use frost_core::*; use proptest::prelude::*; use rand_core::{CryptoRng, RngCore}; mod common; use common::ciphersuite::Ristretto255Sha512 as R; /// A signature test-case, containing signature data and expected validity. #[derive(Clone, Debug)] struct SignatureCase { msg: Vec, sig: Signature, vk: VerifyingKey, invalid_vk: VerifyingKey, is_valid: bool, } /// A modification to a test-case. #[derive(Copy, Clone, Debug)] enum Tweak { /// No-op, used to check that unchanged cases verify. None, /// Change the message the signature is defined for, invalidating the signature. ChangeMessage, /// Change the public key the signature is defined for, invalidating the signature. ChangePubkey, /* XXX implement this -- needs to regenerate a custom signature because the nonce commitment is fed into the hash, so it has to have torsion at signing time. /// Change the case to have a torsion component in the signature's `r` value. AddTorsion, */ /* XXX implement this -- needs custom handling of field arithmetic. /// Change the signature's `s` scalar to be unreduced (mod L), invalidating the signature. UnreducedScalar, */ } impl SignatureCase where C: Ciphersuite, { fn new(mut rng: R, msg: Vec) -> Self { let sk = SigningKey::::new(&mut rng); let sig = sk.sign(&mut rng, &msg); let vk = VerifyingKey::::from(&sk); let invalid_vk = VerifyingKey::::from(&SigningKey::new(&mut rng)); Self { msg, sig, vk, invalid_vk, is_valid: true, } } // Check that signature verification succeeds or fails, as expected. fn check(&self) -> bool { // // The signature data is stored in (refined) byte types, but do a round trip // // conversion to raw bytes to exercise those code paths. // let sig = { // let bytes: [u8; 64] = self.sig.into(); // Signature::::from_bytes(bytes) // }; // // Check that the verification key is a valid key. // let pub_key = VerifyingKey::::from_bytes(pk_bytes) // .expect("The test verification key to be well-formed."); // Check that signature validation has the expected result. self.is_valid == self.vk.verify(&self.msg, &self.sig).is_ok() } fn apply_tweak(&mut self, tweak: &Tweak) { match tweak { Tweak::None => {} Tweak::ChangeMessage => { // Changing the message makes the signature invalid. self.msg.push(90); self.is_valid = false; } Tweak::ChangePubkey => { // Changing the public key makes the signature invalid. self.vk = self.invalid_vk; self.is_valid = false; } } } } fn tweak_strategy() -> impl Strategy { prop_oneof![ 10 => Just(Tweak::None), 1 => Just(Tweak::ChangeMessage), 1 => Just(Tweak::ChangePubkey), ] } use rand_chacha::ChaChaRng; use rand_core::SeedableRng; proptest! { #[test] fn tweak_signature( tweaks in prop::collection::vec(tweak_strategy(), (0,5)), rng_seed in prop::array::uniform32(any::()), ) { // Use a deterministic RNG so that test failures can be reproduced. // Seeding with 64 bits of entropy is INSECURE and this code should // not be copied outside of this test! let mut rng = ChaChaRng::from_seed(rng_seed); // Create a test case for each signature type. let msg = b"test message for proptests"; let mut sig = SignatureCase::::new(&mut rng, msg.to_vec()); // Apply tweaks to each case. for t in &tweaks { sig.apply_tweak(t); } assert!(sig.check()); } }