5.4.7.1 ‘Sprout Note Commitments’
on p. 68.

(The specific bit patterns chosen here were motivated by the possibility of future extensions that might have
increased N®¢ and/or N™" to 3, or added an additional bit to ay, to encode a new key type, or that would have
required an additional PRF. In fact since Sapling switches to non-SHA256Compress-based cryptographic primitives,
these extensions are unlikely to be necessary.)

PRF®*" is used in §4.2.2 ‘Sapling Key Components’ on p.29 to derive the Spend authorizing key ask and the
proof authorizing key nsk.

It is instantiated using the BLAKE2b hash function defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p.55:

PRFEP (1) .= BLAKE2b-512(“Zcash_ExpandSeed”, LEBS20SP,s(sk) || ¢)

Security requirement: BLAKE2b-512(“Zcash_ExpandSeed”, LEBS20SP,54(sk) || t) must be a PRF for output range
By ferrecand/ 8l when keyed by the bits corresponding to sk, with input in the bits corresponding to t.

PRF°* is used in §4.17.1 ‘Encryption (Sapling)’ on p.48 to derive the outgoing cipher key ock used to encrypt an
Output ciphertext.

It is instantiated using the BLAKE2b hash function defined in § 5.4.1.2 ‘BLAKE2 Hash Functions’ on p.55:

PRF2(cv, cmu, ephemeralKey) := BLAKE2b-256(“Zcash_Derive_ock”, ocklnput)

where ocklnput = | LEBS20SP,54(ovk 32-byte cv 32-byte cmu 32-byte ephemeralKey]|.
Y y yte ep y

Security requirement: BLAKE2b-512(“Zcash_Derive_ock”, ocklnput) must be a PRF for output range Sym.K (de-
fined in §5.4.3 ‘Symmetric Encryption’ on p.62) when keyed by the bits corresponding to ovk, with input in the
bits corresponding to cv, cmu, and ephemeralKey.
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PRF"™2P"8 s ysed to derive the nullifier for a Sapling note. It is instantiated using the BLAKE2s hash function
defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p.55:

PRF"S%18 (5,) .— BLAKE2s5-256 (“ansh_nf",

nkx

LEBS20SPas55(nkx) | LEBS20SPys4(p%) D

Security requirement: BLAKE2s-256 (“ansh_nf "

LEBS20SPas5(nkx) | LEBS20SPys4(p%) Dmustbeaco]—

lision-resistant PRF for output range BY"Y when keyed by the bits corresponding to nk*, with input in the bits
corresponding to px. Note that nkx : 1% isa representation of a point in the rj-order subgroup of the Jubjub curve,
and therefore is not uniformly distributed on BI“!. 1% is defined in §5.4.8.3 “Jubjub’ on p.73.

5.4.3 Symmetric Encryption

Let Sym.K := B, Sym.P := B"™ and Sym.C := By,

Let the authenticated one-time symmetric encryption scheme Sym.Encrypty (P) be authenticated encryption using
AEAD_CHACHA20_POLY1305 [RFC-7539] encryption of plaintext P € Sym.P, with empty “associated data’, all-zero
nonce [0]”°, and 256-bit key K € Sym.K.

Similarly, let Sym.Decrypty (C) be AEAD_CHACHA20_POLY1305 decryption of ciphertext C € Sym.C, with empty
“associated data’, all-zero nonce [0]°°, and 256-bit key K € Sym.K. The result is either the plaintext byte sequence,
or L indicating failure to decrypt.

Note: The “IETF" definition of AEAD_CHACHA20_POLY1305 from [REC-7539] is used; this has a 32-bit block count
and a 96-bit nonce, rather than a 64-bit block count and 64-bit nonce as in the original definition of ChaCha20.

5.4.4 Key Agreement And Derivation

5.4.4.1 Sprout Key Agreement

KA is a key agreement scheme as specified in §4.1.4 ‘Key Agreement’ on p. 21,

It is instantiated as Curve25519 key agreement, described in [Bernstein2006], as follows.

Let KASP®"* Public and KA®P"®"* SharedSecret be the type of Curve25519 public keys (i.e. BY*?), and let KASP®"* Private
be the type of Curve25519 secret keys.

Let Curve25519(n, q) be the result of point multiplication of the Curve25519 public key represented by the byte se-
quence ¢ by the Curve25519 secret key represented by the byte sequence n, as defined in [Bernstein2006, section 2].

Let KA®P®"* Base := 9 be the public byte sequence representing the Curve25519 base point.

Let clampcynesssio(z) take a 32-byte sequence x as input and return a byte sequence representing a Curve25519
private key, with bits “clamped” as described in [Bernstein2006, section 3]: “clear bits 0, 1, 2 of the first byte, clear
bit 7 of the last byte, and set bit 6 of the last byte.” Here the bits of a byte are numbered such that bit b has numeric

weight 2°.

Define KA®P®"* FormatPrivate(z) := clampcynesssio()-
Define KA DerivePublic(n, q) := Curve25519(n, q).
Define KASpm”t.Agree(n, q) := Curve25519(n, q).
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5.4.4.2 Sprout Key Derivation

KDF*P°"" is a Key Derivation Function as specified in §4.1.5 ‘Key Derivation’ on p.2L.

It is instantiated using BLAKE2b-256 as follows:

KDFSPrUt (j, hsig, sharedSecret;, epk, pkine.i) := BLAKE2b-256(kdftag, kdfinput)

enc,t

where:
kdftag := | 64-bit “ZcashKDF” | 8-biti—1 | [0]°° |
kdfinput := ] 256-bit hg | 256-bit sharedSecret; 256-bit epk 256-bit pk2eY,;

BLAKE2b-256(p, x) is defined in § 5.4.1.2 ‘BLAKE2 Hash Functions’ on p.55.

5.4.4.3 Sapling Key Agreement

KA is 5 key agreement scheme as specified in §4.1.4 ‘Key Agreement’ on p.21.
It is instantiated as Diffie-Hellman with cofactor multiplication on Jubjub as follows:
Let J, J*), J"* and the cofactor hy be as defined in §5.4.8.3 ‘Jubjub’ on p. 73.

Define KA®*'"8 Pyplic := J.

Define KAS*™™ pPyblicPrimeSubgroup := J.

Define KAS*P'"8 SharedSecret := J.

Define KAS*™™8 Private := F,,.

Define KA>*™ DerivePublic(sk, B) := [sk] B.

Define KAS*P'"8 Agree(sk, P) := [hy - sk] P.

5.4.4.4 Sapling Key Derivation

KDF>*'"8 is a Key Derivation Function as specified in §4.1.5 ‘Key Derivation’ on p. 21.
It is instantiated using BLAKE2b-256 as follows:

KDF>*P"8 (sharedSecret, epk) := BLAKE2b-256(“Zcash_SaplingKDF”, kdfinput).
where:

kdfinput := ’ LEBS20SPy54 (reprJ(sharedSecret)) | LEBS20SP,56 (reprJ(epk)) ‘

BLAKE2b-256(p, x) is defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p.55.

5.4.5 Ed25519

Ed25519 is a signature scheme as specified in §4.1.6 ‘Signature’ on p.22. It is used to instantiate JoinSplitSig as
described in §4.10 ‘Non-malleability (Sprout) on p. 38.
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Let ExcludedPointEncodings : 9P(BY?*?) = {
[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
[0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
[0x26, 0xe8, 0x95, 0x8f, 0xc2, 0xb2, 0x27, 0xb0, 0x45, 0xc3, 0xf4, 0x89, 0x£2, Oxef, 0x98, 0x£0, 0xd5, 0xdf, Oxac, 0x05, 0xd3, 0xc6, 0x33, 0x39, 0xb1, 0x38, 0x02, 0x88, 0x6d, 0x53, 0xfc, 0x05],
[0xc7, 017, 0x6a, 0x70, 0x3d, 0x4d, 0xd8, 0x4f, Oxba, 0x3c, 0x0b, 0x76, 0x0d, 0x10, 0x67, 0x0f, 0x2a, 0x20, 0x53, Oxfa, 0x2c, 0x39, Oxcc, 0xc6, Oxde, 0xc7, 0xfd, 0x77, 0x92, Oxac, 0x03, 0x7a |,
[0x13, 0xe8, 0x95, 0x8f, 0xc2, 0xb2, 0x27, 0xb0, 0x45, 0xc3, 0xf4, 0x89, 0x£2, Oxef, 0x98, 0x£0, 0xd5, 0xdf, Oxac, 0x05, 0xd3, 0xc6, 0x33, 0x39, 0xb1, 0x38, 0x02, 0x88, 0x6d, 0x53, 0xfc, 0x85 ],
[ 0xb4, 0x17, 0x6a, 0x70, 0x3d, 0x4d, 0xd8, 0x4f, Oxba, 0x3c, 0xOb, 0x76, 0x0d, 0x10, 0x67, 0x0f, 0x2a, 0x20, 0x53, 0xfa, 0x2c, 0x39, Oxcc, 0xc, Oxde, 0xc7, 0xfd, 0x77, 0x92, Oxac, 0x03, Oxfal],
[Oxec, 0x£ff, 0xff, 0xff, Oxff, 0xff, Oxff, Oxff, Oxff, OxEf, Oxff, OxLf, Oxff, Oxff, Oxff, OxEf, Oxff, OxEff, Oxff, Oxff, OxEf, Ox£ff, OxEf, Oxff, OxEf, Oxff, Oxff, Oxff, OxEf, OxEf, Ox£Ef, Ox7E ],
[Oxed, 0x£ff, 0xff, 0xff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxEf, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxEf, Ox£ff, OxEf, Oxff, OxEf, Oxff, Oxff, Oxff, Oxff, OxEf, Ox£Ef, Ox7E ],
[Oxee, 0xff, 0xff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, 0x7f |,
[0xd9, 0x£f, 0xff, 0xff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, 0xff, Oxff, Oxff, Oxff, Oxff, Oxff, OxEf, Oxff, OxEf, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff ],
[Oxda, 0x£ff, Oxff, 0xff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxEf, Oxff, OxEf, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxEf, Oxff, OxEf, Oxff, OxEf, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff |

1.

Let p = 2%°° — 19.

Leta = —1.

—121665/121666 (mod p).

Let £ = 2°°% + 27742317777372353535851937790883648493 (the order of the Ed25519 curve's prime-order subgroup).

Letd

Let B be the base point given in [BDLSY2012].

Define I2LEBSP, LEBS20SP, LEOS2BSP, and LEBS2IP as in §5.2 ‘Integers, Bit Sequences, and Endianness’ on
p-52.
Define reprBytesgpss1q : Ed25519 — B such that reprBytesgqoss1o(,y) = LEBS20SP56 <|2LEBSP256 (y + 2255@))’

- 5
where 7 = x mod 2.2

Define abstBytesgqos519 Bv*2 _ Ed25519 U {_L} such that abstBytesgyy5519(P)is computed as follows:

let y* : B°° be the first 255 bits of LEOS2BSP,54(P) and let & : B be the last bit.
let Y ]Fp = LEBS2IP255(y*) (mod p)
ifa —d-y* =0, return L.

2
letx = ? 1_7y2 .
\/ a—d-y
ifz = 1, return L.

if 2 mod 2 = # then return (z, y) else return (p — x, y).

Note: This definition of point decoding differs from that of [REC-8032, section 5.1.3, as corrected by the erratal.

In the latter there is an additional step “If x = 0, and x_0 = 1, decoding fails.” which rejects the encodings {
[0x01, 0x00, 000, 0x00, 0x00, 000, 0x00, 0x00, 0x00, 0x00, 000, 0x00, 0x00, 000, 000, 0x00, 0x00, 0x00, 000, 0x00, 0x00, 000, 0x00, 0x00, 0x00, 0x00, 000, 0x00, 0x00, 000, 0x00, 080,
[Oxee, Ox£f, 0xEf, Oxff, Ox£f, 0xEf, Oxff, Oxff, Oxff, Ox£f, 0xEf, Oxff, Ox£f, 0xff, Oxff, OxEf, Oxff, Ox£f, 0xff, Oxff, Ox£f, 0xff, Oxff, Oxff, Oxff, Ox£f, 0xEf, Oxff, O£f, Oxff, Oxff, Oxff ],
[Oxec, 0xft, OxEt, Oxft, Oxft, Oxf, Ox£f, Ox£f, OXEE, OxEf, OxEf, 0xEE, OxEt, OxEt, OxEt, Oxff, Oxff, Oxff, Ox£f, OXEE, OxEf, OxEf, 0xEE, OxEE, OxEt, OxEt, Oxff, Oxff, Ox£f, Ox£f, Ox£f, Oxff ]

In this specification, the first two of these are accepted as encodings of (0,1), and the third is accepted as an
encoding of (0, —1).

Ed25519 is defined as in [BDLSY2012], using SHA-512 as the internal hash function, with the additional requirements
below. A valid Ed25519 validating key is defined as a sequence of 32 bytes encoding a point on the Ed25519 curve.
All conversions between Ed25519 points, byte sequences, and integers used in this section are as specified in
[BDLSY2012].

® Here we use the (z, y) naming of coordinates in [BDLSY2012], which is different from the (u, v) naming used for coordinates of ctEdwards
curves in § A.2 ‘Elliptic curve background’ on p.137.
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The requirements on a signature (R, S) with validating key A on a message M are:
- S MUST represent an integer less than 2.
- R and A MUST be encodings of points R and A respectively on the Ed25519 curve;
- [Pre-Canopy| R MUST NOT be in ExcludedPointEncodings;
- [Pre-Canopy| The validation equation MUST be equivalent to [S] B = R + [¢] A.

- [Canopy onward] The validation equation MUST be equivalent to [8] [S] B = [8] R + [8] [¢] A for single-
signature validation.

where ¢ is computed as the integer corresponding to SHA-512(R || A || M) as specified in [BDLSY2012].

If these requirements are not met or the validation equation does not hold, then the signature is considered invalid.

The encoding of an Ed25519 signature is:

256-bit R 256-bit §

where R and S are as defined in [BDLSY2012].

Notes:

. Itis not required that the integer encoding of the y-coordinate” of the points represented by R or A are less
than 2*%° — 19,

- Itis not required that A ¢ ExcludedPointEncodings.

- [Canopy onward] Appendix § B.3 ‘Ed25519 batch validation’ on p.160 describes an optimization that MAY
be used to speed up validation of batches of Ed25519 signatures.

Non-normative note: The exclusion, before Canopy activation, of ExcludedPointEncodings from R is due to a
quirk of version 1.0.15 of the libsodium library [libsodium] which was initially used to implement Ed25519 signature
validation in zcashd. (The ED25519_COMPAT compile-time option was not set.) The intent was to exclude points of
order less than ¢; however, not all such points were covered. It is possible, with due attention to detail, to reproduce
this quirk without using libsodium v1.0.15.

5.4.6 RedDSA and RedJubjub

RedDSA is a Schnorr-based signature scheme, optionally supporting key re-randomization as described in §4.1.6.1
‘Signature with Re-Randomizable Keys’ on p.23. It also supports a Secret Key to Public Key Monomorphism as
described in §4.1.6.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on p.24. It is based on a
scheme from [FKMSSS2016, section 3], with some ideas from EdDSA [BJLSY2015].

RedJubjub is a specialization of RedDSA to the Jubjub curve (§5.4.8.3 ‘Jubjub’ on p.73), using the BLAKE2b-512 hash
function.

The spend authorization signature scheme defined in §5.4.6.1 ‘Spend Authorization Signature’ on p.67 is instan-
tiated by RedJubjub. The binding signature scheme BindingSig defined in §5.4.6.2 ‘Binding Signature’ on p. 68 is
instantiated by RedJubjub without use of key re-randomization.

We first describe the scheme RedDSA over a general represented group. Its parameters are:

- a represented group G, which also defines a subgroup G of order rg, a cofactor hg, a group operation +, an
additive identity Og, a bit-length /g, a representation function reprg, and an abstraction function abstg, as
specified in §4.1.8 ‘Represented Group’ on p.26;

. Pg, a generator of G;
- a bit-length ¢y : N such that =128 > rg and £y mod 8 = 0;

- a cryptographic hash function H : By N s pylf/8l,
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Its associated types are defined as follows:

RedDSA.Message := By
RedDSA.Signature — By[ceiling(EG/S) -+ ceiling(bitlength(rg) /8)]

RedDSA.Public := G
RedDSA.Private := I, .
RedDSA.Random :=F, .

Define H® : BY") - F, by:
H®(B) = LEOS2IP,, (H(B)) (mod rg)

Define RedDSA.GenPrivate : () & RedDSA.Private as:

Return sk & F, .

Define RedDSA.DerivePublic : RedDSA.Private — RedDSA.Public by:
RedDSA.DerivePublic(sk) := [sk] Pg.

Define RedDSA.GenRandom : () & RedDSA.Random as:

Choose a byte sequence T uniformly at random on Byl(tn+128)/8],

Return H®(T).

Define Oregpsa Random := 0 (mod 7g).

Define RedDSA.RandomizePrivate : RedDSA.Random x RedDSA.Private — RedDSA.Private by:
RedDSA.RandomizePrivate(a, sk) := sk + a (mod r¢).

Define RedDSA.RandomizePublic : RedDSA.Random x RedDSA.Public — RedDSA.Public as:
RedDSA.RandomizePublic(a, vk) := vk + [a] Pg.

Define RedDSA .Sign ¢ (sk : RedDSA.Private) x (M : RedDSA.Message) & RedDSA.Signature as:
Choose a byte sequence T uniformly at random on By [(nF128)/8]

Let vk = LEBS20SP,_ (reprg (RedDSA.DerivePublic(sk))).

Let r = H®(T'|| vk || M).

Let R = [r] Pg.

Let R = LEBS20SP,_(reprg (R)).

Let S = (r + H®(R || vk || M) - sk) mod rg.

Let S = LEBS20SPyiength(re ) (I2LEBSPpitiength(re) (5)).-

Return R || S.

Define RedDSA.Validate : (vk : RedDSA.Public) x (M : RedDSA.Message) x (o : RedDSA.Signature) — B as:

Let R be the first ceiling (¢ /8) bytes of o, and let S be the remaining ceiling (bitlength(rg)/8) bytes.
Let R = abstg (LEOS2BSP,_ (R)), and let S = LEOS2IPg jengen(s) (S)-

Let vk = LEBS20SP,_ (reprg (vk)).

Letc = H(R | vk || M).

Return 1if R # 1L and S < rg and [hg] (—[S] Pg + R + [c] vk) = Og, otherwise 0.
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Notes:
- The validation algorithm does not check that R is a point of order at least rg.
- The value R used as part of the input to H® MUST be exactly as encoded in the signature.

- Appendix § B.1 ‘RedDSA batch validation’ on p.157 describes an optimization that MAY be used to speed up
validation of batches of RedDSA signatures.

Non-normative note: The randomization used in RedDSA.RandomizePrivate and RedDSA.RandomizePublic may
interact with other uses of additive properties of keys for Schnorr-based signature schemes. In the Zcash protocol,
such properties are used for binding signatures but not at the same time as key randomization. They are also used
in [ZIP-32] when deriving child extended keys, but this does not result in any practical security weakness as long as
the security recommendations of ZIP-32 are followed. If RedDSA is reused in other protocols making use of these
additive properties, careful analysis of potential interactions is required.

The two abelian groups specified in §4.1.6.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on
p. 24 are instantiated for RedDSA as follows:

- Og:=0 (mod rg)

- skq B sky := sk + sky (mod 7g)
- Qg = Og

- vky @ vky = vk; + vks.

As required, RedDSA.DerivePublic is a group monomorphism, since it is injective and:

RedDSA.DerivePublic(sk; B sky) = [sk; 4 sky (mod rg)] Pg
= [sky] Pg + [sky] Pg (since Pg has order rg)
= RedDSA.DerivePublic(sk; ) ¢ RedDSA.DerivePublic(sks,).

A RedDSA validating key vk can be encoded as a bit sequence reprg (vk) of length ¢ bits (or as a corresponding byte
sequence vk by then applying LEBS20SP,_).

The scheme RedJubjub specializes RedDSA with:
- G := J as defined in §5.4.8.3 ‘Jubjub’ on p.73;
ly =512
- H(z) := BLAKE2b-512(“Zcash_RedJubjubH", x) as defined in § 5.4.1.2 ‘BLAKE2 Hash Functions’ on p.55.

The generator Py : G is left as an unspecified parameter, different between BindingSig and SpendAuthSig.

5.4.6.1 Spend Authorization Signature

Let RedJubjub be as defined in §5.4.6 ‘RedDSA and RedJubjub’ on p. 65.

()=
Define G := FindGroupHash’ (“Zcash_G_","").

The spend authorization signature scheme, SpendAuthSig, is instantiated as RedJubjub with key re-randomization,
and with generator Pgz = G.

See §4.13 ‘Spend Authorization Signature’ on p. 41 for details on the use of this signature scheme.

Security requirement: SpendAuthSig must be a SURK-CMA secure signature scheme with re-randomizable keys
as defined in §4.1.6.1 ‘Signature with Re-Randomizable Keys’ on p.23.
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5.4.6.2 Binding Signature

Let RedJubjub be as defined in §5.4.6 ‘RedDSA and RedJubjub’ on p. 65.
Let R be the randomness base defined in §5.4.7.3 ‘Homomorphic Pedersen commitments’ on p. 69.

The binding signature scheme, BindingSig, is instantiated as RedJubjub without use of key re-randomization, and
with generator Pg = R.

See §4.12 ‘Balance and Binding Signature (Sapling)’ on p. 39 for details on the use of this signature scheme.
Security requirement:  BindingSig must be a SUF-CMA secure signature scheme with key monomorphism as

defined in §4.1.6.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on p.24. A signature must
prove knowledge of the discrete logarithm of the validating key with respect to the base R.

5.4.7 Commitment schemes

5.4.71 Sprout Note Commitments

The commitment scheme NoteCommit>™°"* specified in §4.1.7 ‘Commitment’ on p. 25 is instantiated using SHA-256
as follows:

rcm

NoteCommitS?°(a,,.,v, p) ::SHA-256(’1\0\1\1\0\0\0\0\ 256-bit a, ‘64—bitv‘ 9256-bit p | 256-bit rem D

NoteCommit>™°"* GenTrapdoor() generates the uniform distribution on NoteCommit>*°"* Trapdoor.

Note: The leading byte of the SHA-256 input is 0xBO.

Security requirements:
- SHA256Compress must be collision-resistant .

- SHA256Compress must be a PRF when keyed by the bits corresponding to the position of rcm in the second
block of SHA-256 input, with input to the PRF in the remaining bits of the block and the chaining variable.

5.4.7.2 Windowed Pedersen commitments

§5.4.1.7 ‘Pedersen Hash Function’ on p.58 defines a Pedersen hash construction. We construct “windowed” Ped-
ersen commitments by reusing that construction, and adding a randomized point on the Jubjub curve (see §5.4.8.3
Jubjub’ on p. 73):

(r)*
WindowedPedersenCommit,.(s) := PedersenHashToPoint(“Zcash_PH”, s) + [r] FindGroupHash” = (“Zcash_PH", “r”)

See § A.3.5 ‘Windowed Pedersen Commitment’ on p.150 for rationale and efficient circuit implementation of this
function.

The commitment scheme NoteCommit>*"""€ specified in §4.1.7 ‘Commitment’ on p.25 is instantiated as follows
using WindowedPedersenCommit:

rcm

NoteCommit>2P""8 (g pksky, v) := WindowedPedersenCommit,c, ([1}6 || 1”2LEBSPg4(v) || gxq4 || pk*d)

NoteCommit>*"""8 GenTrapdoor() generates the uniform distribution on F,,.
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Security requirements:

Sapling

- WindowedPedersenCommit, and hence NoteCommit , must be computationally binding and at least com-

putationally hiding commitment schemes.
(They are in fact unconditionally hiding commitment schemes.)

Notes:

- MerkleCRH>*"" i5 also defined in terms of PedersenHash ToPoint (see § 5.4.1.3 ‘Merkle Tree Hash Function’ on
p.55). The prefix [1)° distinguishes the use of WindowedPedersenCommit in NoteCommit>*"""¢ from the layer
prefix used in MerkleCRH>*™_That layer prefix is a 6-bit little-endian encoding of an integer in the range
{0... MerkleDepth®®"8 — 1}: because MerkleDepth>**""& < 64, it cannot collide with [1]°.

. The arguments to NoteCommit>*""8 are in a different order to their encodings in WindowedPedersenCommit.

There is no particularly good reason for this.

5.4.7.3 Homomorphic Pedersen commitments

The windowed Pedersen commitments defined in the preceding section are highly efficient, but they do not support
the homomorphic property we need when instantiating ValueCommit.

For more details on the use of this property, see §4.12 ‘Balance and Binding Signature (Sapling)’ on p.39 and
§3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’ on p.16.

In order to support this property, we also define homomorphic Pedersen commitments as follows:

(r)=* (r) =
HomomorphicPedersenCommit,., (D, v) := [v] FindGroupHash? (D, “v”)+ [rev] FindGroupHash? ~ (D, “r”)

ValueCommit.GenTrapdoor() generates the uniform distribution on F, .

See § A.3.6 ‘Homomorphic Pedersen Commitment’ on p.150 for rationale and efficient circuit implementation of
this function.

Define:
() %
V := FindGroupHash’  (“Zcash_cv”, “v")
(") *
R = FindGroupHashJ (“Zcash_cv”, “r”)
The commitment scheme ValueCommit specified in §4.1.7 ‘Commitment’ on p. 25 is instantiated as follows using
HomomorphicPedersenCommit:

ValueCommit,, (v) := HomomorphicPedersenCommit,., (“Zcash_cv”,v).

which is equivalent to:

ValueCommit,, (v) := [v] V + [rev] R.

Security requirements:

- HomomorphicPedersenCommit must be a computationally binding and at least computationally hiding com-
mitment scheme, for a given personalization input D.

- ValueCommit must be a computationally binding and at least computationally hiding commitment scheme.

(They are in fact unconditionally hiding commitment schemes.)
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5.4.8 Represented Groups and Pairings

5.4.8.1 BN-254

The represented pairing BN-254 is defined in this section.

Let gg := 21888242871839275222246405745257275088696311157297823662689037894645226208583.
Let rg := 21888242871839275222246405745257275088548364400416034343698204186575808495617.
Let bg := 3.

(¢g and rg are prime.)

Let G?’ be the group (of order ) of rational points on a Barreto-Naehrig ((BN2005]) curve Eg, over F, with
equation y* = z* + bg. This curve has embedding degree 12 with respect to 7.

Let Gg) be the subgroup of order r¢ in the sextic twist Eg, of Eg, over F, - with equation ' =2+ %G where
£:F o :
96

We represent elements of | » as polynomials a, -  + ag : Fy_[t]. modulo the irreducible polynomial t* 4+ 1; in this
representation, ¢ is given by ¢ + 9.

Let Ggf) be the subgroup of 7™ roots of unity in ]F;lz, with multiplicative identity 1.

Let ég be the optimal ate pairing (see [Vercauter2009] and [AKLGL2010, section 2]) of type Ggr) X Gg) — Gg’:).

Fori: {1..2} let Og, be the point at infinity (which is the additive identity) in G andlet GI* .= G\ {Og,}.
Let Pg, ¢ G = (1,2).
Let Pg, : Gg)* := (11559732032986387107991004021392285783925812861821192530917403151452391805634 - ¢ +
10857046999023057135944570762232829481370756359578518086990519993285655852781,
4082367875863433681332203403145435568316851327593401208105741076214120093531 - t +
8495653923123431417604973247489272438418190587263600148770280649306958101930).

Pg, and Pg, are generators of G\ and G respectively.

Define I2BEBSP : (£: N) x {0..2°—1} — B as in §5.2 ‘Integers, Bit Sequences, and Endianness’ on p.52.

For a point P : G\"* = (zp, yp):

- The field elements zp and yp : F, are represented as integers x and y : {0..¢—1}.

- Let g = y mod 2.

. Pisencoded as ‘O‘O‘O‘O‘O‘O‘I‘I—bitg‘ 256-bit 2BEBSP 54 (1) ‘

For a point P : Gg)* = (zp,yp):

- Define FE2IP : F,_[t]/(t* + 1) — {0..q¢" — 1} such that FE2IP(ay, 1 - t + @y 0) = Gy 1 - @ + Gy o-
- Letz = FE2IP(xp), y = FE2IP(yp), and y' = FE2IP(—yp).

1, ify >
cletj=<"" Y y.
0, otherwise.

- Pis encoded as [0[0]0]0]1]0] 1] 1-bit | 512-bit 12BEBSP;, 5 ()

70


https://zips.z.cash/protocol/canopy.pdf#concretepairing
https://zips.z.cash/protocol/canopy.pdf#bnpairing

Non-normative notes:

- Only the rg-order subgroups (G( r are used in the protocol, not their containing groups G, r. Points in G( n*
are always checked to be of order rg when decoding from external representation. (The group of rat10r1a1

points G; on Eg, /I, is of order rg so no subgroup checks are needed in that case, and elements of G(T)

never represented externally.) The (r) superscripts on G 12,7 are used for consistency with notation elsewhere
in this specification.

- The points at infinity Og | never occur in proofs and have no defined encodings in this protocol.

- Arational point P # Og, on the curve Eg, can be verified to be of order 7, and therefore in Gg)*, by checking
that reg - P = OGQ.

- The use of big-endian order by I2BEBSP is different from the encoding of most other integers in this pro-
tocol. The encodings for (G} 15 are consistent with the definition of EC20SP for compressed curve points

in [IEEE2004, section 5.5.6.2]. The LSB compressed form (i.e. EC20SP-XL) is used for points in Ggr) ,and the
SORT compressed form (i.e. EC20SP-XS) for points in Gg)*

- Testing y > ¢/ for the compression of Gg)* points is equivalent to testing whether (a, 1,a,9) > (a_, 1,a_,0)
in lexicographic order.

- Algorithms for decompressing points from the above encodings are given in [IEEE2000, Appendix A.12.8] for
G{”* and [IEEE2004, Appendix A12.11] for G{*.

When computing square roots in I, or IF 2 in order to decompress a point encoding, the implementation MUST
NOT assume that the square root ex1sts or r that the encoding represents a point on the curve.

5.4.8.2 BLS12-381

The represented pairing BLS12-381 is defined in this section. Parameters are taken from [Bowe2017].

Let gs := 4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787.
Let rg := 52435875175126190479447740508185965837690552500527637822603658699938581184513.

Let ug := —15132376222941642752.

Let bg := 4.

(¢s and rg are prime.)

Let S?) be the subgroup of order rg of the group of rational points on a Barreto-Lynn-Scott ((BLS2002]) curve Eg
over F,  with equation y* = 2° 4 bg. This curve has embedding degree 12 with respect to rs.

Let S(;) be the subgroup of order rg in the sextic twist Eg, of Eg, over F,_ 2 with equation y? = 2 4+ 4(i + 1), where
i:F 2. i
ds

We represent elements of I, > as polynomials a; - ¢ + ag : F,_[t], modulo the irreducible polynomial t* 4+ 1; in this
representation, i is given by t.

Let ng) be the subgroup of 74" roots of unity in F;le, with multiplicative identity 1g.
Let é5 be the optimal ate pairing of type S x 8 — s¥.

Fori: {1..2},let O5 be the point at infinity in s and let S"* := s\ {Os,}.
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Let Psl . Sg’r)* =
(3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507,
1339506544944476473020471379941921221584933875938349620426543736416511423956333500472724655353366534992391 756441569 ).

Let sz . T)* =
(3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758 - ¢ +

352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160,
927553665492332455747201965776037880757740193453592970025027978 7939768 77002675564980949289727957565575433344219582 - £ +
1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905).

Ps, and Pg_ are generators of s and S¥) respectively.

Define I2BEBSP : (£: N) x {0..2°—1} — B as in §5.2 ‘Integers, Bit Sequences, and Endianness’ on p.52.

For a point P : S = (zp,yp):

- The field elements zp and yp : [, are represented as integers z and y : {0.. gs—1}.

1, ify >qg —
ety fy>a—y
0, otherwise.

. Pisencoded as ] 1|0| 1-bit g | 381-bit 12BEBSPsg, () ‘ .

For a point P : S{* = (zp,yp):
- Define FE2IPP : F,_[t]/(t* + 1) — {0..qs— 1} such that FE2IPP(a,, 1 - t + ay.) = [@4 1w 0]-
- Let z = FE2IPP(zp), y = FE2IPP(yp), and iy = FE2IPP(—yp).

Letjj— 1, ify > y' lexicographically
0, otherwise.

. Pisencoded as ]1|o| 1-bit y| 381-bit 2BEBSPag, (7,) | 384-bit 2BEBSPag, (5) \

Non-normative notes:
- Only the rg-order subgroups S 5 7 are used in the protocol, not their containing groups S, » 7. Points in S )

are always checked to be of order rg when decoding from external representation. (Elements of S are

never represented externally.) The (r) superscripts on S(1 5 are used for consistency with notation elsewhere
in this specification.

- The points at infinity Og , never occur in proofs and have no defined encodings in this protocol.

- In contrast to the corresponding BN-254 curve, 5 over [F,_is not of prime order.

- Arational point P # Og on the curve Eg fori € {1,2} can be verified to be of order rg, and therefore in SET)*,
by checking that rg - P = O .

- The encodings for S(T)* are specific to Zcash.

- Algorithms for decompressing points from the encodings of 81 5 are defined analogously to those for (G(
§5.4.8.1 ‘BN-254’ on p. 70, taking into account that the SORT compressed form (not the LSB compressed form)

is used for S{*.

When computing square roots in [, or I, > in order to decompress a point encoding, the implementation MUST
NOT assume that the square root ex1sts or that the encoding represents a point on the curve.
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5.4.8.3 Jubjub

“You boil it in sawdust: you salt it in glue:
You condense it with locusts and tape:
Still keeping one principal object in view—
To preserve its symmetrical shape.”
— Lewis Carroll, “The Hunting of the Snark” [Carroll1876]

Sapling uses an elliptic curve, Jubjub, designed to be efficiently implementable in zk-SNARK circuits. The repre-
sented group J of points on this curve is defined in this section.

A complete twisted Edwards elliptic curve, as defined in [BL2017, section 4.3.4], is an elliptic curve E over a non-
binary field F,, parameterized by distinct a,d : I, \ {0} such that a is square and d is nonsquare, with equation
E:a-u®+v* =14 d-u*-v*. We use the abbreviation “ctEdwards” to refer to complete twisted Edwards elliptic
curves and coordinates.

Let ¢ := rg, as defined in §5.4.8.2 ‘BLS12-381’ on p. 71.

Let ry := 6554484396890773809930967563523245729705921265872317281365359162392183254199.

(gy and ry are prime.)

Let hy := 8.

Letaj := —1.

Let dy := —10240/10241 (mod ;).

Let J be the group of points (u,v) on a ctEdwards curve Ej over I, with equation aj w4+ v? =1+dy-u” v The
zero point with coordinates (0, 1) is denoted Oj. J has order hj-rj.

Let (5 := 256.

Define I2LEBSP : (£ : N) x {0..2°—1} — BY as in §5.2 ‘Integers, Bit Sequences, and Endianness’ on p-52, and
similarly for LEBS2IP : (¢: N) x B — {0..2°~1}.

Define repr; : J — B!%) such that repry(u, v) = 12LEBSPys6 (v + 2255~ﬂ), where @ = v mod 2.
Define abstj : B! - Ju {L} such that abst;(Px)is computed as follows:

let v+ : B°! be the first 255 bits of Px and let 4 : B be the last bit.
if LEBS2IPy55(vx) > gy then return L, otherwise let v : I, = LEBS2IPy55(vx) (mod gy).

if ay — dy-v* =0, return L.

7/ 1V
ay—dy-v

ifu=_1, return L.

if w mod 2 = @ then return (u, v) else return (¢; — u, v).

Note: In earlier versions of this specification, abst; was defined as the left inverse of repr; such that if S'is not in
the range of repr;, then abst;(S) = L. This differs from the specification above:

- Previously, abst; (I2LEBSP256 (2°°° + 1)) and abst; <I2LEBSP256 (2%°° — 1)) were defined as L.
- In the current specification, abstJ(I2LEBSP256(2255 + 1)) = abst; (I2LEBSP,54(1)) = (0,1) = Oy, and also

abstJ<I2LEBSP256 (2255 — 1)) = abst; (12LEBSP,s56(—1)) = (0, —1).

Define J as the order-r; subgroup of J. Note that this includes Oj. For the set of points of order rj (which excludes
0,), we write J©*,

Define J¥ := {reprJ(P) Bl | Pe J(T)}.
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Non-normative notes:

- The ctEdwards compressed encoding used here is consistent with that used in EdDSA [BJLSY2015] for
validating keys and the R element of a signature.

- [BJLSY2015, “Encoding and parsing curve points”] gives algorithms for decompressing points from the encod-
ing of J.

When computing square roots in F,_in order to decompress a point encoding, the implementation MUST NOT
assume that the square root exists, or that the encoding represents a point on the curve.
This specification requires “strict” parsing as defined in [BJLSY2015, “Encoding and parsing integers”].

Note that algorithms elsewhere in this specification that use Jubjub may impose other conditions on points, for
example that they have order at least rj.

5.4.8.4 Hash Extractor for Jubjub
Let U((u,v))= uand let V((u,v))=v.
Define Extract ¢ : J @) _y pleuernisaping] by

Extract o) (P) := I2LEBSP,,  _ (U(P)).

Facts: The point (0,1) = Oy, and the point (0, —1) has order 2 in J. I is of odd-prime order.
Lemma5.4.3. LetP = (u,v) € J”. Then (u, —v) ¢ I?.

Proof. If P = Oy then (u, —v) = (0,—1) ¢ I Else, Pis of odd-prime order. Note that v # 0. (If v = O then a - u* = 1,
and so applying the doubling formula gives [2] P = (0,—1), then [4] P = (0,1) = Oj; contradiction since then
P would not be of odd-prime order.) Therefore, —v # v. Now suppose (u, —v) = @ is a point in J”. Then by
applying the doubling formula we have [2] Q = —[2] P. But also [2] (—P) = —[2] P. Therefore either ) = —P (then

V(Q) = V(—P); contradiction since —v # v), or doubling is not injective on J @ (contradiction since J® is of odd
order [KvE2013]). O

Theorem 5.4.4. U is injective on J".

Proof. By writing the curve equation as v* = (1 — a-u”)/(1 — d-u”), and noting that the potentially exceptional case
1 — d-u® = 0 does not occur for a ctEdwards curve, we see that for a given u there can be at most two possible
solutions for v, and that if there are two solutions they can be written as v and —v. In that case by the Lemma, at

most one of (u,v) and (u, —v) is in J*. Therefore, U is injective on points in J*. O

Since I2LEBSP,, . s injective, it follows that Extract ¢ is injective on J ®),

5.4.8.5 Group Hash into Jubjub

Let GroupHash.Input := B!« BYN and let GroupHash.URSType := By64],

(The input element with type B¥®l is intended to act as a “personalization” parameter to distinguish uses of the
group hash for different purposes.)

Let URS be the MPC randomness beacon defined in § 5.9 ‘Randomness Beacon’ on p. 83.
Let BLAKE2s-256 be as defined in §55.4.1.2 ‘BLAKE2 Hash Functions’ on p.55.
Let LEOS2IP be as defined in § 5.2 Tntegers, Bit Sequences, and Endianness’ on p.52.

Let J@, 7% and abst; be as defined in §5.4.8.3 ‘Jubjub’ on p.73.

Let D : BY® be an 8-byte domain separator, and let M : B be the hash input.
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The hash GroupHashﬂ(;S* (D, M) : J* is calculated as follows:
let H = BLAKE2s-256(D, URS || M)
let P = abst;(LEOS2BSP,5¢(H))
if P = 1 thenreturn L
let @ = [hy] P
if @ = Oy then return L, else return Q.

Notes:
OB
. The use of GroupHashi,s for DiversifyHash and to generate independent bases needs a random oracle (for

() *
inputs on which GroupHasth]JRS does not return L); here we show that it is sufficient to employ a simpler
random oracle instantiated by BLAKE2s-256 in the security analysis.

H : Bv? (1,0, (0,-1)} absty (LEOS2BSPys6(H)) ¢ J is injective, and both it and its inverse are efficiently
computable.

P:J—gioylhs] P R exactly hy-to-1, and both it and its inverse relation are efficiently computable.
It follows that when (D : BY® a7 : BY™)  BLAKE2s-256(D, URS || M) : B** is modelled as a random
()= e
oracle, (D : Byl ar s JBY[N]) i1} GroupHashxs (D,M) : J™* also acts as a random oracle.
- The BLAKE2s-256 chaining variable after processing URS may be precomputed.

Define first : (BY — TU{L}) — T U{.L} so thatfirst(f) = f(i) where i is the least integer in BY such that f(i) # L,
or L if no such i exists.

= =
Define FindGroupHash’ (D, M) :=first(i : BY GroupHash{rs (D, M || [i]) ¢ IO UL,

256

()%
Note: For random input, FindGroupHash’ ~ returns L with probability approximately 2~2°°. In the Zcash protocol,

)=
most uses of FindGroupHash’  are for constants and do not return L; the only use that could potentially return L
is in the computation of a default diversified payment address in §4.2.2 ‘Sapling Key Components’ on p. 29.

5.4.9 Zero-Knowledge Proving Systems
5491 BCTV14

Before Sapling activation, Zcash uses zk-SNARKs generated by a fork of libsnark [Zcash-libsnark] with the BCTV14
proving system described in [BCTV2014a], which is a modification of the systems in [PHGR2013] and [BCGTV2013].

A BCTV14 proof consists of (14 : G, 74 : G, 15 : GOy : G ;e : GO 7l 2 GO e = GOy = GO
It is computed as described in [BCTV2014a, Appendix B], using the pairing parameters specified in §5.4.8.1 ‘BN-254’
on p.70.

Note: Many details of the proving system are beyond the scope of this protocol document. For example, the
quadratic constraint program verifying the JoinSplit statement, or its translation to a Quadratic Arithmetic Program
[BCTV2014a, section 2.3], are not specified in this document. In 2015, Bryan Parno found a bug in this translation,
which s corrected by the libsnark implementation® [WCBTV2015] [Parno2015] [BCTV2014a, Remark 2.5]. In practice
it will be necessary to use the specific proving and verifying keys that were generated for the Zcash production block
chain, given in § 5.7 ‘BCTV14 zk-SNARK Parameters’ on p. 82, together with a proving system implementation
that is interoperable with the Zcash fork of libsnark, to ensure compatibility.

6 Confusingly, the bug found by Bryan Parno was fixed in libsnark in 2015, but that fix was incompletely described in the May 2015 update
[BCTV2014a-old, Theorem 2.4]. It is described completely in [BCTV2014a, Theorem 2.4] and in [Gabizon2019].
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Vulnerability disclosure: BCTV14is subject to a security vulnerability, separate from [Parno2015], that could allow
violation of Knowledge Soundness (and Soundness) [CVE-2019-7167] [SWB2019] [Gabizon2019]. The consequence
for Zcash is that balance violation could have occurred before activation of the Sapling network upgrade, although
there is no evidence of this having happened. Use of the vulnerability to produce false proofs is believed to have
been fully mitigated by activation of Sapling. The use of BCTV14 in Zcash is now limited to verifying proofs that
were made prior to the Sapling network upgrade.

Due to this issue, new forks of Zcash MUST NOT use BCTV14, and any other users of the Zcash protocol SHOULD
discontinue use of BCTV14 as soon as possible.

The vulnerability does not affect the Zero Knowledge property of the scheme (as described in any version of
[BCTV2014a] or as implemented in any version of libsnark that has been used in Zcash), even under subversion of
the parameter generation [BGG2017, Theorem 4.10].

Encoding of BCTV14 Proofs

A BCTV14 proof is encoded by concatenating the encodings of its elements; for the BN-254 pairing this is:

264-bit 4 | 264-bit 7} 520-bit 75 264-bit 7y | 264-bit 1 | 264-bit /s | 264-bit 7y | 264-bit

The resulting proof size is 296 bytes.

In addition to the steps to verify a proof given in [BCTV2014a, Appendix BJ, the verifier MUST check, for the encoding
of each element, that:

- the lead byte is of the required form;

- the remaining bytes encode a big-endian representation of an integer in {0.. gg—1} or (in the case of ng)
{0..¢5—1};

- the encoding represents a point in (GY)* or (in the case of mp) Gg)*, including checking that it is of order rg in
the latter case.

5.4.9.2 Grothl6

After Sapling activation, Zcash uses zk-SNARKs with the Groth16 proving system described in [BGM2017], which is
a modification of the system in [Groth2016]. An independent security proof of this system and its setup is given in
[Maller2018].

Groth16 zk-SNARK proofs are used in transaction version 4 and later (§ 71 “Transaction Encoding and Consensus’
on p. 85), both in Sprout JoinSplit descriptions and in Sapling Spend descriptions and Output descriptions. They
are generated by the bellman library [Bowe-bellman].

A Groth16 proof consists of (s : SI7*, 75 = SU7* . 7 = SI7%). It is computed as described in [Groth2016, section 3.2],
using the pairing parameters specified in §5.4.8.2 ‘BLS12-381’ on p. 71. The proof elements are in a different order
to the presentation in [Groth2016].

Note: The quadratic constraint programs verifying the Spend statement and Output statement are described
in Appendix § A ‘Circuit Design’ on p.137. However, many other details of the proving system are beyond the
scope of this protocol document. For example, certain details of the translations of the Spend statement and
Output statement to Quadratic Arithmetic Programs are not specified in this document. In practice it will be
necessary to use the specific proving and verifying keys generated for the Zcash production block chain (see §5.8
‘Groth16 zk-SNARK Parameters’ on p.83), and a proving system implementation that is interoperable with the
bellman library used by Zcash, to ensure compatibility.
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Encoding of Groth16 Proofs

A Groth16 proof is encoded by concatenating the encodings of its elements; for the BLS12-381 pairing this is:

384-bit 7, 768-bit 1 384-bit 7

The resulting proof size is 192 bytes.

In addition to the steps to verify a proof given in [Groth2016], the verifier MUST check, for the encoding of each
element, that:

- the leading bitfield is of the required form:;

- the remaining bits encode a big-endian representation of an integer in {0 .. gs—1} or (in the case of ng) two
integers in that range;

- the encoding represents a point in S* or (in the case of m3) S{*, including checking that it is of order rg in
each case.

5.5 Encodings of Note Plaintexts and Memo Fields

As explained in § 3.2.1 ‘Note Plaintexts and Memo Fields’ on p.14, transmitted notes are stored on the block chain
in encrypted form.

The note plaintexts in a JoinSplit description are encrypted to the respective transmission keys pkgye | ym. Each

Sprout note plaintext (denoted np) consists of:

(leadByte : BY, v : {0.. 2% —1},p Blfereseron] rem : NoteCommit™°t.Output, memo : IB%Y[SH])
[Sapling onward] The note plaintext in each Output description is encrypted to the diversified transmission key

pkq. Each Sapling note plaintext (denoted np) consists of:

(leadByte : BY, d : B[ed],v :{0.. 2vetue —1},rseed : IB%YBQ]7 memo : IB%Y[MQ])

memo is a 512-byte memo field associated with this note.

The usage of the memo field is by agreement between the sender and recipient of the note. The memo field
SHOULD be encoded as one of:

- a UTF-8 human-readable string [Unicode], padded by appending zero bytes; or

- the byte 0xF6 followed by 511 0x00 bytes, indicating “no memo”; or

- any other sequence of 512 bytes starting with a byte value 0xF5 or greater (which is therefore not a valid UTF-8
string), as specified in [ZIP-302].

When the first byte value is less than 0xF5, wallet software is expected to strip any trailing zero bytes and then
display the resulting UTF-8 string to the recipient user, where applicable. Incorrect UTF-8-encoded byte sequences
SHOULD be displayed as replacement characters (U+FFFD).

In other cases, the contents of the memo field SHOULD NOT be displayed unless otherwise specified by [ZIP-302].
Other fields are as defined in § 3.2 ‘Notes’ on p.13.
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The encoding of a Sprout note plaintext consists of:

8-bit IeadByte| 64-bit v | 256-bit p 256-bit rem memo (512 bytes)

- A byte, 0x00, indicating this version of the encoding of a Sprout note plaintext.
- 8 bytes specifying v.

- 32 bytes specifying p.

- 32 bytes specifying rcm.

- 512 bytes specifying memo.

The encoding of a Sapling note plaintext consists of:

8-bit leadByte 88-bit d 64-bit v 256-bit rseed memo (512 bytes)

- A byte indicating this version of the encoding of a Sapling note plaintext. This will be 0x01 before activation
of the Canopy network upgrade, and 0x02 afterward.

- 11 bytes specifying d.

- 8 bytes specifying v.

- 32 bytes specifying rseed.

- 512 bytes specifying memo.

5.6 Encodings of Addresses and Keys
This section describes how Zcash encodes shielded payment addresses, incoming viewing keys, and spending
keys.

Addresses and keys can be encoded as a byte sequence; this is called the raw encoding. This byte sequence can
then be further encoded using Base58Check. The Base58Check layer is the same as for upstream Bitcoin addresses
[Bitcoin-Base58].

For Sapling-specific key and address formats, Bech32 [ZIP-173] is used instead of Base58Check.

Non-normative note: ZIP 173 is similar to Bitcoin's BIP 173, except for dropping the limit of 90 characters on an
encoded Bech32 string (which does not hold for Sapling viewing keys, for example), and requirements specific to
Bitcoin's Segwit addresses.

SHA256Compress outputs are always represented as sequences of 32 bytes.

The language consisting of the following encoding possibilities is prefix-free.

5.6.1 Transparent Addresses

Transparent addresses are either P2SH (Pay to Script Hash) addresses [BIP-13] or P2PKH (Pay to Public Key Hash)
addresses [Bitcoin-P2PKH].
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The raw encoding of a P2SH address consists of:

| 8-bitoxtC |  8-bit 0xBD 160-bit script hash

- Two bytes [0x1C, 0xBD], indicating this version of the raw encoding of a P2SH address on Mainnet. (Addresses
on Testnet use [0x1C, 0xBA] instead.)

- 20 bytes specifying a script hash [Bitcoin-P2SH].

The raw encoding of a P2PKH address consists of:

| s-bitoxtC |  8-bitOxBs 160-bit validating key hash

- Two bytes [0x1C, 0xB8], indicating this version of the raw encoding of a P2PKH address on Mainnet. (Addresses
on Testnet use [0x1D, 0x25] instead.)

- 20 bytes specifying a validating key hash, which is a RIPEMD-160 hash [RIPEMD160] of a SHA-256 hash
[NIST2015] of a compressed ECDSA key encoding.

Notes:

- In Bitcoin a single byte is used for the version field identifying the address type. In Zcash two bytes are used.
For addresses on Mainnet, this and the encoded length cause the first two characters of the Base58Check
encoding to be fixed as “t3” for P2SH addresses, and as “t1” for P2PKH addresses. (This does not imply that a
transparent Zcash address can be parsed identically to a Bitcoin address just by removing the “t”.)

- Zcash does not yet support Hierarchical Deterministic Wallet addresses [BIP-32].

5.6.2 Transparent Private Keys

These are encoded in the same way as in Bitcoin [Bitcoin-Base58], for both Mainnet and Testnet.

5.6.3 Sprout Payment Addresses

Let KA®™® be as defined in §5.4.4.1 ‘Sprout Key Agreement’ on p. 62.
A Sprout shielded payment address consists of a, Blferrseon] and pke,e @ KASPU . Public.

apk is a SHA256Compress output. pke is a KASP™“* Pyblic key, for use with the encryption scheme defined in §4.16
‘In-band secret distribution (Sprout)’ on p.46. These components are derived from a spending key as described
in §4.2.1 ‘Sprout Key Components’ on p.29.

The raw encoding of a Sprout shielded payment address consists of:

8-bit 0x16 \ 8-bit 0x9A | 256-bit a, 256-bit pken

- Two bytes [0x16, 0x94], indicating this version of the raw encoding of a Sprout shielded payment address on
Mainnet. (Addresses on Testnet use [0x16, 0xB6| instead.)

- 32 bytes specifying a.
- 32 bytes specifying pkenc, using the normal encoding of a Curve25519 public key [Bernstein2006].

Note: For addresses on Mainnet, the lead bytes and encoded length cause the first two characters of the
Base58Check encoding to be fixed as “zc”. For Testnet, the first two characters are fixed as “zt”.
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5.6.4 Sapling Payment Addresses

Let KAS*P"€ he as defined in §5.4.4.3 ‘Sapling Key Agreement’ on p. 63.
A Sapling shielded payment address consists of d : Bl and pky : KAS*™" PyblicPrimeSubgroup.

pkq is an encoding of a KA®*P'™8 public key of type KA®*'" PublicPrimeSubgroup, for use with the encryption scheme
defined in §4.17 In-band secret distribution (Sapling) on p.47. d is a sequence of 11 bytes. These components
are derived as described in §4.2.2 ‘Sapling Key Components’ on p.29.

The raw encoding of a Sapling shielded payment address consists of:

LEBS20SPgs(d) | LEBS20SP,s6 (repr;(pkg)) \

- 11 bytes specifying d.
- 32 bytes specifying the ctEdwards compressed encoding of pky (see §5.4.8.3 “Jubjub’ on p.73).

When decoding the representation of pky, the address MUST be considered invalid if absty returns L or if the
resulting pky is not in the prime-order subgroup J ®,

Non-normative note: zcashd currently (as of version 3.1.0) does not fully conform to this requirement on address
validation when importing shielded payment addresses.

For addresses on Mainnet, the Human-Readable Part (as defined in [ZIP-173]) is “zs”. For addresses on Testnet, the
Human-Readable Part is “ztestsapling”.

5.6.5 Sprout Incoming Viewing Keys

Let KASP®“! be as defined in § 5.4.4.1 ‘Sprout Key Agreement’ on p. 62.
A Sprout incoming viewing key consists of a : Bléeresero) and skgne @ KASP®U Private.

apk is a SHA256Compress output. ske, is a KASP™“* Private key, for use with the encryption scheme defined in §4.16
In-band secret distribution (Sprout)’ on p.46. These components are derived from a spending key as described
in §4.2.1 ‘Sprout Key Components’ on p.29.

The raw encoding of a Sprout incoming viewing key consists of, in order:

8-bit 0xA8 | 8-bit 0xAB | 8-bit 0xD3 | 256-bit a, 256-bit sk,

- Three bytes [0xA8, 0xAB, 0xD3], indicating this version of the raw encoding of a Zcash incoming viewing key
on Mainnet. (Addresses on Testnet use [0xA8, 0xAC, 0x0C] instead.)

- 32 bytes specifying a.
- 32 bytes specifying ske,., using the normal encoding of a Curve25519 private key [Bernstein2006].

Skene MUST be “clamped” using KASP™Ut FormatPrivate as specified in §4.2.1 ‘Sprout Key Components’ on p.29.
That is, a decoded incoming viewing key MUST be considered invalid if skg,c # KA FormatPrivate(skepc ).

KASP™“* FormatPrivate is defined in §5.4.4.1 ‘Sprout Key Agreement’ on p. 62.

Note: For addresses on Mainnet, the lead bytes and encoded length cause the first four characters of the
Base58Check encoding to be fixed as “ZiVK". For Testnet, the first four characters are fixed as “ZiVt”.
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5.6.6 Sapling Incoming Viewing Keys

Let KAS*P"€ he as defined in §5.4.4.3 ‘Sapling Key Agreement’ on p. 63.
Let 4, be as defined in §5.3 ‘Constants’ on p. 53.

A Sapling incoming viewing key consists of ivk : {0 .. 2fk 1},

ivk is a KAS?'"8 Private key (restricted to ¢, bits), derived as described in §4.2.2 ‘Sapling Key Components’ on
p.29. It is used with the encryption scheme defined in §4.17 ‘In-band secret distribution (Sapling)’ on p.47.

The raw encoding of a Sapling incoming viewing key consists of:

] 9256-bit ivk

- 32 bytes (little-endian) specifying ivk, padded with zeros in the most significant bits.

ivk MUST be in the range {0.. P 1} as specified in §4.2.2 ‘Sapling Key Components’ on p.29. That is, a decoded
incoming viewing key MUST be considered invalid if ivk is not in this range.

For incoming viewing keys on Mainnet, the Human-Readable Part is “zivks”. For incoming viewing keys on Testnet,
the Human-Readable Part is “zivktestsapling”.

5.6.7 Sapling Full Viewing Keys

Let KA®*P"€ he as defined in §5.4.4.3 ‘Sapling Key Agreement’ on p. 63.

A Sapling full viewing key consists of ak : J™*, nk : I, and ovk : Blfex/&],

ak and nk are points on the Jubjub curve (see §5.4.8.3 ‘Jubjub’ on p.73). They are derived as described in §4.2.2
‘Sapling Key Components’ on p.29.

The raw encoding of a Sapling full viewing key consists of:

LEBS20SPy5 (repr;(ak)) | LEBS20SPy56 (repr;(nk)) | 32-byte ovk

- 32 bytes specifying the ctEdwards compressed encoding of ak (see §5.4.8.3 “Jubjub’ on p.73).
- 32 bytes specifying the ctEdwards compressed encoding of nk.
- 32 bytes specifying the outgoing viewing key ovk.

When decoding this representation, the key MUST be considered invalid if abst; returns L for either ak or nk, or if
ak ¢ IO orifnk ¢ I

For incoming viewing keys on Mainnet, the Human-Readable Part is “zviews”. For incoming viewing keys on
Testnet, the Human-Readable Part is “zviewtestsapling”.

5.6.8 Sprout Spending Keys

A Sprout spending key consists of ay, which is a sequence of 252 bits (see §4.2.1 ‘Sprout Key Components’ on
p-29).
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The raw encoding of a Sprout spending key consists of:

| 8-bit 0xAB | 8-bit 0x36 | [0]' | 252-bit ag,

- Two bytes [0xAB, 0x36], indicating this version of the raw encoding of a Zcash spending key on Mainnet.
(Addresses on Testnet use [0xAC, 0x08] instead.)

- 32 bytes: 4 zero padding bits and 252 bits specifying ag.

The zero padding occupies the most significant 4 bits of the third byte.

Notes:

- If an implementation represents ag, internally as a sequence of 32 bytes with the 4 bits of zero padding intact,
it will be in the correct form for use as an input to PRF***", PRF", and PRF? without need for bit-shifting.
Future key representations may make use of these padding bits.

- For addresses on Mainnet, the lead bytes and encoded length cause the first two characters of the Base58Check
encoding to be fixed as “SK”. For Testnet, the first two characters are fixed as “ST”.

5.6.9 Sapling Spending Keys

A Sapling spending key consists of sk : Bl (see §4.2.2 ‘Sapling Key Components’ on p. 29).

The raw encoding of a Sapling spending key consists of:

LEBS20SP .y (sk)

- 32 bytes specifying sk.

For spending keys on Mainnet, the Human-Readable Part is “secret-spending-key-main”. For spending keys on
Testnet, the Human-Readable Part is “secret-spending-key-test”.

5.7 BCTV14 zk-SNARK Parameters

The SHA-256 hashes of the proving key and verifying key for the Sprout JoinSplit circuit, encoded in libsnark
format, are:

8bc20a7£013b2b58970cddd2e7ea028975c88ae7ceb9259ab344a16bc2cOeef7 sprout-proving.key
4bd498daelaacfd8e98dc306338d017d9c08dd0918ead18172bd0aec2fcbdf82 sprout-verifying.key

These parameters were obtained by a multi-party computation described in [BGG-mpc] and [BGG2017]. They are
used only before Sapling activation. Due to the security vulnerability described in §5.4.9.1 ‘BCTV14’ on p. 75, it
is not recommended to use these parameters in new protocols, and it is recommended to stop using them in
protocols other than Zcash where they are currently used.
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5.8 Grothl6 zk-SNARK Parameters

bellman [Bowe-bellman] encodes the proving key and verifying key for a zk-SNARK circuit in a single parameters
file. The BLAKE2b-512 hashes of this file for the Sapling Spend circuit and Output circuit, and for the implementa-
tion of the Sprout JoinSplit circuit used after Sapling activation, are respectively:

8270785a1a0d0bc77196£000ee6d221c9c9894£55307bd9357c3£0105d31cab3
991ab91324160d8£53e2bbd3c2633a6eb8bdf5205d822e7£3£73edacb1b2b70c sapling-spend.params

657e3d38dbb5cb5e7dd2970e8b03d69b4787dd907285b5a7£0790dcc8072£60b
£593b32¢cc2d1c030e00ff5ae64bf84c5c3beb84ddc841d48264b4al171744d028 sapling-output.params

e9b238411bd6c0ecd791e9d04245ec350c9c5744£5610dfcce4365d5cad9dfef
d5054e371842b3£88falb9d7e8e075249b3ebabd167£a8b0£3161292d36c180a sprout-grothl6.params

These parameters were obtained by a multi-party computation described in [BGM2017].

5.9 Randomness Beacon

Let URS := “096b36a5804bfacef1691e173c366a47ff5ba84a44f26ddd7e8d9f79d5b42df0".

=
This value is used in the definition of GroupHash?  in §5.4.8.5 ‘Group Hash into Jubjub’ on p.74, and in the multi-
party computation to obtain the Sapling parameters given in § 5.8 ‘Groth16 zk-SNARK Parameters’ on p. 83.

It is derived as described in [Bowe2018]:

- Take the hash of the Bitcoin block at height 514200 in RPC byte order, i.e. the big-endian 32-byte representation
of 0x00000000000000000034b33e842ac1c50456abe5fa92b60f6b3df c5d247£7b58

. Apply SHA-256 2* times.

- Convert to a US-ASCII lowercase hexadecimal string.

Note: URS is a 64-byte US-ASCII string, i.e. the first byte is 0x30, not 0x09.

6 Network Upgrades

Zcash launched with a protocol revision that we call Sprout. A first network upgrade, called Overwinter, activated
on Mainnet on 26 June 2018 at block height 347500 [Swihart2018] [ZIP-201]. A second upgrade, called Sapling,
activated on Mainnet on 28 October 2018 at block height 419200 [Hamdon2018] [ZIP-205]. A third upgrade, called
Blossom, activated on Mainnet on 11 December 2019 at block height 653600 [Zcash-Blossom] [ZIP-206]. A fourth
upgrade, called Heartwood, is planned to activate on Mainnet in mid-July 2020, at block height 903000 [ZIP-250].
A fifth upgrade, called Canopy, is planned to activate on Mainnet in November 2020, at block height 1046400
(coinciding with the first block subsidy halving) [ZIP-251].

This section summarizes the strategy for upgrading from Sprout to subsequent versions of the protocol (Overwinter,
Sapling, Blossom, Heartwood, and Canopy), and for future upgrades.

The network upgrade mechanism is described in [ZIP-200].

The specifications of the Overwinter upgrade are described in this document, [ZIP-201], [ZIP-202], [ZIP-203], and
(ZIP-143].

The specifications of the Sapling upgrade are described in this document, [ZIP-205], and [ZIP-243].

The specifications of the Blossom upgrade are described in this document, [ZIP-206], and [ZIP-208].
The specifications of the Heartwood upgrade are described in this document, [ZIP-250], [ZIP-213], and [ZIP-221].

The specifications of the Canopy upgrade are described in this document, [ZIP-251], [ZIP-207], [ZIP-211], [ZIP-212],
(ZIP-214], and [ZIP-215].

83


https://zips.z.cash/protocol/canopy.pdf#grothparameters
https://zips.z.cash/protocol/canopy.pdf#beacon
https://zips.z.cash/protocol/canopy.pdf#networkupgrades

Each network upgrade is introduced as a “bilateral consensus rule change”. In this kind of upgrade,
- there is an activation block height at which the consensus rule change takes effect;

- blocks and transactions that are valid according to the post-upgrade rules are not valid before the upgrade
block height;

- blocks and transactions that are valid according to the pre-upgrade rules are no longer valid at or after the
activation block height.

Full support for each network upgrade is indicated by a minimum version of the peer-to-peer protocol. At the
planned activation block height, nodes that support a given upgrade will disconnect from (and will not reconnect
to) nodes with a protocol version lower than this minimum. See [ZIP-201] for how this applies to the Overwinter
upgrade, for example.

This ensures that upgrade-supporting nodes transition cleanly from the old protocol to the new protocol. Nodes
that do not support the upgrade will find themselves on a network that uses the old protocol and is fully partitioned
from the upgrade-supporting network. This allows us to specify arbitrary protocol changes that take effect at a
given block height.

Note, however, that a block chain reorganization across the upgrade activation block height is possible. In the case
of such a reorganization, blocks at a height before the activation block height will still be created and validated
according to the pre-upgrade rules, and upgrade-supporting nodes MUST allow for this.
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7 Consensus Changes from Bitcoin

7.1 Transaction Encoding and Consensus

The Zcash transaction format is as follows (this should be read in the context of consensus rules later in the section):

Version Bytes Name Data Type Description
>1 4 header uint32 Contains:
- fOverwintered flag (bit 31)
- version (bits 30 ..0) - transaction version.
>3 4 nVersionGroupId | uint32 Version group 1D (nonzero).
> Varies tx_in_count compactSize uint Number of transparent inputs.
>1 Varies tx_in tx_in Transparent inputs, encoded as in Bitcoin.
>1 Varies tx_out_count compactSize uint Number of transparent outputs.
>1 Varies tx_out tx_out Transparent outputs, encoded as in Bitcoin.
>1 4 lock_time uint32 A Unix epoch time (UTC) or block height, encoded as
in Bitcoin.
>3 4 nExpiryHeight uint32 A block height in the range {1..499999999} after
which the transaction will expire, or 0 to disable
expiry ([ZIP-203)).
>4 8 valueBalance int64 The net value of Sapling Spend transfers minus
Output transfers.
>4 Varies nShieldedSpend | compactSize uint The number of Spend descriptions in
vShieldedSpend.
>4 384 vShieldedSpend | SpendDescription A sequence of Spend descriptions, encoded as in
nShieldedSpend [nShieldedSpend] §7.3 ‘Spend Description Encoding and Consensus’
on p.89.
>4 Varies nShieldedOutput | compactSize uint The number of Output descriptions in
vShieldedOutput.
>4 948- vShieldedOutput | OutputDescription A sequence of Output descriptions, encoded as in
nShieldedOutput [nShieldedOutput] §74
‘Output Description Encoding and Consensus’ on
p-89.
>2 Varies nJoinSplit compactSize uint The number of JoinSplit descriptions in vJoinSplit.
.3 1802- vJoinSplit JSDescriptionBCTV14 | A sequence of JoinSplit descriptions using BCTV14
nJoinSplit [nJoinSplit] proofs, encoded as in § 7.2
‘JoinSplit Description Encoding and Consensus’
on p. 88.
>4 1698- vJoinSplit JSDescriptionGrothl6 | A sequence of JoinSplit descriptions using Groth16
nJoinSplit [nJoinSplit] proofs, encoded as in §7.2
‘JoinSplit Description Encoding and Consensus’
on p. 88.
>271 32 joinSplitPubKey | char[32] An encoding of a JoinSplitSig public validating key .
>27 64 joinSplitSig char [64] A signature on a prefix of the transaction encoding,
to be verified using joinSplitPubKey.
>41 64 bindingSig char [64] A signature on the SIGHASH transaction hash, to be
verified as specified in §5.4.6.2 ‘Binding Signature’
on p. 68.

1 The joinSplitPubKey and joinSplitSig fields are present if and only if version > 2 and nJoinSplit > 0. The
encoding of joinSplitPubKey and the data to be signed are specified in §4.10 ‘Non-malleability (Sprout)’ on p. 38.

I The bindingSig field is present if and only if version > 4 and nShieldedSpend + nShieldedOutput > 0.
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Consensus rules:
- The transaction version number MUST be greater than or equal to 1.
- [Pre-Overwinter]| The fOverwintered flag MUST NOT be set.
- [Overwinter onward] The fOverwintered flag MUST be set.
- [Overwinter onward] The version group ID MUST be recognized.

- [Overwinter only, pre-Sapling] The transaction version number MUST be 3 and the version group ID MUST
be 0x03C48270.

- [Sapling onward] The transaction version number MUST be 4 and the version group ID MUST be 0x892F2085.
- [Pre-Sapling] The encoded size of the transaction MUST be less than or equal to 100000 bytes.

- [Pre-Sapling] If version = 1 or nJoinSplit = 0, then tx_in_count MUST NOT be 0.

- [Sapling onward] At least one of tx_in_count, nShieldedSpend, and nJoinSplit MUST be nonzero.

- A transaction with one or more transparent inputs from coinbase transactions MUST have no transparent
outputs (i.e. tx_out_count MUST be 0). Note that inputs from coinbase transactions include Founders’ Reward
outputs.

- If version > 2 and nJoinSplit > 0, then:

- joinSplitPubKey MUST represent a valid encoding (as specified in § 5.4.5 ‘Ed25519’ on p. 63) of an Ed25519
validating key .

- joinSplitSig MUST represent a valid signature under joinSplitPubKey of dataToBeSigned, as defined
in §4.10 ‘Non-malleability (Sprout)’ on p. 38.

- [Sapling onward] If version > 4 and nShieldedSpend + nShieldedOutput > 0, then:
- let bvk and SigHash be as defined in §4.12 ‘Balance and Binding Signature (Sapling) on p. 39;
- bindingSig MUST represent a valid signature under the transaction binding validating key bvk of SigHash

— i.e. BindingSig.Validatey,, (SigHash, bindingSig) = 1.
- [Sapling onward] If version > 4 and nShieldedSpend + nShieldedOutput = 0, then valueBalance MUST be 0.

- The total amount of transparent outputs from a coinbase transaction, minus the amount of the valueBalance
field if present, MUST NOT be greater than the amount of miner subsidy plus the total amount of transaction
fees paid by transactions in this block.

- A coinbase transaction MUST NOT have any JoinSplit descriptions or Spend descriptions.
- [Pre-Heartwood]| A coinbase transaction also MUST NOT have any Output descriptions.

- A transaction MUST NOT spend a transparent output of a coinbase transaction from a block less than 100
blocks prior to the spend. Note that transparent outputs of coinbase transactions include Founders’Reward
outputs and transparent funding stream outputs.

- [Overwinter onward] nExpiryHeight MUST be less than or equal to 499999999.

- [Overwinter onward] If a transaction is not a coinbase transaction and its nExpiryHeight field is nonzero,
then it MUST NOT be mined at a block height greater than its nExpiryHeight.

- [Sapling onward] valueBalance MUST be in the range { —MAX_MONEY .. MAX_MONEY}.

- [Heartwood onward] All Sapling outputs in coinbase transactions MUST decrypt to a note plaintext, i.e. the
procedure in §4.17.3 ‘Decryption using a Full Viewing Key (Sapling)’ on p.49 does not return L, using a
sequence of 32 zero bytes as the outgoing viewing key .

- [Canopy onward] Any Sapling output of a coinbase transaction decrypted to a note plaintext according to
the preceding rule MUST have note plaintext lead byte equal to 0x02. (This applies even during the “grace
period” specified in [ZIP-212].)

. TODO: Other rules inherited from Bitcoin.
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Consensus rules associated with each JoinSplit description (§ 7.2 ‘JoinSplit Description Encoding and Consensus’
on p. 88), each Spend description (§7.3 ‘Spend Description Encoding and Consensus’ on p.89), and each Output
description (§ 74 ‘Output Description Encoding and Consensus’ on p.89) MUST also be followed.

Notes:

- Previous versions of this specification defined what is now the header field as a signed int32 field which was
required to be positive. The consensus rule that the fOverwintered flag MUST NOT be set before Overwinter
has activated, has the same effect.

- The semantics of transactions with transaction version number not equal to 1, 2, 3, or 4 is not currently defined.
Miners MUST NOT create blocks before the Overwinter activation block height containing transactions with
version other than 1 or 2.

- The exclusion of transactions with transaction version number greater than 2 is not a consensus rule before
Overwinter activation. Such transactions may exist in the block chain and MUST be treated identically to
version 2 transactions.

. [Overwinter onward] Once Overwinter has activated, limits on the maximum transaction version number
are consensus rules.

- Note that a future upgrade might use any transaction version number or version group ID. It is likely that an
upgrade that changes the transaction version number or version group ID will also change the transaction
format, and software that parses transactions SHOULD take this into account.

- [Overwinter onward] The purpose of version group ID is to allow unambiguous parsing of loose” transactions,
independent of the context of a block chain. Code that parses transactions is likely to be reused between
block chain branches as defined in [ZIP-200], and in that case the fOverwintered and version fields alone
may be insufficient to determine the format to be used for parsing.

- A transaction version number of 2 does not have the same meaning as in Bitcoin, where it is associated with
support for 0P_CHECKSEQUENCEVERIFY as specified in [BIP-68]. Zcash was forked from Bitcoin v0.11.2 and does
not currently support BIP 68.

- [Sapling onward] As a consequence of coinbase transactions having no Spend descriptions, the valueBalance
field of a coinbase transaction must have a negative or zero value. The negative case can only occur after
Heartwood activation, for transactions with [ZIP-213] shielded outputs.

- Prior to the Heartwood network upgrade, it was not possible for coinbase transactions to have shielded
outputs, and therefore the “coinbase maturity” rule and the requirement to spend coinbase outputs only in
transactions with no transparent outputs, applied to all coinbase outputs.

- The rule that Sapling outputs in coinbase transactions MUST decrypt to a note plaintext with lead byte 0x02,
also applies to funding stream outputs that specify Sapling shielded payment addresses, if there are any.

The changes relative to Bitcoin version 1 transactions as described in [Bitcoin-Format] are:
- Transaction version 0 is not supported.
- Aversion 1 transaction is equivalent to a version 2 transaction with nJoinSplit = 0.
- The nJoinSplit, vJoinSplit, joinSplitPubKey, and joinSplitSig fields have been added.
- [Overwinter onward] The nVersionGroupId field has been added.

- [Sapling onward] The nShieldedSpend, vShieldedSpend, nShieldedOutput, vShieldedOutput, and bindingSig
fields have been added.

- In Zcash it is permitted for a transaction to have no transparent inputs, provided at least one of nJoinSplit,
nShieldedSpend, and nShieldedOutput are nonzero.

- A consensus rule limiting transaction size has been added. In Bitcoin there is a corresponding standard rule
but no consensus rule.

[Pre-Overwinter] Software that creates transactions SHOULD use version 1 for transactions with no joinSplit
descriptions.
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7.2 JoinSplit Description Encoding and Consensus

An abstract JoinSplit description, as described in § 3.5 ‘JoinSplit Transfers and Descriptions’ on p.16, is encoded

in a transaction as an instance of a JoinSplitDescription type as follows:

Bytes Name Data Type Description

8 vpub_old uint64 A value vglfb that the JoinSplit transfer removes from
the transparent transaction value pool.

8 vpub_new uint64 Avalue vy that the JoinSplit transfer inserts into the
transparent transaction value pool.

32 | anchor char [32] A root rt of the Sprout note commitment tree at some
block height in the past, or the root produced by a
previous JoinSplit transfer in this transaction.

64 | nullifiers char [32] [N°“] A sequence of nullifiers of the input notes nf‘l"_'f'Noml

64 | commitments char [32] [N"™] | A sequence of note commitments for the output notes
emi e

32 ephemeralKey char[32] A Curve25519 public key epk.

32 randomSeed char[32] A 256-bit seed that must be chosen independently at
random for each JoinSplit description.

64 | vmacs char [32] [N°“] A sequence of message authentication tags h, o
binding hg;, to each ay of the JoinSplit description,
computed as described in §4.10
‘Non-malleability (Sprout)’ on p. 38.

296 1 | zkproof char [296] An encoding of the zk-SNARK proof mzk jeinspiit (S€€
§5.4.9.1 ‘BCTV14’ on p.75).

192 1 | zkproof char[192] An encoding of the zk-SNARK proof mzk jeinspiit (S€€
§5.4.9.2 ‘Groth16’ on p.76).

1202 | encCiphertexts | char[601] [N™] | A sequence of ciphertext components for the
encrypted output notes, C{"rew.

1 BCTV14 proofs are used when the transaction version is 2 or 3, i.e. before Sapling activation.

I Groth16 proofs are used when the transaction version is > 4, i.e. after Sapling act