227 lines
6.8 KiB
Rust
227 lines
6.8 KiB
Rust
// For randomness (during paramgen and proof generation)
|
|
use rand::thread_rng;
|
|
|
|
// For benchmarking
|
|
use std::time::{Duration, Instant};
|
|
|
|
// Bring in some tools for using finite fiels
|
|
use ff::{Field, PrimeField};
|
|
|
|
// We're going to use the BLS12-381 pairing-friendly elliptic curve.
|
|
use pairing::bls12_381::{Bls12, Fr};
|
|
|
|
// We'll use these interfaces to construct our circuit.
|
|
use bellman::{Circuit, ConstraintSystem, SynthesisError};
|
|
|
|
// We're going to use the Groth16 proving system.
|
|
use bellman::groth16::{
|
|
create_random_proof, generate_random_parameters, prepare_verifying_key, verify_proof, Proof,
|
|
};
|
|
|
|
const MIMC_ROUNDS: usize = 322;
|
|
|
|
/// This is an implementation of MiMC, specifically a
|
|
/// variant named `LongsightF322p3` for BLS12-381.
|
|
/// See http://eprint.iacr.org/2016/492 for more
|
|
/// information about this construction.
|
|
///
|
|
/// ```
|
|
/// function LongsightF322p3(xL ⦂ Fp, xR ⦂ Fp) {
|
|
/// for i from 0 up to 321 {
|
|
/// xL, xR := xR + (xL + Ci)^3, xL
|
|
/// }
|
|
/// return xL
|
|
/// }
|
|
/// ```
|
|
fn mimc<Scalar: PrimeField>(mut xl: Scalar, mut xr: Scalar, constants: &[Scalar]) -> Scalar {
|
|
assert_eq!(constants.len(), MIMC_ROUNDS);
|
|
|
|
for i in 0..MIMC_ROUNDS {
|
|
let mut tmp1 = xl;
|
|
tmp1.add_assign(&constants[i]);
|
|
let mut tmp2 = tmp1.square();
|
|
tmp2.mul_assign(&tmp1);
|
|
tmp2.add_assign(&xr);
|
|
xr = xl;
|
|
xl = tmp2;
|
|
}
|
|
|
|
xl
|
|
}
|
|
|
|
/// This is our demo circuit for proving knowledge of the
|
|
/// preimage of a MiMC hash invocation.
|
|
struct MiMCDemo<'a, Scalar: PrimeField> {
|
|
xl: Option<Scalar>,
|
|
xr: Option<Scalar>,
|
|
constants: &'a [Scalar],
|
|
}
|
|
|
|
/// Our demo circuit implements this `Circuit` trait which
|
|
/// is used during paramgen and proving in order to
|
|
/// synthesize the constraint system.
|
|
impl<'a, Scalar: PrimeField> Circuit<Scalar> for MiMCDemo<'a, Scalar> {
|
|
fn synthesize<CS: ConstraintSystem<Scalar>>(self, cs: &mut CS) -> Result<(), SynthesisError> {
|
|
assert_eq!(self.constants.len(), MIMC_ROUNDS);
|
|
|
|
// Allocate the first component of the preimage.
|
|
let mut xl_value = self.xl;
|
|
let mut xl = cs.alloc(
|
|
|| "preimage xl",
|
|
|| xl_value.ok_or(SynthesisError::AssignmentMissing),
|
|
)?;
|
|
|
|
// Allocate the second component of the preimage.
|
|
let mut xr_value = self.xr;
|
|
let mut xr = cs.alloc(
|
|
|| "preimage xr",
|
|
|| xr_value.ok_or(SynthesisError::AssignmentMissing),
|
|
)?;
|
|
|
|
for i in 0..MIMC_ROUNDS {
|
|
// xL, xR := xR + (xL + Ci)^3, xL
|
|
let cs = &mut cs.namespace(|| format!("round {}", i));
|
|
|
|
// tmp = (xL + Ci)^2
|
|
let tmp_value = xl_value.map(|mut e| {
|
|
e.add_assign(&self.constants[i]);
|
|
e.square()
|
|
});
|
|
let tmp = cs.alloc(
|
|
|| "tmp",
|
|
|| tmp_value.ok_or(SynthesisError::AssignmentMissing),
|
|
)?;
|
|
|
|
cs.enforce(
|
|
|| "tmp = (xL + Ci)^2",
|
|
|lc| lc + xl + (self.constants[i], CS::one()),
|
|
|lc| lc + xl + (self.constants[i], CS::one()),
|
|
|lc| lc + tmp,
|
|
);
|
|
|
|
// new_xL = xR + (xL + Ci)^3
|
|
// new_xL = xR + tmp * (xL + Ci)
|
|
// new_xL - xR = tmp * (xL + Ci)
|
|
let new_xl_value = xl_value.map(|mut e| {
|
|
e.add_assign(&self.constants[i]);
|
|
e.mul_assign(&tmp_value.unwrap());
|
|
e.add_assign(&xr_value.unwrap());
|
|
e
|
|
});
|
|
|
|
let new_xl = if i == (MIMC_ROUNDS - 1) {
|
|
// This is the last round, xL is our image and so
|
|
// we allocate a public input.
|
|
cs.alloc_input(
|
|
|| "image",
|
|
|| new_xl_value.ok_or(SynthesisError::AssignmentMissing),
|
|
)?
|
|
} else {
|
|
cs.alloc(
|
|
|| "new_xl",
|
|
|| new_xl_value.ok_or(SynthesisError::AssignmentMissing),
|
|
)?
|
|
};
|
|
|
|
cs.enforce(
|
|
|| "new_xL = xR + (xL + Ci)^3",
|
|
|lc| lc + tmp,
|
|
|lc| lc + xl + (self.constants[i], CS::one()),
|
|
|lc| lc + new_xl - xr,
|
|
);
|
|
|
|
// xR = xL
|
|
xr = xl;
|
|
xr_value = xl_value;
|
|
|
|
// xL = new_xL
|
|
xl = new_xl;
|
|
xl_value = new_xl_value;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_mimc() {
|
|
// This may not be cryptographically safe, use
|
|
// `OsRng` (for example) in production software.
|
|
let rng = &mut thread_rng();
|
|
|
|
// Generate the MiMC round constants
|
|
let constants = (0..MIMC_ROUNDS)
|
|
.map(|_| Fr::random(rng))
|
|
.collect::<Vec<_>>();
|
|
|
|
println!("Creating parameters...");
|
|
|
|
// Create parameters for our circuit
|
|
let params = {
|
|
let c = MiMCDemo {
|
|
xl: None,
|
|
xr: None,
|
|
constants: &constants,
|
|
};
|
|
|
|
generate_random_parameters::<Bls12, _, _>(c, rng).unwrap()
|
|
};
|
|
|
|
// Prepare the verification key (for proof verification)
|
|
let pvk = prepare_verifying_key(¶ms.vk);
|
|
|
|
println!("Creating proofs...");
|
|
|
|
// Let's benchmark stuff!
|
|
const SAMPLES: u32 = 50;
|
|
let mut total_proving = Duration::new(0, 0);
|
|
let mut total_verifying = Duration::new(0, 0);
|
|
|
|
// Just a place to put the proof data, so we can
|
|
// benchmark deserialization.
|
|
let mut proof_vec = vec![];
|
|
|
|
for _ in 0..SAMPLES {
|
|
// Generate a random preimage and compute the image
|
|
let xl = Fr::random(rng);
|
|
let xr = Fr::random(rng);
|
|
let image = mimc(xl, xr, &constants);
|
|
|
|
proof_vec.truncate(0);
|
|
|
|
let start = Instant::now();
|
|
{
|
|
// Create an instance of our circuit (with the
|
|
// witness)
|
|
let c = MiMCDemo {
|
|
xl: Some(xl),
|
|
xr: Some(xr),
|
|
constants: &constants,
|
|
};
|
|
|
|
// Create a groth16 proof with our parameters.
|
|
let proof = create_random_proof(c, ¶ms, rng).unwrap();
|
|
|
|
proof.write(&mut proof_vec).unwrap();
|
|
}
|
|
|
|
total_proving += start.elapsed();
|
|
|
|
let start = Instant::now();
|
|
let proof = Proof::read(&proof_vec[..]).unwrap();
|
|
// Check the proof
|
|
assert!(verify_proof(&pvk, &proof, &[image]).is_ok());
|
|
total_verifying += start.elapsed();
|
|
}
|
|
let proving_avg = total_proving / SAMPLES;
|
|
let proving_avg =
|
|
proving_avg.subsec_nanos() as f64 / 1_000_000_000f64 + (proving_avg.as_secs() as f64);
|
|
|
|
let verifying_avg = total_verifying / SAMPLES;
|
|
let verifying_avg =
|
|
verifying_avg.subsec_nanos() as f64 / 1_000_000_000f64 + (verifying_avg.as_secs() as f64);
|
|
|
|
println!("Average proving time: {:?} seconds", proving_avg);
|
|
println!("Average verifying time: {:?} seconds", verifying_avg);
|
|
}
|