bellman/tests/mimc.rs

227 lines
6.8 KiB
Rust

// For randomness (during paramgen and proof generation)
use rand::thread_rng;
// For benchmarking
use std::time::{Duration, Instant};
// Bring in some tools for using finite fiels
use ff::{Field, PrimeField};
// We're going to use the BLS12-381 pairing-friendly elliptic curve.
use bls12_381::{Bls12, Scalar};
// We'll use these interfaces to construct our circuit.
use bellman::{Circuit, ConstraintSystem, SynthesisError};
// We're going to use the Groth16 proving system.
use bellman::groth16::{
create_random_proof, generate_random_parameters, prepare_verifying_key, verify_proof, Proof,
};
const MIMC_ROUNDS: usize = 322;
/// This is an implementation of MiMC, specifically a
/// variant named `LongsightF322p3` for BLS12-381.
/// See http://eprint.iacr.org/2016/492 for more
/// information about this construction.
///
/// ```
/// function LongsightF322p3(xL ⦂ Fp, xR ⦂ Fp) {
/// for i from 0 up to 321 {
/// xL, xR := xR + (xL + Ci)^3, xL
/// }
/// return xL
/// }
/// ```
fn mimc<Scalar: PrimeField>(mut xl: Scalar, mut xr: Scalar, constants: &[Scalar]) -> Scalar {
assert_eq!(constants.len(), MIMC_ROUNDS);
for i in 0..MIMC_ROUNDS {
let mut tmp1 = xl;
tmp1.add_assign(&constants[i]);
let mut tmp2 = tmp1.square();
tmp2.mul_assign(&tmp1);
tmp2.add_assign(&xr);
xr = xl;
xl = tmp2;
}
xl
}
/// This is our demo circuit for proving knowledge of the
/// preimage of a MiMC hash invocation.
struct MiMCDemo<'a, Scalar: PrimeField> {
xl: Option<Scalar>,
xr: Option<Scalar>,
constants: &'a [Scalar],
}
/// Our demo circuit implements this `Circuit` trait which
/// is used during paramgen and proving in order to
/// synthesize the constraint system.
impl<'a, Scalar: PrimeField> Circuit<Scalar> for MiMCDemo<'a, Scalar> {
fn synthesize<CS: ConstraintSystem<Scalar>>(self, cs: &mut CS) -> Result<(), SynthesisError> {
assert_eq!(self.constants.len(), MIMC_ROUNDS);
// Allocate the first component of the preimage.
let mut xl_value = self.xl;
let mut xl = cs.alloc(
|| "preimage xl",
|| xl_value.ok_or(SynthesisError::AssignmentMissing),
)?;
// Allocate the second component of the preimage.
let mut xr_value = self.xr;
let mut xr = cs.alloc(
|| "preimage xr",
|| xr_value.ok_or(SynthesisError::AssignmentMissing),
)?;
for i in 0..MIMC_ROUNDS {
// xL, xR := xR + (xL + Ci)^3, xL
let cs = &mut cs.namespace(|| format!("round {}", i));
// tmp = (xL + Ci)^2
let tmp_value = xl_value.map(|mut e| {
e.add_assign(&self.constants[i]);
e.square()
});
let tmp = cs.alloc(
|| "tmp",
|| tmp_value.ok_or(SynthesisError::AssignmentMissing),
)?;
cs.enforce(
|| "tmp = (xL + Ci)^2",
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + tmp,
);
// new_xL = xR + (xL + Ci)^3
// new_xL = xR + tmp * (xL + Ci)
// new_xL - xR = tmp * (xL + Ci)
let new_xl_value = xl_value.map(|mut e| {
e.add_assign(&self.constants[i]);
e.mul_assign(&tmp_value.unwrap());
e.add_assign(&xr_value.unwrap());
e
});
let new_xl = if i == (MIMC_ROUNDS - 1) {
// This is the last round, xL is our image and so
// we allocate a public input.
cs.alloc_input(
|| "image",
|| new_xl_value.ok_or(SynthesisError::AssignmentMissing),
)?
} else {
cs.alloc(
|| "new_xl",
|| new_xl_value.ok_or(SynthesisError::AssignmentMissing),
)?
};
cs.enforce(
|| "new_xL = xR + (xL + Ci)^3",
|lc| lc + tmp,
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + new_xl - xr,
);
// xR = xL
xr = xl;
xr_value = xl_value;
// xL = new_xL
xl = new_xl;
xl_value = new_xl_value;
}
Ok(())
}
}
#[test]
fn test_mimc() {
// This may not be cryptographically safe, use
// `OsRng` (for example) in production software.
let mut rng = thread_rng();
// Generate the MiMC round constants
let constants = (0..MIMC_ROUNDS)
.map(|_| Scalar::random(&mut rng))
.collect::<Vec<_>>();
println!("Creating parameters...");
// Create parameters for our circuit
let params = {
let c = MiMCDemo {
xl: None,
xr: None,
constants: &constants,
};
generate_random_parameters::<Bls12, _, _>(c, &mut rng).unwrap()
};
// Prepare the verification key (for proof verification)
let pvk = prepare_verifying_key(&params.vk);
println!("Creating proofs...");
// Let's benchmark stuff!
const SAMPLES: u32 = 50;
let mut total_proving = Duration::new(0, 0);
let mut total_verifying = Duration::new(0, 0);
// Just a place to put the proof data, so we can
// benchmark deserialization.
let mut proof_vec = vec![];
for _ in 0..SAMPLES {
// Generate a random preimage and compute the image
let xl = Scalar::random(&mut rng);
let xr = Scalar::random(&mut rng);
let image = mimc(xl, xr, &constants);
proof_vec.truncate(0);
let start = Instant::now();
{
// Create an instance of our circuit (with the
// witness)
let c = MiMCDemo {
xl: Some(xl),
xr: Some(xr),
constants: &constants,
};
// Create a groth16 proof with our parameters.
let proof = create_random_proof(c, &params, &mut rng).unwrap();
proof.write(&mut proof_vec).unwrap();
}
total_proving += start.elapsed();
let start = Instant::now();
let proof = Proof::read(&proof_vec[..]).unwrap();
// Check the proof
assert!(verify_proof(&pvk, &proof, &[image]).is_ok());
total_verifying += start.elapsed();
}
let proving_avg = total_proving / SAMPLES;
let proving_avg =
proving_avg.subsec_nanos() as f64 / 1_000_000_000f64 + (proving_avg.as_secs() as f64);
let verifying_avg = total_verifying / SAMPLES;
let verifying_avg =
verifying_avg.subsec_nanos() as f64 / 1_000_000_000f64 + (verifying_avg.as_secs() as f64);
println!("Average proving time: {:?} seconds", proving_avg);
println!("Average verifying time: {:?} seconds", verifying_avg);
}