use rand::Rng; use std::ops::{Add, Sub, Mul, Neg}; use super::FieldElement; use rustc_serialize::{Encodable, Encoder, Decodable, Decoder}; use arith::{U512, U256}; macro_rules! field_impl { ($name:ident, $modulus:expr, $rsquared:expr, $rcubed:expr, $one:expr, $inv:expr) => { #[derive(Copy, Clone, PartialEq, Eq, Debug)] #[repr(C)] pub struct $name(U256); impl From<$name> for U256 { #[inline] fn from(mut a: $name) -> Self { a.0.mul(&U256::one(), &U256($modulus), $inv); a.0 } } impl Encodable for $name { fn encode(&self, s: &mut S) -> Result<(), S::Error> { let normalized = U256::from(*self); normalized.encode(s) } } impl Decodable for $name { fn decode(s: &mut S) -> Result<$name, S::Error> { $name::new(try!(U256::decode(s))).ok_or_else(|| s.error("integer is not less than modulus")) } } impl $name { pub fn from_str(s: &str) -> Option { let ints: Vec<_> = { let mut acc = Self::zero(); (0..11).map(|_| {let tmp = acc; acc = acc + Self::one(); tmp}).collect() }; let mut res = Self::zero(); for c in s.chars() { match c.to_digit(10) { Some(d) => { res = res * ints[10]; res = res + ints[d as usize]; }, None => { return None; } } } Some(res) } /// Converts a U256 to an Fp so long as it's below the modulus. pub fn new(mut a: U256) -> Option { if a < U256($modulus) { a.mul(&U256($rsquared), &U256($modulus), $inv); Some($name(a)) } else { None } } pub fn interpret(buf: &[u8; 64]) -> Self { $name::new(U512::interpret(buf).divrem(&U256($modulus)).1).unwrap() } /// Returns the modulus #[inline] pub fn modulus() -> U256 { U256($modulus) } } impl FieldElement for $name { #[inline] fn zero() -> Self { $name(U256([0, 0, 0, 0])) } #[inline] fn one() -> Self { $name(U256($one)) } fn random(rng: &mut R) -> Self { $name(U256::random(rng, &U256($modulus))) } #[inline] fn is_zero(&self) -> bool { self.0.is_zero() } fn inverse(mut self) -> Option { if self.is_zero() { None } else { self.0.invert(&U256($modulus)); self.0.mul(&U256($rcubed), &U256($modulus), $inv); Some(self) } } } impl Add for $name { type Output = $name; #[inline] fn add(mut self, other: $name) -> $name { self.0.add(&other.0, &U256($modulus)); self } } impl Sub for $name { type Output = $name; #[inline] fn sub(mut self, other: $name) -> $name { self.0.sub(&other.0, &U256($modulus)); self } } impl Mul for $name { type Output = $name; #[inline] fn mul(mut self, other: $name) -> $name { self.0.mul(&other.0, &U256($modulus), $inv); self } } impl Neg for $name { type Output = $name; #[inline] fn neg(mut self) -> $name { self.0.neg(&U256($modulus)); self } } } } field_impl!( Fr, [0x43e1f593f0000001, 0x2833e84879b97091, 0xb85045b68181585d, 0x30644e72e131a029], [0x1bb8e645ae216da7, 0x53fe3ab1e35c59e3, 0x8c49833d53bb8085, 0x0216d0b17f4e44a5], [0x5e94d8e1b4bf0040, 0x2a489cbe1cfbb6b8, 0x893cc664a19fcfed, 0x0cf8594b7fcc657c], [0xac96341c4ffffffb, 0x36fc76959f60cd29, 0x666ea36f7879462e, 0xe0a77c19a07df2f], 0xc2e1f593efffffff ); field_impl!( Fq, [0x3c208c16d87cfd47, 0x97816a916871ca8d, 0xb85045b68181585d, 0x30644e72e131a029], [0xf32cfc5b538afa89, 0xb5e71911d44501fb, 0x47ab1eff0a417ff6, 0x06d89f71cab8351f], [0xb1cd6dafda1530df, 0x62f210e6a7283db6, 0xef7f0b0c0ada0afb, 0x20fd6e902d592544], [0xd35d438dc58f0d9d, 0xa78eb28f5c70b3d, 0x666ea36f7879462c, 0xe0a77c19a07df2f], 0x87d20782e4866389 ); #[inline] pub fn const_fq(i: [u64; 4]) -> Fq { Fq(U256(i)) } #[test] fn test_rsquared() { let rng = &mut ::rand::thread_rng(); for _ in 0..1000 { let a = Fr::random(rng); let b: U256 = a.into(); let c = Fr::new(b).unwrap(); assert_eq!(a, c); } for _ in 0..1000 { let a = Fq::random(rng); let b: U256 = a.into(); let c = Fq::new(b).unwrap(); assert_eq!(a, c); } }