cargo fmt bellman

This commit is contained in:
Eirik Ogilvie-Wigley 2019-08-15 10:38:41 -06:00
parent dfb86fcf11
commit e73d1a2637
21 changed files with 2252 additions and 2165 deletions

View File

@ -13,9 +13,7 @@
use ff::{Field, PrimeField, ScalarEngine}; use ff::{Field, PrimeField, ScalarEngine};
use group::CurveProjective; use group::CurveProjective;
use super::{ use super::SynthesisError;
SynthesisError
};
use super::multicore::Worker; use super::multicore::Worker;
@ -25,7 +23,7 @@ pub struct EvaluationDomain<E: ScalarEngine, G: Group<E>> {
omega: E::Fr, omega: E::Fr,
omegainv: E::Fr, omegainv: E::Fr,
geninv: E::Fr, geninv: E::Fr,
minv: E::Fr minv: E::Fr,
} }
impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> { impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
@ -41,8 +39,7 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
self.coeffs self.coeffs
} }
pub fn from_coeffs(mut coeffs: Vec<G>) -> Result<EvaluationDomain<E, G>, SynthesisError> pub fn from_coeffs(mut coeffs: Vec<G>) -> Result<EvaluationDomain<E, G>, SynthesisError> {
{
// Compute the size of our evaluation domain // Compute the size of our evaluation domain
let mut m = 1; let mut m = 1;
let mut exp = 0; let mut exp = 0;
@ -53,7 +50,7 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
// The pairing-friendly curve may not be able to support // The pairing-friendly curve may not be able to support
// large enough (radix2) evaluation domains. // large enough (radix2) evaluation domains.
if exp >= E::Fr::S { if exp >= E::Fr::S {
return Err(SynthesisError::PolynomialDegreeTooLarge) return Err(SynthesisError::PolynomialDegreeTooLarge);
} }
} }
@ -72,17 +69,18 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
omega: omega, omega: omega,
omegainv: omega.inverse().unwrap(), omegainv: omega.inverse().unwrap(),
geninv: E::Fr::multiplicative_generator().inverse().unwrap(), geninv: E::Fr::multiplicative_generator().inverse().unwrap(),
minv: E::Fr::from_str(&format!("{}", m)).unwrap().inverse().unwrap() minv: E::Fr::from_str(&format!("{}", m))
.unwrap()
.inverse()
.unwrap(),
}) })
} }
pub fn fft(&mut self, worker: &Worker) pub fn fft(&mut self, worker: &Worker) {
{
best_fft(&mut self.coeffs, worker, &self.omega, self.exp); best_fft(&mut self.coeffs, worker, &self.omega, self.exp);
} }
pub fn ifft(&mut self, worker: &Worker) pub fn ifft(&mut self, worker: &Worker) {
{
best_fft(&mut self.coeffs, worker, &self.omegainv, self.exp); best_fft(&mut self.coeffs, worker, &self.omegainv, self.exp);
worker.scope(self.coeffs.len(), |scope, chunk| { worker.scope(self.coeffs.len(), |scope, chunk| {
@ -98,8 +96,7 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
}); });
} }
pub fn distribute_powers(&mut self, worker: &Worker, g: E::Fr) pub fn distribute_powers(&mut self, worker: &Worker, g: E::Fr) {
{
worker.scope(self.coeffs.len(), |scope, chunk| { worker.scope(self.coeffs.len(), |scope, chunk| {
for (i, v) in self.coeffs.chunks_mut(chunk).enumerate() { for (i, v) in self.coeffs.chunks_mut(chunk).enumerate() {
scope.spawn(move || { scope.spawn(move || {
@ -113,14 +110,12 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
}); });
} }
pub fn coset_fft(&mut self, worker: &Worker) pub fn coset_fft(&mut self, worker: &Worker) {
{
self.distribute_powers(worker, E::Fr::multiplicative_generator()); self.distribute_powers(worker, E::Fr::multiplicative_generator());
self.fft(worker); self.fft(worker);
} }
pub fn icoset_fft(&mut self, worker: &Worker) pub fn icoset_fft(&mut self, worker: &Worker) {
{
let geninv = self.geninv; let geninv = self.geninv;
self.ifft(worker); self.ifft(worker);
@ -139,9 +134,11 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
/// The target polynomial is the zero polynomial in our /// The target polynomial is the zero polynomial in our
/// evaluation domain, so we must perform division over /// evaluation domain, so we must perform division over
/// a coset. /// a coset.
pub fn divide_by_z_on_coset(&mut self, worker: &Worker) pub fn divide_by_z_on_coset(&mut self, worker: &Worker) {
{ let i = self
let i = self.z(&E::Fr::multiplicative_generator()).inverse().unwrap(); .z(&E::Fr::multiplicative_generator())
.inverse()
.unwrap();
worker.scope(self.coeffs.len(), |scope, chunk| { worker.scope(self.coeffs.len(), |scope, chunk| {
for v in self.coeffs.chunks_mut(chunk) { for v in self.coeffs.chunks_mut(chunk) {
@ -159,7 +156,11 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
assert_eq!(self.coeffs.len(), other.coeffs.len()); assert_eq!(self.coeffs.len(), other.coeffs.len());
worker.scope(self.coeffs.len(), |scope, chunk| { worker.scope(self.coeffs.len(), |scope, chunk| {
for (a, b) in self.coeffs.chunks_mut(chunk).zip(other.coeffs.chunks(chunk)) { for (a, b) in self
.coeffs
.chunks_mut(chunk)
.zip(other.coeffs.chunks(chunk))
{
scope.spawn(move || { scope.spawn(move || {
for (a, b) in a.iter_mut().zip(b.iter()) { for (a, b) in a.iter_mut().zip(b.iter()) {
a.group_mul_assign(&b.0); a.group_mul_assign(&b.0);
@ -174,7 +175,11 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
assert_eq!(self.coeffs.len(), other.coeffs.len()); assert_eq!(self.coeffs.len(), other.coeffs.len());
worker.scope(self.coeffs.len(), |scope, chunk| { worker.scope(self.coeffs.len(), |scope, chunk| {
for (a, b) in self.coeffs.chunks_mut(chunk).zip(other.coeffs.chunks(chunk)) { for (a, b) in self
.coeffs
.chunks_mut(chunk)
.zip(other.coeffs.chunks(chunk))
{
scope.spawn(move || { scope.spawn(move || {
for (a, b) in a.iter_mut().zip(b.iter()) { for (a, b) in a.iter_mut().zip(b.iter()) {
a.group_sub_assign(&b); a.group_sub_assign(&b);
@ -200,7 +205,7 @@ impl<G: CurveProjective> PartialEq for Point<G> {
} }
} }
impl<G: CurveProjective> Copy for Point<G> { } impl<G: CurveProjective> Copy for Point<G> {}
impl<G: CurveProjective> Clone for Point<G> { impl<G: CurveProjective> Clone for Point<G> {
fn clone(&self) -> Point<G> { fn clone(&self) -> Point<G> {
@ -231,7 +236,7 @@ impl<E: ScalarEngine> PartialEq for Scalar<E> {
} }
} }
impl<E: ScalarEngine> Copy for Scalar<E> { } impl<E: ScalarEngine> Copy for Scalar<E> {}
impl<E: ScalarEngine> Clone for Scalar<E> { impl<E: ScalarEngine> Clone for Scalar<E> {
fn clone(&self) -> Scalar<E> { fn clone(&self) -> Scalar<E> {
@ -254,8 +259,7 @@ impl<E: ScalarEngine> Group<E> for Scalar<E> {
} }
} }
fn best_fft<E: ScalarEngine, T: Group<E>>(a: &mut [T], worker: &Worker, omega: &E::Fr, log_n: u32) fn best_fft<E: ScalarEngine, T: Group<E>>(a: &mut [T], worker: &Worker, omega: &E::Fr, log_n: u32) {
{
let log_cpus = worker.log_num_cpus(); let log_cpus = worker.log_num_cpus();
if log_n <= log_cpus { if log_n <= log_cpus {
@ -265,8 +269,7 @@ fn best_fft<E: ScalarEngine, T: Group<E>>(a: &mut [T], worker: &Worker, omega: &
} }
} }
fn serial_fft<E: ScalarEngine, T: Group<E>>(a: &mut [T], omega: &E::Fr, log_n: u32) fn serial_fft<E: ScalarEngine, T: Group<E>>(a: &mut [T], omega: &E::Fr, log_n: u32) {
{
fn bitreverse(mut n: u32, l: u32) -> u32 { fn bitreverse(mut n: u32, l: u32) -> u32 {
let mut r = 0; let mut r = 0;
for _ in 0..l { for _ in 0..l {
@ -288,22 +291,22 @@ fn serial_fft<E: ScalarEngine, T: Group<E>>(a: &mut [T], omega: &E::Fr, log_n: u
let mut m = 1; let mut m = 1;
for _ in 0..log_n { for _ in 0..log_n {
let w_m = omega.pow(&[(n / (2*m)) as u64]); let w_m = omega.pow(&[(n / (2 * m)) as u64]);
let mut k = 0; let mut k = 0;
while k < n { while k < n {
let mut w = E::Fr::one(); let mut w = E::Fr::one();
for j in 0..m { for j in 0..m {
let mut t = a[(k+j+m) as usize]; let mut t = a[(k + j + m) as usize];
t.group_mul_assign(&w); t.group_mul_assign(&w);
let mut tmp = a[(k+j) as usize]; let mut tmp = a[(k + j) as usize];
tmp.group_sub_assign(&t); tmp.group_sub_assign(&t);
a[(k+j+m) as usize] = tmp; a[(k + j + m) as usize] = tmp;
a[(k+j) as usize].group_add_assign(&t); a[(k + j) as usize].group_add_assign(&t);
w.mul_assign(&w_m); w.mul_assign(&w_m);
} }
k += 2*m; k += 2 * m;
} }
m *= 2; m *= 2;
@ -315,9 +318,8 @@ fn parallel_fft<E: ScalarEngine, T: Group<E>>(
worker: &Worker, worker: &Worker,
omega: &E::Fr, omega: &E::Fr,
log_n: u32, log_n: u32,
log_cpus: u32 log_cpus: u32,
) ) {
{
assert!(log_n >= log_cpus); assert!(log_n >= log_cpus);
let num_cpus = 1 << log_cpus; let num_cpus = 1 << log_cpus;
@ -377,14 +379,17 @@ fn polynomial_arith() {
use pairing::bls12_381::Bls12; use pairing::bls12_381::Bls12;
use rand_core::RngCore; use rand_core::RngCore;
fn test_mul<E: ScalarEngine, R: RngCore>(rng: &mut R) fn test_mul<E: ScalarEngine, R: RngCore>(rng: &mut R) {
{
let worker = Worker::new(); let worker = Worker::new();
for coeffs_a in 0..70 { for coeffs_a in 0..70 {
for coeffs_b in 0..70 { for coeffs_b in 0..70 {
let mut a: Vec<_> = (0..coeffs_a).map(|_| Scalar::<E>(E::Fr::random(rng))).collect(); let mut a: Vec<_> = (0..coeffs_a)
let mut b: Vec<_> = (0..coeffs_b).map(|_| Scalar::<E>(E::Fr::random(rng))).collect(); .map(|_| Scalar::<E>(E::Fr::random(rng)))
.collect();
let mut b: Vec<_> = (0..coeffs_b)
.map(|_| Scalar::<E>(E::Fr::random(rng)))
.collect();
// naive evaluation // naive evaluation
let mut naive = vec![Scalar(E::Fr::zero()); coeffs_a + coeffs_b]; let mut naive = vec![Scalar(E::Fr::zero()); coeffs_a + coeffs_b];
@ -425,8 +430,7 @@ fn fft_composition() {
use pairing::bls12_381::Bls12; use pairing::bls12_381::Bls12;
use rand_core::RngCore; use rand_core::RngCore;
fn test_comp<E: ScalarEngine, R: RngCore>(rng: &mut R) fn test_comp<E: ScalarEngine, R: RngCore>(rng: &mut R) {
{
let worker = Worker::new(); let worker = Worker::new();
for coeffs in 0..10 { for coeffs in 0..10 {
@ -465,19 +469,20 @@ fn parallel_fft_consistency() {
use rand_core::RngCore; use rand_core::RngCore;
use std::cmp::min; use std::cmp::min;
fn test_consistency<E: ScalarEngine, R: RngCore>(rng: &mut R) fn test_consistency<E: ScalarEngine, R: RngCore>(rng: &mut R) {
{
let worker = Worker::new(); let worker = Worker::new();
for _ in 0..5 { for _ in 0..5 {
for log_d in 0..10 { for log_d in 0..10 {
let d = 1 << log_d; let d = 1 << log_d;
let v1 = (0..d).map(|_| Scalar::<E>(E::Fr::random(rng))).collect::<Vec<_>>(); let v1 = (0..d)
.map(|_| Scalar::<E>(E::Fr::random(rng)))
.collect::<Vec<_>>();
let mut v1 = EvaluationDomain::from_coeffs(v1).unwrap(); let mut v1 = EvaluationDomain::from_coeffs(v1).unwrap();
let mut v2 = EvaluationDomain::from_coeffs(v1.coeffs.clone()).unwrap(); let mut v2 = EvaluationDomain::from_coeffs(v1.coeffs.clone()).unwrap();
for log_cpus in log_d..min(log_d+1, 3) { for log_cpus in log_d..min(log_d + 1, 3) {
parallel_fft(&mut v1.coeffs, &worker, &v1.omega, log_d, log_cpus); parallel_fft(&mut v1.coeffs, &worker, &v1.omega, log_d, log_cpus);
serial_fft(&mut v2.coeffs, &v2.omega, log_d); serial_fft(&mut v2.coeffs, &v2.omega, log_d);

View File

@ -1,17 +1,15 @@
pub mod test; pub mod test;
pub mod boolean;
pub mod multieq;
pub mod uint32;
pub mod blake2s; pub mod blake2s;
pub mod num; pub mod boolean;
pub mod lookup; pub mod lookup;
pub mod multieq;
pub mod multipack; pub mod multipack;
pub mod num;
pub mod sha256; pub mod sha256;
pub mod uint32;
use crate::{ use crate::SynthesisError;
SynthesisError
};
// TODO: This should probably be removed and we // TODO: This should probably be removed and we
// should use existing helper methods on `Option` // should use existing helper methods on `Option`
@ -27,7 +25,7 @@ impl<T> Assignment<T> for Option<T> {
fn get(&self) -> Result<&T, SynthesisError> { fn get(&self) -> Result<&T, SynthesisError> {
match *self { match *self {
Some(ref v) => Ok(v), Some(ref v) => Ok(v),
None => Err(SynthesisError::AssignmentMissing) None => Err(SynthesisError::AssignmentMissing),
} }
} }
} }

View File

@ -1,19 +1,10 @@
use pairing::{ use pairing::Engine;
Engine,
};
use crate::{ use crate::{ConstraintSystem, SynthesisError};
SynthesisError,
ConstraintSystem
};
use super::boolean::{ use super::boolean::Boolean;
Boolean
};
use super::uint32::{ use super::uint32::UInt32;
UInt32
};
use super::multieq::MultiEq; use super::multieq::MultiEq;
@ -65,7 +56,7 @@ const SIGMA: [[usize; 16]; 10] = [
[12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11], [12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11],
[13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10], [13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10],
[6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5], [6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5],
[10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0] [10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0],
]; ];
/* /*
@ -98,17 +89,30 @@ fn mixing_g<E: Engine, CS: ConstraintSystem<E>, M>(
c: usize, c: usize,
d: usize, d: usize,
x: &UInt32, x: &UInt32,
y: &UInt32 y: &UInt32,
) -> Result<(), SynthesisError> ) -> Result<(), SynthesisError>
where M: ConstraintSystem<E, Root=MultiEq<E, CS>> where
M: ConstraintSystem<E, Root = MultiEq<E, CS>>,
{ {
v[a] = UInt32::addmany(cs.namespace(|| "mixing step 1"), &[v[a].clone(), v[b].clone(), x.clone()])?; v[a] = UInt32::addmany(
cs.namespace(|| "mixing step 1"),
&[v[a].clone(), v[b].clone(), x.clone()],
)?;
v[d] = v[d].xor(cs.namespace(|| "mixing step 2"), &v[a])?.rotr(R1); v[d] = v[d].xor(cs.namespace(|| "mixing step 2"), &v[a])?.rotr(R1);
v[c] = UInt32::addmany(cs.namespace(|| "mixing step 3"), &[v[c].clone(), v[d].clone()])?; v[c] = UInt32::addmany(
cs.namespace(|| "mixing step 3"),
&[v[c].clone(), v[d].clone()],
)?;
v[b] = v[b].xor(cs.namespace(|| "mixing step 4"), &v[c])?.rotr(R2); v[b] = v[b].xor(cs.namespace(|| "mixing step 4"), &v[c])?.rotr(R2);
v[a] = UInt32::addmany(cs.namespace(|| "mixing step 5"), &[v[a].clone(), v[b].clone(), y.clone()])?; v[a] = UInt32::addmany(
cs.namespace(|| "mixing step 5"),
&[v[a].clone(), v[b].clone(), y.clone()],
)?;
v[d] = v[d].xor(cs.namespace(|| "mixing step 6"), &v[a])?.rotr(R3); v[d] = v[d].xor(cs.namespace(|| "mixing step 6"), &v[a])?.rotr(R3);
v[c] = UInt32::addmany(cs.namespace(|| "mixing step 7"), &[v[c].clone(), v[d].clone()])?; v[c] = UInt32::addmany(
cs.namespace(|| "mixing step 7"),
&[v[c].clone(), v[d].clone()],
)?;
v[b] = v[b].xor(cs.namespace(|| "mixing step 8"), &v[c])?.rotr(R4); v[b] = v[b].xor(cs.namespace(|| "mixing step 8"), &v[c])?.rotr(R4);
Ok(()) Ok(())
@ -162,15 +166,13 @@ fn mixing_g<E: Engine, CS: ConstraintSystem<E>, M>(
END FUNCTION. END FUNCTION.
*/ */
fn blake2s_compression<E: Engine, CS: ConstraintSystem<E>>( fn blake2s_compression<E: Engine, CS: ConstraintSystem<E>>(
mut cs: CS, mut cs: CS,
h: &mut [UInt32], h: &mut [UInt32],
m: &[UInt32], m: &[UInt32],
t: u64, t: u64,
f: bool f: bool,
) -> Result<(), SynthesisError> ) -> Result<(), SynthesisError> {
{
assert_eq!(h.len(), 8); assert_eq!(h.len(), 8);
assert_eq!(m.len(), 16); assert_eq!(m.len(), 16);
@ -196,10 +198,16 @@ fn blake2s_compression<E: Engine, CS: ConstraintSystem<E>>(
assert_eq!(v.len(), 16); assert_eq!(v.len(), 16);
v[12] = v[12].xor(cs.namespace(|| "first xor"), &UInt32::constant(t as u32))?; v[12] = v[12].xor(cs.namespace(|| "first xor"), &UInt32::constant(t as u32))?;
v[13] = v[13].xor(cs.namespace(|| "second xor"), &UInt32::constant((t >> 32) as u32))?; v[13] = v[13].xor(
cs.namespace(|| "second xor"),
&UInt32::constant((t >> 32) as u32),
)?;
if f { if f {
v[14] = v[14].xor(cs.namespace(|| "third xor"), &UInt32::constant(u32::max_value()))?; v[14] = v[14].xor(
cs.namespace(|| "third xor"),
&UInt32::constant(u32::max_value()),
)?;
} }
{ {
@ -210,20 +218,92 @@ fn blake2s_compression<E: Engine, CS: ConstraintSystem<E>>(
let s = SIGMA[i % 10]; let s = SIGMA[i % 10];
mixing_g(cs.namespace(|| "mixing invocation 1"), &mut v, 0, 4, 8, 12, &m[s[ 0]], &m[s[ 1]])?; mixing_g(
mixing_g(cs.namespace(|| "mixing invocation 2"), &mut v, 1, 5, 9, 13, &m[s[ 2]], &m[s[ 3]])?; cs.namespace(|| "mixing invocation 1"),
mixing_g(cs.namespace(|| "mixing invocation 3"), &mut v, 2, 6, 10, 14, &m[s[ 4]], &m[s[ 5]])?; &mut v,
mixing_g(cs.namespace(|| "mixing invocation 4"), &mut v, 3, 7, 11, 15, &m[s[ 6]], &m[s[ 7]])?; 0,
4,
8,
12,
&m[s[0]],
&m[s[1]],
)?;
mixing_g(
cs.namespace(|| "mixing invocation 2"),
&mut v,
1,
5,
9,
13,
&m[s[2]],
&m[s[3]],
)?;
mixing_g(
cs.namespace(|| "mixing invocation 3"),
&mut v,
2,
6,
10,
14,
&m[s[4]],
&m[s[5]],
)?;
mixing_g(
cs.namespace(|| "mixing invocation 4"),
&mut v,
3,
7,
11,
15,
&m[s[6]],
&m[s[7]],
)?;
mixing_g(cs.namespace(|| "mixing invocation 5"), &mut v, 0, 5, 10, 15, &m[s[ 8]], &m[s[ 9]])?; mixing_g(
mixing_g(cs.namespace(|| "mixing invocation 6"), &mut v, 1, 6, 11, 12, &m[s[10]], &m[s[11]])?; cs.namespace(|| "mixing invocation 5"),
mixing_g(cs.namespace(|| "mixing invocation 7"), &mut v, 2, 7, 8, 13, &m[s[12]], &m[s[13]])?; &mut v,
mixing_g(cs.namespace(|| "mixing invocation 8"), &mut v, 3, 4, 9, 14, &m[s[14]], &m[s[15]])?; 0,
5,
10,
15,
&m[s[8]],
&m[s[9]],
)?;
mixing_g(
cs.namespace(|| "mixing invocation 6"),
&mut v,
1,
6,
11,
12,
&m[s[10]],
&m[s[11]],
)?;
mixing_g(
cs.namespace(|| "mixing invocation 7"),
&mut v,
2,
7,
8,
13,
&m[s[12]],
&m[s[13]],
)?;
mixing_g(
cs.namespace(|| "mixing invocation 8"),
&mut v,
3,
4,
9,
14,
&m[s[14]],
&m[s[15]],
)?;
} }
} }
for i in 0..8 { for i in 0..8 {
let mut cs = cs.namespace(|| format!("h[{i}] ^ v[{i}] ^ v[{i} + 8]", i=i)); let mut cs = cs.namespace(|| format!("h[{i}] ^ v[{i}] ^ v[{i} + 8]", i = i));
h[i] = h[i].xor(cs.namespace(|| "first xor"), &v[i])?; h[i] = h[i].xor(cs.namespace(|| "first xor"), &v[i])?;
h[i] = h[i].xor(cs.namespace(|| "second xor"), &v[i + 8])?; h[i] = h[i].xor(cs.namespace(|| "second xor"), &v[i + 8])?;
@ -262,9 +342,8 @@ fn blake2s_compression<E: Engine, CS: ConstraintSystem<E>>(
pub fn blake2s<E: Engine, CS: ConstraintSystem<E>>( pub fn blake2s<E: Engine, CS: ConstraintSystem<E>>(
mut cs: CS, mut cs: CS,
input: &[Boolean], input: &[Boolean],
personalization: &[u8] personalization: &[u8],
) -> Result<Vec<Boolean>, SynthesisError> ) -> Result<Vec<Boolean>, SynthesisError> {
{
use byteorder::{ByteOrder, LittleEndian}; use byteorder::{ByteOrder, LittleEndian};
assert_eq!(personalization.len(), 8); assert_eq!(personalization.len(), 8);
@ -279,8 +358,12 @@ pub fn blake2s<E: Engine, CS: ConstraintSystem<E>>(
h.push(UInt32::constant(0x9B05688C)); h.push(UInt32::constant(0x9B05688C));
// Personalization is stored here // Personalization is stored here
h.push(UInt32::constant(0x1F83D9AB ^ LittleEndian::read_u32(&personalization[0..4]))); h.push(UInt32::constant(
h.push(UInt32::constant(0x5BE0CD19 ^ LittleEndian::read_u32(&personalization[4..8]))); 0x1F83D9AB ^ LittleEndian::read_u32(&personalization[0..4]),
));
h.push(UInt32::constant(
0x5BE0CD19 ^ LittleEndian::read_u32(&personalization[4..8]),
));
let mut blocks: Vec<Vec<UInt32>> = vec![]; let mut blocks: Vec<Vec<UInt32>> = vec![];
@ -312,7 +395,13 @@ pub fn blake2s<E: Engine, CS: ConstraintSystem<E>>(
{ {
let cs = cs.namespace(|| "final block"); let cs = cs.namespace(|| "final block");
blake2s_compression(cs, &mut h, &blocks[blocks.len() - 1], (input.len() / 8) as u64, true)?; blake2s_compression(
cs,
&mut h,
&blocks[blocks.len() - 1],
(input.len() / 8) as u64,
true,
)?;
} }
Ok(h.iter().flat_map(|b| b.into_bits()).collect()) Ok(h.iter().flat_map(|b| b.into_bits()).collect())
@ -321,14 +410,14 @@ pub fn blake2s<E: Engine, CS: ConstraintSystem<E>>(
#[cfg(test)] #[cfg(test)]
mod test { mod test {
use blake2s_simd::Params as Blake2sParams; use blake2s_simd::Params as Blake2sParams;
use pairing::bls12_381::{Bls12}; use pairing::bls12_381::Bls12;
use rand_core::{RngCore, SeedableRng}; use rand_core::{RngCore, SeedableRng};
use rand_xorshift::XorShiftRng; use rand_xorshift::XorShiftRng;
use crate::gadgets::boolean::{Boolean, AllocatedBit};
use crate::gadgets::test::TestConstraintSystem;
use super::blake2s; use super::blake2s;
use crate::{ConstraintSystem}; use crate::gadgets::boolean::{AllocatedBit, Boolean};
use crate::gadgets::test::TestConstraintSystem;
use crate::ConstraintSystem;
#[test] #[test]
fn test_blank_hash() { fn test_blank_hash() {
@ -356,7 +445,13 @@ mod test {
#[test] #[test]
fn test_blake2s_constraints() { fn test_blake2s_constraints() {
let mut cs = TestConstraintSystem::<Bls12>::new(); let mut cs = TestConstraintSystem::<Bls12>::new();
let input_bits: Vec<_> = (0..512).map(|i| AllocatedBit::alloc(cs.namespace(|| format!("input bit {}", i)), Some(true)).unwrap().into()).collect(); let input_bits: Vec<_> = (0..512)
.map(|i| {
AllocatedBit::alloc(cs.namespace(|| format!("input bit {}", i)), Some(true))
.unwrap()
.into()
})
.collect();
blake2s(&mut cs, &input_bits, b"12345678").unwrap(); blake2s(&mut cs, &input_bits, b"12345678").unwrap();
assert!(cs.is_satisfied()); assert!(cs.is_satisfied());
assert_eq!(cs.num_constraints(), 21518); assert_eq!(cs.num_constraints(), 21518);
@ -369,14 +464,17 @@ mod test {
let mut cs = TestConstraintSystem::<Bls12>::new(); let mut cs = TestConstraintSystem::<Bls12>::new();
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
let input_bits: Vec<_> = (0..512) let input_bits: Vec<_> = (0..512)
.map(|_| Boolean::constant(rng.next_u32() % 2 != 0)) .map(|_| Boolean::constant(rng.next_u32() % 2 != 0))
.chain((0..512) .chain((0..512).map(|i| {
.map(|i| AllocatedBit::alloc(cs.namespace(|| format!("input bit {}", i)), Some(true)).unwrap().into())) AllocatedBit::alloc(cs.namespace(|| format!("input bit {}", i)), Some(true))
.collect(); .unwrap()
.into()
}))
.collect();
blake2s(&mut cs, &input_bits, b"12345678").unwrap(); blake2s(&mut cs, &input_bits, b"12345678").unwrap();
assert!(cs.is_satisfied()); assert!(cs.is_satisfied());
assert_eq!(cs.num_constraints(), 21518); assert_eq!(cs.num_constraints(), 21518);
@ -386,10 +484,12 @@ mod test {
fn test_blake2s_constant_constraints() { fn test_blake2s_constant_constraints() {
let mut cs = TestConstraintSystem::<Bls12>::new(); let mut cs = TestConstraintSystem::<Bls12>::new();
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
let input_bits: Vec<_> = (0..512).map(|_| Boolean::constant(rng.next_u32() % 2 != 0)).collect(); let input_bits: Vec<_> = (0..512)
.map(|_| Boolean::constant(rng.next_u32() % 2 != 0))
.collect();
blake2s(&mut cs, &input_bits, b"12345678").unwrap(); blake2s(&mut cs, &input_bits, b"12345678").unwrap();
assert_eq!(cs.num_constraints(), 0); assert_eq!(cs.num_constraints(), 0);
} }
@ -397,13 +497,15 @@ mod test {
#[test] #[test]
fn test_blake2s() { fn test_blake2s() {
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
for input_len in (0..32).chain((32..256).filter(|a| a % 8 == 0)) for input_len in (0..32).chain((32..256).filter(|a| a % 8 == 0)) {
{ let mut h = Blake2sParams::new()
let mut h = Blake2sParams::new().hash_length(32).personal(b"12345678").to_state(); .hash_length(32)
.personal(b"12345678")
.to_state();
let data: Vec<u8> = (0..input_len).map(|_| rng.next_u32() as u8).collect(); let data: Vec<u8> = (0..input_len).map(|_| rng.next_u32() as u8).collect();
@ -419,7 +521,11 @@ mod test {
for bit_i in 0..8 { for bit_i in 0..8 {
let cs = cs.namespace(|| format!("input bit {} {}", byte_i, bit_i)); let cs = cs.namespace(|| format!("input bit {} {}", byte_i, bit_i));
input_bits.push(AllocatedBit::alloc(cs, Some((input_byte >> bit_i) & 1u8 == 1u8)).unwrap().into()); input_bits.push(
AllocatedBit::alloc(cs, Some((input_byte >> bit_i) & 1u8 == 1u8))
.unwrap()
.into(),
);
} }
} }
@ -427,17 +533,19 @@ mod test {
assert!(cs.is_satisfied()); assert!(cs.is_satisfied());
let mut s = hash_result.as_ref().iter() let mut s = hash_result
.flat_map(|&byte| (0..8).map(move |i| (byte >> i) & 1u8 == 1u8)); .as_ref()
.iter()
.flat_map(|&byte| (0..8).map(move |i| (byte >> i) & 1u8 == 1u8));
for b in r { for b in r {
match b { match b {
Boolean::Is(b) => { Boolean::Is(b) => {
assert!(s.next().unwrap() == b.get_value().unwrap()); assert!(s.next().unwrap() == b.get_value().unwrap());
}, }
Boolean::Not(b) => { Boolean::Not(b) => {
assert!(s.next().unwrap() != b.get_value().unwrap()); assert!(s.next().unwrap() != b.get_value().unwrap());
}, }
Boolean::Constant(b) => { Boolean::Constant(b) => {
assert!(input_len == 0); assert!(input_len == 0);
assert!(s.next().unwrap() == b); assert!(s.next().unwrap() == b);

File diff suppressed because it is too large Load Diff

View File

@ -1,23 +1,15 @@
use ff::Field; use ff::Field;
use pairing::Engine; use pairing::Engine;
use super::*;
use super::num::{
AllocatedNum,
Num
};
use super::boolean::Boolean; use super::boolean::Boolean;
use crate::{ use super::num::{AllocatedNum, Num};
ConstraintSystem use super::*;
}; use crate::ConstraintSystem;
// Synthesize the constants for each base pattern. // Synthesize the constants for each base pattern.
fn synth<'a, E: Engine, I>( fn synth<'a, E: Engine, I>(window_size: usize, constants: I, assignment: &mut [E::Fr])
window_size: usize, where
constants: I, I: IntoIterator<Item = &'a E::Fr>,
assignment: &mut [E::Fr]
)
where I: IntoIterator<Item=&'a E::Fr>
{ {
assert_eq!(assignment.len(), 1 << window_size); assert_eq!(assignment.len(), 1 << window_size);
@ -39,16 +31,20 @@ fn synth<'a, E: Engine, I>(
pub fn lookup3_xy<E: Engine, CS>( pub fn lookup3_xy<E: Engine, CS>(
mut cs: CS, mut cs: CS,
bits: &[Boolean], bits: &[Boolean],
coords: &[(E::Fr, E::Fr)] coords: &[(E::Fr, E::Fr)],
) -> Result<(AllocatedNum<E>, AllocatedNum<E>), SynthesisError> ) -> Result<(AllocatedNum<E>, AllocatedNum<E>), SynthesisError>
where CS: ConstraintSystem<E> where
CS: ConstraintSystem<E>,
{ {
assert_eq!(bits.len(), 3); assert_eq!(bits.len(), 3);
assert_eq!(coords.len(), 8); assert_eq!(coords.len(), 8);
// Calculate the index into `coords` // Calculate the index into `coords`
let i = let i = match (
match (bits[0].get_value(), bits[1].get_value(), bits[2].get_value()) { bits[0].get_value(),
bits[1].get_value(),
bits[2].get_value(),
) {
(Some(a_value), Some(b_value), Some(c_value)) => { (Some(a_value), Some(b_value), Some(c_value)) => {
let mut tmp = 0; let mut tmp = 0;
if a_value { if a_value {
@ -61,25 +57,15 @@ pub fn lookup3_xy<E: Engine, CS>(
tmp += 4; tmp += 4;
} }
Some(tmp) Some(tmp)
}, }
_ => None _ => None,
}; };
// Allocate the x-coordinate resulting from the lookup // Allocate the x-coordinate resulting from the lookup
let res_x = AllocatedNum::alloc( let res_x = AllocatedNum::alloc(cs.namespace(|| "x"), || Ok(coords[*i.get()?].0))?;
cs.namespace(|| "x"),
|| {
Ok(coords[*i.get()?].0)
}
)?;
// Allocate the y-coordinate resulting from the lookup // Allocate the y-coordinate resulting from the lookup
let res_y = AllocatedNum::alloc( let res_y = AllocatedNum::alloc(cs.namespace(|| "y"), || Ok(coords[*i.get()?].1))?;
cs.namespace(|| "y"),
|| {
Ok(coords[*i.get()?].1)
}
)?;
// Compute the coefficients for the lookup constraints // Compute the coefficients for the lookup constraints
let mut x_coeffs = [E::Fr::zero(); 8]; let mut x_coeffs = [E::Fr::zero(); 8];
@ -93,30 +79,38 @@ pub fn lookup3_xy<E: Engine, CS>(
cs.enforce( cs.enforce(
|| "x-coordinate lookup", || "x-coordinate lookup",
|lc| lc + (x_coeffs[0b001], one) |lc| {
lc + (x_coeffs[0b001], one)
+ &bits[1].lc::<E>(one, x_coeffs[0b011]) + &bits[1].lc::<E>(one, x_coeffs[0b011])
+ &bits[2].lc::<E>(one, x_coeffs[0b101]) + &bits[2].lc::<E>(one, x_coeffs[0b101])
+ &precomp.lc::<E>(one, x_coeffs[0b111]), + &precomp.lc::<E>(one, x_coeffs[0b111])
},
|lc| lc + &bits[0].lc::<E>(one, E::Fr::one()), |lc| lc + &bits[0].lc::<E>(one, E::Fr::one()),
|lc| lc + res_x.get_variable() |lc| {
lc + res_x.get_variable()
- (x_coeffs[0b000], one) - (x_coeffs[0b000], one)
- &bits[1].lc::<E>(one, x_coeffs[0b010]) - &bits[1].lc::<E>(one, x_coeffs[0b010])
- &bits[2].lc::<E>(one, x_coeffs[0b100]) - &bits[2].lc::<E>(one, x_coeffs[0b100])
- &precomp.lc::<E>(one, x_coeffs[0b110]), - &precomp.lc::<E>(one, x_coeffs[0b110])
},
); );
cs.enforce( cs.enforce(
|| "y-coordinate lookup", || "y-coordinate lookup",
|lc| lc + (y_coeffs[0b001], one) |lc| {
lc + (y_coeffs[0b001], one)
+ &bits[1].lc::<E>(one, y_coeffs[0b011]) + &bits[1].lc::<E>(one, y_coeffs[0b011])
+ &bits[2].lc::<E>(one, y_coeffs[0b101]) + &bits[2].lc::<E>(one, y_coeffs[0b101])
+ &precomp.lc::<E>(one, y_coeffs[0b111]), + &precomp.lc::<E>(one, y_coeffs[0b111])
},
|lc| lc + &bits[0].lc::<E>(one, E::Fr::one()), |lc| lc + &bits[0].lc::<E>(one, E::Fr::one()),
|lc| lc + res_y.get_variable() |lc| {
lc + res_y.get_variable()
- (y_coeffs[0b000], one) - (y_coeffs[0b000], one)
- &bits[1].lc::<E>(one, y_coeffs[0b010]) - &bits[1].lc::<E>(one, y_coeffs[0b010])
- &bits[2].lc::<E>(one, y_coeffs[0b100]) - &bits[2].lc::<E>(one, y_coeffs[0b100])
- &precomp.lc::<E>(one, y_coeffs[0b110]), - &precomp.lc::<E>(one, y_coeffs[0b110])
},
); );
Ok((res_x, res_y)) Ok((res_x, res_y))
@ -127,16 +121,16 @@ pub fn lookup3_xy<E: Engine, CS>(
pub fn lookup3_xy_with_conditional_negation<E: Engine, CS>( pub fn lookup3_xy_with_conditional_negation<E: Engine, CS>(
mut cs: CS, mut cs: CS,
bits: &[Boolean], bits: &[Boolean],
coords: &[(E::Fr, E::Fr)] coords: &[(E::Fr, E::Fr)],
) -> Result<(Num<E>, Num<E>), SynthesisError> ) -> Result<(Num<E>, Num<E>), SynthesisError>
where CS: ConstraintSystem<E> where
CS: ConstraintSystem<E>,
{ {
assert_eq!(bits.len(), 3); assert_eq!(bits.len(), 3);
assert_eq!(coords.len(), 4); assert_eq!(coords.len(), 4);
// Calculate the index into `coords` // Calculate the index into `coords`
let i = let i = match (bits[0].get_value(), bits[1].get_value()) {
match (bits[0].get_value(), bits[1].get_value()) {
(Some(a_value), Some(b_value)) => { (Some(a_value), Some(b_value)) => {
let mut tmp = 0; let mut tmp = 0;
if a_value { if a_value {
@ -146,22 +140,19 @@ pub fn lookup3_xy_with_conditional_negation<E: Engine, CS>(
tmp += 2; tmp += 2;
} }
Some(tmp) Some(tmp)
}, }
_ => None _ => None,
}; };
// Allocate the y-coordinate resulting from the lookup // Allocate the y-coordinate resulting from the lookup
// and conditional negation // and conditional negation
let y = AllocatedNum::alloc( let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
cs.namespace(|| "y"), let mut tmp = coords[*i.get()?].1;
|| { if *bits[2].get_value().get()? {
let mut tmp = coords[*i.get()?].1; tmp.negate();
if *bits[2].get_value().get()? {
tmp.negate();
}
Ok(tmp)
} }
)?; Ok(tmp)
})?;
let one = CS::one(); let one = CS::one();
@ -174,21 +165,21 @@ pub fn lookup3_xy_with_conditional_negation<E: Engine, CS>(
let precomp = Boolean::and(cs.namespace(|| "precomp"), &bits[0], &bits[1])?; let precomp = Boolean::and(cs.namespace(|| "precomp"), &bits[0], &bits[1])?;
let x = Num::zero() let x = Num::zero()
.add_bool_with_coeff(one, &Boolean::constant(true), x_coeffs[0b00]) .add_bool_with_coeff(one, &Boolean::constant(true), x_coeffs[0b00])
.add_bool_with_coeff(one, &bits[0], x_coeffs[0b01]) .add_bool_with_coeff(one, &bits[0], x_coeffs[0b01])
.add_bool_with_coeff(one, &bits[1], x_coeffs[0b10]) .add_bool_with_coeff(one, &bits[1], x_coeffs[0b10])
.add_bool_with_coeff(one, &precomp, x_coeffs[0b11]); .add_bool_with_coeff(one, &precomp, x_coeffs[0b11]);
let y_lc = precomp.lc::<E>(one, y_coeffs[0b11]) + let y_lc = precomp.lc::<E>(one, y_coeffs[0b11])
&bits[1].lc::<E>(one, y_coeffs[0b10]) + + &bits[1].lc::<E>(one, y_coeffs[0b10])
&bits[0].lc::<E>(one, y_coeffs[0b01]) + + &bits[0].lc::<E>(one, y_coeffs[0b01])
(y_coeffs[0b00], one); + (y_coeffs[0b00], one);
cs.enforce( cs.enforce(
|| "y-coordinate lookup", || "y-coordinate lookup",
|lc| lc + &y_lc + &y_lc, |lc| lc + &y_lc + &y_lc,
|lc| lc + &bits[2].lc::<E>(one, E::Fr::one()), |lc| lc + &bits[2].lc::<E>(one, E::Fr::one()),
|lc| lc + &y_lc - y.get_variable() |lc| lc + &y_lc - y.get_variable(),
); );
Ok((x, y.into())) Ok((x, y.into()))
@ -197,8 +188,8 @@ pub fn lookup3_xy_with_conditional_negation<E: Engine, CS>(
#[cfg(test)] #[cfg(test)]
mod test { mod test {
use super::*; use super::*;
use crate::gadgets::boolean::{AllocatedBit, Boolean};
use crate::gadgets::test::*; use crate::gadgets::test::*;
use crate::gadgets::boolean::{Boolean, AllocatedBit};
use pairing::bls12_381::{Bls12, Fr}; use pairing::bls12_381::{Bls12, Fr};
use rand_core::{RngCore, SeedableRng}; use rand_core::{RngCore, SeedableRng};
use rand_xorshift::XorShiftRng; use rand_xorshift::XorShiftRng;
@ -206,40 +197,42 @@ mod test {
#[test] #[test]
fn test_lookup3_xy() { fn test_lookup3_xy() {
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x3d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x3d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
for _ in 0..100 { for _ in 0..100 {
let mut cs = TestConstraintSystem::<Bls12>::new(); let mut cs = TestConstraintSystem::<Bls12>::new();
let a_val = rng.next_u32() % 2 != 0; let a_val = rng.next_u32() % 2 != 0;
let a = Boolean::from( let a = Boolean::from(AllocatedBit::alloc(cs.namespace(|| "a"), Some(a_val)).unwrap());
AllocatedBit::alloc(cs.namespace(|| "a"), Some(a_val)).unwrap()
);
let b_val = rng.next_u32() % 2 != 0; let b_val = rng.next_u32() % 2 != 0;
let b = Boolean::from( let b = Boolean::from(AllocatedBit::alloc(cs.namespace(|| "b"), Some(b_val)).unwrap());
AllocatedBit::alloc(cs.namespace(|| "b"), Some(b_val)).unwrap()
);
let c_val = rng.next_u32() % 2 != 0; let c_val = rng.next_u32() % 2 != 0;
let c = Boolean::from( let c = Boolean::from(AllocatedBit::alloc(cs.namespace(|| "c"), Some(c_val)).unwrap());
AllocatedBit::alloc(cs.namespace(|| "c"), Some(c_val)).unwrap()
);
let bits = vec![a, b, c]; let bits = vec![a, b, c];
let points: Vec<(Fr, Fr)> = (0..8).map(|_| (Fr::random(&mut rng), Fr::random(&mut rng))).collect(); let points: Vec<(Fr, Fr)> = (0..8)
.map(|_| (Fr::random(&mut rng), Fr::random(&mut rng)))
.collect();
let res = lookup3_xy(&mut cs, &bits, &points).unwrap(); let res = lookup3_xy(&mut cs, &bits, &points).unwrap();
assert!(cs.is_satisfied()); assert!(cs.is_satisfied());
let mut index = 0; let mut index = 0;
if a_val { index += 1 } if a_val {
if b_val { index += 2 } index += 1
if c_val { index += 4 } }
if b_val {
index += 2
}
if c_val {
index += 4
}
assert_eq!(res.0.get_value().unwrap(), points[index].0); assert_eq!(res.0.get_value().unwrap(), points[index].0);
assert_eq!(res.1.get_value().unwrap(), points[index].1); assert_eq!(res.1.get_value().unwrap(), points[index].1);
@ -249,43 +242,45 @@ mod test {
#[test] #[test]
fn test_lookup3_xy_with_conditional_negation() { fn test_lookup3_xy_with_conditional_negation() {
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x3d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x3d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
for _ in 0..100 { for _ in 0..100 {
let mut cs = TestConstraintSystem::<Bls12>::new(); let mut cs = TestConstraintSystem::<Bls12>::new();
let a_val = rng.next_u32() % 2 != 0; let a_val = rng.next_u32() % 2 != 0;
let a = Boolean::from( let a = Boolean::from(AllocatedBit::alloc(cs.namespace(|| "a"), Some(a_val)).unwrap());
AllocatedBit::alloc(cs.namespace(|| "a"), Some(a_val)).unwrap()
);
let b_val = rng.next_u32() % 2 != 0; let b_val = rng.next_u32() % 2 != 0;
let b = Boolean::from( let b = Boolean::from(AllocatedBit::alloc(cs.namespace(|| "b"), Some(b_val)).unwrap());
AllocatedBit::alloc(cs.namespace(|| "b"), Some(b_val)).unwrap()
);
let c_val = rng.next_u32() % 2 != 0; let c_val = rng.next_u32() % 2 != 0;
let c = Boolean::from( let c = Boolean::from(AllocatedBit::alloc(cs.namespace(|| "c"), Some(c_val)).unwrap());
AllocatedBit::alloc(cs.namespace(|| "c"), Some(c_val)).unwrap()
);
let bits = vec![a, b, c]; let bits = vec![a, b, c];
let points: Vec<(Fr, Fr)> = (0..4).map(|_| (Fr::random(&mut rng), Fr::random(&mut rng))).collect(); let points: Vec<(Fr, Fr)> = (0..4)
.map(|_| (Fr::random(&mut rng), Fr::random(&mut rng)))
.collect();
let res = lookup3_xy_with_conditional_negation(&mut cs, &bits, &points).unwrap(); let res = lookup3_xy_with_conditional_negation(&mut cs, &bits, &points).unwrap();
assert!(cs.is_satisfied()); assert!(cs.is_satisfied());
let mut index = 0; let mut index = 0;
if a_val { index += 1 } if a_val {
if b_val { index += 2 } index += 1
}
if b_val {
index += 2
}
assert_eq!(res.0.get_value().unwrap(), points[index].0); assert_eq!(res.0.get_value().unwrap(), points[index].0);
let mut tmp = points[index].1; let mut tmp = points[index].1;
if c_val { tmp.negate() } if c_val {
tmp.negate()
}
assert_eq!(res.1.get_value().unwrap(), tmp); assert_eq!(res.1.get_value().unwrap(), tmp);
} }
} }
@ -293,14 +288,16 @@ mod test {
#[test] #[test]
fn test_synth() { fn test_synth() {
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x3d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x3d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
let window_size = 4; let window_size = 4;
let mut assignment = vec![Fr::zero(); 1 << window_size]; let mut assignment = vec![Fr::zero(); 1 << window_size];
let constants: Vec<_> = (0..(1 << window_size)).map(|_| Fr::random(&mut rng)).collect(); let constants: Vec<_> = (0..(1 << window_size))
.map(|_| Fr::random(&mut rng))
.collect();
synth::<Bls12, _>(window_size, &constants, &mut assignment); synth::<Bls12, _>(window_size, &constants, &mut assignment);

View File

@ -1,14 +1,9 @@
use ff::{Field, PrimeField}; use ff::{Field, PrimeField};
use pairing::Engine; use pairing::Engine;
use crate::{ use crate::{ConstraintSystem, LinearCombination, SynthesisError, Variable};
SynthesisError,
ConstraintSystem,
LinearCombination,
Variable
};
pub struct MultiEq<E: Engine, CS: ConstraintSystem<E>>{ pub struct MultiEq<E: Engine, CS: ConstraintSystem<E>> {
cs: CS, cs: CS,
ops: usize, ops: usize,
bits_used: usize, bits_used: usize,
@ -23,12 +18,11 @@ impl<E: Engine, CS: ConstraintSystem<E>> MultiEq<E, CS> {
ops: 0, ops: 0,
bits_used: 0, bits_used: 0,
lhs: LinearCombination::zero(), lhs: LinearCombination::zero(),
rhs: LinearCombination::zero() rhs: LinearCombination::zero(),
} }
} }
fn accumulate(&mut self) fn accumulate(&mut self) {
{
let ops = self.ops; let ops = self.ops;
let lhs = self.lhs.clone(); let lhs = self.lhs.clone();
let rhs = self.rhs.clone(); let rhs = self.rhs.clone();
@ -36,7 +30,7 @@ impl<E: Engine, CS: ConstraintSystem<E>> MultiEq<E, CS> {
|| format!("multieq {}", ops), || format!("multieq {}", ops),
|_| lhs, |_| lhs,
|lc| lc + CS::one(), |lc| lc + CS::one(),
|_| rhs |_| rhs,
); );
self.lhs = LinearCombination::zero(); self.lhs = LinearCombination::zero();
self.rhs = LinearCombination::zero(); self.rhs = LinearCombination::zero();
@ -48,9 +42,8 @@ impl<E: Engine, CS: ConstraintSystem<E>> MultiEq<E, CS> {
&mut self, &mut self,
num_bits: usize, num_bits: usize,
lhs: &LinearCombination<E>, lhs: &LinearCombination<E>,
rhs: &LinearCombination<E> rhs: &LinearCombination<E>,
) ) {
{
// Check if we will exceed the capacity // Check if we will exceed the capacity
if (E::Fr::CAPACITY as usize) <= (self.bits_used + num_bits) { if (E::Fr::CAPACITY as usize) <= (self.bits_used + num_bits) {
self.accumulate(); self.accumulate();
@ -68,67 +61,60 @@ impl<E: Engine, CS: ConstraintSystem<E>> MultiEq<E, CS> {
impl<E: Engine, CS: ConstraintSystem<E>> Drop for MultiEq<E, CS> { impl<E: Engine, CS: ConstraintSystem<E>> Drop for MultiEq<E, CS> {
fn drop(&mut self) { fn drop(&mut self) {
if self.bits_used > 0 { if self.bits_used > 0 {
self.accumulate(); self.accumulate();
} }
} }
} }
impl<E: Engine, CS: ConstraintSystem<E>> ConstraintSystem<E> for MultiEq<E, CS> impl<E: Engine, CS: ConstraintSystem<E>> ConstraintSystem<E> for MultiEq<E, CS> {
{
type Root = Self; type Root = Self;
fn one() -> Variable { fn one() -> Variable {
CS::one() CS::one()
} }
fn alloc<F, A, AR>( fn alloc<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
&mut self, where
annotation: A, F: FnOnce() -> Result<E::Fr, SynthesisError>,
f: F A: FnOnce() -> AR,
) -> Result<Variable, SynthesisError> AR: Into<String>,
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{ {
self.cs.alloc(annotation, f) self.cs.alloc(annotation, f)
} }
fn alloc_input<F, A, AR>( fn alloc_input<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
&mut self, where
annotation: A, F: FnOnce() -> Result<E::Fr, SynthesisError>,
f: F A: FnOnce() -> AR,
) -> Result<Variable, SynthesisError> AR: Into<String>,
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{ {
self.cs.alloc_input(annotation, f) self.cs.alloc_input(annotation, f)
} }
fn enforce<A, AR, LA, LB, LC>( fn enforce<A, AR, LA, LB, LC>(&mut self, annotation: A, a: LA, b: LB, c: LC)
&mut self, where
annotation: A, A: FnOnce() -> AR,
a: LA, AR: Into<String>,
b: LB, LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
c: LC LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
) LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
where A: FnOnce() -> AR, AR: Into<String>,
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
{ {
self.cs.enforce(annotation, a, b, c) self.cs.enforce(annotation, a, b, c)
} }
fn push_namespace<NR, N>(&mut self, name_fn: N) fn push_namespace<NR, N>(&mut self, name_fn: N)
where NR: Into<String>, N: FnOnce() -> NR where
NR: Into<String>,
N: FnOnce() -> NR,
{ {
self.cs.get_root().push_namespace(name_fn) self.cs.get_root().push_namespace(name_fn)
} }
fn pop_namespace(&mut self) fn pop_namespace(&mut self) {
{
self.cs.get_root().pop_namespace() self.cs.get_root().pop_namespace()
} }
fn get_root(&mut self) -> &mut Self::Root fn get_root(&mut self) -> &mut Self::Root {
{
self self
} }
} }

View File

@ -1,20 +1,18 @@
use ff::{Field, PrimeField}; use super::boolean::Boolean;
use pairing::Engine;
use crate::{ConstraintSystem, SynthesisError};
use super::boolean::{Boolean};
use super::num::Num; use super::num::Num;
use super::Assignment; use super::Assignment;
use crate::{ConstraintSystem, SynthesisError};
use ff::{Field, PrimeField};
use pairing::Engine;
/// Takes a sequence of booleans and exposes them as compact /// Takes a sequence of booleans and exposes them as compact
/// public inputs /// public inputs
pub fn pack_into_inputs<E, CS>( pub fn pack_into_inputs<E, CS>(mut cs: CS, bits: &[Boolean]) -> Result<(), SynthesisError>
mut cs: CS, where
bits: &[Boolean] E: Engine,
) -> Result<(), SynthesisError> CS: ConstraintSystem<E>,
where E: Engine, CS: ConstraintSystem<E>
{ {
for (i, bits) in bits.chunks(E::Fr::CAPACITY as usize).enumerate() for (i, bits) in bits.chunks(E::Fr::CAPACITY as usize).enumerate() {
{
let mut num = Num::<E>::zero(); let mut num = Num::<E>::zero();
let mut coeff = E::Fr::one(); let mut coeff = E::Fr::one();
for bit in bits { for bit in bits {
@ -23,44 +21,38 @@ pub fn pack_into_inputs<E, CS>(
coeff.double(); coeff.double();
} }
let input = cs.alloc_input(|| format!("input {}", i), || { let input = cs.alloc_input(|| format!("input {}", i), || Ok(*num.get_value().get()?))?;
Ok(*num.get_value().get()?)
})?;
// num * 1 = input // num * 1 = input
cs.enforce( cs.enforce(
|| format!("packing constraint {}", i), || format!("packing constraint {}", i),
|_| num.lc(E::Fr::one()), |_| num.lc(E::Fr::one()),
|lc| lc + CS::one(), |lc| lc + CS::one(),
|lc| lc + input |lc| lc + input,
); );
} }
Ok(()) Ok(())
} }
pub fn bytes_to_bits(bytes: &[u8]) -> Vec<bool> pub fn bytes_to_bits(bytes: &[u8]) -> Vec<bool> {
{ bytes
bytes.iter() .iter()
.flat_map(|&v| (0..8).rev().map(move |i| (v >> i) & 1 == 1)) .flat_map(|&v| (0..8).rev().map(move |i| (v >> i) & 1 == 1))
.collect() .collect()
} }
pub fn bytes_to_bits_le(bytes: &[u8]) -> Vec<bool> pub fn bytes_to_bits_le(bytes: &[u8]) -> Vec<bool> {
{ bytes
bytes.iter() .iter()
.flat_map(|&v| (0..8).map(move |i| (v >> i) & 1 == 1)) .flat_map(|&v| (0..8).map(move |i| (v >> i) & 1 == 1))
.collect() .collect()
} }
pub fn compute_multipacking<E: Engine>( pub fn compute_multipacking<E: Engine>(bits: &[bool]) -> Vec<E::Fr> {
bits: &[bool]
) -> Vec<E::Fr>
{
let mut result = vec![]; let mut result = vec![];
for bits in bits.chunks(E::Fr::CAPACITY as usize) for bits in bits.chunks(E::Fr::CAPACITY as usize) {
{
let mut cur = E::Fr::zero(); let mut cur = E::Fr::zero();
let mut coeff = E::Fr::one(); let mut coeff = E::Fr::one();
@ -80,13 +72,13 @@ pub fn compute_multipacking<E: Engine>(
#[test] #[test]
fn test_multipacking() { fn test_multipacking() {
use crate::{ConstraintSystem}; use crate::ConstraintSystem;
use pairing::bls12_381::{Bls12}; use pairing::bls12_381::Bls12;
use rand_core::{RngCore, SeedableRng}; use rand_core::{RngCore, SeedableRng};
use rand_xorshift::XorShiftRng; use rand_xorshift::XorShiftRng;
use crate::gadgets::test::*;
use super::boolean::{AllocatedBit, Boolean}; use super::boolean::{AllocatedBit, Boolean};
use crate::gadgets::test::*;
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x3d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x3d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
@ -98,16 +90,15 @@ fn test_multipacking() {
let bits: Vec<bool> = (0..num_bits).map(|_| rng.next_u32() % 2 != 0).collect(); let bits: Vec<bool> = (0..num_bits).map(|_| rng.next_u32() % 2 != 0).collect();
let circuit_bits = bits.iter().enumerate() let circuit_bits = bits
.map(|(i, &b)| { .iter()
Boolean::from( .enumerate()
AllocatedBit::alloc( .map(|(i, &b)| {
cs.namespace(|| format!("bit {}", i)), Boolean::from(
Some(b) AllocatedBit::alloc(cs.namespace(|| format!("bit {}", i)), Some(b)).unwrap(),
).unwrap() )
) })
}) .collect::<Vec<_>>();
.collect::<Vec<_>>();
let expected_inputs = compute_multipacking::<Bls12>(&bits); let expected_inputs = compute_multipacking::<Bls12>(&bits);

View File

@ -1,78 +1,61 @@
use ff::{BitIterator, Field, PrimeField, PrimeFieldRepr}; use ff::{BitIterator, Field, PrimeField, PrimeFieldRepr};
use pairing::Engine; use pairing::Engine;
use crate::{ use crate::{ConstraintSystem, LinearCombination, SynthesisError, Variable};
SynthesisError,
ConstraintSystem,
LinearCombination,
Variable
};
use super::{ use super::Assignment;
Assignment
};
use super::boolean::{ use super::boolean::{self, AllocatedBit, Boolean};
self,
Boolean,
AllocatedBit
};
pub struct AllocatedNum<E: Engine> { pub struct AllocatedNum<E: Engine> {
value: Option<E::Fr>, value: Option<E::Fr>,
variable: Variable variable: Variable,
} }
impl<E: Engine> Clone for AllocatedNum<E> { impl<E: Engine> Clone for AllocatedNum<E> {
fn clone(&self) -> Self { fn clone(&self) -> Self {
AllocatedNum { AllocatedNum {
value: self.value, value: self.value,
variable: self.variable variable: self.variable,
} }
} }
} }
impl<E: Engine> AllocatedNum<E> { impl<E: Engine> AllocatedNum<E> {
pub fn alloc<CS, F>( pub fn alloc<CS, F>(mut cs: CS, value: F) -> Result<Self, SynthesisError>
mut cs: CS, where
value: F, CS: ConstraintSystem<E>,
) -> Result<Self, SynthesisError> F: FnOnce() -> Result<E::Fr, SynthesisError>,
where CS: ConstraintSystem<E>,
F: FnOnce() -> Result<E::Fr, SynthesisError>
{ {
let mut new_value = None; let mut new_value = None;
let var = cs.alloc(|| "num", || { let var = cs.alloc(
let tmp = value()?; || "num",
|| {
let tmp = value()?;
new_value = Some(tmp); new_value = Some(tmp);
Ok(tmp) Ok(tmp)
})?; },
)?;
Ok(AllocatedNum { Ok(AllocatedNum {
value: new_value, value: new_value,
variable: var variable: var,
}) })
} }
pub fn inputize<CS>( pub fn inputize<CS>(&self, mut cs: CS) -> Result<(), SynthesisError>
&self, where
mut cs: CS CS: ConstraintSystem<E>,
) -> Result<(), SynthesisError>
where CS: ConstraintSystem<E>
{ {
let input = cs.alloc_input( let input = cs.alloc_input(|| "input variable", || Ok(*self.value.get()?))?;
|| "input variable",
|| {
Ok(*self.value.get()?)
}
)?;
cs.enforce( cs.enforce(
|| "enforce input is correct", || "enforce input is correct",
|lc| lc + input, |lc| lc + input,
|lc| lc + CS::one(), |lc| lc + CS::one(),
|lc| lc + self.variable |lc| lc + self.variable,
); );
Ok(()) Ok(())
@ -83,18 +66,17 @@ impl<E: Engine> AllocatedNum<E> {
/// order, requiring that the representation /// order, requiring that the representation
/// strictly exists "in the field" (i.e., a /// strictly exists "in the field" (i.e., a
/// congruency is not allowed.) /// congruency is not allowed.)
pub fn into_bits_le_strict<CS>( pub fn into_bits_le_strict<CS>(&self, mut cs: CS) -> Result<Vec<Boolean>, SynthesisError>
&self, where
mut cs: CS CS: ConstraintSystem<E>,
) -> Result<Vec<Boolean>, SynthesisError>
where CS: ConstraintSystem<E>
{ {
pub fn kary_and<E, CS>( pub fn kary_and<E, CS>(
mut cs: CS, mut cs: CS,
v: &[AllocatedBit] v: &[AllocatedBit],
) -> Result<AllocatedBit, SynthesisError> ) -> Result<AllocatedBit, SynthesisError>
where E: Engine, where
CS: ConstraintSystem<E> E: Engine,
CS: ConstraintSystem<E>,
{ {
assert!(v.len() > 0); assert!(v.len() > 0);
@ -109,7 +91,7 @@ impl<E: Engine> AllocatedNum<E> {
cur = Some(AllocatedBit::and( cur = Some(AllocatedBit::and(
cs.namespace(|| format!("and {}", i)), cs.namespace(|| format!("and {}", i)),
cur.as_ref().unwrap(), cur.as_ref().unwrap(),
v v,
)?); )?);
} }
} }
@ -145,10 +127,7 @@ impl<E: Engine> AllocatedNum<E> {
if b { if b {
// This is part of a run of ones. Let's just // This is part of a run of ones. Let's just
// allocate the boolean with the expected value. // allocate the boolean with the expected value.
let a_bit = AllocatedBit::alloc( let a_bit = AllocatedBit::alloc(cs.namespace(|| format!("bit {}", i)), a_bit)?;
cs.namespace(|| format!("bit {}", i)),
a_bit
)?;
// ... and add it to the current run of ones. // ... and add it to the current run of ones.
current_run.push(a_bit.clone()); current_run.push(a_bit.clone());
result.push(a_bit); result.push(a_bit);
@ -162,7 +141,7 @@ impl<E: Engine> AllocatedNum<E> {
} }
last_run = Some(kary_and( last_run = Some(kary_and(
cs.namespace(|| format!("run ending at {}", i)), cs.namespace(|| format!("run ending at {}", i)),
&current_run &current_run,
)?); )?);
current_run.truncate(0); current_run.truncate(0);
} }
@ -175,7 +154,7 @@ impl<E: Engine> AllocatedNum<E> {
let a_bit = AllocatedBit::alloc_conditionally( let a_bit = AllocatedBit::alloc_conditionally(
cs.namespace(|| format!("bit {}", i)), cs.namespace(|| format!("bit {}", i)),
a_bit, a_bit,
&last_run.as_ref().expect("char always starts with a one") &last_run.as_ref().expect("char always starts with a one"),
)?; )?;
result.push(a_bit); result.push(a_bit);
} }
@ -201,12 +180,7 @@ impl<E: Engine> AllocatedNum<E> {
lc = lc - self.variable; lc = lc - self.variable;
cs.enforce( cs.enforce(|| "unpacking constraint", |lc| lc, |lc| lc, |_| lc);
|| "unpacking constraint",
|lc| lc,
|lc| lc,
|_| lc
);
// Convert into booleans, and reverse for little-endian bit order // Convert into booleans, and reverse for little-endian bit order
Ok(result.into_iter().map(|b| Boolean::from(b)).rev().collect()) Ok(result.into_iter().map(|b| Boolean::from(b)).rev().collect())
@ -215,16 +189,11 @@ impl<E: Engine> AllocatedNum<E> {
/// Convert the allocated number into its little-endian representation. /// Convert the allocated number into its little-endian representation.
/// Note that this does not strongly enforce that the commitment is /// Note that this does not strongly enforce that the commitment is
/// "in the field." /// "in the field."
pub fn into_bits_le<CS>( pub fn into_bits_le<CS>(&self, mut cs: CS) -> Result<Vec<Boolean>, SynthesisError>
&self, where
mut cs: CS CS: ConstraintSystem<E>,
) -> Result<Vec<Boolean>, SynthesisError>
where CS: ConstraintSystem<E>
{ {
let bits = boolean::field_into_allocated_bits_le( let bits = boolean::field_into_allocated_bits_le(&mut cs, self.value)?;
&mut cs,
self.value
)?;
let mut lc = LinearCombination::zero(); let mut lc = LinearCombination::zero();
let mut coeff = E::Fr::one(); let mut coeff = E::Fr::one();
@ -237,94 +206,91 @@ impl<E: Engine> AllocatedNum<E> {
lc = lc - self.variable; lc = lc - self.variable;
cs.enforce( cs.enforce(|| "unpacking constraint", |lc| lc, |lc| lc, |_| lc);
|| "unpacking constraint",
|lc| lc,
|lc| lc,
|_| lc
);
Ok(bits.into_iter().map(|b| Boolean::from(b)).collect()) Ok(bits.into_iter().map(|b| Boolean::from(b)).collect())
} }
pub fn mul<CS>( pub fn mul<CS>(&self, mut cs: CS, other: &Self) -> Result<Self, SynthesisError>
&self, where
mut cs: CS, CS: ConstraintSystem<E>,
other: &Self
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E>
{ {
let mut value = None; let mut value = None;
let var = cs.alloc(|| "product num", || { let var = cs.alloc(
let mut tmp = *self.value.get()?; || "product num",
tmp.mul_assign(other.value.get()?); || {
let mut tmp = *self.value.get()?;
tmp.mul_assign(other.value.get()?);
value = Some(tmp); value = Some(tmp);
Ok(tmp) Ok(tmp)
})?; },
)?;
// Constrain: a * b = ab // Constrain: a * b = ab
cs.enforce( cs.enforce(
|| "multiplication constraint", || "multiplication constraint",
|lc| lc + self.variable, |lc| lc + self.variable,
|lc| lc + other.variable, |lc| lc + other.variable,
|lc| lc + var |lc| lc + var,
); );
Ok(AllocatedNum { Ok(AllocatedNum {
value: value, value: value,
variable: var variable: var,
}) })
} }
pub fn square<CS>( pub fn square<CS>(&self, mut cs: CS) -> Result<Self, SynthesisError>
&self, where
mut cs: CS CS: ConstraintSystem<E>,
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E>
{ {
let mut value = None; let mut value = None;
let var = cs.alloc(|| "squared num", || { let var = cs.alloc(
let mut tmp = *self.value.get()?; || "squared num",
tmp.square(); || {
let mut tmp = *self.value.get()?;
tmp.square();
value = Some(tmp); value = Some(tmp);
Ok(tmp) Ok(tmp)
})?; },
)?;
// Constrain: a * a = aa // Constrain: a * a = aa
cs.enforce( cs.enforce(
|| "squaring constraint", || "squaring constraint",
|lc| lc + self.variable, |lc| lc + self.variable,
|lc| lc + self.variable, |lc| lc + self.variable,
|lc| lc + var |lc| lc + var,
); );
Ok(AllocatedNum { Ok(AllocatedNum {
value: value, value: value,
variable: var variable: var,
}) })
} }
pub fn assert_nonzero<CS>( pub fn assert_nonzero<CS>(&self, mut cs: CS) -> Result<(), SynthesisError>
&self, where
mut cs: CS CS: ConstraintSystem<E>,
) -> Result<(), SynthesisError>
where CS: ConstraintSystem<E>
{ {
let inv = cs.alloc(|| "ephemeral inverse", || { let inv = cs.alloc(
let tmp = *self.value.get()?; || "ephemeral inverse",
|| {
if tmp.is_zero() { let tmp = *self.value.get()?;
Err(SynthesisError::DivisionByZero)
} else { if tmp.is_zero() {
Ok(tmp.inverse().unwrap()) Err(SynthesisError::DivisionByZero)
} } else {
})?; Ok(tmp.inverse().unwrap())
}
},
)?;
// Constrain a * inv = 1, which is only valid // Constrain a * inv = 1, which is only valid
// iff a has a multiplicative inverse, untrue // iff a has a multiplicative inverse, untrue
@ -333,7 +299,7 @@ impl<E: Engine> AllocatedNum<E> {
|| "nonzero assertion constraint", || "nonzero assertion constraint",
|lc| lc + self.variable, |lc| lc + self.variable,
|lc| lc + inv, |lc| lc + inv,
|lc| lc + CS::one() |lc| lc + CS::one(),
); );
Ok(()) Ok(())
@ -346,44 +312,39 @@ impl<E: Engine> AllocatedNum<E> {
mut cs: CS, mut cs: CS,
a: &Self, a: &Self,
b: &Self, b: &Self,
condition: &Boolean condition: &Boolean,
) -> Result<(Self, Self), SynthesisError> ) -> Result<(Self, Self), SynthesisError>
where CS: ConstraintSystem<E> where
CS: ConstraintSystem<E>,
{ {
let c = Self::alloc( let c = Self::alloc(cs.namespace(|| "conditional reversal result 1"), || {
cs.namespace(|| "conditional reversal result 1"), if *condition.get_value().get()? {
|| { Ok(*b.value.get()?)
if *condition.get_value().get()? { } else {
Ok(*b.value.get()?) Ok(*a.value.get()?)
} else {
Ok(*a.value.get()?)
}
} }
)?; })?;
cs.enforce( cs.enforce(
|| "first conditional reversal", || "first conditional reversal",
|lc| lc + a.variable - b.variable, |lc| lc + a.variable - b.variable,
|_| condition.lc(CS::one(), E::Fr::one()), |_| condition.lc(CS::one(), E::Fr::one()),
|lc| lc + a.variable - c.variable |lc| lc + a.variable - c.variable,
); );
let d = Self::alloc( let d = Self::alloc(cs.namespace(|| "conditional reversal result 2"), || {
cs.namespace(|| "conditional reversal result 2"), if *condition.get_value().get()? {
|| { Ok(*a.value.get()?)
if *condition.get_value().get()? { } else {
Ok(*a.value.get()?) Ok(*b.value.get()?)
} else {
Ok(*b.value.get()?)
}
} }
)?; })?;
cs.enforce( cs.enforce(
|| "second conditional reversal", || "second conditional reversal",
|lc| lc + b.variable - a.variable, |lc| lc + b.variable - a.variable,
|_| condition.lc(CS::one(), E::Fr::one()), |_| condition.lc(CS::one(), E::Fr::one()),
|lc| lc + b.variable - d.variable |lc| lc + b.variable - d.variable,
); );
Ok((c, d)) Ok((c, d))
@ -400,14 +361,14 @@ impl<E: Engine> AllocatedNum<E> {
pub struct Num<E: Engine> { pub struct Num<E: Engine> {
value: Option<E::Fr>, value: Option<E::Fr>,
lc: LinearCombination<E> lc: LinearCombination<E>,
} }
impl<E: Engine> From<AllocatedNum<E>> for Num<E> { impl<E: Engine> From<AllocatedNum<E>> for Num<E> {
fn from(num: AllocatedNum<E>) -> Num<E> { fn from(num: AllocatedNum<E>) -> Num<E> {
Num { Num {
value: num.value, value: num.value,
lc: LinearCombination::<E>::zero() + num.variable lc: LinearCombination::<E>::zero() + num.variable,
} }
} }
} }
@ -416,7 +377,7 @@ impl<E: Engine> Num<E> {
pub fn zero() -> Self { pub fn zero() -> Self {
Num { Num {
value: Some(E::Fr::zero()), value: Some(E::Fr::zero()),
lc: LinearCombination::zero() lc: LinearCombination::zero(),
} }
} }
@ -428,13 +389,7 @@ impl<E: Engine> Num<E> {
LinearCombination::zero() + (coeff, &self.lc) LinearCombination::zero() + (coeff, &self.lc)
} }
pub fn add_bool_with_coeff( pub fn add_bool_with_coeff(self, one: Variable, bit: &Boolean, coeff: E::Fr) -> Self {
self,
one: Variable,
bit: &Boolean,
coeff: E::Fr
) -> Self
{
let newval = match (self.value, bit.get_value()) { let newval = match (self.value, bit.get_value()) {
(Some(mut curval), Some(bval)) => { (Some(mut curval), Some(bval)) => {
if bval { if bval {
@ -442,27 +397,27 @@ impl<E: Engine> Num<E> {
} }
Some(curval) Some(curval)
}, }
_ => None _ => None,
}; };
Num { Num {
value: newval, value: newval,
lc: self.lc + &bit.lc(one, coeff) lc: self.lc + &bit.lc(one, coeff),
} }
} }
} }
#[cfg(test)] #[cfg(test)]
mod test { mod test {
use crate::{ConstraintSystem}; use crate::ConstraintSystem;
use ff::{BitIterator, Field, PrimeField}; use ff::{BitIterator, Field, PrimeField};
use pairing::bls12_381::{Bls12, Fr}; use pairing::bls12_381::{Bls12, Fr};
use rand_core::SeedableRng; use rand_core::SeedableRng;
use rand_xorshift::XorShiftRng; use rand_xorshift::XorShiftRng;
use crate::gadgets::test::*;
use super::{AllocatedNum, Boolean}; use super::{AllocatedNum, Boolean};
use crate::gadgets::test::*;
#[test] #[test]
fn test_allocated_num() { fn test_allocated_num() {
@ -491,8 +446,10 @@ mod test {
fn test_num_multiplication() { fn test_num_multiplication() {
let mut cs = TestConstraintSystem::<Bls12>::new(); let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::from_str("12").unwrap())).unwrap(); let n =
let n2 = AllocatedNum::alloc(cs.namespace(|| "b"), || Ok(Fr::from_str("10").unwrap())).unwrap(); AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::from_str("12").unwrap())).unwrap();
let n2 =
AllocatedNum::alloc(cs.namespace(|| "b"), || Ok(Fr::from_str("10").unwrap())).unwrap();
let n3 = n.mul(&mut cs, &n2).unwrap(); let n3 = n.mul(&mut cs, &n2).unwrap();
assert!(cs.is_satisfied()); assert!(cs.is_satisfied());
@ -505,8 +462,8 @@ mod test {
#[test] #[test]
fn test_num_conditional_reversal() { fn test_num_conditional_reversal() {
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x3d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x3d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
{ {
let mut cs = TestConstraintSystem::<Bls12>::new(); let mut cs = TestConstraintSystem::<Bls12>::new();
@ -573,14 +530,17 @@ mod test {
cs.set("bit 254/boolean", Fr::one()); cs.set("bit 254/boolean", Fr::one());
// this makes the conditional boolean constraint fail // this makes the conditional boolean constraint fail
assert_eq!(cs.which_is_unsatisfied().unwrap(), "bit 254/boolean constraint"); assert_eq!(
cs.which_is_unsatisfied().unwrap(),
"bit 254/boolean constraint"
);
} }
#[test] #[test]
fn test_into_bits() { fn test_into_bits() {
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x3d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x3d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
for i in 0..200 { for i in 0..200 {
@ -597,7 +557,10 @@ mod test {
assert!(cs.is_satisfied()); assert!(cs.is_satisfied());
for (b, a) in BitIterator::new(r.into_repr()).skip(1).zip(bits.iter().rev()) { for (b, a) in BitIterator::new(r.into_repr())
.skip(1)
.zip(bits.iter().rev())
{
if let &Boolean::Is(ref a) = a { if let &Boolean::Is(ref a) = a {
assert_eq!(b, a.get_value().unwrap()); assert_eq!(b, a.get_value().unwrap());
} else { } else {

View File

@ -1,6 +1,6 @@
use super::uint32::UInt32;
use super::multieq::MultiEq;
use super::boolean::Boolean; use super::boolean::Boolean;
use super::multieq::MultiEq;
use super::uint32::UInt32;
use crate::{ConstraintSystem, SynthesisError}; use crate::{ConstraintSystem, SynthesisError};
use pairing::Engine; use pairing::Engine;
@ -12,37 +12,35 @@ const ROUND_CONSTANTS: [u32; 64] = [
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
]; ];
const IV: [u32; 8] = [ const IV: [u32; 8] = [
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
]; ];
pub fn sha256_block_no_padding<E, CS>( pub fn sha256_block_no_padding<E, CS>(
mut cs: CS, mut cs: CS,
input: &[Boolean] input: &[Boolean],
) -> Result<Vec<Boolean>, SynthesisError> ) -> Result<Vec<Boolean>, SynthesisError>
where E: Engine, CS: ConstraintSystem<E> where
E: Engine,
CS: ConstraintSystem<E>,
{ {
assert_eq!(input.len(), 512); assert_eq!(input.len(), 512);
Ok(sha256_compression_function( Ok(
&mut cs, sha256_compression_function(&mut cs, &input, &get_sha256_iv())?
&input, .into_iter()
&get_sha256_iv() .flat_map(|e| e.into_bits_be())
)? .collect(),
.into_iter() )
.flat_map(|e| e.into_bits_be())
.collect())
} }
pub fn sha256<E, CS>( pub fn sha256<E, CS>(mut cs: CS, input: &[Boolean]) -> Result<Vec<Boolean>, SynthesisError>
mut cs: CS, where
input: &[Boolean] E: Engine,
) -> Result<Vec<Boolean>, SynthesisError> CS: ConstraintSystem<E>,
where E: Engine, CS: ConstraintSystem<E>
{ {
assert!(input.len() % 8 == 0); assert!(input.len() % 8 == 0);
@ -62,16 +60,10 @@ pub fn sha256<E, CS>(
let mut cur = get_sha256_iv(); let mut cur = get_sha256_iv();
for (i, block) in padded.chunks(512).enumerate() { for (i, block) in padded.chunks(512).enumerate() {
cur = sha256_compression_function( cur = sha256_compression_function(cs.namespace(|| format!("block {}", i)), block, &cur)?;
cs.namespace(|| format!("block {}", i)),
block,
&cur
)?;
} }
Ok(cur.into_iter() Ok(cur.into_iter().flat_map(|e| e.into_bits_be()).collect())
.flat_map(|e| e.into_bits_be())
.collect())
} }
fn get_sha256_iv() -> Vec<UInt32> { fn get_sha256_iv() -> Vec<UInt32> {
@ -81,16 +73,19 @@ fn get_sha256_iv() -> Vec<UInt32> {
fn sha256_compression_function<E, CS>( fn sha256_compression_function<E, CS>(
cs: CS, cs: CS,
input: &[Boolean], input: &[Boolean],
current_hash_value: &[UInt32] current_hash_value: &[UInt32],
) -> Result<Vec<UInt32>, SynthesisError> ) -> Result<Vec<UInt32>, SynthesisError>
where E: Engine, CS: ConstraintSystem<E> where
E: Engine,
CS: ConstraintSystem<E>,
{ {
assert_eq!(input.len(), 512); assert_eq!(input.len(), 512);
assert_eq!(current_hash_value.len(), 8); assert_eq!(current_hash_value.len(), 8);
let mut w = input.chunks(32) let mut w = input
.map(|e| UInt32::from_bits_be(e)) .chunks(32)
.collect::<Vec<_>>(); .map(|e| UInt32::from_bits_be(e))
.collect::<Vec<_>>();
// We can save some constraints by combining some of // We can save some constraints by combining some of
// the constraints in different u32 additions // the constraints in different u32 additions
@ -100,30 +95,18 @@ fn sha256_compression_function<E, CS>(
let cs = &mut cs.namespace(|| format!("w extension {}", i)); let cs = &mut cs.namespace(|| format!("w extension {}", i));
// s0 := (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18) xor (w[i-15] rightshift 3) // s0 := (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18) xor (w[i-15] rightshift 3)
let mut s0 = w[i-15].rotr(7); let mut s0 = w[i - 15].rotr(7);
s0 = s0.xor( s0 = s0.xor(cs.namespace(|| "first xor for s0"), &w[i - 15].rotr(18))?;
cs.namespace(|| "first xor for s0"), s0 = s0.xor(cs.namespace(|| "second xor for s0"), &w[i - 15].shr(3))?;
&w[i-15].rotr(18)
)?;
s0 = s0.xor(
cs.namespace(|| "second xor for s0"),
&w[i-15].shr(3)
)?;
// s1 := (w[i-2] rightrotate 17) xor (w[i-2] rightrotate 19) xor (w[i-2] rightshift 10) // s1 := (w[i-2] rightrotate 17) xor (w[i-2] rightrotate 19) xor (w[i-2] rightshift 10)
let mut s1 = w[i-2].rotr(17); let mut s1 = w[i - 2].rotr(17);
s1 = s1.xor( s1 = s1.xor(cs.namespace(|| "first xor for s1"), &w[i - 2].rotr(19))?;
cs.namespace(|| "first xor for s1"), s1 = s1.xor(cs.namespace(|| "second xor for s1"), &w[i - 2].shr(10))?;
&w[i-2].rotr(19)
)?;
s1 = s1.xor(
cs.namespace(|| "second xor for s1"),
&w[i-2].shr(10)
)?;
let tmp = UInt32::addmany( let tmp = UInt32::addmany(
cs.namespace(|| "computation of w[i]"), cs.namespace(|| "computation of w[i]"),
&[w[i-16].clone(), s0, w[i-7].clone(), s1] &[w[i - 16].clone(), s0, w[i - 7].clone(), s1],
)?; )?;
// w[i] := w[i-16] + s0 + w[i-7] + s1 // w[i] := w[i-16] + s0 + w[i-7] + s1
@ -134,29 +117,21 @@ fn sha256_compression_function<E, CS>(
enum Maybe { enum Maybe {
Deferred(Vec<UInt32>), Deferred(Vec<UInt32>),
Concrete(UInt32) Concrete(UInt32),
} }
impl Maybe { impl Maybe {
fn compute<E, CS, M>( fn compute<E, CS, M>(self, cs: M, others: &[UInt32]) -> Result<UInt32, SynthesisError>
self, where
cs: M, E: Engine,
others: &[UInt32] CS: ConstraintSystem<E>,
) -> Result<UInt32, SynthesisError> M: ConstraintSystem<E, Root = MultiEq<E, CS>>,
where E: Engine,
CS: ConstraintSystem<E>,
M: ConstraintSystem<E, Root=MultiEq<E, CS>>
{ {
Ok(match self { Ok(match self {
Maybe::Concrete(ref v) => { Maybe::Concrete(ref v) => return Ok(v.clone()),
return Ok(v.clone())
},
Maybe::Deferred(mut v) => { Maybe::Deferred(mut v) => {
v.extend(others.into_iter().cloned()); v.extend(others.into_iter().cloned());
UInt32::addmany( UInt32::addmany(cs, &v)?
cs,
&v
)?
} }
}) })
} }
@ -177,22 +152,11 @@ fn sha256_compression_function<E, CS>(
// S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25) // S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25)
let new_e = e.compute(cs.namespace(|| "deferred e computation"), &[])?; let new_e = e.compute(cs.namespace(|| "deferred e computation"), &[])?;
let mut s1 = new_e.rotr(6); let mut s1 = new_e.rotr(6);
s1 = s1.xor( s1 = s1.xor(cs.namespace(|| "first xor for s1"), &new_e.rotr(11))?;
cs.namespace(|| "first xor for s1"), s1 = s1.xor(cs.namespace(|| "second xor for s1"), &new_e.rotr(25))?;
&new_e.rotr(11)
)?;
s1 = s1.xor(
cs.namespace(|| "second xor for s1"),
&new_e.rotr(25)
)?;
// ch := (e and f) xor ((not e) and g) // ch := (e and f) xor ((not e) and g)
let ch = UInt32::sha256_ch( let ch = UInt32::sha256_ch(cs.namespace(|| "ch"), &new_e, &f, &g)?;
cs.namespace(|| "ch"),
&new_e,
&f,
&g
)?;
// temp1 := h + S1 + ch + k[i] + w[i] // temp1 := h + S1 + ch + k[i] + w[i]
let temp1 = vec![ let temp1 = vec![
@ -200,28 +164,17 @@ fn sha256_compression_function<E, CS>(
s1, s1,
ch, ch,
UInt32::constant(ROUND_CONSTANTS[i]), UInt32::constant(ROUND_CONSTANTS[i]),
w[i].clone() w[i].clone(),
]; ];
// S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22) // S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22)
let new_a = a.compute(cs.namespace(|| "deferred a computation"), &[])?; let new_a = a.compute(cs.namespace(|| "deferred a computation"), &[])?;
let mut s0 = new_a.rotr(2); let mut s0 = new_a.rotr(2);
s0 = s0.xor( s0 = s0.xor(cs.namespace(|| "first xor for s0"), &new_a.rotr(13))?;
cs.namespace(|| "first xor for s0"), s0 = s0.xor(cs.namespace(|| "second xor for s0"), &new_a.rotr(22))?;
&new_a.rotr(13)
)?;
s0 = s0.xor(
cs.namespace(|| "second xor for s0"),
&new_a.rotr(22)
)?;
// maj := (a and b) xor (a and c) xor (b and c) // maj := (a and b) xor (a and c) xor (b and c)
let maj = UInt32::sha256_maj( let maj = UInt32::sha256_maj(cs.namespace(|| "maj"), &new_a, &b, &c)?;
cs.namespace(|| "maj"),
&new_a,
&b,
&c
)?;
// temp2 := S0 + maj // temp2 := S0 + maj
let temp2 = vec![s0, maj]; let temp2 = vec![s0, maj];
@ -244,7 +197,13 @@ fn sha256_compression_function<E, CS>(
d = c; d = c;
c = b; c = b;
b = new_a; b = new_a;
a = Maybe::Deferred(temp1.iter().cloned().chain(temp2.iter().cloned()).collect::<Vec<_>>()); a = Maybe::Deferred(
temp1
.iter()
.cloned()
.chain(temp2.iter().cloned())
.collect::<Vec<_>>(),
);
} }
/* /*
@ -261,42 +220,42 @@ fn sha256_compression_function<E, CS>(
let h0 = a.compute( let h0 = a.compute(
cs.namespace(|| "deferred h0 computation"), cs.namespace(|| "deferred h0 computation"),
&[current_hash_value[0].clone()] &[current_hash_value[0].clone()],
)?; )?;
let h1 = UInt32::addmany( let h1 = UInt32::addmany(
cs.namespace(|| "new h1"), cs.namespace(|| "new h1"),
&[current_hash_value[1].clone(), b] &[current_hash_value[1].clone(), b],
)?; )?;
let h2 = UInt32::addmany( let h2 = UInt32::addmany(
cs.namespace(|| "new h2"), cs.namespace(|| "new h2"),
&[current_hash_value[2].clone(), c] &[current_hash_value[2].clone(), c],
)?; )?;
let h3 = UInt32::addmany( let h3 = UInt32::addmany(
cs.namespace(|| "new h3"), cs.namespace(|| "new h3"),
&[current_hash_value[3].clone(), d] &[current_hash_value[3].clone(), d],
)?; )?;
let h4 = e.compute( let h4 = e.compute(
cs.namespace(|| "deferred h4 computation"), cs.namespace(|| "deferred h4 computation"),
&[current_hash_value[4].clone()] &[current_hash_value[4].clone()],
)?; )?;
let h5 = UInt32::addmany( let h5 = UInt32::addmany(
cs.namespace(|| "new h5"), cs.namespace(|| "new h5"),
&[current_hash_value[5].clone(), f] &[current_hash_value[5].clone(), f],
)?; )?;
let h6 = UInt32::addmany( let h6 = UInt32::addmany(
cs.namespace(|| "new h6"), cs.namespace(|| "new h6"),
&[current_hash_value[6].clone(), g] &[current_hash_value[6].clone(), g],
)?; )?;
let h7 = UInt32::addmany( let h7 = UInt32::addmany(
cs.namespace(|| "new h7"), cs.namespace(|| "new h7"),
&[current_hash_value[7].clone(), h] &[current_hash_value[7].clone(), h],
)?; )?;
Ok(vec![h0, h1, h2, h3, h4, h5, h6, h7]) Ok(vec![h0, h1, h2, h3, h4, h5, h6, h7])
@ -306,8 +265,8 @@ fn sha256_compression_function<E, CS>(
mod test { mod test {
use super::*; use super::*;
use crate::gadgets::boolean::AllocatedBit; use crate::gadgets::boolean::AllocatedBit;
use pairing::bls12_381::Bls12;
use crate::gadgets::test::TestConstraintSystem; use crate::gadgets::test::TestConstraintSystem;
use pairing::bls12_381::Bls12;
use rand_core::{RngCore, SeedableRng}; use rand_core::{RngCore, SeedableRng};
use rand_xorshift::XorShiftRng; use rand_xorshift::XorShiftRng;
@ -318,11 +277,7 @@ mod test {
let mut cs = TestConstraintSystem::<Bls12>::new(); let mut cs = TestConstraintSystem::<Bls12>::new();
let mut input_bits: Vec<_> = (0..512).map(|_| Boolean::Constant(false)).collect(); let mut input_bits: Vec<_> = (0..512).map(|_| Boolean::Constant(false)).collect();
input_bits[0] = Boolean::Constant(true); input_bits[0] = Boolean::Constant(true);
let out = sha256_compression_function( let out = sha256_compression_function(&mut cs, &input_bits, &iv).unwrap();
&mut cs,
&input_bits,
&iv
).unwrap();
let out_bits: Vec<_> = out.into_iter().flat_map(|e| e.into_bits_be()).collect(); let out_bits: Vec<_> = out.into_iter().flat_map(|e| e.into_bits_be()).collect();
assert!(cs.is_satisfied()); assert!(cs.is_satisfied());
@ -343,27 +298,26 @@ mod test {
#[test] #[test]
fn test_full_block() { fn test_full_block() {
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x3d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x3d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
let iv = get_sha256_iv(); let iv = get_sha256_iv();
let mut cs = TestConstraintSystem::<Bls12>::new(); let mut cs = TestConstraintSystem::<Bls12>::new();
let input_bits: Vec<_> = (0..512).map(|i| { let input_bits: Vec<_> = (0..512)
Boolean::from( .map(|i| {
AllocatedBit::alloc( Boolean::from(
cs.namespace(|| format!("input bit {}", i)), AllocatedBit::alloc(
Some(rng.next_u32() % 2 != 0) cs.namespace(|| format!("input bit {}", i)),
).unwrap() Some(rng.next_u32() % 2 != 0),
) )
}).collect(); .unwrap(),
)
})
.collect();
sha256_compression_function( sha256_compression_function(cs.namespace(|| "sha256"), &input_bits, &iv).unwrap();
cs.namespace(|| "sha256"),
&input_bits,
&iv
).unwrap();
assert!(cs.is_satisfied()); assert!(cs.is_satisfied());
assert_eq!(cs.num_constraints() - 512, 25840); assert_eq!(cs.num_constraints() - 512, 25840);
@ -374,12 +328,11 @@ mod test {
use sha2::{Digest, Sha256}; use sha2::{Digest, Sha256};
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x3d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x3d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
for input_len in (0..32).chain((32..256).filter(|a| a % 8 == 0)) for input_len in (0..32).chain((32..256).filter(|a| a % 8 == 0)) {
{
let mut h = Sha256::new(); let mut h = Sha256::new();
let data: Vec<u8> = (0..input_len).map(|_| rng.next_u32() as u8).collect(); let data: Vec<u8> = (0..input_len).map(|_| rng.next_u32() as u8).collect();
h.input(&data); h.input(&data);
@ -392,7 +345,11 @@ mod test {
for bit_i in (0..8).rev() { for bit_i in (0..8).rev() {
let cs = cs.namespace(|| format!("input bit {} {}", byte_i, bit_i)); let cs = cs.namespace(|| format!("input bit {} {}", byte_i, bit_i));
input_bits.push(AllocatedBit::alloc(cs, Some((input_byte >> bit_i) & 1u8 == 1u8)).unwrap().into()); input_bits.push(
AllocatedBit::alloc(cs, Some((input_byte >> bit_i) & 1u8 == 1u8))
.unwrap()
.into(),
);
} }
} }
@ -400,17 +357,19 @@ mod test {
assert!(cs.is_satisfied()); assert!(cs.is_satisfied());
let mut s = hash_result.as_ref().iter() let mut s = hash_result
.flat_map(|&byte| (0..8).rev().map(move |i| (byte >> i) & 1u8 == 1u8)); .as_ref()
.iter()
.flat_map(|&byte| (0..8).rev().map(move |i| (byte >> i) & 1u8 == 1u8));
for b in r { for b in r {
match b { match b {
Boolean::Is(b) => { Boolean::Is(b) => {
assert!(s.next().unwrap() == b.get_value().unwrap()); assert!(s.next().unwrap() == b.get_value().unwrap());
}, }
Boolean::Not(b) => { Boolean::Not(b) => {
assert!(s.next().unwrap() != b.get_value().unwrap()); assert!(s.next().unwrap() != b.get_value().unwrap());
}, }
Boolean::Constant(b) => { Boolean::Constant(b) => {
assert!(input_len == 0); assert!(input_len == 0);
assert!(s.next().unwrap() == b); assert!(s.next().unwrap() == b);

View File

@ -1,13 +1,7 @@
use ff::{Field, PrimeField, PrimeFieldRepr}; use ff::{Field, PrimeField, PrimeFieldRepr};
use pairing::Engine; use pairing::Engine;
use crate::{ use crate::{ConstraintSystem, Index, LinearCombination, SynthesisError, Variable};
LinearCombination,
SynthesisError,
ConstraintSystem,
Variable,
Index
};
use std::collections::HashMap; use std::collections::HashMap;
use std::fmt::Write; use std::fmt::Write;
@ -22,7 +16,7 @@ use blake2s_simd::{Params as Blake2sParams, State as Blake2sState};
enum NamedObject { enum NamedObject {
Constraint(usize), Constraint(usize),
Var(Variable), Var(Variable),
Namespace Namespace,
} }
/// Constraint system for testing purposes. /// Constraint system for testing purposes.
@ -33,10 +27,10 @@ pub struct TestConstraintSystem<E: Engine> {
LinearCombination<E>, LinearCombination<E>,
LinearCombination<E>, LinearCombination<E>,
LinearCombination<E>, LinearCombination<E>,
String String,
)>, )>,
inputs: Vec<(E::Fr, String)>, inputs: Vec<(E::Fr, String)>,
aux: Vec<(E::Fr, String)> aux: Vec<(E::Fr, String)>,
} }
#[derive(Clone, Copy)] #[derive(Clone, Copy)]
@ -48,7 +42,7 @@ impl PartialEq for OrderedVariable {
match (self.0.get_unchecked(), other.0.get_unchecked()) { match (self.0.get_unchecked(), other.0.get_unchecked()) {
(Index::Input(ref a), Index::Input(ref b)) => a == b, (Index::Input(ref a), Index::Input(ref b)) => a == b,
(Index::Aux(ref a), Index::Aux(ref b)) => a == b, (Index::Aux(ref a), Index::Aux(ref b)) => a == b,
_ => false _ => false,
} }
} }
} }
@ -63,20 +57,17 @@ impl Ord for OrderedVariable {
(Index::Input(ref a), Index::Input(ref b)) => a.cmp(b), (Index::Input(ref a), Index::Input(ref b)) => a.cmp(b),
(Index::Aux(ref a), Index::Aux(ref b)) => a.cmp(b), (Index::Aux(ref a), Index::Aux(ref b)) => a.cmp(b),
(Index::Input(_), Index::Aux(_)) => Ordering::Less, (Index::Input(_), Index::Aux(_)) => Ordering::Less,
(Index::Aux(_), Index::Input(_)) => Ordering::Greater (Index::Aux(_), Index::Input(_)) => Ordering::Greater,
} }
} }
} }
fn proc_lc<E: Engine>( fn proc_lc<E: Engine>(terms: &[(Variable, E::Fr)]) -> BTreeMap<OrderedVariable, E::Fr> {
terms: &[(Variable, E::Fr)],
) -> BTreeMap<OrderedVariable, E::Fr>
{
let mut map = BTreeMap::new(); let mut map = BTreeMap::new();
for &(var, coeff) in terms { for &(var, coeff) in terms {
map.entry(OrderedVariable(var)) map.entry(OrderedVariable(var))
.or_insert(E::Fr::zero()) .or_insert(E::Fr::zero())
.add_assign(&coeff); .add_assign(&coeff);
} }
// Remove terms that have a zero coefficient to normalize // Remove terms that have a zero coefficient to normalize
@ -94,11 +85,7 @@ fn proc_lc<E: Engine>(
map map
} }
fn hash_lc<E: Engine>( fn hash_lc<E: Engine>(terms: &[(Variable, E::Fr)], h: &mut Blake2sState) {
terms: &[(Variable, E::Fr)],
h: &mut Blake2sState
)
{
let map = proc_lc::<E>(terms); let map = proc_lc::<E>(terms);
let mut buf = [0u8; 9 + 32]; let mut buf = [0u8; 9 + 32];
@ -110,13 +97,13 @@ fn hash_lc<E: Engine>(
Index::Input(i) => { Index::Input(i) => {
buf[0] = b'I'; buf[0] = b'I';
BigEndian::write_u64(&mut buf[1..9], i as u64); BigEndian::write_u64(&mut buf[1..9], i as u64);
}, }
Index::Aux(i) => { Index::Aux(i) => {
buf[0] = b'A'; buf[0] = b'A';
BigEndian::write_u64(&mut buf[1..9], i as u64); BigEndian::write_u64(&mut buf[1..9], i as u64);
} }
} }
coeff.into_repr().write_be(&mut buf[9..]).unwrap(); coeff.into_repr().write_be(&mut buf[9..]).unwrap();
h.update(&buf); h.update(&buf);
@ -126,15 +113,14 @@ fn hash_lc<E: Engine>(
fn eval_lc<E: Engine>( fn eval_lc<E: Engine>(
terms: &[(Variable, E::Fr)], terms: &[(Variable, E::Fr)],
inputs: &[(E::Fr, String)], inputs: &[(E::Fr, String)],
aux: &[(E::Fr, String)] aux: &[(E::Fr, String)],
) -> E::Fr ) -> E::Fr {
{
let mut acc = E::Fr::zero(); let mut acc = E::Fr::zero();
for &(var, ref coeff) in terms { for &(var, ref coeff) in terms {
let mut tmp = match var.get_unchecked() { let mut tmp = match var.get_unchecked() {
Index::Input(index) => inputs[index].0, Index::Input(index) => inputs[index].0,
Index::Aux(index) => aux[index].0 Index::Aux(index) => aux[index].0,
}; };
tmp.mul_assign(&coeff); tmp.mul_assign(&coeff);
@ -147,14 +133,17 @@ fn eval_lc<E: Engine>(
impl<E: Engine> TestConstraintSystem<E> { impl<E: Engine> TestConstraintSystem<E> {
pub fn new() -> TestConstraintSystem<E> { pub fn new() -> TestConstraintSystem<E> {
let mut map = HashMap::new(); let mut map = HashMap::new();
map.insert("ONE".into(), NamedObject::Var(TestConstraintSystem::<E>::one())); map.insert(
"ONE".into(),
NamedObject::Var(TestConstraintSystem::<E>::one()),
);
TestConstraintSystem { TestConstraintSystem {
named_objects: map, named_objects: map,
current_namespace: vec![], current_namespace: vec![],
constraints: vec![], constraints: vec![],
inputs: vec![(E::Fr::one(), "ONE".into())], inputs: vec![(E::Fr::one(), "ONE".into())],
aux: vec![] aux: vec![],
} }
} }
@ -167,9 +156,9 @@ impl<E: Engine> TestConstraintSystem<E> {
tmp tmp
}; };
let powers_of_two = (0..E::Fr::NUM_BITS).map(|i| { let powers_of_two = (0..E::Fr::NUM_BITS)
E::Fr::from_str("2").unwrap().pow(&[i as u64]) .map(|i| E::Fr::from_str("2").unwrap().pow(&[i as u64]))
}).collect::<Vec<_>>(); .collect::<Vec<_>>();
let pp = |s: &mut String, lc: &LinearCombination<E>| { let pp = |s: &mut String, lc: &LinearCombination<E>| {
write!(s, "(").unwrap(); write!(s, "(").unwrap();
@ -196,7 +185,7 @@ impl<E: Engine> TestConstraintSystem<E> {
match var.0.get_unchecked() { match var.0.get_unchecked() {
Index::Input(i) => { Index::Input(i) => {
write!(s, "`{}`", &self.inputs[i].1).unwrap(); write!(s, "`{}`", &self.inputs[i].1).unwrap();
}, }
Index::Aux(i) => { Index::Aux(i) => {
write!(s, "`{}`", &self.aux[i].1).unwrap(); write!(s, "`{}`", &self.aux[i].1).unwrap();
} }
@ -259,45 +248,41 @@ impl<E: Engine> TestConstraintSystem<E> {
a.mul_assign(&b); a.mul_assign(&b);
if a != c { if a != c {
return Some(&*path) return Some(&*path);
} }
} }
None None
} }
pub fn is_satisfied(&self) -> bool pub fn is_satisfied(&self) -> bool {
{
self.which_is_unsatisfied().is_none() self.which_is_unsatisfied().is_none()
} }
pub fn num_constraints(&self) -> usize pub fn num_constraints(&self) -> usize {
{
self.constraints.len() self.constraints.len()
} }
pub fn set(&mut self, path: &str, to: E::Fr) pub fn set(&mut self, path: &str, to: E::Fr) {
{
match self.named_objects.get(path) { match self.named_objects.get(path) {
Some(&NamedObject::Var(ref v)) => { Some(&NamedObject::Var(ref v)) => match v.get_unchecked() {
match v.get_unchecked() { Index::Input(index) => self.inputs[index].0 = to,
Index::Input(index) => self.inputs[index].0 = to, Index::Aux(index) => self.aux[index].0 = to,
Index::Aux(index) => self.aux[index].0 = to },
} Some(e) => panic!(
} "tried to set path `{}` to value, but `{:?}` already exists there.",
Some(e) => panic!("tried to set path `{}` to value, but `{:?}` already exists there.", path, e), path, e
_ => panic!("no variable exists at path: {}", path) ),
_ => panic!("no variable exists at path: {}", path),
} }
} }
pub fn verify(&self, expected: &[E::Fr]) -> bool pub fn verify(&self, expected: &[E::Fr]) -> bool {
{
assert_eq!(expected.len() + 1, self.inputs.len()); assert_eq!(expected.len() + 1, self.inputs.len());
for (a, b) in self.inputs.iter().skip(1).zip(expected.iter()) for (a, b) in self.inputs.iter().skip(1).zip(expected.iter()) {
{
if &a.0 != b { if &a.0 != b {
return false return false;
} }
} }
@ -308,8 +293,7 @@ impl<E: Engine> TestConstraintSystem<E> {
self.inputs.len() self.inputs.len()
} }
pub fn get_input(&mut self, index: usize, path: &str) -> E::Fr pub fn get_input(&mut self, index: usize, path: &str) -> E::Fr {
{
let (assignment, name) = self.inputs[index].clone(); let (assignment, name) = self.inputs[index].clone();
assert_eq!(path, name); assert_eq!(path, name);
@ -317,17 +301,17 @@ impl<E: Engine> TestConstraintSystem<E> {
assignment assignment
} }
pub fn get(&mut self, path: &str) -> E::Fr pub fn get(&mut self, path: &str) -> E::Fr {
{
match self.named_objects.get(path) { match self.named_objects.get(path) {
Some(&NamedObject::Var(ref v)) => { Some(&NamedObject::Var(ref v)) => match v.get_unchecked() {
match v.get_unchecked() { Index::Input(index) => self.inputs[index].0,
Index::Input(index) => self.inputs[index].0, Index::Aux(index) => self.aux[index].0,
Index::Aux(index) => self.aux[index].0 },
} Some(e) => panic!(
} "tried to get value of path `{}`, but `{:?}` exists there (not a variable)",
Some(e) => panic!("tried to get value of path `{}`, but `{:?}` exists there (not a variable)", path, e), path, e
_ => panic!("no variable exists at path: {}", path) ),
_ => panic!("no variable exists at path: {}", path),
} }
} }
@ -348,8 +332,7 @@ fn compute_path(ns: &[String], this: String) -> String {
let mut name = String::new(); let mut name = String::new();
let mut needs_separation = false; let mut needs_separation = false;
for ns in ns.iter().chain(Some(&this).into_iter()) for ns in ns.iter().chain(Some(&this).into_iter()) {
{
if needs_separation { if needs_separation {
name += "/"; name += "/";
} }
@ -364,12 +347,11 @@ fn compute_path(ns: &[String], this: String) -> String {
impl<E: Engine> ConstraintSystem<E> for TestConstraintSystem<E> { impl<E: Engine> ConstraintSystem<E> for TestConstraintSystem<E> {
type Root = Self; type Root = Self;
fn alloc<F, A, AR>( fn alloc<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
&mut self, where
annotation: A, F: FnOnce() -> Result<E::Fr, SynthesisError>,
f: F A: FnOnce() -> AR,
) -> Result<Variable, SynthesisError> AR: Into<String>,
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{ {
let index = self.aux.len(); let index = self.aux.len();
let path = compute_path(&self.current_namespace, annotation().into()); let path = compute_path(&self.current_namespace, annotation().into());
@ -380,12 +362,11 @@ impl<E: Engine> ConstraintSystem<E> for TestConstraintSystem<E> {
Ok(var) Ok(var)
} }
fn alloc_input<F, A, AR>( fn alloc_input<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
&mut self, where
annotation: A, F: FnOnce() -> Result<E::Fr, SynthesisError>,
f: F A: FnOnce() -> AR,
) -> Result<Variable, SynthesisError> AR: Into<String>,
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{ {
let index = self.inputs.len(); let index = self.inputs.len();
let path = compute_path(&self.current_namespace, annotation().into()); let path = compute_path(&self.current_namespace, annotation().into());
@ -396,17 +377,13 @@ impl<E: Engine> ConstraintSystem<E> for TestConstraintSystem<E> {
Ok(var) Ok(var)
} }
fn enforce<A, AR, LA, LB, LC>( fn enforce<A, AR, LA, LB, LC>(&mut self, annotation: A, a: LA, b: LB, c: LC)
&mut self, where
annotation: A, A: FnOnce() -> AR,
a: LA, AR: Into<String>,
b: LB, LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
c: LC LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
) LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
where A: FnOnce() -> AR, AR: Into<String>,
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
{ {
let path = compute_path(&self.current_namespace, annotation().into()); let path = compute_path(&self.current_namespace, annotation().into());
let index = self.constraints.len(); let index = self.constraints.len();
@ -420,7 +397,9 @@ impl<E: Engine> ConstraintSystem<E> for TestConstraintSystem<E> {
} }
fn push_namespace<NR, N>(&mut self, name_fn: N) fn push_namespace<NR, N>(&mut self, name_fn: N)
where NR: Into<String>, N: FnOnce() -> NR where
NR: Into<String>,
N: FnOnce() -> NR,
{ {
let name = name_fn().into(); let name = name_fn().into();
let path = compute_path(&self.current_namespace, name.clone()); let path = compute_path(&self.current_namespace, name.clone());
@ -428,13 +407,11 @@ impl<E: Engine> ConstraintSystem<E> for TestConstraintSystem<E> {
self.current_namespace.push(name); self.current_namespace.push(name);
} }
fn pop_namespace(&mut self) fn pop_namespace(&mut self) {
{
assert!(self.current_namespace.pop().is_some()); assert!(self.current_namespace.pop().is_some());
} }
fn get_root(&mut self) -> &mut Self::Root fn get_root(&mut self) -> &mut Self::Root {
{
self self
} }
} }
@ -447,28 +424,26 @@ fn test_cs() {
let mut cs = TestConstraintSystem::<Bls12>::new(); let mut cs = TestConstraintSystem::<Bls12>::new();
assert!(cs.is_satisfied()); assert!(cs.is_satisfied());
assert_eq!(cs.num_constraints(), 0); assert_eq!(cs.num_constraints(), 0);
let a = cs.namespace(|| "a").alloc(|| "var", || Ok(Fr::from_str("10").unwrap())).unwrap(); let a = cs
let b = cs.namespace(|| "b").alloc(|| "var", || Ok(Fr::from_str("4").unwrap())).unwrap(); .namespace(|| "a")
let c = cs.alloc(|| "product", || Ok(Fr::from_str("40").unwrap())).unwrap(); .alloc(|| "var", || Ok(Fr::from_str("10").unwrap()))
.unwrap();
let b = cs
.namespace(|| "b")
.alloc(|| "var", || Ok(Fr::from_str("4").unwrap()))
.unwrap();
let c = cs
.alloc(|| "product", || Ok(Fr::from_str("40").unwrap()))
.unwrap();
cs.enforce( cs.enforce(|| "mult", |lc| lc + a, |lc| lc + b, |lc| lc + c);
|| "mult",
|lc| lc + a,
|lc| lc + b,
|lc| lc + c
);
assert!(cs.is_satisfied()); assert!(cs.is_satisfied());
assert_eq!(cs.num_constraints(), 1); assert_eq!(cs.num_constraints(), 1);
cs.set("a/var", Fr::from_str("4").unwrap()); cs.set("a/var", Fr::from_str("4").unwrap());
let one = TestConstraintSystem::<Bls12>::one(); let one = TestConstraintSystem::<Bls12>::one();
cs.enforce( cs.enforce(|| "eq", |lc| lc + a, |lc| lc + one, |lc| lc + b);
|| "eq",
|lc| lc + a,
|lc| lc + one,
|lc| lc + b
);
assert!(!cs.is_satisfied()); assert!(!cs.is_satisfied());
assert!(cs.which_is_unsatisfied() == Some("mult")); assert!(cs.which_is_unsatisfied() == Some("mult"));

View File

@ -1,16 +1,9 @@
use ff::{Field, PrimeField}; use ff::{Field, PrimeField};
use pairing::Engine; use pairing::Engine;
use crate::{ use crate::{ConstraintSystem, LinearCombination, SynthesisError};
SynthesisError,
ConstraintSystem,
LinearCombination
};
use super::boolean::{ use super::boolean::{AllocatedBit, Boolean};
Boolean,
AllocatedBit
};
use super::multieq::MultiEq; use super::multieq::MultiEq;
@ -20,13 +13,12 @@ use super::multieq::MultiEq;
pub struct UInt32 { pub struct UInt32 {
// Least significant bit first // Least significant bit first
bits: Vec<Boolean>, bits: Vec<Boolean>,
value: Option<u32> value: Option<u32>,
} }
impl UInt32 { impl UInt32 {
/// Construct a constant `UInt32` from a `u32` /// Construct a constant `UInt32` from a `u32`
pub fn constant(value: u32) -> Self pub fn constant(value: u32) -> Self {
{
let mut bits = Vec::with_capacity(32); let mut bits = Vec::with_capacity(32);
let mut tmp = value; let mut tmp = value;
@ -42,17 +34,15 @@ impl UInt32 {
UInt32 { UInt32 {
bits: bits, bits: bits,
value: Some(value) value: Some(value),
} }
} }
/// Allocate a `UInt32` in the constraint system /// Allocate a `UInt32` in the constraint system
pub fn alloc<E, CS>( pub fn alloc<E, CS>(mut cs: CS, value: Option<u32>) -> Result<Self, SynthesisError>
mut cs: CS, where
value: Option<u32> E: Engine,
) -> Result<Self, SynthesisError> CS: ConstraintSystem<E>,
where E: Engine,
CS: ConstraintSystem<E>
{ {
let values = match value { let values = match value {
Some(mut val) => { Some(mut val) => {
@ -64,23 +54,24 @@ impl UInt32 {
} }
v v
}, }
None => vec![None; 32] None => vec![None; 32],
}; };
let bits = values.into_iter() let bits = values
.enumerate() .into_iter()
.map(|(i, v)| { .enumerate()
Ok(Boolean::from(AllocatedBit::alloc( .map(|(i, v)| {
cs.namespace(|| format!("allocated bit {}", i)), Ok(Boolean::from(AllocatedBit::alloc(
v cs.namespace(|| format!("allocated bit {}", i)),
)?)) v,
}) )?))
.collect::<Result<Vec<_>, SynthesisError>>()?; })
.collect::<Result<Vec<_>, SynthesisError>>()?;
Ok(UInt32 { Ok(UInt32 {
bits: bits, bits: bits,
value: value value: value,
}) })
} }
@ -96,19 +87,22 @@ impl UInt32 {
value.as_mut().map(|v| *v <<= 1); value.as_mut().map(|v| *v <<= 1);
match b.get_value() { match b.get_value() {
Some(true) => { value.as_mut().map(|v| *v |= 1); }, Some(true) => {
Some(false) => {}, value.as_mut().map(|v| *v |= 1);
None => { value = None; } }
Some(false) => {}
None => {
value = None;
}
} }
} }
UInt32 { UInt32 {
value: value, value: value,
bits: bits.iter().rev().cloned().collect() bits: bits.iter().rev().cloned().collect(),
} }
} }
/// Turns this `UInt32` into its little-endian byte order representation. /// Turns this `UInt32` into its little-endian byte order representation.
pub fn into_bits(&self) -> Vec<Boolean> { pub fn into_bits(&self) -> Vec<Boolean> {
self.bits.clone() self.bits.clone()
@ -116,8 +110,7 @@ impl UInt32 {
/// Converts a little-endian byte order representation of bits into a /// Converts a little-endian byte order representation of bits into a
/// `UInt32`. /// `UInt32`.
pub fn from_bits(bits: &[Boolean]) -> Self pub fn from_bits(bits: &[Boolean]) -> Self {
{
assert_eq!(bits.len(), 32); assert_eq!(bits.len(), 32);
let new_bits = bits.to_vec(); let new_bits = bits.to_vec();
@ -131,43 +124,45 @@ impl UInt32 {
if b { if b {
value.as_mut().map(|v| *v |= 1); value.as_mut().map(|v| *v |= 1);
} }
},
&Boolean::Is(ref b) => {
match b.get_value() {
Some(true) => { value.as_mut().map(|v| *v |= 1); },
Some(false) => {},
None => { value = None }
}
},
&Boolean::Not(ref b) => {
match b.get_value() {
Some(false) => { value.as_mut().map(|v| *v |= 1); },
Some(true) => {},
None => { value = None }
}
} }
&Boolean::Is(ref b) => match b.get_value() {
Some(true) => {
value.as_mut().map(|v| *v |= 1);
}
Some(false) => {}
None => value = None,
},
&Boolean::Not(ref b) => match b.get_value() {
Some(false) => {
value.as_mut().map(|v| *v |= 1);
}
Some(true) => {}
None => value = None,
},
} }
} }
UInt32 { UInt32 {
value: value, value: value,
bits: new_bits bits: new_bits,
} }
} }
pub fn rotr(&self, by: usize) -> Self { pub fn rotr(&self, by: usize) -> Self {
let by = by % 32; let by = by % 32;
let new_bits = self.bits.iter() let new_bits = self
.skip(by) .bits
.chain(self.bits.iter()) .iter()
.take(32) .skip(by)
.cloned() .chain(self.bits.iter())
.collect(); .take(32)
.cloned()
.collect();
UInt32 { UInt32 {
bits: new_bits, bits: new_bits,
value: self.value.map(|v| v.rotate_right(by as u32)) value: self.value.map(|v| v.rotate_right(by as u32)),
} }
} }
@ -176,17 +171,18 @@ impl UInt32 {
let fill = Boolean::constant(false); let fill = Boolean::constant(false);
let new_bits = self.bits let new_bits = self
.iter() // The bits are least significant first .bits
.skip(by) // Skip the bits that will be lost during the shift .iter() // The bits are least significant first
.chain(Some(&fill).into_iter().cycle()) // Rest will be zeros .skip(by) // Skip the bits that will be lost during the shift
.take(32) // Only 32 bits needed! .chain(Some(&fill).into_iter().cycle()) // Rest will be zeros
.cloned() .take(32) // Only 32 bits needed!
.collect(); .cloned()
.collect();
UInt32 { UInt32 {
bits: new_bits, bits: new_bits,
value: self.value.map(|v| v >> by as u32) value: self.value.map(|v| v >> by as u32),
} }
} }
@ -196,121 +192,99 @@ impl UInt32 {
b: &Self, b: &Self,
c: &Self, c: &Self,
tri_fn: F, tri_fn: F,
circuit_fn: U circuit_fn: U,
) -> Result<Self, SynthesisError> ) -> Result<Self, SynthesisError>
where E: Engine, where
CS: ConstraintSystem<E>, E: Engine,
F: Fn(u32, u32, u32) -> u32, CS: ConstraintSystem<E>,
U: Fn(&mut CS, usize, &Boolean, &Boolean, &Boolean) -> Result<Boolean, SynthesisError> F: Fn(u32, u32, u32) -> u32,
U: Fn(&mut CS, usize, &Boolean, &Boolean, &Boolean) -> Result<Boolean, SynthesisError>,
{ {
let new_value = match (a.value, b.value, c.value) { let new_value = match (a.value, b.value, c.value) {
(Some(a), Some(b), Some(c)) => { (Some(a), Some(b), Some(c)) => Some(tri_fn(a, b, c)),
Some(tri_fn(a, b, c)) _ => None,
},
_ => None
}; };
let bits = a.bits.iter() let bits = a
.zip(b.bits.iter()) .bits
.zip(c.bits.iter()) .iter()
.enumerate() .zip(b.bits.iter())
.map(|(i, ((a, b), c))| circuit_fn(&mut cs, i, a, b, c)) .zip(c.bits.iter())
.collect::<Result<_, _>>()?; .enumerate()
.map(|(i, ((a, b), c))| circuit_fn(&mut cs, i, a, b, c))
.collect::<Result<_, _>>()?;
Ok(UInt32 { Ok(UInt32 {
bits: bits, bits: bits,
value: new_value value: new_value,
}) })
} }
/// Compute the `maj` value (a and b) xor (a and c) xor (b and c) /// Compute the `maj` value (a and b) xor (a and c) xor (b and c)
/// during SHA256. /// during SHA256.
pub fn sha256_maj<E, CS>( pub fn sha256_maj<E, CS>(cs: CS, a: &Self, b: &Self, c: &Self) -> Result<Self, SynthesisError>
cs: CS, where
a: &Self, E: Engine,
b: &Self, CS: ConstraintSystem<E>,
c: &Self
) -> Result<Self, SynthesisError>
where E: Engine,
CS: ConstraintSystem<E>
{ {
Self::triop(cs, a, b, c, |a, b, c| (a & b) ^ (a & c) ^ (b & c), Self::triop(
|cs, i, a, b, c| { cs,
Boolean::sha256_maj( a,
cs.namespace(|| format!("maj {}", i)), b,
a, c,
b, |a, b, c| (a & b) ^ (a & c) ^ (b & c),
c |cs, i, a, b, c| Boolean::sha256_maj(cs.namespace(|| format!("maj {}", i)), a, b, c),
)
}
) )
} }
/// Compute the `ch` value `(a and b) xor ((not a) and c)` /// Compute the `ch` value `(a and b) xor ((not a) and c)`
/// during SHA256. /// during SHA256.
pub fn sha256_ch<E, CS>( pub fn sha256_ch<E, CS>(cs: CS, a: &Self, b: &Self, c: &Self) -> Result<Self, SynthesisError>
cs: CS, where
a: &Self, E: Engine,
b: &Self, CS: ConstraintSystem<E>,
c: &Self
) -> Result<Self, SynthesisError>
where E: Engine,
CS: ConstraintSystem<E>
{ {
Self::triop(cs, a, b, c, |a, b, c| (a & b) ^ ((!a) & c), Self::triop(
|cs, i, a, b, c| { cs,
Boolean::sha256_ch( a,
cs.namespace(|| format!("ch {}", i)), b,
a, c,
b, |a, b, c| (a & b) ^ ((!a) & c),
c |cs, i, a, b, c| Boolean::sha256_ch(cs.namespace(|| format!("ch {}", i)), a, b, c),
)
}
) )
} }
/// XOR this `UInt32` with another `UInt32` /// XOR this `UInt32` with another `UInt32`
pub fn xor<E, CS>( pub fn xor<E, CS>(&self, mut cs: CS, other: &Self) -> Result<Self, SynthesisError>
&self, where
mut cs: CS, E: Engine,
other: &Self CS: ConstraintSystem<E>,
) -> Result<Self, SynthesisError>
where E: Engine,
CS: ConstraintSystem<E>
{ {
let new_value = match (self.value, other.value) { let new_value = match (self.value, other.value) {
(Some(a), Some(b)) => { (Some(a), Some(b)) => Some(a ^ b),
Some(a ^ b) _ => None,
},
_ => None
}; };
let bits = self.bits.iter() let bits = self
.zip(other.bits.iter()) .bits
.enumerate() .iter()
.map(|(i, (a, b))| { .zip(other.bits.iter())
Boolean::xor( .enumerate()
cs.namespace(|| format!("xor of bit {}", i)), .map(|(i, (a, b))| Boolean::xor(cs.namespace(|| format!("xor of bit {}", i)), a, b))
a, .collect::<Result<_, _>>()?;
b
)
})
.collect::<Result<_, _>>()?;
Ok(UInt32 { Ok(UInt32 {
bits: bits, bits: bits,
value: new_value value: new_value,
}) })
} }
/// Perform modular addition of several `UInt32` objects. /// Perform modular addition of several `UInt32` objects.
pub fn addmany<E, CS, M>( pub fn addmany<E, CS, M>(mut cs: M, operands: &[Self]) -> Result<Self, SynthesisError>
mut cs: M, where
operands: &[Self] E: Engine,
) -> Result<Self, SynthesisError> CS: ConstraintSystem<E>,
where E: Engine, M: ConstraintSystem<E, Root = MultiEq<E, CS>>,
CS: ConstraintSystem<E>,
M: ConstraintSystem<E, Root=MultiEq<E, CS>>
{ {
// Make some arbitrary bounds for ourselves to avoid overflows // Make some arbitrary bounds for ourselves to avoid overflows
// in the scalar field // in the scalar field
@ -337,7 +311,7 @@ impl UInt32 {
match op.value { match op.value {
Some(val) => { Some(val) => {
result_value.as_mut().map(|v| *v += val as u64); result_value.as_mut().map(|v| *v += val as u64);
}, }
None => { None => {
// If any of our operands have unknown value, we won't // If any of our operands have unknown value, we won't
// know the value of the result // know the value of the result
@ -381,7 +355,7 @@ impl UInt32 {
// Allocate the bit // Allocate the bit
let b = AllocatedBit::alloc( let b = AllocatedBit::alloc(
cs.namespace(|| format!("result bit {}", i)), cs.namespace(|| format!("result bit {}", i)),
result_value.map(|v| (v >> i) & 1 == 1) result_value.map(|v| (v >> i) & 1 == 1),
)?; )?;
// Add this bit to the result combination // Add this bit to the result combination
@ -402,32 +376,34 @@ impl UInt32 {
Ok(UInt32 { Ok(UInt32 {
bits: result_bits, bits: result_bits,
value: modular_value value: modular_value,
}) })
} }
} }
#[cfg(test)] #[cfg(test)]
mod test { mod test {
use crate::gadgets::boolean::{Boolean}; use super::UInt32;
use super::{UInt32}; use crate::gadgets::boolean::Boolean;
use ff::Field;
use pairing::bls12_381::{Bls12};
use crate::gadgets::test::*;
use crate::{ConstraintSystem};
use crate::gadgets::multieq::MultiEq; use crate::gadgets::multieq::MultiEq;
use crate::gadgets::test::*;
use crate::ConstraintSystem;
use ff::Field;
use pairing::bls12_381::Bls12;
use rand_core::{RngCore, SeedableRng}; use rand_core::{RngCore, SeedableRng};
use rand_xorshift::XorShiftRng; use rand_xorshift::XorShiftRng;
#[test] #[test]
fn test_uint32_from_bits_be() { fn test_uint32_from_bits_be() {
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
for _ in 0..1000 { for _ in 0..1000 {
let mut v = (0..32).map(|_| Boolean::constant(rng.next_u32() % 2 != 0)).collect::<Vec<_>>(); let mut v = (0..32)
.map(|_| Boolean::constant(rng.next_u32() % 2 != 0))
.collect::<Vec<_>>();
let b = UInt32::from_bits_be(&v); let b = UInt32::from_bits_be(&v);
@ -435,19 +411,18 @@ mod test {
match bit { match bit {
&Boolean::Constant(bit) => { &Boolean::Constant(bit) => {
assert!(bit == ((b.value.unwrap() >> i) & 1 == 1)); assert!(bit == ((b.value.unwrap() >> i) & 1 == 1));
}, }
_ => unreachable!() _ => unreachable!(),
} }
} }
let expected_to_be_same = b.into_bits_be(); let expected_to_be_same = b.into_bits_be();
for x in v.iter().zip(expected_to_be_same.iter()) for x in v.iter().zip(expected_to_be_same.iter()) {
{
match x { match x {
(&Boolean::Constant(true), &Boolean::Constant(true)) => {}, (&Boolean::Constant(true), &Boolean::Constant(true)) => {}
(&Boolean::Constant(false), &Boolean::Constant(false)) => {}, (&Boolean::Constant(false), &Boolean::Constant(false)) => {}
_ => unreachable!() _ => unreachable!(),
} }
} }
} }
@ -456,12 +431,14 @@ mod test {
#[test] #[test]
fn test_uint32_from_bits() { fn test_uint32_from_bits() {
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
for _ in 0..1000 { for _ in 0..1000 {
let mut v = (0..32).map(|_| Boolean::constant(rng.next_u32() % 2 != 0)).collect::<Vec<_>>(); let mut v = (0..32)
.map(|_| Boolean::constant(rng.next_u32() % 2 != 0))
.collect::<Vec<_>>();
let b = UInt32::from_bits(&v); let b = UInt32::from_bits(&v);
@ -469,19 +446,18 @@ mod test {
match bit { match bit {
&Boolean::Constant(bit) => { &Boolean::Constant(bit) => {
assert!(bit == ((b.value.unwrap() >> i) & 1 == 1)); assert!(bit == ((b.value.unwrap() >> i) & 1 == 1));
}, }
_ => unreachable!() _ => unreachable!(),
} }
} }
let expected_to_be_same = b.into_bits(); let expected_to_be_same = b.into_bits();
for x in v.iter().zip(expected_to_be_same.iter()) for x in v.iter().zip(expected_to_be_same.iter()) {
{
match x { match x {
(&Boolean::Constant(true), &Boolean::Constant(true)) => {}, (&Boolean::Constant(true), &Boolean::Constant(true)) => {}
(&Boolean::Constant(false), &Boolean::Constant(false)) => {}, (&Boolean::Constant(false), &Boolean::Constant(false)) => {}
_ => unreachable!() _ => unreachable!(),
} }
} }
} }
@ -490,8 +466,8 @@ mod test {
#[test] #[test]
fn test_uint32_xor() { fn test_uint32_xor() {
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
for _ in 0..1000 { for _ in 0..1000 {
@ -518,10 +494,10 @@ mod test {
match b { match b {
&Boolean::Is(ref b) => { &Boolean::Is(ref b) => {
assert!(b.get_value().unwrap() == (expected & 1 == 1)); assert!(b.get_value().unwrap() == (expected & 1 == 1));
}, }
&Boolean::Not(ref b) => { &Boolean::Not(ref b) => {
assert!(!b.get_value().unwrap() == (expected & 1 == 1)); assert!(!b.get_value().unwrap() == (expected & 1 == 1));
}, }
&Boolean::Constant(b) => { &Boolean::Constant(b) => {
assert!(b == (expected & 1 == 1)); assert!(b == (expected & 1 == 1));
} }
@ -535,8 +511,8 @@ mod test {
#[test] #[test]
fn test_uint32_addmany_constants() { fn test_uint32_addmany_constants() {
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
for _ in 0..1000 { for _ in 0..1000 {
@ -554,7 +530,8 @@ mod test {
let r = { let r = {
let mut cs = MultiEq::new(&mut cs); let mut cs = MultiEq::new(&mut cs);
let r = UInt32::addmany(cs.namespace(|| "addition"), &[a_bit, b_bit, c_bit]).unwrap(); let r =
UInt32::addmany(cs.namespace(|| "addition"), &[a_bit, b_bit, c_bit]).unwrap();
r r
}; };
@ -577,8 +554,8 @@ mod test {
#[test] #[test]
fn test_uint32_addmany() { fn test_uint32_addmany() {
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
for _ in 0..1000 { for _ in 0..1000 {
@ -611,13 +588,11 @@ mod test {
match b { match b {
&Boolean::Is(ref b) => { &Boolean::Is(ref b) => {
assert!(b.get_value().unwrap() == (expected & 1 == 1)); assert!(b.get_value().unwrap() == (expected & 1 == 1));
}, }
&Boolean::Not(ref b) => { &Boolean::Not(ref b) => {
assert!(!b.get_value().unwrap() == (expected & 1 == 1)); assert!(!b.get_value().unwrap() == (expected & 1 == 1));
},
&Boolean::Constant(_) => {
unreachable!()
} }
&Boolean::Constant(_) => unreachable!(),
} }
expected >>= 1; expected >>= 1;
@ -637,8 +612,8 @@ mod test {
#[test] #[test]
fn test_uint32_rotr() { fn test_uint32_rotr() {
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
let mut num = rng.next_u32(); let mut num = rng.next_u32();
@ -656,8 +631,8 @@ mod test {
match b { match b {
&Boolean::Constant(b) => { &Boolean::Constant(b) => {
assert_eq!(b, tmp & 1 == 1); assert_eq!(b, tmp & 1 == 1);
}, }
_ => unreachable!() _ => unreachable!(),
} }
tmp >>= 1; tmp >>= 1;
@ -670,8 +645,8 @@ mod test {
#[test] #[test]
fn test_uint32_shr() { fn test_uint32_shr() {
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
for _ in 0..50 { for _ in 0..50 {
@ -693,8 +668,8 @@ mod test {
#[test] #[test]
fn test_uint32_sha256_maj() { fn test_uint32_sha256_maj() {
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
for _ in 0..1000 { for _ in 0..1000 {
@ -720,10 +695,10 @@ mod test {
match b { match b {
&Boolean::Is(ref b) => { &Boolean::Is(ref b) => {
assert!(b.get_value().unwrap() == (expected & 1 == 1)); assert!(b.get_value().unwrap() == (expected & 1 == 1));
}, }
&Boolean::Not(ref b) => { &Boolean::Not(ref b) => {
assert!(!b.get_value().unwrap() == (expected & 1 == 1)); assert!(!b.get_value().unwrap() == (expected & 1 == 1));
}, }
&Boolean::Constant(b) => { &Boolean::Constant(b) => {
assert!(b == (expected & 1 == 1)); assert!(b == (expected & 1 == 1));
} }
@ -737,8 +712,8 @@ mod test {
#[test] #[test]
fn test_uint32_sha256_ch() { fn test_uint32_sha256_ch() {
let mut rng = XorShiftRng::from_seed([ let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
0xe5, 0xbc, 0xe5,
]); ]);
for _ in 0..1000 { for _ in 0..1000 {
@ -764,10 +739,10 @@ mod test {
match b { match b {
&Boolean::Is(ref b) => { &Boolean::Is(ref b) => {
assert!(b.get_value().unwrap() == (expected & 1 == 1)); assert!(b.get_value().unwrap() == (expected & 1 == 1));
}, }
&Boolean::Not(ref b) => { &Boolean::Not(ref b) => {
assert!(!b.get_value().unwrap() == (expected & 1 == 1)); assert!(!b.get_value().unwrap() == (expected & 1 == 1));
}, }
&Boolean::Constant(b) => { &Boolean::Constant(b) => {
assert!(b == (expected & 1 == 1)); assert!(b == (expected & 1 == 1));
} }

View File

@ -6,36 +6,24 @@ use ff::{Field, PrimeField};
use group::{CurveAffine, CurveProjective, Wnaf}; use group::{CurveAffine, CurveProjective, Wnaf};
use pairing::Engine; use pairing::Engine;
use super::{ use super::{Parameters, VerifyingKey};
Parameters,
VerifyingKey
};
use ::{ use {Circuit, ConstraintSystem, Index, LinearCombination, SynthesisError, Variable};
SynthesisError,
Circuit,
ConstraintSystem,
LinearCombination,
Variable,
Index
};
use ::domain::{ use domain::{EvaluationDomain, Scalar};
EvaluationDomain,
Scalar
};
use ::multicore::{ use multicore::Worker;
Worker
};
/// Generates a random common reference string for /// Generates a random common reference string for
/// a circuit. /// a circuit.
pub fn generate_random_parameters<E, C, R>( pub fn generate_random_parameters<E, C, R>(
circuit: C, circuit: C,
rng: &mut R rng: &mut R,
) -> Result<Parameters<E>, SynthesisError> ) -> Result<Parameters<E>, SynthesisError>
where E: Engine, C: Circuit<E>, R: RngCore where
E: Engine,
C: Circuit<E>,
R: RngCore,
{ {
let g1 = E::G1::random(rng); let g1 = E::G1::random(rng);
let g2 = E::G2::random(rng); let g2 = E::G2::random(rng);
@ -45,16 +33,7 @@ pub fn generate_random_parameters<E, C, R>(
let delta = E::Fr::random(rng); let delta = E::Fr::random(rng);
let tau = E::Fr::random(rng); let tau = E::Fr::random(rng);
generate_parameters::<E, C>( generate_parameters::<E, C>(circuit, g1, g2, alpha, beta, gamma, delta, tau)
circuit,
g1,
g2,
alpha,
beta,
gamma,
delta,
tau
)
} }
/// This is our assembly structure that we'll use to synthesize the /// This is our assembly structure that we'll use to synthesize the
@ -68,18 +47,17 @@ struct KeypairAssembly<E: Engine> {
ct_inputs: Vec<Vec<(E::Fr, usize)>>, ct_inputs: Vec<Vec<(E::Fr, usize)>>,
at_aux: Vec<Vec<(E::Fr, usize)>>, at_aux: Vec<Vec<(E::Fr, usize)>>,
bt_aux: Vec<Vec<(E::Fr, usize)>>, bt_aux: Vec<Vec<(E::Fr, usize)>>,
ct_aux: Vec<Vec<(E::Fr, usize)>> ct_aux: Vec<Vec<(E::Fr, usize)>>,
} }
impl<E: Engine> ConstraintSystem<E> for KeypairAssembly<E> { impl<E: Engine> ConstraintSystem<E> for KeypairAssembly<E> {
type Root = Self; type Root = Self;
fn alloc<F, A, AR>( fn alloc<F, A, AR>(&mut self, _: A, _: F) -> Result<Variable, SynthesisError>
&mut self, where
_: A, F: FnOnce() -> Result<E::Fr, SynthesisError>,
_: F A: FnOnce() -> AR,
) -> Result<Variable, SynthesisError> AR: Into<String>,
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{ {
// There is no assignment, so we don't even invoke the // There is no assignment, so we don't even invoke the
// function for obtaining one. // function for obtaining one.
@ -94,12 +72,11 @@ impl<E: Engine> ConstraintSystem<E> for KeypairAssembly<E> {
Ok(Variable(Index::Aux(index))) Ok(Variable(Index::Aux(index)))
} }
fn alloc_input<F, A, AR>( fn alloc_input<F, A, AR>(&mut self, _: A, _: F) -> Result<Variable, SynthesisError>
&mut self, where
_: A, F: FnOnce() -> Result<E::Fr, SynthesisError>,
_: F A: FnOnce() -> AR,
) -> Result<Variable, SynthesisError> AR: Into<String>,
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{ {
// There is no assignment, so we don't even invoke the // There is no assignment, so we don't even invoke the
// function for obtaining one. // function for obtaining one.
@ -114,48 +91,59 @@ impl<E: Engine> ConstraintSystem<E> for KeypairAssembly<E> {
Ok(Variable(Index::Input(index))) Ok(Variable(Index::Input(index)))
} }
fn enforce<A, AR, LA, LB, LC>( fn enforce<A, AR, LA, LB, LC>(&mut self, _: A, a: LA, b: LB, c: LC)
&mut self, where
_: A, A: FnOnce() -> AR,
a: LA, AR: Into<String>,
b: LB, LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
c: LC LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
) LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
where A: FnOnce() -> AR, AR: Into<String>,
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
{ {
fn eval<E: Engine>( fn eval<E: Engine>(
l: LinearCombination<E>, l: LinearCombination<E>,
inputs: &mut [Vec<(E::Fr, usize)>], inputs: &mut [Vec<(E::Fr, usize)>],
aux: &mut [Vec<(E::Fr, usize)>], aux: &mut [Vec<(E::Fr, usize)>],
this_constraint: usize this_constraint: usize,
) ) {
{
for (index, coeff) in l.0 { for (index, coeff) in l.0 {
match index { match index {
Variable(Index::Input(id)) => inputs[id].push((coeff, this_constraint)), Variable(Index::Input(id)) => inputs[id].push((coeff, this_constraint)),
Variable(Index::Aux(id)) => aux[id].push((coeff, this_constraint)) Variable(Index::Aux(id)) => aux[id].push((coeff, this_constraint)),
} }
} }
} }
eval(a(LinearCombination::zero()), &mut self.at_inputs, &mut self.at_aux, self.num_constraints); eval(
eval(b(LinearCombination::zero()), &mut self.bt_inputs, &mut self.bt_aux, self.num_constraints); a(LinearCombination::zero()),
eval(c(LinearCombination::zero()), &mut self.ct_inputs, &mut self.ct_aux, self.num_constraints); &mut self.at_inputs,
&mut self.at_aux,
self.num_constraints,
);
eval(
b(LinearCombination::zero()),
&mut self.bt_inputs,
&mut self.bt_aux,
self.num_constraints,
);
eval(
c(LinearCombination::zero()),
&mut self.ct_inputs,
&mut self.ct_aux,
self.num_constraints,
);
self.num_constraints += 1; self.num_constraints += 1;
} }
fn push_namespace<NR, N>(&mut self, _: N) fn push_namespace<NR, N>(&mut self, _: N)
where NR: Into<String>, N: FnOnce() -> NR where
NR: Into<String>,
N: FnOnce() -> NR,
{ {
// Do nothing; we don't care about namespaces in this context. // Do nothing; we don't care about namespaces in this context.
} }
fn pop_namespace(&mut self) fn pop_namespace(&mut self) {
{
// Do nothing; we don't care about namespaces in this context. // Do nothing; we don't care about namespaces in this context.
} }
@ -173,9 +161,11 @@ pub fn generate_parameters<E, C>(
beta: E::Fr, beta: E::Fr,
gamma: E::Fr, gamma: E::Fr,
delta: E::Fr, delta: E::Fr,
tau: E::Fr tau: E::Fr,
) -> Result<Parameters<E>, SynthesisError> ) -> Result<Parameters<E>, SynthesisError>
where E: Engine, C: Circuit<E> where
E: Engine,
C: Circuit<E>,
{ {
let mut assembly = KeypairAssembly { let mut assembly = KeypairAssembly {
num_inputs: 0, num_inputs: 0,
@ -186,7 +176,7 @@ pub fn generate_parameters<E, C>(
ct_inputs: vec![], ct_inputs: vec![],
at_aux: vec![], at_aux: vec![],
bt_aux: vec![], bt_aux: vec![],
ct_aux: vec![] ct_aux: vec![],
}; };
// Allocate the "one" input variable // Allocate the "one" input variable
@ -198,11 +188,7 @@ pub fn generate_parameters<E, C>(
// Input constraints to ensure full density of IC query // Input constraints to ensure full density of IC query
// x * 0 = 0 // x * 0 = 0
for i in 0..assembly.num_inputs { for i in 0..assembly.num_inputs {
assembly.enforce(|| "", assembly.enforce(|| "", |lc| lc + Variable(Index::Input(i)), |lc| lc, |lc| lc);
|lc| lc + Variable(Index::Input(i)),
|lc| lc,
|lc| lc,
);
} }
// Create bases for blind evaluation of polynomials at tau // Create bases for blind evaluation of polynomials at tau
@ -240,10 +226,9 @@ pub fn generate_parameters<E, C>(
{ {
let powers_of_tau = powers_of_tau.as_mut(); let powers_of_tau = powers_of_tau.as_mut();
worker.scope(powers_of_tau.len(), |scope, chunk| { worker.scope(powers_of_tau.len(), |scope, chunk| {
for (i, powers_of_tau) in powers_of_tau.chunks_mut(chunk).enumerate() for (i, powers_of_tau) in powers_of_tau.chunks_mut(chunk).enumerate() {
{
scope.spawn(move || { scope.spawn(move || {
let mut current_tau_power = tau.pow(&[(i*chunk) as u64]); let mut current_tau_power = tau.pow(&[(i * chunk) as u64]);
for p in powers_of_tau { for p in powers_of_tau {
p.0 = current_tau_power; p.0 = current_tau_power;
@ -260,14 +245,15 @@ pub fn generate_parameters<E, C>(
// Compute the H query with multiple threads // Compute the H query with multiple threads
worker.scope(h.len(), |scope, chunk| { worker.scope(h.len(), |scope, chunk| {
for (h, p) in h.chunks_mut(chunk).zip(powers_of_tau.as_ref().chunks(chunk)) for (h, p) in h
.chunks_mut(chunk)
.zip(powers_of_tau.as_ref().chunks(chunk))
{ {
let mut g1_wnaf = g1_wnaf.shared(); let mut g1_wnaf = g1_wnaf.shared();
scope.spawn(move || { scope.spawn(move || {
// Set values of the H query to g1^{(tau^i * t(tau)) / delta} // Set values of the H query to g1^{(tau^i * t(tau)) / delta}
for (h, p) in h.iter_mut().zip(p.iter()) for (h, p) in h.iter_mut().zip(p.iter()) {
{
// Compute final exponent // Compute final exponent
let mut exp = p.0; let mut exp = p.0;
exp.mul_assign(&coeff); exp.mul_assign(&coeff);
@ -320,9 +306,8 @@ pub fn generate_parameters<E, C>(
beta: &E::Fr, beta: &E::Fr,
// Worker // Worker
worker: &Worker worker: &Worker,
) ) {
{
// Sanity check // Sanity check
assert_eq!(a.len(), at.len()); assert_eq!(a.len(), at.len());
assert_eq!(a.len(), bt.len()); assert_eq!(a.len(), bt.len());
@ -333,31 +318,32 @@ pub fn generate_parameters<E, C>(
// Evaluate polynomials in multiple threads // Evaluate polynomials in multiple threads
worker.scope(a.len(), |scope, chunk| { worker.scope(a.len(), |scope, chunk| {
for ((((((a, b_g1), b_g2), ext), at), bt), ct) in a.chunks_mut(chunk) for ((((((a, b_g1), b_g2), ext), at), bt), ct) in a
.zip(b_g1.chunks_mut(chunk)) .chunks_mut(chunk)
.zip(b_g2.chunks_mut(chunk)) .zip(b_g1.chunks_mut(chunk))
.zip(ext.chunks_mut(chunk)) .zip(b_g2.chunks_mut(chunk))
.zip(at.chunks(chunk)) .zip(ext.chunks_mut(chunk))
.zip(bt.chunks(chunk)) .zip(at.chunks(chunk))
.zip(ct.chunks(chunk)) .zip(bt.chunks(chunk))
.zip(ct.chunks(chunk))
{ {
let mut g1_wnaf = g1_wnaf.shared(); let mut g1_wnaf = g1_wnaf.shared();
let mut g2_wnaf = g2_wnaf.shared(); let mut g2_wnaf = g2_wnaf.shared();
scope.spawn(move || { scope.spawn(move || {
for ((((((a, b_g1), b_g2), ext), at), bt), ct) in a.iter_mut() for ((((((a, b_g1), b_g2), ext), at), bt), ct) in a
.zip(b_g1.iter_mut()) .iter_mut()
.zip(b_g2.iter_mut()) .zip(b_g1.iter_mut())
.zip(ext.iter_mut()) .zip(b_g2.iter_mut())
.zip(at.iter()) .zip(ext.iter_mut())
.zip(bt.iter()) .zip(at.iter())
.zip(ct.iter()) .zip(bt.iter())
.zip(ct.iter())
{ {
fn eval_at_tau<E: Engine>( fn eval_at_tau<E: Engine>(
powers_of_tau: &[Scalar<E>], powers_of_tau: &[Scalar<E>],
p: &[(E::Fr, usize)] p: &[(E::Fr, usize)],
) -> E::Fr ) -> E::Fr {
{
let mut acc = E::Fr::zero(); let mut acc = E::Fr::zero();
for &(ref coeff, index) in p { for &(ref coeff, index) in p {
@ -422,7 +408,7 @@ pub fn generate_parameters<E, C>(
&gamma_inverse, &gamma_inverse,
&alpha, &alpha,
&beta, &beta,
&worker &worker,
); );
// Evaluate for auxiliary variables. // Evaluate for auxiliary variables.
@ -440,7 +426,7 @@ pub fn generate_parameters<E, C>(
&delta_inverse, &delta_inverse,
&alpha, &alpha,
&beta, &beta,
&worker &worker,
); );
// Don't allow any elements be unconstrained, so that // Don't allow any elements be unconstrained, so that
@ -461,7 +447,7 @@ pub fn generate_parameters<E, C>(
gamma_g2: g2.mul(gamma).into_affine(), gamma_g2: g2.mul(gamma).into_affine(),
delta_g1: g1.mul(delta).into_affine(), delta_g1: g1.mul(delta).into_affine(),
delta_g2: g2.mul(delta).into_affine(), delta_g2: g2.mul(delta).into_affine(),
ic: ic.into_iter().map(|e| e.into_affine()).collect() ic: ic.into_iter().map(|e| e.into_affine()).collect(),
}; };
Ok(Parameters { Ok(Parameters {
@ -470,8 +456,23 @@ pub fn generate_parameters<E, C>(
l: Arc::new(l.into_iter().map(|e| e.into_affine()).collect()), l: Arc::new(l.into_iter().map(|e| e.into_affine()).collect()),
// Filter points at infinity away from A/B queries // Filter points at infinity away from A/B queries
a: Arc::new(a.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect()), a: Arc::new(
b_g1: Arc::new(b_g1.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect()), a.into_iter()
b_g2: Arc::new(b_g2.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect()) .filter(|e| !e.is_zero())
.map(|e| e.into_affine())
.collect(),
),
b_g1: Arc::new(
b_g1.into_iter()
.filter(|e| !e.is_zero())
.map(|e| e.into_affine())
.collect(),
),
b_g2: Arc::new(
b_g2.into_iter()
.filter(|e| !e.is_zero())
.map(|e| e.into_affine())
.collect(),
),
}) })
} }

View File

@ -1,17 +1,12 @@
use group::{CurveAffine, EncodedPoint}; use group::{CurveAffine, EncodedPoint};
use pairing::{ use pairing::{Engine, PairingCurveAffine};
Engine,
PairingCurveAffine,
};
use ::{ use SynthesisError;
SynthesisError
};
use byteorder::{BigEndian, ReadBytesExt, WriteBytesExt};
use multiexp::SourceBuilder; use multiexp::SourceBuilder;
use std::io::{self, Read, Write}; use std::io::{self, Read, Write};
use std::sync::Arc; use std::sync::Arc;
use byteorder::{BigEndian, WriteBytesExt, ReadBytesExt};
#[cfg(test)] #[cfg(test)]
mod tests; mod tests;
@ -28,23 +23,17 @@ pub use self::verifier::*;
pub struct Proof<E: Engine> { pub struct Proof<E: Engine> {
pub a: E::G1Affine, pub a: E::G1Affine,
pub b: E::G2Affine, pub b: E::G2Affine,
pub c: E::G1Affine pub c: E::G1Affine,
} }
impl<E: Engine> PartialEq for Proof<E> { impl<E: Engine> PartialEq for Proof<E> {
fn eq(&self, other: &Self) -> bool { fn eq(&self, other: &Self) -> bool {
self.a == other.a && self.a == other.a && self.b == other.b && self.c == other.c
self.b == other.b &&
self.c == other.c
} }
} }
impl<E: Engine> Proof<E> { impl<E: Engine> Proof<E> {
pub fn write<W: Write>( pub fn write<W: Write>(&self, mut writer: W) -> io::Result<()> {
&self,
mut writer: W
) -> io::Result<()>
{
writer.write_all(self.a.into_compressed().as_ref())?; writer.write_all(self.a.into_compressed().as_ref())?;
writer.write_all(self.b.into_compressed().as_ref())?; writer.write_all(self.b.into_compressed().as_ref())?;
writer.write_all(self.c.into_compressed().as_ref())?; writer.write_all(self.c.into_compressed().as_ref())?;
@ -52,48 +41,56 @@ impl<E: Engine> Proof<E> {
Ok(()) Ok(())
} }
pub fn read<R: Read>( pub fn read<R: Read>(mut reader: R) -> io::Result<Self> {
mut reader: R
) -> io::Result<Self>
{
let mut g1_repr = <E::G1Affine as CurveAffine>::Compressed::empty(); let mut g1_repr = <E::G1Affine as CurveAffine>::Compressed::empty();
let mut g2_repr = <E::G2Affine as CurveAffine>::Compressed::empty(); let mut g2_repr = <E::G2Affine as CurveAffine>::Compressed::empty();
reader.read_exact(g1_repr.as_mut())?; reader.read_exact(g1_repr.as_mut())?;
let a = g1_repr let a = g1_repr
.into_affine() .into_affine()
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e)) .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
.and_then(|e| if e.is_zero() { .and_then(|e| {
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity")) if e.is_zero() {
Err(io::Error::new(
io::ErrorKind::InvalidData,
"point at infinity",
))
} else { } else {
Ok(e) Ok(e)
})?; }
})?;
reader.read_exact(g2_repr.as_mut())?; reader.read_exact(g2_repr.as_mut())?;
let b = g2_repr let b = g2_repr
.into_affine() .into_affine()
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e)) .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
.and_then(|e| if e.is_zero() { .and_then(|e| {
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity")) if e.is_zero() {
Err(io::Error::new(
io::ErrorKind::InvalidData,
"point at infinity",
))
} else { } else {
Ok(e) Ok(e)
})?; }
})?;
reader.read_exact(g1_repr.as_mut())?; reader.read_exact(g1_repr.as_mut())?;
let c = g1_repr let c = g1_repr
.into_affine() .into_affine()
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e)) .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
.and_then(|e| if e.is_zero() { .and_then(|e| {
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity")) if e.is_zero() {
Err(io::Error::new(
io::ErrorKind::InvalidData,
"point at infinity",
))
} else { } else {
Ok(e) Ok(e)
})?; }
})?;
Ok(Proof { Ok(Proof { a: a, b: b, c: c })
a: a,
b: b,
c: c
})
} }
} }
@ -122,27 +119,23 @@ pub struct VerifyingKey<E: Engine> {
// for all public inputs. Because all public inputs have a dummy constraint, // for all public inputs. Because all public inputs have a dummy constraint,
// this is the same size as the number of inputs, and never contains points // this is the same size as the number of inputs, and never contains points
// at infinity. // at infinity.
pub ic: Vec<E::G1Affine> pub ic: Vec<E::G1Affine>,
} }
impl<E: Engine> PartialEq for VerifyingKey<E> { impl<E: Engine> PartialEq for VerifyingKey<E> {
fn eq(&self, other: &Self) -> bool { fn eq(&self, other: &Self) -> bool {
self.alpha_g1 == other.alpha_g1 && self.alpha_g1 == other.alpha_g1
self.beta_g1 == other.beta_g1 && && self.beta_g1 == other.beta_g1
self.beta_g2 == other.beta_g2 && && self.beta_g2 == other.beta_g2
self.gamma_g2 == other.gamma_g2 && && self.gamma_g2 == other.gamma_g2
self.delta_g1 == other.delta_g1 && && self.delta_g1 == other.delta_g1
self.delta_g2 == other.delta_g2 && && self.delta_g2 == other.delta_g2
self.ic == other.ic && self.ic == other.ic
} }
} }
impl<E: Engine> VerifyingKey<E> { impl<E: Engine> VerifyingKey<E> {
pub fn write<W: Write>( pub fn write<W: Write>(&self, mut writer: W) -> io::Result<()> {
&self,
mut writer: W
) -> io::Result<()>
{
writer.write_all(self.alpha_g1.into_uncompressed().as_ref())?; writer.write_all(self.alpha_g1.into_uncompressed().as_ref())?;
writer.write_all(self.beta_g1.into_uncompressed().as_ref())?; writer.write_all(self.beta_g1.into_uncompressed().as_ref())?;
writer.write_all(self.beta_g2.into_uncompressed().as_ref())?; writer.write_all(self.beta_g2.into_uncompressed().as_ref())?;
@ -157,30 +150,39 @@ impl<E: Engine> VerifyingKey<E> {
Ok(()) Ok(())
} }
pub fn read<R: Read>( pub fn read<R: Read>(mut reader: R) -> io::Result<Self> {
mut reader: R
) -> io::Result<Self>
{
let mut g1_repr = <E::G1Affine as CurveAffine>::Uncompressed::empty(); let mut g1_repr = <E::G1Affine as CurveAffine>::Uncompressed::empty();
let mut g2_repr = <E::G2Affine as CurveAffine>::Uncompressed::empty(); let mut g2_repr = <E::G2Affine as CurveAffine>::Uncompressed::empty();
reader.read_exact(g1_repr.as_mut())?; reader.read_exact(g1_repr.as_mut())?;
let alpha_g1 = g1_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?; let alpha_g1 = g1_repr
.into_affine()
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
reader.read_exact(g1_repr.as_mut())?; reader.read_exact(g1_repr.as_mut())?;
let beta_g1 = g1_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?; let beta_g1 = g1_repr
.into_affine()
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
reader.read_exact(g2_repr.as_mut())?; reader.read_exact(g2_repr.as_mut())?;
let beta_g2 = g2_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?; let beta_g2 = g2_repr
.into_affine()
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
reader.read_exact(g2_repr.as_mut())?; reader.read_exact(g2_repr.as_mut())?;
let gamma_g2 = g2_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?; let gamma_g2 = g2_repr
.into_affine()
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
reader.read_exact(g1_repr.as_mut())?; reader.read_exact(g1_repr.as_mut())?;
let delta_g1 = g1_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?; let delta_g1 = g1_repr
.into_affine()
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
reader.read_exact(g2_repr.as_mut())?; reader.read_exact(g2_repr.as_mut())?;
let delta_g2 = g2_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?; let delta_g2 = g2_repr
.into_affine()
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
let ic_len = reader.read_u32::<BigEndian>()? as usize; let ic_len = reader.read_u32::<BigEndian>()? as usize;
@ -189,13 +191,18 @@ impl<E: Engine> VerifyingKey<E> {
for _ in 0..ic_len { for _ in 0..ic_len {
reader.read_exact(g1_repr.as_mut())?; reader.read_exact(g1_repr.as_mut())?;
let g1 = g1_repr let g1 = g1_repr
.into_affine() .into_affine()
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e)) .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
.and_then(|e| if e.is_zero() { .and_then(|e| {
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity")) if e.is_zero() {
} else { Err(io::Error::new(
Ok(e) io::ErrorKind::InvalidData,
})?; "point at infinity",
))
} else {
Ok(e)
}
})?;
ic.push(g1); ic.push(g1);
} }
@ -207,7 +214,7 @@ impl<E: Engine> VerifyingKey<E> {
gamma_g2: gamma_g2, gamma_g2: gamma_g2,
delta_g1: delta_g1, delta_g1: delta_g1,
delta_g2: delta_g2, delta_g2: delta_g2,
ic: ic ic: ic,
}) })
} }
} }
@ -216,7 +223,7 @@ impl<E: Engine> VerifyingKey<E> {
pub struct Parameters<E: Engine> { pub struct Parameters<E: Engine> {
pub vk: VerifyingKey<E>, pub vk: VerifyingKey<E>,
// Elements of the form ((tau^i * t(tau)) / delta) for i between 0 and // Elements of the form ((tau^i * t(tau)) / delta) for i between 0 and
// m-2 inclusive. Never contains points at infinity. // m-2 inclusive. Never contains points at infinity.
pub h: Arc<Vec<E::G1Affine>>, pub h: Arc<Vec<E::G1Affine>>,
@ -234,26 +241,22 @@ pub struct Parameters<E: Engine> {
// G1 and G2 for C/B queries, respectively. Never contains points at // G1 and G2 for C/B queries, respectively. Never contains points at
// infinity for the same reason as the "A" polynomials. // infinity for the same reason as the "A" polynomials.
pub b_g1: Arc<Vec<E::G1Affine>>, pub b_g1: Arc<Vec<E::G1Affine>>,
pub b_g2: Arc<Vec<E::G2Affine>> pub b_g2: Arc<Vec<E::G2Affine>>,
} }
impl<E: Engine> PartialEq for Parameters<E> { impl<E: Engine> PartialEq for Parameters<E> {
fn eq(&self, other: &Self) -> bool { fn eq(&self, other: &Self) -> bool {
self.vk == other.vk && self.vk == other.vk
self.h == other.h && && self.h == other.h
self.l == other.l && && self.l == other.l
self.a == other.a && && self.a == other.a
self.b_g1 == other.b_g1 && && self.b_g1 == other.b_g1
self.b_g2 == other.b_g2 && self.b_g2 == other.b_g2
} }
} }
impl<E: Engine> Parameters<E> { impl<E: Engine> Parameters<E> {
pub fn write<W: Write>( pub fn write<W: Write>(&self, mut writer: W) -> io::Result<()> {
&self,
mut writer: W
) -> io::Result<()>
{
self.vk.write(&mut writer)?; self.vk.write(&mut writer)?;
writer.write_u32::<BigEndian>(self.h.len() as u32)?; writer.write_u32::<BigEndian>(self.h.len() as u32)?;
@ -284,27 +287,26 @@ impl<E: Engine> Parameters<E> {
Ok(()) Ok(())
} }
pub fn read<R: Read>( pub fn read<R: Read>(mut reader: R, checked: bool) -> io::Result<Self> {
mut reader: R,
checked: bool
) -> io::Result<Self>
{
let read_g1 = |reader: &mut R| -> io::Result<E::G1Affine> { let read_g1 = |reader: &mut R| -> io::Result<E::G1Affine> {
let mut repr = <E::G1Affine as CurveAffine>::Uncompressed::empty(); let mut repr = <E::G1Affine as CurveAffine>::Uncompressed::empty();
reader.read_exact(repr.as_mut())?; reader.read_exact(repr.as_mut())?;
if checked { if checked {
repr repr.into_affine()
.into_affine()
} else { } else {
repr repr.into_affine_unchecked()
.into_affine_unchecked()
} }
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e)) .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
.and_then(|e| if e.is_zero() { .and_then(|e| {
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity")) if e.is_zero() {
} else { Err(io::Error::new(
Ok(e) io::ErrorKind::InvalidData,
"point at infinity",
))
} else {
Ok(e)
}
}) })
}; };
@ -313,17 +315,20 @@ impl<E: Engine> Parameters<E> {
reader.read_exact(repr.as_mut())?; reader.read_exact(repr.as_mut())?;
if checked { if checked {
repr repr.into_affine()
.into_affine()
} else { } else {
repr repr.into_affine_unchecked()
.into_affine_unchecked()
} }
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e)) .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
.and_then(|e| if e.is_zero() { .and_then(|e| {
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity")) if e.is_zero() {
} else { Err(io::Error::new(
Ok(e) io::ErrorKind::InvalidData,
"point at infinity",
))
} else {
Ok(e)
}
}) })
}; };
@ -376,7 +381,7 @@ impl<E: Engine> Parameters<E> {
l: Arc::new(l), l: Arc::new(l),
a: Arc::new(a), a: Arc::new(a),
b_g1: Arc::new(b_g1), b_g1: Arc::new(b_g1),
b_g2: Arc::new(b_g2) b_g2: Arc::new(b_g2),
}) })
} }
} }
@ -389,39 +394,30 @@ pub struct PreparedVerifyingKey<E: Engine> {
/// -delta in G2 /// -delta in G2
neg_delta_g2: <E::G2Affine as PairingCurveAffine>::Prepared, neg_delta_g2: <E::G2Affine as PairingCurveAffine>::Prepared,
/// Copy of IC from `VerifiyingKey`. /// Copy of IC from `VerifiyingKey`.
ic: Vec<E::G1Affine> ic: Vec<E::G1Affine>,
} }
pub trait ParameterSource<E: Engine> { pub trait ParameterSource<E: Engine> {
type G1Builder: SourceBuilder<E::G1Affine>; type G1Builder: SourceBuilder<E::G1Affine>;
type G2Builder: SourceBuilder<E::G2Affine>; type G2Builder: SourceBuilder<E::G2Affine>;
fn get_vk( fn get_vk(&mut self, num_ic: usize) -> Result<VerifyingKey<E>, SynthesisError>;
&mut self, fn get_h(&mut self, num_h: usize) -> Result<Self::G1Builder, SynthesisError>;
num_ic: usize fn get_l(&mut self, num_l: usize) -> Result<Self::G1Builder, SynthesisError>;
) -> Result<VerifyingKey<E>, SynthesisError>;
fn get_h(
&mut self,
num_h: usize
) -> Result<Self::G1Builder, SynthesisError>;
fn get_l(
&mut self,
num_l: usize
) -> Result<Self::G1Builder, SynthesisError>;
fn get_a( fn get_a(
&mut self, &mut self,
num_inputs: usize, num_inputs: usize,
num_aux: usize num_aux: usize,
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>; ) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>;
fn get_b_g1( fn get_b_g1(
&mut self, &mut self,
num_inputs: usize, num_inputs: usize,
num_aux: usize num_aux: usize,
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>; ) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>;
fn get_b_g2( fn get_b_g2(
&mut self, &mut self,
num_inputs: usize, num_inputs: usize,
num_aux: usize num_aux: usize,
) -> Result<(Self::G2Builder, Self::G2Builder), SynthesisError>; ) -> Result<(Self::G2Builder, Self::G2Builder), SynthesisError>;
} }
@ -429,54 +425,39 @@ impl<'a, E: Engine> ParameterSource<E> for &'a Parameters<E> {
type G1Builder = (Arc<Vec<E::G1Affine>>, usize); type G1Builder = (Arc<Vec<E::G1Affine>>, usize);
type G2Builder = (Arc<Vec<E::G2Affine>>, usize); type G2Builder = (Arc<Vec<E::G2Affine>>, usize);
fn get_vk( fn get_vk(&mut self, _: usize) -> Result<VerifyingKey<E>, SynthesisError> {
&mut self,
_: usize
) -> Result<VerifyingKey<E>, SynthesisError>
{
Ok(self.vk.clone()) Ok(self.vk.clone())
} }
fn get_h( fn get_h(&mut self, _: usize) -> Result<Self::G1Builder, SynthesisError> {
&mut self,
_: usize
) -> Result<Self::G1Builder, SynthesisError>
{
Ok((self.h.clone(), 0)) Ok((self.h.clone(), 0))
} }
fn get_l( fn get_l(&mut self, _: usize) -> Result<Self::G1Builder, SynthesisError> {
&mut self,
_: usize
) -> Result<Self::G1Builder, SynthesisError>
{
Ok((self.l.clone(), 0)) Ok((self.l.clone(), 0))
} }
fn get_a( fn get_a(
&mut self, &mut self,
num_inputs: usize, num_inputs: usize,
_: usize _: usize,
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError> ) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError> {
{
Ok(((self.a.clone(), 0), (self.a.clone(), num_inputs))) Ok(((self.a.clone(), 0), (self.a.clone(), num_inputs)))
} }
fn get_b_g1( fn get_b_g1(
&mut self, &mut self,
num_inputs: usize, num_inputs: usize,
_: usize _: usize,
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError> ) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError> {
{
Ok(((self.b_g1.clone(), 0), (self.b_g1.clone(), num_inputs))) Ok(((self.b_g1.clone(), 0), (self.b_g1.clone(), num_inputs)))
} }
fn get_b_g2( fn get_b_g2(
&mut self, &mut self,
num_inputs: usize, num_inputs: usize,
_: usize _: usize,
) -> Result<(Self::G2Builder, Self::G2Builder), SynthesisError> ) -> Result<(Self::G2Builder, Self::G2Builder), SynthesisError> {
{
Ok(((self.b_g2.clone(), 0), (self.b_g2.clone(), num_inputs))) Ok(((self.b_g2.clone(), 0), (self.b_g2.clone(), num_inputs)))
} }
} }
@ -484,41 +465,38 @@ impl<'a, E: Engine> ParameterSource<E> for &'a Parameters<E> {
#[cfg(test)] #[cfg(test)]
mod test_with_bls12_381 { mod test_with_bls12_381 {
use super::*; use super::*;
use {Circuit, SynthesisError, ConstraintSystem}; use {Circuit, ConstraintSystem, SynthesisError};
use ff::Field; use ff::Field;
use rand::{thread_rng};
use pairing::bls12_381::{Bls12, Fr}; use pairing::bls12_381::{Bls12, Fr};
use rand::thread_rng;
#[test] #[test]
fn serialization() { fn serialization() {
struct MySillyCircuit<E: Engine> { struct MySillyCircuit<E: Engine> {
a: Option<E::Fr>, a: Option<E::Fr>,
b: Option<E::Fr> b: Option<E::Fr>,
} }
impl<E: Engine> Circuit<E> for MySillyCircuit<E> { impl<E: Engine> Circuit<E> for MySillyCircuit<E> {
fn synthesize<CS: ConstraintSystem<E>>( fn synthesize<CS: ConstraintSystem<E>>(
self, self,
cs: &mut CS cs: &mut CS,
) -> Result<(), SynthesisError> ) -> Result<(), SynthesisError> {
{
let a = cs.alloc(|| "a", || self.a.ok_or(SynthesisError::AssignmentMissing))?; let a = cs.alloc(|| "a", || self.a.ok_or(SynthesisError::AssignmentMissing))?;
let b = cs.alloc(|| "b", || self.b.ok_or(SynthesisError::AssignmentMissing))?; let b = cs.alloc(|| "b", || self.b.ok_or(SynthesisError::AssignmentMissing))?;
let c = cs.alloc_input(|| "c", || { let c = cs.alloc_input(
let mut a = self.a.ok_or(SynthesisError::AssignmentMissing)?; || "c",
let b = self.b.ok_or(SynthesisError::AssignmentMissing)?; || {
let mut a = self.a.ok_or(SynthesisError::AssignmentMissing)?;
let b = self.b.ok_or(SynthesisError::AssignmentMissing)?;
a.mul_assign(&b); a.mul_assign(&b);
Ok(a) Ok(a)
})?; },
)?;
cs.enforce( cs.enforce(|| "a*b=c", |lc| lc + a, |lc| lc + b, |lc| lc + c);
|| "a*b=c",
|lc| lc + a,
|lc| lc + b,
|lc| lc + c
);
Ok(()) Ok(())
} }
@ -526,10 +504,9 @@ mod test_with_bls12_381 {
let rng = &mut thread_rng(); let rng = &mut thread_rng();
let params = generate_random_parameters::<Bls12, _, _>( let params =
MySillyCircuit { a: None, b: None }, generate_random_parameters::<Bls12, _, _>(MySillyCircuit { a: None, b: None }, rng)
rng .unwrap();
).unwrap();
{ {
let mut v = vec![]; let mut v = vec![];
@ -555,11 +532,12 @@ mod test_with_bls12_381 {
let proof = create_random_proof( let proof = create_random_proof(
MySillyCircuit { MySillyCircuit {
a: Some(a), a: Some(a),
b: Some(b) b: Some(b),
}, },
&params, &params,
rng rng,
).unwrap(); )
.unwrap();
let mut v = vec![]; let mut v = vec![];
proof.write(&mut v).unwrap(); proof.write(&mut v).unwrap();

View File

@ -8,43 +8,23 @@ use ff::{Field, PrimeField};
use group::{CurveAffine, CurveProjective}; use group::{CurveAffine, CurveProjective};
use pairing::Engine; use pairing::Engine;
use super::{ use super::{ParameterSource, Proof};
ParameterSource,
Proof
};
use ::{ use {Circuit, ConstraintSystem, Index, LinearCombination, SynthesisError, Variable};
SynthesisError,
Circuit,
ConstraintSystem,
LinearCombination,
Variable,
Index
};
use ::domain::{ use domain::{EvaluationDomain, Scalar};
EvaluationDomain,
Scalar
};
use ::multiexp::{ use multiexp::{multiexp, DensityTracker, FullDensity};
DensityTracker,
FullDensity,
multiexp
};
use ::multicore::{ use multicore::Worker;
Worker
};
fn eval<E: Engine>( fn eval<E: Engine>(
lc: &LinearCombination<E>, lc: &LinearCombination<E>,
mut input_density: Option<&mut DensityTracker>, mut input_density: Option<&mut DensityTracker>,
mut aux_density: Option<&mut DensityTracker>, mut aux_density: Option<&mut DensityTracker>,
input_assignment: &[E::Fr], input_assignment: &[E::Fr],
aux_assignment: &[E::Fr] aux_assignment: &[E::Fr],
) -> E::Fr ) -> E::Fr {
{
let mut acc = E::Fr::zero(); let mut acc = E::Fr::zero();
for &(index, coeff) in lc.0.iter() { for &(index, coeff) in lc.0.iter() {
@ -56,7 +36,7 @@ fn eval<E: Engine>(
if let Some(ref mut v) = input_density { if let Some(ref mut v) = input_density {
v.inc(i); v.inc(i);
} }
}, }
Variable(Index::Aux(i)) => { Variable(Index::Aux(i)) => {
tmp = aux_assignment[i]; tmp = aux_assignment[i];
if let Some(ref mut v) = aux_density { if let Some(ref mut v) = aux_density {
@ -66,10 +46,10 @@ fn eval<E: Engine>(
} }
if coeff == E::Fr::one() { if coeff == E::Fr::one() {
acc.add_assign(&tmp); acc.add_assign(&tmp);
} else { } else {
tmp.mul_assign(&coeff); tmp.mul_assign(&coeff);
acc.add_assign(&tmp); acc.add_assign(&tmp);
} }
} }
@ -89,18 +69,17 @@ struct ProvingAssignment<E: Engine> {
// Assignments of variables // Assignments of variables
input_assignment: Vec<E::Fr>, input_assignment: Vec<E::Fr>,
aux_assignment: Vec<E::Fr> aux_assignment: Vec<E::Fr>,
} }
impl<E: Engine> ConstraintSystem<E> for ProvingAssignment<E> { impl<E: Engine> ConstraintSystem<E> for ProvingAssignment<E> {
type Root = Self; type Root = Self;
fn alloc<F, A, AR>( fn alloc<F, A, AR>(&mut self, _: A, f: F) -> Result<Variable, SynthesisError>
&mut self, where
_: A, F: FnOnce() -> Result<E::Fr, SynthesisError>,
f: F A: FnOnce() -> AR,
) -> Result<Variable, SynthesisError> AR: Into<String>,
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{ {
self.aux_assignment.push(f()?); self.aux_assignment.push(f()?);
self.a_aux_density.add_element(); self.a_aux_density.add_element();
@ -109,12 +88,11 @@ impl<E: Engine> ConstraintSystem<E> for ProvingAssignment<E> {
Ok(Variable(Index::Aux(self.aux_assignment.len() - 1))) Ok(Variable(Index::Aux(self.aux_assignment.len() - 1)))
} }
fn alloc_input<F, A, AR>( fn alloc_input<F, A, AR>(&mut self, _: A, f: F) -> Result<Variable, SynthesisError>
&mut self, where
_: A, F: FnOnce() -> Result<E::Fr, SynthesisError>,
f: F A: FnOnce() -> AR,
) -> Result<Variable, SynthesisError> AR: Into<String>,
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{ {
self.input_assignment.push(f()?); self.input_assignment.push(f()?);
self.b_input_density.add_element(); self.b_input_density.add_element();
@ -122,17 +100,13 @@ impl<E: Engine> ConstraintSystem<E> for ProvingAssignment<E> {
Ok(Variable(Index::Input(self.input_assignment.len() - 1))) Ok(Variable(Index::Input(self.input_assignment.len() - 1)))
} }
fn enforce<A, AR, LA, LB, LC>( fn enforce<A, AR, LA, LB, LC>(&mut self, _: A, a: LA, b: LB, c: LC)
&mut self, where
_: A, A: FnOnce() -> AR,
a: LA, AR: Into<String>,
b: LB, LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
c: LC LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
) LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
where A: FnOnce() -> AR, AR: Into<String>,
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
{ {
let a = a(LinearCombination::zero()); let a = a(LinearCombination::zero());
let b = b(LinearCombination::zero()); let b = b(LinearCombination::zero());
@ -146,14 +120,14 @@ impl<E: Engine> ConstraintSystem<E> for ProvingAssignment<E> {
None, None,
Some(&mut self.a_aux_density), Some(&mut self.a_aux_density),
&self.input_assignment, &self.input_assignment,
&self.aux_assignment &self.aux_assignment,
))); )));
self.b.push(Scalar(eval( self.b.push(Scalar(eval(
&b, &b,
Some(&mut self.b_input_density), Some(&mut self.b_input_density),
Some(&mut self.b_aux_density), Some(&mut self.b_aux_density),
&self.input_assignment, &self.input_assignment,
&self.aux_assignment &self.aux_assignment,
))); )));
self.c.push(Scalar(eval( self.c.push(Scalar(eval(
&c, &c,
@ -164,18 +138,19 @@ impl<E: Engine> ConstraintSystem<E> for ProvingAssignment<E> {
None, None,
None, None,
&self.input_assignment, &self.input_assignment,
&self.aux_assignment &self.aux_assignment,
))); )));
} }
fn push_namespace<NR, N>(&mut self, _: N) fn push_namespace<NR, N>(&mut self, _: N)
where NR: Into<String>, N: FnOnce() -> NR where
NR: Into<String>,
N: FnOnce() -> NR,
{ {
// Do nothing; we don't care about namespaces in this context. // Do nothing; we don't care about namespaces in this context.
} }
fn pop_namespace(&mut self) fn pop_namespace(&mut self) {
{
// Do nothing; we don't care about namespaces in this context. // Do nothing; we don't care about namespaces in this context.
} }
@ -187,9 +162,12 @@ impl<E: Engine> ConstraintSystem<E> for ProvingAssignment<E> {
pub fn create_random_proof<E, C, R, P: ParameterSource<E>>( pub fn create_random_proof<E, C, R, P: ParameterSource<E>>(
circuit: C, circuit: C,
params: P, params: P,
rng: &mut R rng: &mut R,
) -> Result<Proof<E>, SynthesisError> ) -> Result<Proof<E>, SynthesisError>
where E: Engine, C: Circuit<E>, R: RngCore where
E: Engine,
C: Circuit<E>,
R: RngCore,
{ {
let r = E::Fr::random(rng); let r = E::Fr::random(rng);
let s = E::Fr::random(rng); let s = E::Fr::random(rng);
@ -201,9 +179,11 @@ pub fn create_proof<E, C, P: ParameterSource<E>>(
circuit: C, circuit: C,
mut params: P, mut params: P,
r: E::Fr, r: E::Fr,
s: E::Fr s: E::Fr,
) -> Result<Proof<E>, SynthesisError> ) -> Result<Proof<E>, SynthesisError>
where E: Engine, C: Circuit<E> where
E: Engine,
C: Circuit<E>,
{ {
let mut prover = ProvingAssignment { let mut prover = ProvingAssignment {
a_aux_density: DensityTracker::new(), a_aux_density: DensityTracker::new(),
@ -213,7 +193,7 @@ pub fn create_proof<E, C, P: ParameterSource<E>>(
b: vec![], b: vec![],
c: vec![], c: vec![],
input_assignment: vec![], input_assignment: vec![],
aux_assignment: vec![] aux_assignment: vec![],
}; };
prover.alloc_input(|| "", || Ok(E::Fr::one()))?; prover.alloc_input(|| "", || Ok(E::Fr::one()))?;
@ -221,11 +201,7 @@ pub fn create_proof<E, C, P: ParameterSource<E>>(
circuit.synthesize(&mut prover)?; circuit.synthesize(&mut prover)?;
for i in 0..prover.input_assignment.len() { for i in 0..prover.input_assignment.len() {
prover.enforce(|| "", prover.enforce(|| "", |lc| lc + Variable(Index::Input(i)), |lc| lc, |lc| lc);
|lc| lc + Variable(Index::Input(i)),
|lc| lc,
|lc| lc,
);
} }
let worker = Worker::new(); let worker = Worker::new();
@ -259,31 +235,76 @@ pub fn create_proof<E, C, P: ParameterSource<E>>(
}; };
// TODO: parallelize if it's even helpful // TODO: parallelize if it's even helpful
let input_assignment = Arc::new(prover.input_assignment.into_iter().map(|s| s.into_repr()).collect::<Vec<_>>()); let input_assignment = Arc::new(
let aux_assignment = Arc::new(prover.aux_assignment.into_iter().map(|s| s.into_repr()).collect::<Vec<_>>()); prover
.input_assignment
.into_iter()
.map(|s| s.into_repr())
.collect::<Vec<_>>(),
);
let aux_assignment = Arc::new(
prover
.aux_assignment
.into_iter()
.map(|s| s.into_repr())
.collect::<Vec<_>>(),
);
let l = multiexp(&worker, params.get_l(aux_assignment.len())?, FullDensity, aux_assignment.clone()); let l = multiexp(
&worker,
params.get_l(aux_assignment.len())?,
FullDensity,
aux_assignment.clone(),
);
let a_aux_density_total = prover.a_aux_density.get_total_density(); let a_aux_density_total = prover.a_aux_density.get_total_density();
let (a_inputs_source, a_aux_source) = params.get_a(input_assignment.len(), a_aux_density_total)?; let (a_inputs_source, a_aux_source) =
params.get_a(input_assignment.len(), a_aux_density_total)?;
let a_inputs = multiexp(&worker, a_inputs_source, FullDensity, input_assignment.clone()); let a_inputs = multiexp(
let a_aux = multiexp(&worker, a_aux_source, Arc::new(prover.a_aux_density), aux_assignment.clone()); &worker,
a_inputs_source,
FullDensity,
input_assignment.clone(),
);
let a_aux = multiexp(
&worker,
a_aux_source,
Arc::new(prover.a_aux_density),
aux_assignment.clone(),
);
let b_input_density = Arc::new(prover.b_input_density); let b_input_density = Arc::new(prover.b_input_density);
let b_input_density_total = b_input_density.get_total_density(); let b_input_density_total = b_input_density.get_total_density();
let b_aux_density = Arc::new(prover.b_aux_density); let b_aux_density = Arc::new(prover.b_aux_density);
let b_aux_density_total = b_aux_density.get_total_density(); let b_aux_density_total = b_aux_density.get_total_density();
let (b_g1_inputs_source, b_g1_aux_source) = params.get_b_g1(b_input_density_total, b_aux_density_total)?; let (b_g1_inputs_source, b_g1_aux_source) =
params.get_b_g1(b_input_density_total, b_aux_density_total)?;
let b_g1_inputs = multiexp(&worker, b_g1_inputs_source, b_input_density.clone(), input_assignment.clone()); let b_g1_inputs = multiexp(
let b_g1_aux = multiexp(&worker, b_g1_aux_source, b_aux_density.clone(), aux_assignment.clone()); &worker,
b_g1_inputs_source,
b_input_density.clone(),
input_assignment.clone(),
);
let b_g1_aux = multiexp(
&worker,
b_g1_aux_source,
b_aux_density.clone(),
aux_assignment.clone(),
);
let (b_g2_inputs_source, b_g2_aux_source) = params.get_b_g2(b_input_density_total, b_aux_density_total)?; let (b_g2_inputs_source, b_g2_aux_source) =
params.get_b_g2(b_input_density_total, b_aux_density_total)?;
let b_g2_inputs = multiexp(&worker, b_g2_inputs_source, b_input_density, input_assignment);
let b_g2_inputs = multiexp(
&worker,
b_g2_inputs_source,
b_input_density,
input_assignment,
);
let b_g2_aux = multiexp(&worker, b_g2_aux_source, b_aux_density, aux_assignment); let b_g2_aux = multiexp(&worker, b_g2_aux_source, b_aux_density, aux_assignment);
if vk.delta_g1.is_zero() || vk.delta_g2.is_zero() { if vk.delta_g1.is_zero() || vk.delta_g2.is_zero() {
@ -325,6 +346,6 @@ pub fn create_proof<E, C, P: ParameterSource<E>>(
Ok(Proof { Ok(Proof {
a: g_a.into_affine(), a: g_a.into_affine(),
b: g_b.into_affine(), b: g_b.into_affine(),
c: g_c.into_affine() c: g_c.into_affine(),
}) })
} }

View File

@ -1,12 +1,13 @@
use ff::{ use ff::{
Field, LegendreSymbol, PrimeField, PrimeFieldDecodingError, Field, LegendreSymbol, PrimeField, PrimeFieldDecodingError, PrimeFieldRepr, ScalarEngine,
PrimeFieldRepr, ScalarEngine, SqrtField}; SqrtField,
};
use group::{CurveAffine, CurveProjective, EncodedPoint, GroupDecodingError}; use group::{CurveAffine, CurveProjective, EncodedPoint, GroupDecodingError};
use pairing::{Engine, PairingCurveAffine}; use pairing::{Engine, PairingCurveAffine};
use rand_core::RngCore;
use std::cmp::Ordering; use std::cmp::Ordering;
use std::fmt; use std::fmt;
use rand_core::RngCore;
use std::num::Wrapping; use std::num::Wrapping;
const MODULUS_R: Wrapping<u32> = Wrapping(64513); const MODULUS_R: Wrapping<u32> = Wrapping(64513);
@ -80,9 +81,13 @@ impl SqrtField for Fr {
fn legendre(&self) -> LegendreSymbol { fn legendre(&self) -> LegendreSymbol {
// s = self^((r - 1) // 2) // s = self^((r - 1) // 2)
let s = self.pow([32256]); let s = self.pow([32256]);
if s == <Fr as Field>::zero() { LegendreSymbol::Zero } if s == <Fr as Field>::zero() {
else if s == <Fr as Field>::one() { LegendreSymbol::QuadraticResidue } LegendreSymbol::Zero
else { LegendreSymbol::QuadraticNonResidue } } else if s == <Fr as Field>::one() {
LegendreSymbol::QuadraticResidue
} else {
LegendreSymbol::QuadraticNonResidue
}
} }
fn sqrt(&self) -> Option<Self> { fn sqrt(&self) -> Option<Self> {
@ -100,7 +105,7 @@ impl SqrtField for Fr {
let mut m = Fr::S; let mut m = Fr::S;
while t != <Fr as Field>::one() { while t != <Fr as Field>::one() {
let mut i = 1; let mut i = 1;
{ {
let mut t2i = t; let mut t2i = t;
t2i.square(); t2i.square();
@ -258,15 +263,18 @@ impl Engine for DummyEngine {
type G2Affine = Fr; type G2Affine = Fr;
type Fq = Fr; type Fq = Fr;
type Fqe = Fr; type Fqe = Fr;
// TODO: This should be F_645131 or something. Doesn't matter for now. // TODO: This should be F_645131 or something. Doesn't matter for now.
type Fqk = Fr; type Fqk = Fr;
fn miller_loop<'a, I>(i: I) -> Self::Fqk fn miller_loop<'a, I>(i: I) -> Self::Fqk
where I: IntoIterator<Item=&'a ( where
&'a <Self::G1Affine as PairingCurveAffine>::Prepared, I: IntoIterator<
&'a <Self::G2Affine as PairingCurveAffine>::Prepared Item = &'a (
)> &'a <Self::G1Affine as PairingCurveAffine>::Prepared,
&'a <Self::G2Affine as PairingCurveAffine>::Prepared,
),
>,
{ {
let mut acc = <Fr as Field>::zero(); let mut acc = <Fr as Field>::zero();
@ -280,8 +288,7 @@ impl Engine for DummyEngine {
} }
/// Perform final exponentiation of the result of a miller loop. /// Perform final exponentiation of the result of a miller loop.
fn final_exponentiation(this: &Self::Fqk) -> Option<Self::Fqk> fn final_exponentiation(this: &Self::Fqk) -> Option<Self::Fqk> {
{
Some(*this) Some(*this)
} }
} }
@ -308,9 +315,7 @@ impl CurveProjective for Fr {
<Fr as Field>::is_zero(self) <Fr as Field>::is_zero(self)
} }
fn batch_normalization(_: &mut [Self]) { fn batch_normalization(_: &mut [Self]) {}
}
fn is_normalized(&self) -> bool { fn is_normalized(&self) -> bool {
true true
@ -332,8 +337,7 @@ impl CurveProjective for Fr {
<Fr as Field>::negate(self); <Fr as Field>::negate(self);
} }
fn mul_assign<S: Into<<Self::Scalar as PrimeField>::Repr>>(&mut self, other: S) fn mul_assign<S: Into<<Self::Scalar as PrimeField>::Repr>>(&mut self, other: S) {
{
let tmp = Fr::from_repr(other.into()).unwrap(); let tmp = Fr::from_repr(other.into()).unwrap();
<Fr as Field>::mul_assign(self, &tmp); <Fr as Field>::mul_assign(self, &tmp);
@ -415,8 +419,7 @@ impl CurveAffine for Fr {
<Fr as Field>::negate(self); <Fr as Field>::negate(self);
} }
fn mul<S: Into<<Self::Scalar as PrimeField>::Repr>>(&self, other: S) -> Self::Projective fn mul<S: Into<<Self::Scalar as PrimeField>::Repr>>(&self, other: S) -> Self::Projective {
{
let mut res = *self; let mut res = *self;
let tmp = Fr::from_repr(other.into()).unwrap(); let tmp = Fr::from_repr(other.into()).unwrap();

View File

@ -6,86 +6,82 @@ use self::dummy_engine::*;
use std::marker::PhantomData; use std::marker::PhantomData;
use ::{ use {Circuit, ConstraintSystem, SynthesisError};
Circuit,
ConstraintSystem,
SynthesisError
};
use super::{ use super::{create_proof, generate_parameters, prepare_verifying_key, verify_proof};
generate_parameters,
prepare_verifying_key,
create_proof,
verify_proof
};
struct XORDemo<E: Engine> { struct XORDemo<E: Engine> {
a: Option<bool>, a: Option<bool>,
b: Option<bool>, b: Option<bool>,
_marker: PhantomData<E> _marker: PhantomData<E>,
} }
impl<E: Engine> Circuit<E> for XORDemo<E> { impl<E: Engine> Circuit<E> for XORDemo<E> {
fn synthesize<CS: ConstraintSystem<E>>( fn synthesize<CS: ConstraintSystem<E>>(self, cs: &mut CS) -> Result<(), SynthesisError> {
self, let a_var = cs.alloc(
cs: &mut CS || "a",
) -> Result<(), SynthesisError> || {
{ if self.a.is_some() {
let a_var = cs.alloc(|| "a", || { if self.a.unwrap() {
if self.a.is_some() { Ok(E::Fr::one())
if self.a.unwrap() { } else {
Ok(E::Fr::one()) Ok(E::Fr::zero())
}
} else { } else {
Ok(E::Fr::zero()) Err(SynthesisError::AssignmentMissing)
} }
} else { },
Err(SynthesisError::AssignmentMissing) )?;
}
})?;
cs.enforce( cs.enforce(
|| "a_boolean_constraint", || "a_boolean_constraint",
|lc| lc + CS::one() - a_var, |lc| lc + CS::one() - a_var,
|lc| lc + a_var, |lc| lc + a_var,
|lc| lc |lc| lc,
); );
let b_var = cs.alloc(|| "b", || { let b_var = cs.alloc(
if self.b.is_some() { || "b",
if self.b.unwrap() { || {
Ok(E::Fr::one()) if self.b.is_some() {
if self.b.unwrap() {
Ok(E::Fr::one())
} else {
Ok(E::Fr::zero())
}
} else { } else {
Ok(E::Fr::zero()) Err(SynthesisError::AssignmentMissing)
} }
} else { },
Err(SynthesisError::AssignmentMissing) )?;
}
})?;
cs.enforce( cs.enforce(
|| "b_boolean_constraint", || "b_boolean_constraint",
|lc| lc + CS::one() - b_var, |lc| lc + CS::one() - b_var,
|lc| lc + b_var, |lc| lc + b_var,
|lc| lc |lc| lc,
); );
let c_var = cs.alloc_input(|| "c", || { let c_var = cs.alloc_input(
if self.a.is_some() && self.b.is_some() { || "c",
if self.a.unwrap() ^ self.b.unwrap() { || {
Ok(E::Fr::one()) if self.a.is_some() && self.b.is_some() {
if self.a.unwrap() ^ self.b.unwrap() {
Ok(E::Fr::one())
} else {
Ok(E::Fr::zero())
}
} else { } else {
Ok(E::Fr::zero()) Err(SynthesisError::AssignmentMissing)
} }
} else { },
Err(SynthesisError::AssignmentMissing) )?;
}
})?;
cs.enforce( cs.enforce(
|| "c_xor_constraint", || "c_xor_constraint",
|lc| lc + a_var + a_var, |lc| lc + a_var + a_var,
|lc| lc + b_var, |lc| lc + b_var,
|lc| lc + a_var + b_var - c_var |lc| lc + a_var + b_var - c_var,
); );
Ok(()) Ok(())
@ -106,19 +102,10 @@ fn test_xordemo() {
let c = XORDemo::<DummyEngine> { let c = XORDemo::<DummyEngine> {
a: None, a: None,
b: None, b: None,
_marker: PhantomData _marker: PhantomData,
}; };
generate_parameters( generate_parameters(c, g1, g2, alpha, beta, gamma, delta, tau).unwrap()
c,
g1,
g2,
alpha,
beta,
gamma,
delta,
tau
).unwrap()
}; };
// This will synthesize the constraint system: // This will synthesize the constraint system:
@ -226,32 +213,35 @@ fn test_xordemo() {
59158 59158
*/ */
let u_i = [59158, 48317, 21767, 10402].iter().map(|e| { let u_i = [59158, 48317, 21767, 10402]
Fr::from_str(&format!("{}", e)).unwrap() .iter()
}).collect::<Vec<Fr>>(); .map(|e| Fr::from_str(&format!("{}", e)).unwrap())
let v_i = [0, 0, 60619, 30791].iter().map(|e| { .collect::<Vec<Fr>>();
Fr::from_str(&format!("{}", e)).unwrap() let v_i = [0, 0, 60619, 30791]
}).collect::<Vec<Fr>>(); .iter()
let w_i = [0, 23320, 41193, 41193].iter().map(|e| { .map(|e| Fr::from_str(&format!("{}", e)).unwrap())
Fr::from_str(&format!("{}", e)).unwrap() .collect::<Vec<Fr>>();
}).collect::<Vec<Fr>>(); let w_i = [0, 23320, 41193, 41193]
.iter()
.map(|e| Fr::from_str(&format!("{}", e)).unwrap())
.collect::<Vec<Fr>>();
for (u, a) in u_i.iter() for (u, a) in u_i.iter().zip(&params.a[..]) {
.zip(&params.a[..])
{
assert_eq!(u, a); assert_eq!(u, a);
} }
for (v, b) in v_i.iter() for (v, b) in v_i
.filter(|&&e| e != Fr::zero()) .iter()
.zip(&params.b_g1[..]) .filter(|&&e| e != Fr::zero())
.zip(&params.b_g1[..])
{ {
assert_eq!(v, b); assert_eq!(v, b);
} }
for (v, b) in v_i.iter() for (v, b) in v_i
.filter(|&&e| e != Fr::zero()) .iter()
.zip(&params.b_g2[..]) .filter(|&&e| e != Fr::zero())
.zip(&params.b_g2[..])
{ {
assert_eq!(v, b); assert_eq!(v, b);
} }
@ -296,15 +286,10 @@ fn test_xordemo() {
let c = XORDemo { let c = XORDemo {
a: Some(true), a: Some(true),
b: Some(false), b: Some(false),
_marker: PhantomData _marker: PhantomData,
}; };
create_proof( create_proof(c, &params, r, s).unwrap()
c,
&params,
r,
s
).unwrap()
}; };
// A(x) = // A(x) =
@ -320,7 +305,7 @@ fn test_xordemo() {
expected_a.add_assign(&u_i[0]); // a_0 = 1 expected_a.add_assign(&u_i[0]); // a_0 = 1
expected_a.add_assign(&u_i[1]); // a_1 = 1 expected_a.add_assign(&u_i[1]); // a_1 = 1
expected_a.add_assign(&u_i[2]); // a_2 = 1 expected_a.add_assign(&u_i[2]); // a_2 = 1
// a_3 = 0 // a_3 = 0
assert_eq!(proof.a, expected_a); assert_eq!(proof.a, expected_a);
} }
@ -337,7 +322,7 @@ fn test_xordemo() {
expected_b.add_assign(&v_i[0]); // a_0 = 1 expected_b.add_assign(&v_i[0]); // a_0 = 1
expected_b.add_assign(&v_i[1]); // a_1 = 1 expected_b.add_assign(&v_i[1]); // a_1 = 1
expected_b.add_assign(&v_i[2]); // a_2 = 1 expected_b.add_assign(&v_i[2]); // a_2 = 1
// a_3 = 0 // a_3 = 0
assert_eq!(proof.b, expected_b); assert_eq!(proof.b, expected_b);
} }
@ -378,7 +363,10 @@ fn test_xordemo() {
expected_c.add_assign(&params.l[0]); expected_c.add_assign(&params.l[0]);
// H query answer // H query answer
for (i, coeff) in [5040, 11763, 10755, 63633, 128, 9747, 8739].iter().enumerate() { for (i, coeff) in [5040, 11763, 10755, 63633, 128, 9747, 8739]
.iter()
.enumerate()
{
let coeff = Fr::from_str(&format!("{}", coeff)).unwrap(); let coeff = Fr::from_str(&format!("{}", coeff)).unwrap();
let mut tmp = params.h[i]; let mut tmp = params.h[i];
@ -389,9 +377,5 @@ fn test_xordemo() {
assert_eq!(expected_c, proof.c); assert_eq!(expected_c, proof.c);
} }
assert!(verify_proof( assert!(verify_proof(&pvk, &proof, &[Fr::one()]).unwrap());
&pvk,
&proof,
&[Fr::one()]
).unwrap());
} }

View File

@ -2,20 +2,11 @@ use ff::PrimeField;
use group::{CurveAffine, CurveProjective}; use group::{CurveAffine, CurveProjective};
use pairing::{Engine, PairingCurveAffine}; use pairing::{Engine, PairingCurveAffine};
use super::{ use super::{PreparedVerifyingKey, Proof, VerifyingKey};
Proof,
VerifyingKey,
PreparedVerifyingKey
};
use ::{ use SynthesisError;
SynthesisError
};
pub fn prepare_verifying_key<E: Engine>( pub fn prepare_verifying_key<E: Engine>(vk: &VerifyingKey<E>) -> PreparedVerifyingKey<E> {
vk: &VerifyingKey<E>
) -> PreparedVerifyingKey<E>
{
let mut gamma = vk.gamma_g2; let mut gamma = vk.gamma_g2;
gamma.negate(); gamma.negate();
let mut delta = vk.delta_g2; let mut delta = vk.delta_g2;
@ -25,16 +16,15 @@ pub fn prepare_verifying_key<E: Engine>(
alpha_g1_beta_g2: E::pairing(vk.alpha_g1, vk.beta_g2), alpha_g1_beta_g2: E::pairing(vk.alpha_g1, vk.beta_g2),
neg_gamma_g2: gamma.prepare(), neg_gamma_g2: gamma.prepare(),
neg_delta_g2: delta.prepare(), neg_delta_g2: delta.prepare(),
ic: vk.ic.clone() ic: vk.ic.clone(),
} }
} }
pub fn verify_proof<'a, E: Engine>( pub fn verify_proof<'a, E: Engine>(
pvk: &'a PreparedVerifyingKey<E>, pvk: &'a PreparedVerifyingKey<E>,
proof: &Proof<E>, proof: &Proof<E>,
public_inputs: &[E::Fr] public_inputs: &[E::Fr],
) -> Result<bool, SynthesisError> ) -> Result<bool, SynthesisError> {
{
if (public_inputs.len() + 1) != pvk.ic.len() { if (public_inputs.len() + 1) != pvk.ic.len() {
return Err(SynthesisError::MalformedVerifyingKey); return Err(SynthesisError::MalformedVerifyingKey);
} }
@ -53,11 +43,14 @@ pub fn verify_proof<'a, E: Engine>(
// A * B + inputs * (-gamma) + C * (-delta) = alpha * beta // A * B + inputs * (-gamma) + C * (-delta) = alpha * beta
// which allows us to do a single final exponentiation. // which allows us to do a single final exponentiation.
Ok(E::final_exponentiation( Ok(E::final_exponentiation(&E::miller_loop(
&E::miller_loop([ [
(&proof.a.prepare(), &proof.b.prepare()), (&proof.a.prepare(), &proof.b.prepare()),
(&acc.into_affine().prepare(), &pvk.neg_gamma_g2), (&acc.into_affine().prepare(), &pvk.neg_gamma_g2),
(&proof.c.prepare(), &pvk.neg_delta_g2) (&proof.c.prepare(), &pvk.neg_delta_g2),
].into_iter()) ]
).unwrap() == pvk.alpha_g1_beta_g2) .into_iter(),
))
.unwrap()
== pvk.alpha_g1_beta_g2)
} }

View File

@ -4,10 +4,10 @@ extern crate group;
extern crate pairing; extern crate pairing;
extern crate rand_core; extern crate rand_core;
extern crate futures;
extern crate bit_vec; extern crate bit_vec;
extern crate blake2s_simd; extern crate blake2s_simd;
extern crate byteorder; extern crate byteorder;
extern crate futures;
#[cfg(feature = "multicore")] #[cfg(feature = "multicore")]
extern crate crossbeam; extern crate crossbeam;
@ -29,20 +29,20 @@ extern crate rand_xorshift;
#[cfg(test)] #[cfg(test)]
extern crate sha2; extern crate sha2;
pub mod gadgets;
pub mod multicore;
mod multiexp;
pub mod domain; pub mod domain;
pub mod gadgets;
#[cfg(feature = "groth16")] #[cfg(feature = "groth16")]
pub mod groth16; pub mod groth16;
pub mod multicore;
mod multiexp;
use ff::{Field, ScalarEngine}; use ff::{Field, ScalarEngine};
use std::ops::{Add, Sub};
use std::fmt;
use std::error::Error; use std::error::Error;
use std::fmt;
use std::io; use std::io;
use std::marker::PhantomData; use std::marker::PhantomData;
use std::ops::{Add, Sub};
/// Computations are expressed in terms of arithmetic circuits, in particular /// Computations are expressed in terms of arithmetic circuits, in particular
/// rank-1 quadratic constraint systems. The `Circuit` trait represents a /// rank-1 quadratic constraint systems. The `Circuit` trait represents a
@ -50,10 +50,7 @@ use std::marker::PhantomData;
/// CRS generation and during proving. /// CRS generation and during proving.
pub trait Circuit<E: ScalarEngine> { pub trait Circuit<E: ScalarEngine> {
/// Synthesize the circuit into a rank-1 quadratic constraint system /// Synthesize the circuit into a rank-1 quadratic constraint system
fn synthesize<CS: ConstraintSystem<E>>( fn synthesize<CS: ConstraintSystem<E>>(self, cs: &mut CS) -> Result<(), SynthesisError>;
self,
cs: &mut CS
) -> Result<(), SynthesisError>;
} }
/// Represents a variable in our constraint system. /// Represents a variable in our constraint system.
@ -79,7 +76,7 @@ impl Variable {
#[derive(Copy, Clone, PartialEq, Debug)] #[derive(Copy, Clone, PartialEq, Debug)]
pub enum Index { pub enum Index {
Input(usize), Input(usize),
Aux(usize) Aux(usize),
} }
/// This represents a linear combination of some variables, with coefficients /// This represents a linear combination of some variables, with coefficients
@ -206,7 +203,7 @@ pub enum SynthesisError {
/// During verification, our verifying key was malformed. /// During verification, our verifying key was malformed.
MalformedVerifyingKey, MalformedVerifyingKey,
/// During CRS generation, we observed an unconstrained auxiliary variable /// During CRS generation, we observed an unconstrained auxiliary variable
UnconstrainedVariable UnconstrainedVariable,
} }
impl From<io::Error> for SynthesisError { impl From<io::Error> for SynthesisError {
@ -218,14 +215,16 @@ impl From<io::Error> for SynthesisError {
impl Error for SynthesisError { impl Error for SynthesisError {
fn description(&self) -> &str { fn description(&self) -> &str {
match *self { match *self {
SynthesisError::AssignmentMissing => "an assignment for a variable could not be computed", SynthesisError::AssignmentMissing => {
"an assignment for a variable could not be computed"
}
SynthesisError::DivisionByZero => "division by zero", SynthesisError::DivisionByZero => "division by zero",
SynthesisError::Unsatisfiable => "unsatisfiable constraint system", SynthesisError::Unsatisfiable => "unsatisfiable constraint system",
SynthesisError::PolynomialDegreeTooLarge => "polynomial degree is too large", SynthesisError::PolynomialDegreeTooLarge => "polynomial degree is too large",
SynthesisError::UnexpectedIdentity => "encountered an identity element in the CRS", SynthesisError::UnexpectedIdentity => "encountered an identity element in the CRS",
SynthesisError::IoError(_) => "encountered an I/O error", SynthesisError::IoError(_) => "encountered an I/O error",
SynthesisError::MalformedVerifyingKey => "malformed verifying key", SynthesisError::MalformedVerifyingKey => "malformed verifying key",
SynthesisError::UnconstrainedVariable => "auxiliary variable was unconstrained" SynthesisError::UnconstrainedVariable => "auxiliary variable was unconstrained",
} }
} }
} }
@ -257,40 +256,36 @@ pub trait ConstraintSystem<E: ScalarEngine>: Sized {
/// determine the assignment of the variable. The given `annotation` function is invoked /// determine the assignment of the variable. The given `annotation` function is invoked
/// in testing contexts in order to derive a unique name for this variable in the current /// in testing contexts in order to derive a unique name for this variable in the current
/// namespace. /// namespace.
fn alloc<F, A, AR>( fn alloc<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
&mut self, where
annotation: A, F: FnOnce() -> Result<E::Fr, SynthesisError>,
f: F A: FnOnce() -> AR,
) -> Result<Variable, SynthesisError> AR: Into<String>;
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>;
/// Allocate a public variable in the constraint system. The provided function is used to /// Allocate a public variable in the constraint system. The provided function is used to
/// determine the assignment of the variable. /// determine the assignment of the variable.
fn alloc_input<F, A, AR>( fn alloc_input<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
&mut self, where
annotation: A, F: FnOnce() -> Result<E::Fr, SynthesisError>,
f: F A: FnOnce() -> AR,
) -> Result<Variable, SynthesisError> AR: Into<String>;
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>;
/// Enforce that `A` * `B` = `C`. The `annotation` function is invoked in testing contexts /// Enforce that `A` * `B` = `C`. The `annotation` function is invoked in testing contexts
/// in order to derive a unique name for the constraint in the current namespace. /// in order to derive a unique name for the constraint in the current namespace.
fn enforce<A, AR, LA, LB, LC>( fn enforce<A, AR, LA, LB, LC>(&mut self, annotation: A, a: LA, b: LB, c: LC)
&mut self, where
annotation: A, A: FnOnce() -> AR,
a: LA, AR: Into<String>,
b: LB, LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
c: LC LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
) LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>;
where A: FnOnce() -> AR, AR: Into<String>,
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>;
/// Create a new (sub)namespace and enter into it. Not intended /// Create a new (sub)namespace and enter into it. Not intended
/// for downstream use; use `namespace` instead. /// for downstream use; use `namespace` instead.
fn push_namespace<NR, N>(&mut self, name_fn: N) fn push_namespace<NR, N>(&mut self, name_fn: N)
where NR: Into<String>, N: FnOnce() -> NR; where
NR: Into<String>,
N: FnOnce() -> NR;
/// Exit out of the existing namespace. Not intended for /// Exit out of the existing namespace. Not intended for
/// downstream use; use `namespace` instead. /// downstream use; use `namespace` instead.
@ -301,11 +296,10 @@ pub trait ConstraintSystem<E: ScalarEngine>: Sized {
fn get_root(&mut self) -> &mut Self::Root; fn get_root(&mut self) -> &mut Self::Root;
/// Begin a namespace for this constraint system. /// Begin a namespace for this constraint system.
fn namespace<'a, NR, N>( fn namespace<'a, NR, N>(&'a mut self, name_fn: N) -> Namespace<'a, E, Self::Root>
&'a mut self, where
name_fn: N NR: Into<String>,
) -> Namespace<'a, E, Self::Root> N: FnOnce() -> NR,
where NR: Into<String>, N: FnOnce() -> NR
{ {
self.get_root().push_namespace(name_fn); self.get_root().push_namespace(name_fn);
@ -324,37 +318,31 @@ impl<'cs, E: ScalarEngine, CS: ConstraintSystem<E>> ConstraintSystem<E> for Name
CS::one() CS::one()
} }
fn alloc<F, A, AR>( fn alloc<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
&mut self, where
annotation: A, F: FnOnce() -> Result<E::Fr, SynthesisError>,
f: F A: FnOnce() -> AR,
) -> Result<Variable, SynthesisError> AR: Into<String>,
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{ {
self.0.alloc(annotation, f) self.0.alloc(annotation, f)
} }
fn alloc_input<F, A, AR>( fn alloc_input<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
&mut self, where
annotation: A, F: FnOnce() -> Result<E::Fr, SynthesisError>,
f: F A: FnOnce() -> AR,
) -> Result<Variable, SynthesisError> AR: Into<String>,
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{ {
self.0.alloc_input(annotation, f) self.0.alloc_input(annotation, f)
} }
fn enforce<A, AR, LA, LB, LC>( fn enforce<A, AR, LA, LB, LC>(&mut self, annotation: A, a: LA, b: LB, c: LC)
&mut self, where
annotation: A, A: FnOnce() -> AR,
a: LA, AR: Into<String>,
b: LB, LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
c: LC LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
) LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
where A: FnOnce() -> AR, AR: Into<String>,
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
{ {
self.0.enforce(annotation, a, b, c) self.0.enforce(annotation, a, b, c)
} }
@ -364,18 +352,18 @@ impl<'cs, E: ScalarEngine, CS: ConstraintSystem<E>> ConstraintSystem<E> for Name
// never a root constraint system. // never a root constraint system.
fn push_namespace<NR, N>(&mut self, _: N) fn push_namespace<NR, N>(&mut self, _: N)
where NR: Into<String>, N: FnOnce() -> NR where
NR: Into<String>,
N: FnOnce() -> NR,
{ {
panic!("only the root's push_namespace should be called"); panic!("only the root's push_namespace should be called");
} }
fn pop_namespace(&mut self) fn pop_namespace(&mut self) {
{
panic!("only the root's pop_namespace should be called"); panic!("only the root's pop_namespace should be called");
} }
fn get_root(&mut self) -> &mut Self::Root fn get_root(&mut self) -> &mut Self::Root {
{
self.0.get_root() self.0.get_root()
} }
} }
@ -395,54 +383,48 @@ impl<'cs, E: ScalarEngine, CS: ConstraintSystem<E>> ConstraintSystem<E> for &'cs
CS::one() CS::one()
} }
fn alloc<F, A, AR>( fn alloc<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
&mut self, where
annotation: A, F: FnOnce() -> Result<E::Fr, SynthesisError>,
f: F A: FnOnce() -> AR,
) -> Result<Variable, SynthesisError> AR: Into<String>,
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{ {
(**self).alloc(annotation, f) (**self).alloc(annotation, f)
} }
fn alloc_input<F, A, AR>( fn alloc_input<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
&mut self, where
annotation: A, F: FnOnce() -> Result<E::Fr, SynthesisError>,
f: F A: FnOnce() -> AR,
) -> Result<Variable, SynthesisError> AR: Into<String>,
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{ {
(**self).alloc_input(annotation, f) (**self).alloc_input(annotation, f)
} }
fn enforce<A, AR, LA, LB, LC>( fn enforce<A, AR, LA, LB, LC>(&mut self, annotation: A, a: LA, b: LB, c: LC)
&mut self, where
annotation: A, A: FnOnce() -> AR,
a: LA, AR: Into<String>,
b: LB, LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
c: LC LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
) LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
where A: FnOnce() -> AR, AR: Into<String>,
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
{ {
(**self).enforce(annotation, a, b, c) (**self).enforce(annotation, a, b, c)
} }
fn push_namespace<NR, N>(&mut self, name_fn: N) fn push_namespace<NR, N>(&mut self, name_fn: N)
where NR: Into<String>, N: FnOnce() -> NR where
NR: Into<String>,
N: FnOnce() -> NR,
{ {
(**self).push_namespace(name_fn) (**self).push_namespace(name_fn)
} }
fn pop_namespace(&mut self) fn pop_namespace(&mut self) {
{
(**self).pop_namespace() (**self).pop_namespace()
} }
fn get_root(&mut self) -> &mut Self::Root fn get_root(&mut self) -> &mut Self::Root {
{
(**self).get_root() (**self).get_root()
} }
} }

View File

@ -6,15 +6,15 @@
#[cfg(feature = "multicore")] #[cfg(feature = "multicore")]
mod implementation { mod implementation {
use num_cpus;
use futures::{Future, IntoFuture, Poll};
use futures_cpupool::{CpuPool, CpuFuture};
use crossbeam::{self, Scope}; use crossbeam::{self, Scope};
use futures::{Future, IntoFuture, Poll};
use futures_cpupool::{CpuFuture, CpuPool};
use num_cpus;
#[derive(Clone)] #[derive(Clone)]
pub struct Worker { pub struct Worker {
cpus: usize, cpus: usize,
pool: CpuPool pool: CpuPool,
} }
impl Worker { impl Worker {
@ -24,7 +24,7 @@ mod implementation {
pub(crate) fn new_with_cpus(cpus: usize) -> Worker { pub(crate) fn new_with_cpus(cpus: usize) -> Worker {
Worker { Worker {
cpus: cpus, cpus: cpus,
pool: CpuPool::new(cpus) pool: CpuPool::new(cpus),
} }
} }
@ -36,26 +36,22 @@ mod implementation {
log2_floor(self.cpus) log2_floor(self.cpus)
} }
pub fn compute<F, R>( pub fn compute<F, R>(&self, f: F) -> WorkerFuture<R::Item, R::Error>
&self, f: F where
) -> WorkerFuture<R::Item, R::Error> F: FnOnce() -> R + Send + 'static,
where F: FnOnce() -> R + Send + 'static, R: IntoFuture + 'static,
R: IntoFuture + 'static, R::Future: Send + 'static,
R::Future: Send + 'static, R::Item: Send + 'static,
R::Item: Send + 'static, R::Error: Send + 'static,
R::Error: Send + 'static
{ {
WorkerFuture { WorkerFuture {
future: self.pool.spawn_fn(f) future: self.pool.spawn_fn(f),
} }
} }
pub fn scope<'a, F, R>( pub fn scope<'a, F, R>(&self, elements: usize, f: F) -> R
&self, where
elements: usize, F: FnOnce(&Scope<'a>, usize) -> R,
f: F
) -> R
where F: FnOnce(&Scope<'a>, usize) -> R
{ {
let chunk_size = if elements < self.cpus { let chunk_size = if elements < self.cpus {
1 1
@ -63,22 +59,19 @@ mod implementation {
elements / self.cpus elements / self.cpus
}; };
crossbeam::scope(|scope| { crossbeam::scope(|scope| f(scope, chunk_size))
f(scope, chunk_size)
})
} }
} }
pub struct WorkerFuture<T, E> { pub struct WorkerFuture<T, E> {
future: CpuFuture<T, E> future: CpuFuture<T, E>,
} }
impl<T: Send + 'static, E: Send + 'static> Future for WorkerFuture<T, E> { impl<T: Send + 'static, E: Send + 'static> Future for WorkerFuture<T, E> {
type Item = T; type Item = T;
type Error = E; type Error = E;
fn poll(&mut self) -> Poll<Self::Item, Self::Error> fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
{
self.future.poll() self.future.poll()
} }
} }
@ -88,7 +81,7 @@ mod implementation {
let mut pow = 0; let mut pow = 0;
while (1 << (pow+1)) <= num { while (1 << (pow + 1)) <= num {
pow += 1; pow += 1;
} }

View File

@ -1,11 +1,11 @@
use ff::{Field, PrimeField, PrimeFieldRepr, ScalarEngine};
use group::{CurveAffine, CurveProjective};
use std::sync::Arc;
use std::io;
use bit_vec::{self, BitVec};
use std::iter;
use futures::{Future};
use super::multicore::Worker; use super::multicore::Worker;
use bit_vec::{self, BitVec};
use ff::{Field, PrimeField, PrimeFieldRepr, ScalarEngine};
use futures::Future;
use group::{CurveAffine, CurveProjective};
use std::io;
use std::iter;
use std::sync::Arc;
use super::SynthesisError; use super::SynthesisError;
@ -19,7 +19,10 @@ pub trait SourceBuilder<G: CurveAffine>: Send + Sync + 'static + Clone {
/// A source of bases, like an iterator. /// A source of bases, like an iterator.
pub trait Source<G: CurveAffine> { pub trait Source<G: CurveAffine> {
/// Parses the element from the source. Fails if the point is at infinity. /// Parses the element from the source. Fails if the point is at infinity.
fn add_assign_mixed(&mut self, to: &mut <G as CurveAffine>::Projective) -> Result<(), SynthesisError>; fn add_assign_mixed(
&mut self,
to: &mut <G as CurveAffine>::Projective,
) -> Result<(), SynthesisError>;
/// Skips `amt` elements from the source, avoiding deserialization. /// Skips `amt` elements from the source, avoiding deserialization.
fn skip(&mut self, amt: usize) -> Result<(), SynthesisError>; fn skip(&mut self, amt: usize) -> Result<(), SynthesisError>;
@ -34,13 +37,20 @@ impl<G: CurveAffine> SourceBuilder<G> for (Arc<Vec<G>>, usize) {
} }
impl<G: CurveAffine> Source<G> for (Arc<Vec<G>>, usize) { impl<G: CurveAffine> Source<G> for (Arc<Vec<G>>, usize) {
fn add_assign_mixed(&mut self, to: &mut <G as CurveAffine>::Projective) -> Result<(), SynthesisError> { fn add_assign_mixed(
&mut self,
to: &mut <G as CurveAffine>::Projective,
) -> Result<(), SynthesisError> {
if self.0.len() <= self.1 { if self.0.len() <= self.1 {
return Err(io::Error::new(io::ErrorKind::UnexpectedEof, "expected more bases from source").into()); return Err(io::Error::new(
io::ErrorKind::UnexpectedEof,
"expected more bases from source",
)
.into());
} }
if self.0[self.1].is_zero() { if self.0[self.1].is_zero() {
return Err(SynthesisError::UnexpectedIdentity) return Err(SynthesisError::UnexpectedIdentity);
} }
to.add_assign_mixed(&self.0[self.1]); to.add_assign_mixed(&self.0[self.1]);
@ -52,7 +62,11 @@ impl<G: CurveAffine> Source<G> for (Arc<Vec<G>>, usize) {
fn skip(&mut self, amt: usize) -> Result<(), SynthesisError> { fn skip(&mut self, amt: usize) -> Result<(), SynthesisError> {
if self.0.len() <= self.1 { if self.0.len() <= self.1 {
return Err(io::Error::new(io::ErrorKind::UnexpectedEof, "expected more bases from source").into()); return Err(io::Error::new(
io::ErrorKind::UnexpectedEof,
"expected more bases from source",
)
.into());
} }
self.1 += amt; self.1 += amt;
@ -63,7 +77,7 @@ impl<G: CurveAffine> Source<G> for (Arc<Vec<G>>, usize) {
pub trait QueryDensity { pub trait QueryDensity {
/// Returns whether the base exists. /// Returns whether the base exists.
type Iter: Iterator<Item=bool>; type Iter: Iterator<Item = bool>;
fn iter(self) -> Self::Iter; fn iter(self) -> Self::Iter;
fn get_query_size(self) -> Option<usize>; fn get_query_size(self) -> Option<usize>;
@ -92,7 +106,7 @@ impl<'a> QueryDensity for &'a FullDensity {
pub struct DensityTracker { pub struct DensityTracker {
bv: BitVec, bv: BitVec,
total_density: usize total_density: usize,
} }
impl<'a> QueryDensity for &'a DensityTracker { impl<'a> QueryDensity for &'a DensityTracker {
@ -111,7 +125,7 @@ impl DensityTracker {
pub fn new() -> DensityTracker { pub fn new() -> DensityTracker {
DensityTracker { DensityTracker {
bv: BitVec::new(), bv: BitVec::new(),
total_density: 0 total_density: 0,
} }
} }
@ -138,12 +152,13 @@ fn multiexp_inner<Q, D, G, S>(
exponents: Arc<Vec<<<G::Engine as ScalarEngine>::Fr as PrimeField>::Repr>>, exponents: Arc<Vec<<<G::Engine as ScalarEngine>::Fr as PrimeField>::Repr>>,
mut skip: u32, mut skip: u32,
c: u32, c: u32,
handle_trivial: bool handle_trivial: bool,
) -> Box<Future<Item=<G as CurveAffine>::Projective, Error=SynthesisError>> ) -> Box<Future<Item = <G as CurveAffine>::Projective, Error = SynthesisError>>
where for<'a> &'a Q: QueryDensity, where
D: Send + Sync + 'static + Clone + AsRef<Q>, for<'a> &'a Q: QueryDensity,
G: CurveAffine, D: Send + Sync + 'static + Clone + AsRef<Q>,
S: SourceBuilder<G> G: CurveAffine,
S: SourceBuilder<G>,
{ {
// Perform this region of the multiexp // Perform this region of the multiexp
let this = { let this = {
@ -212,16 +227,24 @@ fn multiexp_inner<Q, D, G, S>(
// There's another region more significant. Calculate and join it with // There's another region more significant. Calculate and join it with
// this region recursively. // this region recursively.
Box::new( Box::new(
this.join(multiexp_inner(pool, bases, density_map, exponents, skip, c, false)) this.join(multiexp_inner(
.map(move |(this, mut higher)| { pool,
for _ in 0..c { bases,
higher.double(); density_map,
} exponents,
skip,
c,
false,
))
.map(move |(this, mut higher)| {
for _ in 0..c {
higher.double();
}
higher.add_assign(&this); higher.add_assign(&this);
higher higher
}) }),
) )
} }
} }
@ -232,12 +255,13 @@ pub fn multiexp<Q, D, G, S>(
pool: &Worker, pool: &Worker,
bases: S, bases: S,
density_map: D, density_map: D,
exponents: Arc<Vec<<<G::Engine as ScalarEngine>::Fr as PrimeField>::Repr>> exponents: Arc<Vec<<<G::Engine as ScalarEngine>::Fr as PrimeField>::Repr>>,
) -> Box<Future<Item=<G as CurveAffine>::Projective, Error=SynthesisError>> ) -> Box<Future<Item = <G as CurveAffine>::Projective, Error = SynthesisError>>
where for<'a> &'a Q: QueryDensity, where
D: Send + Sync + 'static + Clone + AsRef<Q>, for<'a> &'a Q: QueryDensity,
G: CurveAffine, D: Send + Sync + 'static + Clone + AsRef<Q>,
S: SourceBuilder<G> G: CurveAffine,
S: SourceBuilder<G>,
{ {
let c = if exponents.len() < 32 { let c = if exponents.len() < 32 {
3u32 3u32
@ -260,9 +284,8 @@ pub fn multiexp<Q, D, G, S>(
fn test_with_bls12() { fn test_with_bls12() {
fn naive_multiexp<G: CurveAffine>( fn naive_multiexp<G: CurveAffine>(
bases: Arc<Vec<G>>, bases: Arc<Vec<G>>,
exponents: Arc<Vec<<G::Scalar as PrimeField>::Repr>> exponents: Arc<Vec<<G::Scalar as PrimeField>::Repr>>,
) -> G::Projective ) -> G::Projective {
{
assert_eq!(bases.len(), exponents.len()); assert_eq!(bases.len(), exponents.len());
let mut acc = G::Projective::zero(); let mut acc = G::Projective::zero();
@ -274,25 +297,28 @@ fn test_with_bls12() {
acc acc
} }
use rand;
use pairing::{bls12_381::Bls12, Engine}; use pairing::{bls12_381::Bls12, Engine};
use rand;
const SAMPLES: usize = 1 << 14; const SAMPLES: usize = 1 << 14;
let rng = &mut rand::thread_rng(); let rng = &mut rand::thread_rng();
let v = Arc::new((0..SAMPLES).map(|_| <Bls12 as ScalarEngine>::Fr::random(rng).into_repr()).collect::<Vec<_>>()); let v = Arc::new(
let g = Arc::new((0..SAMPLES).map(|_| <Bls12 as Engine>::G1::random(rng).into_affine()).collect::<Vec<_>>()); (0..SAMPLES)
.map(|_| <Bls12 as ScalarEngine>::Fr::random(rng).into_repr())
.collect::<Vec<_>>(),
);
let g = Arc::new(
(0..SAMPLES)
.map(|_| <Bls12 as Engine>::G1::random(rng).into_affine())
.collect::<Vec<_>>(),
);
let naive = naive_multiexp(g.clone(), v.clone()); let naive = naive_multiexp(g.clone(), v.clone());
let pool = Worker::new(); let pool = Worker::new();
let fast = multiexp( let fast = multiexp(&pool, (g, 0), FullDensity, v).wait().unwrap();
&pool,
(g, 0),
FullDensity,
v
).wait().unwrap();
assert_eq!(naive, fast); assert_eq!(naive, fast);
} }

View File

@ -14,31 +14,21 @@ use ff::{Field, ScalarEngine};
use pairing::Engine; use pairing::Engine;
// We're going to use the BLS12-381 pairing-friendly elliptic curve. // We're going to use the BLS12-381 pairing-friendly elliptic curve.
use pairing::bls12_381::{ use pairing::bls12_381::Bls12;
Bls12
};
// We'll use these interfaces to construct our circuit. // We'll use these interfaces to construct our circuit.
use bellman::{ use bellman::{Circuit, ConstraintSystem, SynthesisError};
Circuit,
ConstraintSystem,
SynthesisError
};
// We're going to use the Groth16 proving system. // We're going to use the Groth16 proving system.
use bellman::groth16::{ use bellman::groth16::{
Proof, create_random_proof, generate_random_parameters, prepare_verifying_key, verify_proof, Proof,
generate_random_parameters,
prepare_verifying_key,
create_random_proof,
verify_proof,
}; };
const MIMC_ROUNDS: usize = 322; const MIMC_ROUNDS: usize = 322;
/// This is an implementation of MiMC, specifically a /// This is an implementation of MiMC, specifically a
/// variant named `LongsightF322p3` for BLS12-381. /// variant named `LongsightF322p3` for BLS12-381.
/// See http://eprint.iacr.org/2016/492 for more /// See http://eprint.iacr.org/2016/492 for more
/// information about this construction. /// information about this construction.
/// ///
/// ``` /// ```
@ -49,12 +39,7 @@ const MIMC_ROUNDS: usize = 322;
/// return xL /// return xL
/// } /// }
/// ``` /// ```
fn mimc<E: Engine>( fn mimc<E: Engine>(mut xl: E::Fr, mut xr: E::Fr, constants: &[E::Fr]) -> E::Fr {
mut xl: E::Fr,
mut xr: E::Fr,
constants: &[E::Fr]
) -> E::Fr
{
assert_eq!(constants.len(), MIMC_ROUNDS); assert_eq!(constants.len(), MIMC_ROUNDS);
for i in 0..MIMC_ROUNDS { for i in 0..MIMC_ROUNDS {
@ -76,31 +61,29 @@ fn mimc<E: Engine>(
struct MiMCDemo<'a, E: Engine> { struct MiMCDemo<'a, E: Engine> {
xl: Option<E::Fr>, xl: Option<E::Fr>,
xr: Option<E::Fr>, xr: Option<E::Fr>,
constants: &'a [E::Fr] constants: &'a [E::Fr],
} }
/// Our demo circuit implements this `Circuit` trait which /// Our demo circuit implements this `Circuit` trait which
/// is used during paramgen and proving in order to /// is used during paramgen and proving in order to
/// synthesize the constraint system. /// synthesize the constraint system.
impl<'a, E: Engine> Circuit<E> for MiMCDemo<'a, E> { impl<'a, E: Engine> Circuit<E> for MiMCDemo<'a, E> {
fn synthesize<CS: ConstraintSystem<E>>( fn synthesize<CS: ConstraintSystem<E>>(self, cs: &mut CS) -> Result<(), SynthesisError> {
self,
cs: &mut CS
) -> Result<(), SynthesisError>
{
assert_eq!(self.constants.len(), MIMC_ROUNDS); assert_eq!(self.constants.len(), MIMC_ROUNDS);
// Allocate the first component of the preimage. // Allocate the first component of the preimage.
let mut xl_value = self.xl; let mut xl_value = self.xl;
let mut xl = cs.alloc(|| "preimage xl", || { let mut xl = cs.alloc(
xl_value.ok_or(SynthesisError::AssignmentMissing) || "preimage xl",
})?; || xl_value.ok_or(SynthesisError::AssignmentMissing),
)?;
// Allocate the second component of the preimage. // Allocate the second component of the preimage.
let mut xr_value = self.xr; let mut xr_value = self.xr;
let mut xr = cs.alloc(|| "preimage xr", || { let mut xr = cs.alloc(
xr_value.ok_or(SynthesisError::AssignmentMissing) || "preimage xr",
})?; || xr_value.ok_or(SynthesisError::AssignmentMissing),
)?;
for i in 0..MIMC_ROUNDS { for i in 0..MIMC_ROUNDS {
// xL, xR := xR + (xL + Ci)^3, xL // xL, xR := xR + (xL + Ci)^3, xL
@ -112,15 +95,16 @@ impl<'a, E: Engine> Circuit<E> for MiMCDemo<'a, E> {
e.square(); e.square();
e e
}); });
let mut tmp = cs.alloc(|| "tmp", || { let mut tmp = cs.alloc(
tmp_value.ok_or(SynthesisError::AssignmentMissing) || "tmp",
})?; || tmp_value.ok_or(SynthesisError::AssignmentMissing),
)?;
cs.enforce( cs.enforce(
|| "tmp = (xL + Ci)^2", || "tmp = (xL + Ci)^2",
|lc| lc + xl + (self.constants[i], CS::one()), |lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + xl + (self.constants[i], CS::one()), |lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + tmp |lc| lc + tmp,
); );
// new_xL = xR + (xL + Ci)^3 // new_xL = xR + (xL + Ci)^3
@ -133,23 +117,25 @@ impl<'a, E: Engine> Circuit<E> for MiMCDemo<'a, E> {
e e
}); });
let mut new_xl = if i == (MIMC_ROUNDS-1) { let mut new_xl = if i == (MIMC_ROUNDS - 1) {
// This is the last round, xL is our image and so // This is the last round, xL is our image and so
// we allocate a public input. // we allocate a public input.
cs.alloc_input(|| "image", || { cs.alloc_input(
new_xl_value.ok_or(SynthesisError::AssignmentMissing) || "image",
})? || new_xl_value.ok_or(SynthesisError::AssignmentMissing),
)?
} else { } else {
cs.alloc(|| "new_xl", || { cs.alloc(
new_xl_value.ok_or(SynthesisError::AssignmentMissing) || "new_xl",
})? || new_xl_value.ok_or(SynthesisError::AssignmentMissing),
)?
}; };
cs.enforce( cs.enforce(
|| "new_xL = xR + (xL + Ci)^3", || "new_xL = xR + (xL + Ci)^3",
|lc| lc + tmp, |lc| lc + tmp,
|lc| lc + xl + (self.constants[i], CS::one()), |lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + new_xl - xr |lc| lc + new_xl - xr,
); );
// xR = xL // xR = xL
@ -172,7 +158,9 @@ fn test_mimc() {
let rng = &mut thread_rng(); let rng = &mut thread_rng();
// Generate the MiMC round constants // Generate the MiMC round constants
let constants = (0..MIMC_ROUNDS).map(|_| <Bls12 as ScalarEngine>::Fr::random(rng)).collect::<Vec<_>>(); let constants = (0..MIMC_ROUNDS)
.map(|_| <Bls12 as ScalarEngine>::Fr::random(rng))
.collect::<Vec<_>>();
println!("Creating parameters..."); println!("Creating parameters...");
@ -181,7 +169,7 @@ fn test_mimc() {
let c = MiMCDemo::<Bls12> { let c = MiMCDemo::<Bls12> {
xl: None, xl: None,
xr: None, xr: None,
constants: &constants constants: &constants,
}; };
generate_random_parameters(c, rng).unwrap() generate_random_parameters(c, rng).unwrap()
@ -216,7 +204,7 @@ fn test_mimc() {
let c = MiMCDemo { let c = MiMCDemo {
xl: Some(xl), xl: Some(xl),
xr: Some(xr), xr: Some(xr),
constants: &constants constants: &constants,
}; };
// Create a groth16 proof with our parameters. // Create a groth16 proof with our parameters.
@ -230,20 +218,16 @@ fn test_mimc() {
let start = Instant::now(); let start = Instant::now();
let proof = Proof::read(&proof_vec[..]).unwrap(); let proof = Proof::read(&proof_vec[..]).unwrap();
// Check the proof // Check the proof
assert!(verify_proof( assert!(verify_proof(&pvk, &proof, &[image]).unwrap());
&pvk,
&proof,
&[image]
).unwrap());
total_verifying += start.elapsed(); total_verifying += start.elapsed();
} }
let proving_avg = total_proving / SAMPLES; let proving_avg = total_proving / SAMPLES;
let proving_avg = proving_avg.subsec_nanos() as f64 / 1_000_000_000f64 let proving_avg =
+ (proving_avg.as_secs() as f64); proving_avg.subsec_nanos() as f64 / 1_000_000_000f64 + (proving_avg.as_secs() as f64);
let verifying_avg = total_verifying / SAMPLES; let verifying_avg = total_verifying / SAMPLES;
let verifying_avg = verifying_avg.subsec_nanos() as f64 / 1_000_000_000f64 let verifying_avg =
+ (verifying_avg.as_secs() as f64); verifying_avg.subsec_nanos() as f64 / 1_000_000_000f64 + (verifying_avg.as_secs() as f64);
println!("Average proving time: {:?} seconds", proving_avg); println!("Average proving time: {:?} seconds", proving_avg);
println!("Average verifying time: {:?} seconds", verifying_avg); println!("Average verifying time: {:?} seconds", verifying_avg);